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Filling the gap between topological insulator
nanomaterials and triboelectric nanogenerators
Mengjiao Li1,2,3,8, Hong-Wei Lu1,8, Shu-Wei Wang1,4, Rei-Ping Li5, Jiann-Yeu Chen6,7, Wen-Shuo Chuang5,

Feng-Shou Yang2, Yen-Fu Lin 2,6✉, Chih-Yen Chen5✉ & Ying-Chih Lai 1,6,7✉

Reliable energy modules and higher-sensitivity, higher-density, lower-powered sensing sys-

tems are constantly required to develop wearable electronics and the Internet of Things

technology. As an emerging technology, triboelectric nanogenerators have been potentially

guiding the landscape of sustainable power units and energy-efficient sensors. However, the

existing triboelectric series is primarily populated by polymers and rubbers, limiting tribo-

electric sensing plasticity to some extent owing to their stiff surface electronic structures.

To enrich the current triboelectric group, we explore the triboelectric properties of the

topological insulator nanofilm by Kelvin probe force microscopy and reveal its relatively

positive electrification charging performance. Both the larger surface potential difference and

the conductive surface states of the nanofilms synergistically improve the charge transfer

behavior between the selected triboelectric media, endowing the topological insulator-based

triboelectric nanogenerator with considerable output performance. Besides serving as a

wearable power source, the ultra-compact device array demonstrates innovative system-level

sensing capabilities, including precise monitoring of dynamic objects and real-time signal

control at the human-machine interface. This work fills the blank between topological

quantum matters and triboelectric nanogenerators and, more importantly, exploits the sig-

nificant potential of topological insulator nanofilms for self-powered flexible/wearable elec-

tronics and scalable sensing technologies.
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The development of wearable electronics and the Internet of
Things (IoT) strongly depends on the advance of both
reliable power sources and sensing systems1–4. Although

various power modules—relying on piezoelectric, pyroelectric,
photoelectric, and electrochemical effects, as well as envir-
onmentally renewable energy—have gained significant momen-
tum, their cost-effective application remains challenging given
issues including lower outputs, chemical stability, and colossal
volume5–7. Moreover, the conversion efficiency of thermal,
optical, mechanical, and clean energy is largely limited owing to
rigid operating conditions or stimuli direction dependence. These
drawbacks of current energy harvesting systems highlight the
necessity of exploring sustainable energy generators: triboelectric
nanogenerators (TENGs)8–10. TENGs have emerged as a con-
junction of tribology and interfacial charge transfer, building an
unprecedented network to effectively harvest the mechanical
energy distributed around our daily life11,12. Friction-induced
charge separation and transfer on the surface of triboelectric
materials enable TENGs to detect and recognize external fluc-
tuations by recording electric signals. This capability, combined
with several further advantages, including easy fabrication,
optional working mode, and multi-directional force adaptability,
paves the way for producing self-sufficient triboelectric sensors
and triboelectronics13–19.

Improving the performance of TENGs requires enhancement
of the triboelectric charge densities that are strongly associated
with the electron affinity difference between selected triboelectric
materials and surface-contact modification engineering20,21. On
the one hand, enlarging the effective contact area in terms of
dimensions and morphology is a direct strategy. A spectrum of
techniques, including hydrothermal synthesis, templating fabri-
cation, ink-jet printing, and plasma treatments, have been used
for this purpose. Typical examples include using Au nanoparticles
to decorate the triboelectric film, knitting triboelectric networks
with silk-nanofibers, and fabricating vertical TiO2 nanoflakes on
Ti foils8,22–24. On the other hand, introducing elaborate charge
generation dynamics, such as charge trapping processes, modified
dielectric constants, and tailored electronic structures, also con-
tribute to enhancing the triboelectric characteristics. It has been
shown that incorporating BaTiO3 nanoparticles, 2D reduced-
graphene oxides, or MoS2 nanoflakes into organic dielectric films
can modify the dielectric constant and charge trapping dynamics
as a result of tunneling effects25–28. Although promising advances
are being made in nano modification engineering, joining both
strategies into a single medium to achieve boosted triboelectric
dynamics without compromising the surface plasticity remains
challenging owing to the difficulties in shrinking the hybrid
systems. In addition, most triboelectric materials are governed by
polymers or rubbers, essentially hampering the possibilities for
minimizing or functionalizing the active layer at the atomic limit
to adapt for scaling down in future electronics21,29–31. Therefore,
alternative triboelectric materials that are fundamentally different
in terms of physical properties and electronic structures are
urgently required to achieve energy-efficient, reliable, technolo-
gically simple, and scalable sensory systems for wearable
electronics.

Topological insulators (TIs) are emerging electronic phases
with gapped bulk bands and gapless surface states that show
tremendous potential for applications in optoelectronics, quan-
tum computing, and spintronics32–35. The surface conductions of
TIs become prominent when their thicknesses are reduced to the
nanoscale, which makes TIs vital candidates for future
nanoelectronics36,37. Bismuth telluride (Bi2Te3), a compound that
has been extensively studied for its thermoelectric properties, was
found to be a 3D TI with a quintuple-layered structure and
gained significant attention in recent years38,39. Bi2Te3 nanofilms

are usually prepared by mechanical exfoliation or molecular beam
epitaxy (MBE), which yield samples with excellent quality yet low
scalability. By contrast, chemical solvothermal synthesis is con-
sidered more efficient, by which the Bi2Te3 nanofilms are formed
by many Bi2Te3 nanoplates (Bi2Te3 NPs) and can be made in a
large area using the spin-coating method. This solution-based
method provides good control over the shape and size of Bi2Te3
NPs, affording a viable platform for exploring the practical
applications of Bi2Te340–42. For example, the combination of high
surface-volume ratio, topological surface conduction, and unique
dielectric behavior has endowed Bi2Te3 NPs with significant
potential for use in fast logic transistors, efficient thermoelectric
catalysis, wide-band photodetectors, and microwave
absorbers43–46. Albeit never involving the field of nanogenerators,
TIs’ unique surface conducting properties make them ideal can-
didates for TENGs since the triboelectrification is strongly
dominated by the surface charge transfer process between
tribolayers47,48. Therefore, a significant effort in exploring the
triboelectric characteristics of TIs is required to fill the research
gap between topological materials and triboelectric energy
devices.

In this work, to explore the potential of TIs in energy har-
vesters and energy-efficient electronics, we investigate the elec-
trical performance of a TI-enabled triboelectric nanogenerator
(TI-TENG) by assembling Bi2Te3 NPs on a flexible substrate. Its
triboelectric charging ability is evaluated using Kelvin probe force
microscopy (KPFM) analysis and found to lie between nylon and
Al in the existing triboelectric series. The surface conducting
property improved contact behavior, and larger surface potential
difference with Kapton endows Bi2Te3-based TI-TENGs with
enhanced triboelectric charge transferability and considerable
output power performance. TI-TENGs equipping with external
capacitors enable to serve as flexible power sources to drive
portable electronics. In addition, TI-TENG sensors exhibit precise
sensing performance with small device spacings, which can rea-
lize the construction of an ultra-compact sensory system to
implement object monitoring, real-time signal processing, and
self-powered human–machine interfacial applications (music
players and game controllers). These findings introduce TI
nanomaterials into the triboelectric series and serve as a sig-
nificant paradigm for functional materials in the fields of power
devices and energy-efficient electronics.

Results
The triboelectric polarity of Bi2Te3-NP films. Considering the
advantages of the solution-based method over fabricating high-
yield and low-cost nanofilms, in this work, a chemical sol-
vothermal synthesis method was used to explore the triboelectric
behavior of TI triboelectric layers40,49. Figure 1a shows schematic
diagrams of the growth of Bi2Te3 NPs, indicating that the for-
mation procedure begins with dissolved Bi and Te ions in solu-
tion. After heating, Te and Bi ions are first reduced to Te and Bi
atoms (Fig. 1a(i)); then numerous Te atoms aggregate to form Te
nanorods owing to their unique helical-chain crystal structures
(Fig. 1a(ii))50. The assembled Te nanorods then provide available
sites for the heterogeneous nucleation and alloying of Bi2Te3
nanoparticles. Increasing the reaction time facilitates the emer-
gence of hexagonal nanoplates (Fig. 1a(iii)). To maintain the
electronic properties of the assembled TI films, ethylene glycol
was used as a surfactant to ensure a gentle electron transfer
between nanoplates. Details can be found in the Methods.

Figure 1b–h shows the characterization of the fabricated Bi2Te3
NPs in terms of morphology, phase, composition, and uniformity.
Atomic force microscopy (AFM) and scanning electron micro-
scopy (SEM) analysis showed that the thickness of the Bi2Te3 NPs
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was around 10 nm and the average width between two parallel
sides was 500–550 nm (Fig. 1c, e). In the high-resolution
transmission electron microscopy image (Fig. 1d), the well-
resolved lattice spacings of 0.22 and 0.38 nm can be indexed as
the (112̄0) and (11̄00) planes, respectively, indicating the Bi2Te3
NPs have high crystallinity51. In addition to distinct diffraction
spots, weak diffraction rings in the inset are attributed to the
stacked NPs in various axes. The phase purity of Bi2Te3 NPs was
examined by X-ray diffraction (Fig. 1f), and only featured peaks
of the rhombohedral structure were detected (JCPDS #15-
0863)52. High-resolution X-ray photoelectron spectra (XPS) for
the regions of Bi and Te (Fig. 1g) confirmed both the composition
and the valence states of the Bi2Te3 NPs. In addition, 10 Raman
spectra that exhibited consistent Eg and A1g phonon vibration
modes were randomly collected from a single nanoplate, revealing
the high homogeneity of the nanoplates synthesized using the wet
chemical route and thereby the high uniformity of the Bi2Te3-NP
films for assembling TI-TENGs (Fig. 1h).

To explore the triboelectric performance of TI nanomaterials, a
vertical-mode TI-TENG was fabricated for electrical character-
ization. Figure 2a shows the device structure. It consists of Bi2Te3
film, Kapton, and indium tin oxide (ITO), serving as two

triboelectric layers and electrodes, respectively. The schematic
diagrams of the crystal structure and energy band of Bi2Te3 in
Fig. 2b(i) highlight its building block—quintuple layer (QL) and
the unique surface conductive features. Each QL cell consists of
five layers, which are stacked by a sequence of
Te(1)–Bi–Te(2)–Bi–Te(1) along the z-direction and terminated
by a Te(1) layer at both ends. Compared with the strong
interaction within each QL cell, the van der Waals force between
adjacent QL cells is much weaker, leading to the preferential
cleave surface of Te atomic layer38,49,53,54. The preparation
procedures are described in detail in the supporting information
(Supplementary Fig. 1). SEM images in Fig. 2b show two different
surface morphologies for the Bi2Te3 film assembled by NPs
(Bi2Te3-NP film), revealing that its compactness and regularity
closely depend on the coating dosage of Bi2Te3 NP colloid.
Figure 2c presents the one-cycle voltage outputs of TI-TENG and
corresponding working mechanism schematics based on the
triboelectrification and electrostatic induction effects55. In the
first stage, the work function difference between the two
tribolayers leads to charge transfer from the Bi2Te3-NP film to
Kapton when making contact. When they are brought away from
each other (second stage), electrons flow from the bottom
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electrode (Kapton-side) to the top electrode (Bi2Te3-NP film-side)
to screen the triboelectric charges, resulting in a positive voltage
signal. Electron motion completes at the third stage (fully released),
quenching the output. When the separation distance is reduced,
the number of the induced charges on two electrodes decreases,
resulting in reverse electron motion as well as a reverse output in
the external circuits (fourth stage)56. Such outputs obtained from
the paired Bi2Te3-NP film and Kapton indicate a more positive
triboelectric charging ability for Bi2Te3-NP film than Kapton,
which agrees with the simulated results (Supplementary Fig. 2).

The triboelectric performance of the TIs was further validated
by investigating the output behavior of the MBE-grown TI films.
The crystallinity was examined by Raman spectroscopy (Supple-
mentary Fig. 3). For a fair comparison, the measurement
conditions for MBE TI-TENG were made as similar as possible
to the solution-based TI-TENG. As shown in Fig. 2d and
Supplementary Figs. 4 and 5, the two TENGs with different
preparation methods delivered the same triboelectric polarity and
similar output curves, indicating the low dependence of the
triboelectric charging characteristics of TI films on the synthetic
approach. Notably, the slight performance difference between
these two devices could originate from multiple factors, such as
the different effective contact areas or interlayer interactions57.

The accurate positioning of a triboelectric medium in the
triboelectric series significantly determines its availability and
applicability. To investigate the triboelectric order of Bi2Te3-NP
film, several TENGs consisting of various Bi2Te3-triboelectric

medium pairs were prepared, including nylon, aluminum (Al),
paper, polymethyl methacrylate (PMMA), copper (Cu), polydi-
methylsiloxane (PDMS), fluorinated ethylene propylene (FEP), and
polyvinyl chloride (PVC) (Supplementary Fig. 6). All of the
collected voltage signals in Fig. 3a show the same electrical polarity
under the releasing/pressing operations, except for the Bi2Te3-nylon
pair. Given the positive polarity of nylon in the triboelectric series, it
was deduced that Bi2Te3 lies to the right of nylon, where the
triboelectric polarity is defined by colored arrows and the left arrow
points to more positive polarity, and the right arrow points to more
negative polarity20,21. The uniform voltage polarity from Al to PVC
suggests their more negative charging abilities compared with
Bi2Te3. Therefore, Bi2Te3 is empirically expected to lie between
nylon and Al, showing a relatively positive electrification behavior.
Such a clear positioning for the Bi2Te3-NP film also suggests its
narrow selectivity for positive partners and broad selectivity for
negative partners, providing a reasonable direction for further
exploration and application of Ti-based TENGs.

It is known that the charge transfer behavior between two
triboelectric layers determines their triboelectric polarities and the
generated voltage signals. The surface charge transfer process
strongly depends on the effective work functions and potential
difference of the contacted media, thus necessitating the examina-
tion of the surface potential of various materials by KPFM
measurements to confirm the obtained triboelectric orders.
Figure 3b shows the relative potential differences (ΔE= Etip− Esam)
as a function of typical media, where Etip and Esam represent the
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surface potentials for the probe tip and measured sample,
respectively. Nylon showing the largest ΔE (0.2 V) indicates it has
the smallest work function potential among all characterized
samples. Thus, the surface electron transfer from nylon to Bi2Te3 is
expected when they contact to equalize the Fermi level difference, as
illustrated in the energy band diagram (Fig. 3c(i)). This results in
positive charge electrification on the surface of nylon and negative
charge electrification on the surface of Bi2Te3-NP film, defining
their triboelectric polarities.

By contrast, Bi2Te3 exhibits higher ΔE (0.1 V) than the others
(below 0 V). This leads to the reverse charge exchange process and
positively electrified TIs, which coincide closely with the electrical
measurements in Fig. 3a and confirm the triboelectric order of
Bi2Te3. In addition, the dynamic potential variation of contact
triboelectric layers was characterized to validate the surface charge
transfer mechanisms. As shown in Fig. 3d(i) (taking the TI-
Kapton pair as an example), before contact, the Kapton delivers a
larger | ΔE | due to its larger work function than that of the probe
tip. After contact with TI, electron transfer from TI to Kapton,
resulting in the elevated Fermi level, subsequently decreased the
potential difference (Fig. 3d(ii)). The uniform surface potential
variation of Kapton is indicative of the electron transport analysis
in Fig. 3c. Such electrification effect of TIs was further validated by
examining the triboelectric behavior of another typical TI material
—Bi2Se3. Under the same measurement conditions, Bi2Se3-NP

film-based TENG exhibits similar triboelectric performance with
Bi2Te3 TI-TENG (Supplementary Fig. 7). The systematical
investigation of the surface morphology and surface potential
variation further indicates that the triboelectric performance of TI-
TENGs originates from the synergistic contributions from surface
potential, contact behavior, and the conducting property of TI
materials. Considering that the charge transfer process is closely
associated with the value of ΔE, Kapton was selected as the
counterpart triboelectric medium in the subsequent experiments
because there is a relatively large potential difference between
Bi2Te3-NP film and Kapton58,59. In addition, Kapton has been
frequently selected as the triboelectric material in previous studies
on TENGs with new material or new structures (Supplementary
Fig. 8). Thus, Kapton is used as the counterpart material in our
work to make a fair comparison with other materials without
compromising the output performance.

The triboelectric performance of Bi2Te3-NP TENGs. Under-
standing the triboelectric properties of TI films motivated us to
systematically investigate the output performance of TI-TENGs.
The investigation was conducted on several important factors: the
contact area, operating frequency, external load, and endurance.
First, various TI-Kapton pairs with different amounts of Bi2Te3
NP colloid were prepared to characterize their energy harvesting
capability. As shown in Fig. 4a, both the open-circuit voltage
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(Voc) and short-current (Isc) vary distinctly depending on the
doses of Bi2Te3 NPs. It was observed that even a small dose
(2 mL) of Bi2Te3 NPs enabled a high Voc above 100 V, showing a
better performance of TI-TENGs. The output voltage reached
180 V when the dose of Bi2Te3 NPs was increased to 16 mL; the
slow increase rate could be ascribed to the gradual saturation of
the surface coverage ratio of the Bi2Te3-NP film. Contributions
from the polyethylene terephthalate (PET) substrate were exclu-
ded by examining the output properties of PET-Kapton paired-
TENG without TI film (Supplementary Fig. 9). The importance of
the contact area of the triboelectric media was further investi-
gated. Note that the dose of Bi2Te3 NPs colloid was proportional
to the area of the films for a fair comparison. In Fig. 4b, the

output voltage shows a proportional increase with the increasing
area of the TI film, which is consistent with the proportional
relationship between the total amount of the transferred charges
and the contact area47,58. The fitting result is provided in Sup-
plementary Fig. 10. The tunability of the output—via both the
dose of Bi2Te3 NPs and the size of the Bi2Te3-NP films—suggests
the high practicality of TI-TENGs.

Furthermore, the electrical output properties of TI-TENGs with a
5 × 5-cm2 and 8-mL dose TI-film were explored under various
measurement conditions. As expected, in Fig. 4c(i) and (ii), both
Voc and Qtr (transferred charges) show steady outputs up to almost
160 V and 80 nC with increasing operating frequency from 1 to
4 Hz. While, the short contact time at high frequency leads to a fast

Fig. 4 Electric performance characterizations of the TI-TENG. a Output voltage and current signals of solution-based TI-TENGs with various coating
doses of Bi2Te3 NP colloid from 2 to 16 mL. b Output voltage and current signals of the solution-based TI-TENGs with various areas from 1 × 1 to 5 × 5 cm2.
c Output properties of the solution-based TI-TENG (8mL, 5 × 5 cm2) depending on different operating frequencies. d Output voltage and current signals (i)
of the solution-based TI-TENG as a function of various resistances, also the corresponding output power (ii) under different measurement frequencies. e
Comparison plots of the output power density among previously reported TENGs based on (i) emerging nanomaterials, (ii) conventional materials, and TIs
(Bi2Te3 and Bi2Se3). f Optical image of the (i) in-series LEDs and (ii) LEDs lit by a solution-based TI-TENG. g Endurance test of the TI-TENG under the
continuous operation of (i) 5000 and (ii) 20,000 cycles. Source data are provided as a Source Data file.
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charge flow, responsible for increasing Isc from 5 to 15 μA
(Fig. 4c(ii)). We further investigated the performance of TI-
TENGs as power sources to drive loads by introducing various
resistances into the external circuit. As shown in Fig. 4d(i), both the
extracted voltage and current peaks change slightly under a small
resistance, while both start a steep variation at 30MΩ and
symmetrically enter into the maximum and minimum states,
respectively. Correspondingly, the variation in output power as a
function of external resistance is expected to exhibit a hump shape
at 30 MΩ. They also present uniform tendency under different
operating frequencies, which is indicative of the reliability of the TI-
TENG as a power source. In Fig. 4e(i), the output power density of
TI-TENGs could reach 180mWm−2, which could be competitive
with emerging nanomaterials-based power sources, including
MoS2-based, graphene-based, and metal oxide frameworks-based
counterparts. While the plot in Fig. 4e(ii) eclipses the performance
advantage of TI-TENGs compared with many conventional
TENGs, especially polymer-based devices, potentially directing the
improvement target for TI-TENGs8,22,60–74.

The powering performance of a 5 × 5-cm2 TENG was visually
demonstrated by driving external loads. As illustrated in Fig. 4f (and
Supplementary Movie 1), 480 light-emitting diodes in series were
simultaneously lit up thanks to the high outputs of TI-TENG. It is

important to assess the durability and reproducibility of the power
systems. As shown in Fig. 4g, the output current and voltage of the
TI-TENG remained stable after thousands of cycles, demonstrating
excellent endurance performance. Note that the negligible fluctua-
tion over 20000 cycles could be attributed to the gentle material
transfer between two triboelectric layers or the noise signal from the
external circuits, which is consistent with the surface morphology
variation of Kapton (Supplementary Fig. 11).

Power sources based on Bi2Te3-NP TENGs. In general, TENGs
instantaneously produce high output signals during the dynamic
external operations, which likely limits their direct use in conditions
that require consistent power sources9,75. Unsatisfactory utilization
makes TENGs uncompetitive in diverse power source markets. As a
result, a mini-type electric generation-power system has been
developed to improve the efficiency of TENGs by collecting, trans-
forming, and storing mechanical energy as electric energy for
optional uses. Figure 5a shows the power management circuit of the
TI-TENG, which consists of a capacitor, a bridge, and a load.
Working states are switchable between the TENG and load, which
correspond to the charging and discharging modes, respectively. To
demonstrate the broad applicability of TI-TENGs, capacitors with
different capacitances were employed in the charging mode, ranging
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from 1.1 to 10 μF. During the charging mode (C-M), the evolution
of voltages in Fig. 5b shows distinct charging behaviors depending
on the connected capacitors. The fastest increase rate was observed
for the 1.1-μF capacitor and the slowest increase rate was observed
for the 10-μF capacitor, obeying the inversely proportional rela-
tionship between the capacitances and charging voltage. Various
loads were then connected to examine the power ability of the TI-
TENG power system at the discharging mode (DC-M). Figure 5c–f
illustrates the practical charging-discharging curves of different
loads. After charging for ~130 s, the collected energy was capable of
driving a commercial thermohygrometer and a UV-light detector
(Supplementary Movie 2 and Movie 3), which resulted in a syn-
chronous decline of the voltage signals. Continuously alternating
curves indicate the reproducibility of the charging-discharging pro-
cess and the sustainability of TI-TENG power systems for an energy-
efficient lifestyle.

Self-powered sensors based on Bi2Te3-NP TENGs. Based on
their excellent output performance, the demonstrations of TI-
TENGs in tactile sensing and system-level human–device inter-
face applications were systematically explored. Figure 6a and
Supplementary Fig. 12 show an integrated TI-TENG sensory
system consisting of 9 individual cells (numbered from T1 to T9)
created by patterning discrete ITO electrode arrays with various
spacings (d= 0, 1, 3, 5, 7 mm). Different touching sites on
Kapton correspond to distinguishable output signals owing to
different amounts of induced charge. In Fig. 6b, touching directly
above the ITO electrode (site A, C, and E) of T1, T2, and T3
(d= 3 mm) gives three identical outputs with weak by-products
at either side, indicating its excellent resolution under a spacing of
3 mm. While, it is difficult to maintain this anti-interference
behavior at the middle sites B and D (d= 1.5 mm), leading to two
similar outputs from two adjacent TENGs. To improve the
integrability of sensory systems, the device resolution was further
examined by designing device spacings from 0 to 7 mm (Fig. 6d).
The dependence of the extracted variation of the sensing reso-
lution on spacing d (Fig. 6e) is believed to direct the system-level
uses of TI-TENG sensors with operating validity.

Output mapping as a function of time and device position
shows the dynamic sensing capability of the TI-TENG sensory
array (Fig. 6c). Under a uniform sliding speed across the surface
of T1–T3, the collected curves for each cell with distinct
fluctuations endowed them with precise tactile perception of
dynamic objects. The TI-TENG sensory system demonstrated
further applicability in self-powered human–machine inter-
faces. A 3 × 3 array with an identical spacing of 3 mm was
designed to monitor touched objects (Supplementary Fig. 13),
akin to the smart electronic skin of an artificial hand. Figure 6f
shows the obtained voltage signals that were proportional to the
contact areas between Bi2Te3-NP film and Kapton without
significant noise. Thus, the shape of the monitored objects,
letters T and I, were clearly distinguished according to the
voltage mapping (bottom panel of Fig. 6f and Supplementary
Fig. 13).

In addition, the excellent controllability and integrability of the
TI-TENG sensory system allowed their application in self-
powered human-machine interfaces. Figure 6g shows an inte-
grated system that consists of four TI-TENG sensors presented as
a game controller. By coordinating the circuit design, pressing
each operating key enables the launch of the TENG sensor below,
thereby executing corresponding instructions (Supplementary
Movie 4). A pair of smart glasses was further demonstrated as a
wireless wearable controller by integrating miniature TI-TENG
sensors. Lightly touching the second or the third sensors freely
controlled the instructions of Vol up or Next (Fig. 6j and

Supplementary Movie 5). Such demonstrations of self-powered
microcontrollers suggest promising uses for the integrated TI-
TENG sensing systems in the fields of human–machine interfaces,
supporting further research aimed at smart robotics.

Discussion
In summary, a TI—a unique triboelectric medium with favorable
surface charge properties—was introduced into the triboelectric
series and the field of triboelectric energy. Systematic KPFM
analysis combined with electronic transport behavior investiga-
tion revealed the triboelectric charging characteristics of the TI
film, directing the rational design of the TI-based TENGs. Ben-
efiting from the enhanced surface charge transfer process, the
Kapton-Bi2Te3 film paired TI-TENG exhibited considerable
output power, reliable energy-harvesting capabilities, and the
ability to drive portable electronics. Furthermore, TI-TENGs as
self-powered sensors demonstrated anti-interference sensing
resolution, enabling the construction of ultra-compact sensory
systems for human-machine interfacial applications, including a
game controller and a wireless smart music player. We, therefore,
believe that engineering TI nanomaterials to extend the tribo-
electric series will bridge the fields of topological quantum
matters and wearable/smart electronics toward diverse
functionalities.

Methods
Synthesis of Bi2Te3 nanoplates. Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O,
99.999%, Acros Organi, 0.2 mmol), sodium tellurite (Na2TeO3, 99.5%, ALFA, UK,
0.3 mmol), polyvinyl pyrrolidone (PVP, M.W. 40000, ALFA, UK, 2 mmol), and
sodium hydroxide (NaOH, 97%, SHOWA) were dissolved in 10 mL of ethylene
glycol. To examine the effect of alkaline solution, different amounts of NaOH
(2–5 mmol) were used. The mixture was then heated under reflux in a three-neck
flask. The temperature of the mixture was maintained at 190 °C, respectively, for
3-h periods, and then cooled to room temperature. The synthesized sample
(theoretically, 0.1 mmol Bi2Te3) was centrifuged at 6700 g for 8 min with a solvent
mixture of 5 mL of acetone and 10 mL of isopropanol. The precipitates were dis-
persed in 5 mL of acetone and 10 mL of isopropanol and cleaned using an ultra-
sonicator for three times. The percent yield was around 75% considering the
unavoidable loss during material collection and cleaning. The final products were
dispersed into isopropyl alcohol solution (10 mmol L−1) for further device fabri-
cation and dropped onto the Si substrate using the spin coating method for further
characterization.

Characterization. For materials characterizations, AFM (Bruker Dimension Icon),
X-ray diffraction (XRD, D8, Cu-Kα radiation (λ= 1.54Å), scanning rate of 0.0125o s−1),
XPS (ULVAC-PHI, PHI 5000 VersaProbe), Raman scattering spectra (LabRam HR-800,
Horiba Jobin Yvon, the wavelength of laser: 488 nm), scanning electron microscope
(SEM, JEOL JSM-6330), and field-emission transmission electron microscope (TEM,
Tecnai G2, acceleration voltage of 120 kV) were employed to investigate the morphology,
components, valence states, crystal structure, and crystallinity of the as-synthesized
Bi2Te3 nanoplates. Kelvin Probe Force Microscope (KPFM, Bruker Dimension Icon)
measurements were further conducted in the tapping mode with a conductive probe to
characterize the relative surface potential of various triboelectric media. Typical electrical
measurements of the TI-TENGs and TI-TENG sensor arrays were implemented on a
commercial linear mechanical motor with controlling programs. Keithley electrometer
system (Keithley Instruments, Cleveland) was used to record all the output signals of TI-
TENGs.
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