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Uncovering interpretable potential confounders in
electronic medical records
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Randomized clinical trials (RCT) are the gold standard for informing treatment decisions.

Observational studies are often plagued by selection bias, and expert-selected covariates

may insufficiently adjust for confounding. We explore how unstructured clinical text can be

used to reduce selection bias and improve medical practice. We develop a framework based

on natural language processing to uncover interpretable potential confounders from text. We

validate our method by comparing the estimated hazard ratio (HR) with and without the

confounders against established RCTs. We apply our method to four cohorts built from

localized prostate and lung cancer datasets from the Stanford Cancer Institute and show that

our method shifts the HR estimate towards the RCT results. The uncovered terms can also be

interpreted by oncologists for clinical insights. We present this proof-of-concept study to

enable more credible causal inference using observational data, uncover meaningful insights

from clinical text, and inform high-stakes medical decisions.
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As the number of highly targeted cancer treatments
increases, it is increasingly difficult for oncologists to
decide on optimal treatment practices. In recent years,

medicine has seen the reversal of 146 standard medical practices1,
and many unanswered questions remain on treatment decisions
in oncology. The gold standard for assessing treatment effects is
randomized clinical trials (RCT). However, RCTs can be very
expensive, time-consuming, and limited by the lack of external
validity2,3. Hence, there has been a growing interest in using
observational data to compare and evaluate the effectiveness of
clinical interventions, also known as comparative effectiveness
research (CER)2.

Many studies have used large-scale observational registries
such as the Surveillance, Epidemiology, and Ends Results (SEER)
and National Cancer Data Base (NCDB) to perform CER.
However, such studies may be unreliable due to the systemic bias
present in observational data and the presence of unmeasured
confounders1,2,4. Moreover, population-based CERs in oncology
often also face small data challenges. Electronic medical records
(EMRs) are another source of rich observational information on
patient demographics and past medical history. We hypothesize
that the more detailed unstructured data present in EMRs can be
harnessed to reduce confounding compared to prior CER studies.

In the past decade, there has been a growing interest in using
observational data for clinical decision-making and causal infer-
ence in oncology2. However, such studies are often unreliable,
and many observational studies have been refuted by RCTs soon
after2,4. For example, Yeh et al.5 performed a comparison of
surgery vs. radiotherapy for oropharynx cancer and suggested
that surgery may be superior to radiation for quality of life out-
comes. A few years later, this claim was refuted by an RCT study
by Nichols et al.6, which showed that radiation is in fact superior
to surgery in terms of 1-year quality of life scores. A similar
example is seen with prostate cancer. In 2016, Wallis et al.7

showed through population-based studies that surgery is superior
to radiation for early-stage prostate cancer for overall and pros-
tate cancer-specific survival; a few months later, the finding was
refuted by Hamdy et al.8, which showed that surgery and radia-
tion are equivalent in terms of overall and prostate cancer-specific
survival. Many other studies have shown the fallibility of popu-
lation CERs that rely on expert-curated features to draw con-
clusions about treatment effects2,9.

Beyond clinical studies, there is a relatively large literature on
performing causal inference from observational data. Various
papers have explored how to correct for bias when evaluating
average treatment effect (ATE) from observational studies with
propensity score matching or weighting10,11; see ref. 12 for a
review. There is also a growing amount of literature that adapts
machine-learning models, such as random forest or regularized
regression, for doubly robust ATE estimation in high-
dimensional settings13–16. However, most of the methods do
not include unstructured data.

Recent literature has shown the usefulness of conditioning on
textual data to adjust for confounding17–20. Roberts et al.18 pro-
pose text matching to employ textual data for causal inference.
Mozer et al.17 apply text matching to patient charts texts for a
medical procedure evaluation; however, they focus on continuous
outcomes and rely mostly on expert-curated terms from the
clinical text. Veitch et al.19 is another work that employs
unstructured data for causal inference; however, they rely on
black-box models that are not interpretable. Moreover, many
existing causal inference methods are developed for continuous
outcomes and do not transfer easily to the time-to-event out-
comes for survival analysis used in oncology. Of the ones that
perform causal inference on time-to-event outcomes for medical
applications21,22, we did not find any that include unstructured

data in a systematic way. Austin22 presents methods for using
propensity scores to reduce bias in observational studies with
time-to-event outcomes. Our study leverages some of the ideas
and methods in this literature to develop our approach for
identifying and evaluating the potential confounders from the
unstructured clinical notes. Keith et al.20 present a review of the
literature on using textual data to adjust for confounding. Our
paper contributes to this literature by addressing obstacles in
using NLP methods to remove confounding.

There is also a growing literature that seeks to better employ
EMRs for clinical tasks. Existing work has employed structured
EMR data and unstructured clinical notes for survival prediction
and analysis23,24, clinical risk prediction25, and prediction of
multiple medical events26. However, most current work involving
EMRs focuses on prediction tasks. In studies that include
unstructured notes, most use deep learning to produce context-
rich embedding representations of words or documents23,26.
While these representations are highly accurate for prediction
tasks, they are often black-box and very difficult to interpret for
causal insights. Our approach differs in that we use simple NLP
techniques (e.g., entity identification, bag-of-words) to generate
matrix representations that can be easily mapped to specific
words and phrases. This increases the interpretability of our
method and allows us to explain our confounders to clinicians.

We study how EMRs, especially clinical text, can be used to
reduce selection bias in observational CER studies and better
inform treatment decisions in oncology. A confounder is a vari-
able that is associated with both treatment assignment and the
potential outcomes a subject would have under different treat-
ment regimes. In the presence of confounders, the correlation
between treatment assignment and outcomes cannot be inter-
preted as causal. One way that confounding may arise is when
patients are selected for a treatment group on the basis of the
severity of their illness. In such a case, failing to adjust for patient
severity can lead to selection bias when attempting to estimate
causal effects. For example, surgery tends to be performed on
younger or healthier patients; certain doctors or institutions may
prefer one treatment over another, and this creates confounding if
those doctors or institutions treat patients with systematically
different severity. Studies based on a small set of covariates tend
not to capture the important confounders and result in biased
estimates5,7. Observational studies are more reliable when we can
better control for these confounders. While structured EMR data,
such as billing codes, can be used to encode expert-curated
patient characteristics, studies suggest that administrative claims
data may contain errors27,28 and expert-curated covariates may
not capture all potential confounding7,29. EMR clinical text is a
potential source of additional information about factors that
might relate to both treatment assignment and prognosis.

We propose an automated approach using natural language
processing (NLP) to uncover interpretable potential confounders
from the EMRs for treatment decisions. For high-stake settings
such as cancer treatment decisions, it is important to design
models that are interpretable for trust and understanding30. NLP
can be used to process the unstructured clinical notes and create
covariates that supplement the traditional covariates identified
through expert opinion. We then augment our dataset with
covariates that impact both treatment assignment and patient
outcomes, where attempting to estimate causal effects while
omitting such variables leads to biased estimates15,31. Finally,
we use methods designed to estimate causal effects in observa-
tional studies with observed confounders to estimate treatment
effects in our augmented dataset. We show that controlling for
these confounders appears to reduce selection bias when com-
pared against the results from established RCTs and clinical
judgment.
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We apply our method to localized prostate and lung cancer
patients. Based on cohorts from established RCTs, we built four
treatment groups for comparison. We uncovered interpretable
potential confounders from clinical text and validated the
potential confounders against the results from the RCTs. Simple
NLP techniques (e.g., lemmatization, entity identification) were
used to construct a bag-of-words representation of the frequently
occurring terms. A Lasso model32 was then used to select the
terms that are predictive of both the treatment and survival
outcome as potential confounders. Finally, we validated our
method by comparing the hazard ratio (HR) from survival ana-
lysis with and without the confounders.

Our main contribution is presenting a framework for unco-
vering interpretable potential confounders from clinical text.
Existing work in observational causal inference rarely employs
unstructured data11,21,22, and most NLP studies on clinical text
focus on prediction or classification settings23,26,28. Our paper
differs from existing studies by employing NLP for causal ana-
lysis; we use NLP methods to predict the treatment and survival
outcome, and then employ a causal framework to combine the
two models for uncovering potential confounders. We are the
first to uncover interpretable potential confounders from clinical
notes for causal analysis on cancer therapies, and one of the few
works that combine NLP and causal inference in a time-to-event
setting. Our method allows researchers to extract and control for
confounders that are not typically available. While we present our
work as a proof-of-concept study, this appears to be a useful step
for future observational CER studies to help reduce selection bias
unique to that dataset. The research presented can help unlock
the potential of clinical notes to help clinicians understand the
current clinical practice and support future medical decisions. We
also outline several limitations that need to be overcome for use
in practice in “Discussion”.

Our study advances both the clinical and causal inference lit-
erature by using NLP to perform causal inference on clinical text
in time-to-event settings. We hope this will inform clinical
practice and improve patient outcomes.

Results
We apply our methods to localized prostate and stage I non-small
cell lung cancer (NSCLC) patients and compare the results
against established RCTs. We select these diseases due to data
availability and having established clinical RCTs for validation.
After filtering and assignment, we include 1822 patients for
prostate cancer, with 988 surgery patients, 385 radiation patients,
and 449 active monitoring patients; the average follow-up time is
4.11 years. For stage I NSCLC, we include 749 patients, with
492 surgery patients and 257 radiation patients; the average
follow-up time is 4.96 years. The patient characteristic descrip-
tions of the prostate cancer cohort are shown in Table 1 and the
NSCLC cohort are shown in Table 2. Please see “Dataset” for
more details on the patient selection process.

We use the findings from established RCTs and clinical judg-
ment as a benchmark for evaluating our results. For localized
prostate cancer, Hamdy et al.8 compared active monitoring,
radical prostatectomy, and external-beam radiotherapy. A total of
1643 patients were included in the study, with 553 men assigned
to surgery, 545 men assigned to radiotherapy, and 545 men to
active monitoring. They observed no significant difference among
the groups for prostate cancer or all-cause mortality (P= 0.48
and P= 0.87 respectively). Similarly, a recent study showed that
the difference in treatment effects for surgery vs. radiation
observed from observational studies is entirely due to treatment
selection bias29. For stage I NSCLC, the Chang et al.33 study is a
pooled study comparing stereotactic ablative radiotherapy

(SABR) to surgery. A total of 58 patients were included, with 31
patients assigned to SABR and 27 to surgery. The study observed
that SABR had slightly better overall survival than surgery
(P= 0.037), but claims to be consistent with the clinical judgment
that surgery is equipoise to radiation.

Following the design of Hamdy et al.8 and Chang et al.33, we
evaluate our results for the following four treatment groups for an
outcome of all-cause mortality:

● Surgery vs. radiation for prostate cancer
● Surgery vs. monitoring for prostate cancer

Table 1 Characteristics of the localized prostate cancer
patients.

Treatment groups

Features Surgery
(n= 988)

Radiation
(n= 385)

Monitoring
(n= 449)

Age, mean (std) 64.04 (7.8) 70.18 (7.6) 66.22 (8.2)
Race, no. (%)

White 709 (71.8%) 221 (57.4%) 292 (65.0%)
Black 32 (3.2%) 15 (3.9%) 14 (3.1%)
Asian 94 (9.5%) 41 (10.6%) 42 (9.4%)
Unknown 153 (15.4%) 108 (28.1%) 101 (22.5%)

Ethnicity, no. (%)
Hispanic 71 (7.1%) 20 (5.2%) 23 (5.1%)
Non-Hispanic 890 (90.1%) 348 (90.4%) 393 (87.5%)
Unknown 27 (2.7%) 17 (4.4%)) 33 (7.3%)

Clinical stage,
no. (%)

Stage I 219 (22.2%) 36 (9.4%) 227 (50.6%)
Stage II 750 (75.9%) 289 (75.1%) 217 (48.3%)
Stage III 12 (1.2%) 38 (9.9%) 3 (0.7%)
Stage IV 7 (0.7%) 22 (5.7%) 2 (0.4%)

Tumor grade,
no. (%)

Grade 1 66 (66.8%) 33 (8.6%) 157 ((35.0%)
Grade 2 429 (43.4%) 132 (34.3%) 205 (45.7%)
Grade 3 474 (48.0%) 208 (54.0%) 62 (13.8%)
Grade 4 3 (0.3%) 2 (0.5%) 0 (0%)
Unknown 16 (1.6%) 10 (2.6%) 25 (5.6%)

No. notes/
patient,
mean (std)

24.96 (44.4) 53.93 (105.7) 54.48 (93.4)

Days of survival,
mean (std)

1564.90 (979.4) 1424.76 (1,031.6) 1403.72 (921.2)

Death, no. (%) 70 (7.1%) 19 (4.9%) 17 (3.8%)

Diagnosis year: 2008–2017; avg. follow-up: 4.11 years.

Table 2 Characteristics of the stage I lung cancer patients.

Treatment groups

Features Surgery (n= 484) Radiation (n= 224)

Age, mean (std) 68.05 (10.7) 74.60 (9.1)
Gender, no. (%)

Female 299 (62.0%) 87 (41.2%)
Male 185 (38.0%) 137 (58.8%)

Race, no. (%)
White 293 (60.8%) 152 (66.5%)
Black 12 (2.2%) 5 (3.5%)
Asian and Pacific islander 99 (20.1%) 18 (9.7%)
Unknown 80 (16.9%) 49 (20.2%)

Ethnicity, no. (%)
Hispanic 23 (4.9%) 10 (3.9%)
Non-hispanic 411 (84.3%) 178 (81.7%)
Unknown 50 (10.8%) 36 (14.4%)

No. notes/patient,
mean (std)

57.49 (101.2) 57.73 (134.9)

Days of survival, mean (std) 2060.13 (1,207.5) 1350.29 (914.1)
Death, no. (%) 120 (24.8%) 126 (53.3%)

Diagnosis year: 2000–2017; avg. follow-up: 4.96 years.
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● Radiation vs. monitoring for prostate cancer
● Surgery vs. radiation for stage I NSCLC

We do not analyze other treatment groups for lung cancer due to
patient count constraints.

Our approach identifies covariates that are likely potential
confounders in this particular dataset from the high-dimensional
and high-noise EMR data. These covariates are interpretable as
they are represented by structured data or words from a bag-of-
words matrix. To evaluate the effectiveness of the potential
confounders selected in the model, we use these potential con-
founders to perform survival analysis for the treatment groups for
prostate and stage I NSCLC. We compare the results of various
methods for time-to-event analysis in terms of HR. Although we
cannot know what the true HR is, we suggest that using medical
notes improves on the traditional covariates. We compare our
results against existing RCTs to evaluate how the confounders we
have uncovered can help correct selection bias. The overall
workflow is shown in Fig. 1. Supplement 1 details the covariates
extracted from the structured data.

Potential confounders. We show that our methods uncover
terms that are predictive of both the treatment and survival
outcome. Hence, these are potential confounders that should be
controlled for in observational CERs to reduce selection bias.
Please see Supplement 3 for a discussion on the structures of
potential confounding our method can capture.

We select the intersection covariates from our treatment and
outcome prediction models as the potential confounders. We base
this idea on the selection of union variables to reduce
confounding when performing causal inference on observational
data in the case of continuous outcomes15. However, in survival
analysis, it is recommended that the covariates analyzed be
constrained by the statistical 1 in 10/20 rule of thumb with
respect to the event count34,35. In our high-dimensional setting,
the union of covariates that are predictive of treatment and
outcome yields too many potential confounders relative to the
sample size. Hence, we use intersect as a heuristic to focus on the
most important confounders.

In Fig. 2, we illustrate the unpenalized coefficients of covariates
from two models, the treatment assignment model, and the
survival outcome model. For each covariate, the x axis plots the
coefficient from the treatment prediction model while the y axis
plots the coefficient from the survival outcome model. Each
covariate is labeled by the text next to it. The intersection
covariates, intersect, are shown in blue; these are the covariates
that have strong effects in both models. For the structured
covariates, we illustrate in black the coefficients for the covariates
that were not selected; these coefficients are closer to at least one
of the axes in the figure. We do not illustrate the coefficients for
unstructured covariates that are not selected, as there are a large
number of these covariates. The axes are labeled to indicate which
treatment the coefficient predicts and whether the coefficient is
indicative of a good or bad survival prognosis. For example, in the
treatment model, patients with a high bladder word occurrence
have a higher likelihood of receiving surgery; in the outcome
model, patients with a high bladder occurrence have a lower
likelihood of survival.

In Supplement 5, we show the R2 correlation among all the
selected covariates for each treatment group.

Evaluation of potential confounders. We evaluate these poten-
tial confounders by comparing the results on three covariate
combinations:

● Structured: Using only the structured covariates. We use
this as a baseline because these are covariates that are
typically used in retrospective oncology studies and are
readily available in the structured data7.

● Intersect: Using only the intersection covariates identified
as confounders.

● Struct+intersect: Using the union of the structured and
intersection variables.

We then perform survival analysis using univariate Cox
proportional hazard models (Cox-PH) with propensity score
matching (matching), univariate Cox-PH model with inverse
propensity score weighting (IPTW), and multivariate Cox-PH
model with inverse propensity score weighting (multi.coxph).
We hypothesize that struct+intersect will perform the best by
including both the structured and unstructured data. In Fig. 3, we
show the hazard ratio (HR) of the effect of treatment for each
study cohort when the selected covariates are included in the
analysis. An HR below 1 indicates that patients with the second
treatment are more likely to survive than those with the first
treatments. An HR above 1 indicates the opposite, and an HR
equal to 1 indicates that the two treatments are equipoise. For
each HR estimate, we also show the 95% confidence interval (CI).
Please see “Uncover and evaluate confounders” for more details
on the methods.

We observe that with the additional covariates, we are able to
shift the estimate of the HR toward the direction of the RCT for
an outcome of all-cause mortality. We also compare the
covariate-specific HR of each of the selected covariates in terms
of univariate and multivariate Cox-PH analysis for an all-cause
mortality outcome in Tables 3–6.

In Fig. 3a and Table 3, we show the results with surgery vs.
radiation for prostate cancer. The RCT reports no significant
difference between surgery vs. radiation for localized prostate
cancer8. With structured, we observe a significant effect that
radiation is superior to surgery, a result that disagrees with most
retrospective studies7. Each center can have different patient
populations and treatment patterns that shift the only structured
adjusted survival rates. For instance, at our center we have a busy
high-dose-rate brachytherapy program which is an attractive
option for fit patients with few comorbidities who might otherwise
receive surgery. This would be expected to bias the survival
outcomes in favor of radiation, as observed in our study. We seek
to uncover potential confounders from the text that can reduce
bias when performing retrospective studies, whichever way the
bias lies. After adjustment with the uncovered confounders, we
observe a significant shift in the HR toward equipoise with the
additional identified confounders for intersection and struct
+intersect. For structured, we observe an HR of 2.51 with 95%
CI (2.39–4.55) and P value of 0.002 with multi.coxph. For struct
+intersect, we estimate an HR of 1.54 with 95% CI (0.78–3.03)
and P value of 0.214 with multi.coxph. We shift the HR point
estimate by 0.97, or 38.6%, toward equipoise.

In Fig. 3b and Table 4, we show the results of surgery vs. active
monitoring for prostate cancer. Hamdy et al.8, the RCT, reports
the HR for surgery vs. active monitoring as 0.93 with 95% CI
(0.65, 1.35) and P value of 0.92. With structured, we again have a
significant effect that active monitoring is superior to surgery; this
disagrees with most retrospective studies7 and Hamdy et al.8. We
again observe a significant shift in the HR toward equipoise with
the additional identified confounders. For structured, we observe
an HR of 2.71 with 95% CI (1.55–4.75) and P value < 0.001 with
multi.coxph. For struct+intersect, we estimate an HR of 1.10
with 95% CI (0.55–2.21) and P value of 0.781 with multi.coxph.
We shift the HR point estimate by 1.61, or 59.1%, toward
equipoise.
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In Fig. 3c and Table 5, we show the results of radiation vs.
active monitoring for prostate cancer. We do not see as significant
a shift with radiation vs. active monitoring. Hamdy et al.8 record
the HR for radiation vs. active monitoring as 0.94 with 95% CI of
(0.65, 1.36) and P value of 0.92. We observe that matching
estimated the HR closest to the RCT results when compared
against IPTW and multi.coxph. All results with intersect and

struct+intersect shift the HR estimate slightly toward equipoise,
with the most shift of 0.32, or 71.1%, by intersect and IPTW; this
is closely followed by a shift of 0.20, or 45.5%, with intersect and
multi.coxph. While the adjusted results are not as close to the
RCT results as compared to Fig. 3a and b, the HR estimate is all
shifted toward the RCT results in terms of bias reduction for each
of the data and method combination. We suspect the less

Fig. 1 Pictorial overview for uncovering potential confounders. a shows the data processing done for each patient. We preprocess and concatenate the
structured and unstructured covariates before applying our method. For the data sources, we compile data from the Stanford Cancer Institute Research
Database (SCIRDB), the California Cancer Registry (CCR), and the Epic System. We present the timeline for patient i with both structured (XðsÞ

i ) and
unstructured (XðeÞ

i ) features Xi. b shows the workflow for identifying how potential confounders affect survival analysis for each treatment group. We
uncover covariates that are predictive of both the treatment and outcome as potential confounders. We then perform survival analysis on different
combinations of the selected covariates.
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significant shift may be due to the smaller dataset available for
radiation vs. active monitoring or the confounding not being
observable within the text.

In Fig. 3d and Table 6, we show the results with surgery vs.
radiation for stage I NSCLC. With structure, we observe a
significant effect that surgery is superior to radiation. The results
from Chang et al.33 and clinical judgment tells us that surgery and
radiation should be about equipoise for stage I NSCLC. The shift
is not as significant as with prostate cancer, but we also note that
the established clinical standard for lung cancer is not as well
studied. We observe a more significant shift with multi.coxph,
with an average shift of 0.15 or 38.5%. We observe an average
shift of 0.06, or 15.4%, with matching and an average shift of
0.02, or 5.1% with IPTW. For structured, we observe an HR of
0.39 with 95% CI (0.30–0.51) and P value < 0.001 with multi.-
coxph. For struct+intersect, we estimate an HR of 0.54 with 95%
CI (0.40–0.53) and P value < 0.001 withmulti.coxph. We shift the
HR point estimate by 0.15, or 38.5%, toward equipoise. While the
adjusted results are not as close to the RCT results as compared to
Fig. 3a and b, the HR estimates are all shifted towards equipoise
in terms of bias reduction for each combination. We suspect the
less significant shift is again due to the even smaller data size of
stage I NSCLC. The doubly robust method of multi.coxph seem
to perform better under these settings.

Overall, our methods uncover several potential confounders
that can reduce selection bias in observational data. Although our
method cannot uncover all potential confounders, we are able to

uncover confounders that are not usually included in expert-
selected covariates. Supplementary analysis of propensity scores
and covariate balance plots for each analysis is seen in
Supplement 4.

Potential confounder interpretation. We show that the
potential confounders we have uncovered are interpretable
through clinical expertise. We examine the effect on survival for
each selected covariate in term of univariate and multivariate
survival analysis with a Cox-PH model. In univariate analysis, a
single covariate is regressed on the survival outcome and
describes the survival with respect to a single covariate. In
multivariate analysis, all the selected covariates are regressed on
the survival outcome and describe each covariate’s effect
on survival while adjusting for the impact of all selected cov-
ariates. For a particular variable, an HR below 1 indicates
that the covariate is a positive predictor of survival, an HR
above 1 indicates a negative predictor of survival, and an HR
equal to 1 means that the variable does not seem to
effect survival.

For surgery vs. radiation and surgery vs. active monitoring with
prostate cancer, struct:patient_age, text:bladder, and text:urothe-
lial are chosen as intersection covariates. Moreover, they are also
shown to be significant through both univariate and multivariate
covariate analysis in Tables 3 and 4.

Patient age is a known confounder in treatment decision and
survival outcomes. Older patients are more likely to receive

Fig. 2 For each treatment group, we show the unpenalized coefficients for the struct+intersect covariates. Blue text indicates the intersect covariates
that have been selected as potential confounders by our method from the text; the prefix text: has been omitted. Black text indicates the structured
covariates that have not been selected; the prefix “struct:" has been omitted. The covariate patient_age has been shorthanded as pat_age. For the
treatment model, these are the coefficients to a linear model. For the survival outcome model, these are the β for the Cox-PH model. The dotted lines are
the axis, denote a coefficient value of 0. We plot the coefficients from the survival and treatment regression models in each of the figure panels: a surgery
vs. radiation for prostate cancer; b surgery vs. monitoring for prostate cancer; c surgery vs. monitoring for prostate cancer; d surgery vs. radiation
for NSCLC.
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radiation due to surgery risk. However, older patients also have
higher mortality. In Fig. 2a–c, we observe that patients with
higher struct:patient_age, i.e., older patients, are more likely to
receive radiation and a bad prognosis.

We hypothesize that text:bladder and text:urothelial are
identified because prostate cancer patients often have bladder
symptom issues and can also have urothelial cancer. Most
retrospective prostate cancer studies have not excluded patients

Fig. 3 Forest plots of each of the comparison groups. The left-hand label displays the mean HR, the 95% confidence interval (CI), the P value, and the Δ
HR. The Δ HR measure is the difference of the current HR estimate and the baseline, structured, HR estimate. For surgery vs. active monitoring and
radiation vs. active monitoring for prostate cancer, we have included the exact results from the RCT in red for comparison. For the remaining cohorts,
clinical expertise suggests equipoise between the treatments. We see that the inclusion of our potential confounders shift the HR point estimate in the
direction of the RCT and reduces the selection bias. The blue labels below each graph indicate which treatment is better in terms of HR comparison. We
display the HR comparisons for each cohort as follows: a surgery vs. radiation for prostate cancer; b surgery vs. monitoring for prostate cancer; c surgery
vs. monitoring for prostate cancer; d surgery vs. radiation for NSCLC. For (d), “Radiation better" is not displayed because the HR value is not shifted beyond
1.0, the direction of radiation better.

Table 3 Univariate and multivariate covariate-specific HR for surgery vs. radiation for prostate cancer.

Univariate analysis Multivariate analysis

Covariates HR 95% CI P value HR 95% CI P value

W.surgery 1.27 [0.77, 2.1] 0.352 1.09 [0.59, 2] 0.777
struct:patient_age* 594.88 [87, 4.1e+03] <0.001 35.96 [3.5, 3.7e+02] 0.003
struct:race_white 0.92 [0.44, 1.9] 0.822 0.65 [0.22, 1.9] 0.439
struct:race_api 0.63 [0.18, 2.2] 0.467 0.67 [0.14, 3.3] 0.622
struct:race_black 1.63 [0.33, 8.1] 0.551 4.04 [0.64, 25] 0.137
struct:hispanic 0.85 [0.2, 3.6] 0.831 1.52 [0.33, 7] 0.593
struct:clinical_stage 0.30 [0.042, 2.2] 0.237 1.02 [0.14, 7.4] 0.987
struct:tumor_grade 0.05 [0.0013, 2] 0.111 0.10 [0.00038, 24] 0.406
struct:grade_unknown 0.55 [0.028, 11] 0.698 0.99 [0.0029, 3.4e+02] 0.996
struct:diagnosis_year 0.12 [0.024, 0.57] 0.008 0.17 [0.025, 1.2] 0.075
text:bladder* 207.51 [79, 5.4e+02] <0.001 35.95 [9.3, 1.4e+02] <0.001
text:urothelial* 1919.54 [4.2e+02, 8.7e+03] <0.001 44.07 [4.4, 4.4e+02] 0.001

HR hazard ratio, CI confidence interval, * intersection terms.
The * denotes intersection terms identified by our method. The lower block of covariates represents terms extracted from clinical notes. For each covariate, we show the effect size (HR), the 95%
confidence interval (CI), and the statistical significance (P value) from a Wald statistics test.
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with early-stage bladder cancer7. Examples of text:bladder in the
clinical notes are “he notes incomplete bladder emptying”,
“evidence of benign prostatic hyperplasia and chronic bladder
outlet obstruction”, and “diagnosis of bladder cancer”. Examples
of text:urothelial in the notes are “pathology showed high-grade
urothelial carcinoma with muscle present and not definitively
involved”, “it was read as a high-grade urothelial cancer which
involved the stroma of the prostate as well as the bladder”.
Patients with bladder cancer or bladder issues are more likely to
get surgery than radiation. Radiation does not work well for
bladder cancer. Patients with bladder problems may prefer
surgery because radiation can irritate the bladder and cause
urinary problems. However, these are also patients with higher
mortality and more health issues. In Fig. 2a, b, we observe that
text:bladder and text:urothelial are more common in patients who
received surgery and had a bad prognosis.

Moreover, for this dataset, we note that the confounding
appears to be observable. The bias of surgery being worse than
radiation and monitoring is due to a group of patients who are
diagnosed with prostate cancer through a resection for bladder
cancer or other bladder issues. When a patient with bladder
cancer has a cystoprostatectomy in which the bladder and
prostate are both removed, a pathologist can sometimes find a
prostate tumor in the pathology specimen. Bladder cancer

patients tend to be older, have more medical issues, and a higher
mortality rate. The terms text:bladder and text:urothelial describe
this group of patients. Our method can capture some character-
istics of this group and use this to reduce selection bias.

For radiation vs. active monitoring, we do not observe
confounders that present a significant shift in treatment HR in
Table 5. It can be that the confounding here is not as easily
observable or our method is unable to identify it. We can identify
interesting potential confounders, such as text:resident. From
Fig. 2c, we observe that text:resident is more common in patients
who received radiation and had a bad prognosis. This term likely
refers to both resident physicians and the patient being a resident
of a long-term care facility or skilled nursing facility. Both uses of
the term could reduce survival time: inpatients at teaching
hospitals have much of their care delivered by resident physicians,
and frequent inpatient stays or nursing facility residency could
both indicate a sicker patient.

We repeat the same process for lung cancer. We examine
Table 6 for the intersection covariates through univariate and
multivariate analysis. We observe that some of the significant
terms are struct:patient_age, struct:male, struct:race_api, struct:-
diagnosis_year, text:alk, text:left.low, and text:severe.

We note that age, gender, race, and diagnosis year are known
confounders for treatment decision and outcome.

Table 4 Univariate and multivariate covariate-specific HR for surgery vs. active monitoring for prostate cancer.

Univariate analysis Multivariate analysis

Covariates HR 95% CI P value HR 95% CI P value

W.surgery 1.67 [0.99, 2.8] 0.057 1.02 [0.55, 1.9] 0.957
struct:patient_age* 3669.74 [5.3e+02, 2.5e+04] <0.001 143.94 [11, 1.9e+03] <0.001
struct:race_white 0.87 [0.41, 1.8] 0.709 0.68 [0.23, 2] 0.478
struct:race_api 0.59 [0.15, 2.3] 0.443 0.81 [0.16, 4.1] 0.799
struct:race_black 2.04 [0.41, 10] 0.384 5.16 [0.82, 32] 0.080
struct:hispanic 1.09 [0.29, 4.1] 0.898 1.68 [0.41, 6.8] 0.471
struct:clinical_stage 2.58 [0.31, 21] 0.378 3.75 [0.35, 40] 0.275
struct:tumor_grade 0.22 [0.014, 3.7] 0.296 2.37 [0.0084, 6.6e+02] 0.764
struct:grade_unknown 0.06 [0.00094, 4.2] 0.198 0.02 [2.5e-05, 14] 0.235
struct:diagnosis_year 0.12 [0.027, 0.55] 0.006 0.50 [0.073, 3.4] 0.483
text:bladder* 160.34 [65, 3.9e+02] <0.001 24.17 [6.6, 89] <0.001
text:urothelial* 2178.75 [5e+02, 9.6e+03] <0.001 68.15 [7.4, 6.3e+02] <0.001

HR hazard ratio, CI confidence interval, * intersection terms.
The * denotes intersection terms identified by our method. The lower block of covariates represents terms extracted from clinical notes. For each covariate, we show the effect size (HR), the 95%
confidence interval (CI), and the statistical significance (P value) from a Wald statistics test.

Table 5 Univariate and multivariate covariate-specific HR for radiation vs. active monitoring for prostate cancer.

Univariate analysis Multivariate analysis

Covariates HR 95% CI P value HR 95% CI P value

W.radiation 1.22 [0.63, 2.4] 0.551 0.62 [0.24, 1.6] 0.316
struct:patient_age* 265.19 [9.1, 7.8e+03] 0.001 275.03 [3.7, 2.1e+04] 0.011
struct:race_white 0.43 [0.15, 1.3] 0.129 0.39 [0.099, 1.5] 0.170
struct:race_api 1.38 [0.29, 6.7] 0.687 0.62 [0.09, 4.3] 0.626
struct:race_black 1.69 [0.18, 16] 0.646 1.90 [0.19, 19] 0.582
struct:hispanic 0.38 [0.014, 11] 0.572 0.39 [0.016, 9.7] 0.567
struct:clinical_stage 2.42 [0.2, 30] 0.491 1.12 [0.056, 22] 0.939
struct:tumor_grade 0.89 [0.034, 23] 0.942 533.75 [0.015, 1.9e+07] 0.240
struct:grade_unknown 0.12 [0.0017, 8.9] 0.337 0.00 [3e-07, 32] 0.220
struct:diagnosis_year 0.69 [0.053, 9.1] 0.781 4.96 [0.1, 2.4e+02] 0.417
text:carotid* 44.60 [4.1, 4.9e+02] 0.002 9.63 [2.1, 43] 0.003
text:resident* 185839.25 [80, 4.3e+08] 0.002 1288062.91 [1e+03, 1.6e+09] <0.001

HR hazard ratio, CI confidence interval, * intersection terms.
The * denotes intersection terms identified by our method. The lower block of covariates represents terms extracted from clinical notes. For each covariate, we show the effect size (HR), the 95%
confidence interval (CI), and the statistical significance (P value) from a Wald statistics test.
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The covariate text:alk points to the ALK mutation for NSCLC.
About 5% of NSCLCs have a rearrangement in a gene called ALK;
the ALK gene rearrangement produces an abnormal ALK protein
that causes the cells to grow and spread. This change is often seen
in non-smokers (or light smokers) who are younger and who
have the adenocarcinoma subtype of NSCLC36. It’s been observed
that patients with the ALK mutation have worse disease-free
survival, citing higher rates of recurrence and metastasis36.
Alternatively, we hypothesize that text:alk is significant because
the ALK mutation is mutually exclusive from the EGFR
mutation37. The EGFR mutation is often present in asian patients
and EGFR patients typically have better survival. Hence, the
significance of text:alk can be related to the absence of the EGFR
mutation. In Fig. 2d, we observe that text:alk is more common in
patients who received radiation and had a bad prognosis.

The covariate text:left.low can point to NSCLC on the lower
left node of the lung. Studies have observed that lung cancer on
the lower lobe or lower left lobe has worse survival38,39. This can
also be related to the absence of the EGFR mutation, since EGFR
mutation occur less frequently in the lower lobe38. In Fig. 2d, we
observe that text:left.low is also more common in patients who
received radiation and had a bad prognosis.

The covariate text:nipple can indicate a history of breast
cancer. Studies have shown that patients with a history of breast
cancer are diagnosed with lower stages of NSCLC and show better
prognosis when compared to women with first NSCLC, perhaps
due to heightened surveillance compared to the general
population40. In Fig. 2d, we observe that text:nipple is more
common in patients who received surgery and had a good
prognosis; both effects have also been observed in Milano et al.40.

The covariate text:sponge can refer to sponges used for surgical
preparations. The sponge is commonly used in surgery and can
be an indication that the patient has some history of receiving
surgery. Patients who receive surgery tend to be healthier and
have better survival. In Fig. 2d, text:sponge is more common in
patients who received surgery and had a good prognosis.

The covariates text:severe and text:rib could be pointing to a
severe conditions related to lung and other problems that indicate
poor overall health and performance status, which has been
shown to be related to a patient’s survival outcomes41. Examples
of text:severe include phrases such as “severe pulmonary
hypertension”, “severe COPD”, or “severe emphysema”. Exam-
ples of text:rib include phrases such as “rib fractures” or “rib
shadows”. In Fig. 2d, we observe that both text:severe and text:rib
are more common in patients who received radiation and had a
bad prognosis. Similarly, we also observe other terms that could
describe the type of lung cancer - such as text:squamous.cell—or
overall health levels—textdstext:alert, text:attention.

Overall, we are able to uncover some potential confounders
that are easy to interpret and capture useful clinical insights.

Discussion
We have demonstrated how causal inference methods can be used
to draw more reliable conclusions from population-based studies.
Our paper shows that (1) clinical notes, or unstructured data, can
be an important source for uncovering confounders, and (2)
current clinical tools can be augmented with machine-learning
methods to provide better decision support. Furthermore, our
proof-of-concept framework can be easily adapted to use textual
data to reduce selection bias in retrospective studies more
generally.

Our framework can be used to improve clinical practice. Due
to the simplicity of the machine-learning tools employed, it can
be easily implemented as an additional step in the design of
observational CER studies. Our results also show that the method
is generalizable to different types of cancer and for various types
of study cohort comparisons. With the continued digitization of
clinical notes and the increasing access to EMRs, we recommend
this as an essential step for any researcher seeking to draw clinical
insights from observational data. The terms uncovered with our
method can not only be used to improve observational CERs but

Table 6 Univariate and multivariate covariate-specific HR for surgery vs. radiation for stage I NSCLC.

Univariate analysis Multivariate analysis

Covariates HR 95% CI P value HR 95% CI P value

W.surgery 0.309 [0.24, 0.4] <0.001 0.545 [0.41, 0.72] <0.001
struct:pat_age 52.9 [17, 1.6e+02] <0.001 14.6 [4.8, 44] <0.001
struct:male 3.07 [1.8, 5.1] <0.001 1.92 [1.1, 3.4] 0.023
struct:race_white 0.842 [0.53, 1.4] 0.476 0.495 [0.28, 0.87] 0.015
struct:race_api 0.0557 [0.019, 0.17] <0.001 0.0674 [0.021, 0.22] <0.001
struct:race_black 2.03 [0.62, 6.7] 0.245 1.87 [0.57, 6.1] 0.298
struct:hispanic 0.664 [0.19, 2.3] 0.514 0.331 [0.088, 1.2] 0.101
struct:diagnosis_year 0.0166 [0.007, 0.039] <0.001 0.0421 [0.014, 0.13] <0.001
text:alert 9.46e-12 [3.6e-16, 2.5e-07] <0.001 0.00224 [3e-08, 1.7e+02] 0.287
text:alk 1.17e+04 [38, 3.7e+06] 0.001 4.67e+04 [9.3e+02, 2.3e+06] <0.001
text:appearance 5.46e-09 [2.6e-12, 1.1e-05] <0.001 0.00694 [7.6e-06, 6.4] 0.153
text:attention 1.03e-12 [4.6e-20, 2.3e-05] 0.001 0.00238 [1.2e-09, 4.7e+03] 0.414
text:feel 6.64e-10 [5.7e-16, 0.00077] 0.003 1.27e-05 [1.2e-10, 1.4] 0.057
text:left.low 29.1 [5.2, 1.6e+02] <0.001 12.5 [2.1, 76] 0.006
text:nipple 2.57e-09 [1.6e-15, 0.0041] 0.007 4.2e-05 [1.5e-09, 1.2] 0.054
text:rib 688 [40, 1.2e+04] <0.001 28.1 [1.8, 4.4e+02] 0.017
text:severe 601 [56, 6.5e+03] <0.001 58.3 [9.4, 3.6e+02] <0.001
text:sponge 2.04e-07 [3.3e-11, 0.0013] <0.001 0.0181 [3.7e-05, 8.9] 0.205
text:squamous.cell 94.8 [16, 5.6e+02] <0.001 7.61 [1.1, 53] 0.041
text:venous 0.0464 [0.00089, 2.4] 0.128 0.0523 [0.00081, 3.4] 0.165

HR hazard ratio, CI confidence interval, * intersection terms.
The * denotes intersection terms identified by our method. The lower block of covariates represents terms extracted from clinical notes. For each covariate, we show the effect size (HR), the 95%
confidence interval (CI), and the statistical significance (P value) from a Wald statistics test.
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also be used to generate interpretable insights about current
clinical practice. The uncovering of relevant information and
subsequent insights can then be used to inform high-stakes
medical decisions.

We believe that our work is the first to explore the potential of
including unstructured clinical notes to reduce selection bias in
oncology settings. We are also one of the first works to incor-
porate unstructured data into causal inference estimators and
Cox-PH models. Although our method has been developed to
address a specific problem in oncology and applied in the clinical
setting, it can also be easily adapted for application in any
observational study that seeks to incorporate unstructured text.
We propose our method as an automated selection procedure
that can be used to supplement expert opinion when uncovering
potential confounders for a particular observational study
population. There is much work to be done in using NLP and
unstructured text for causal inference. Our work presents a
simple and flexible way to generate interpretable causal insights
from the text of any sort. Our method can also be applied to
studies within and beyond medicine to extract important infor-
mation from observational data to support decisions.

Our study also has several limitations. We begin by outlining
potential areas for future work. First, we use simple NLP methods
to process the clinical notes and extract the top 500 or 1000
features for variable selection. In the process, much information
in the text nodes is discarded and the sequence of past medical
events is not taken into account. We choose this setup due to the
small sample size of oncology study cohorts, which makes it
difficult to train more complicated models for textual processing.
In theory, the more work that is placed into the clinical notes
preprocessing and the higher quality of the features generated
from these notes, the more informative the uncovered potential
confounders will be. For future work, we hope to explore how
other NLP techniques, such as topic modeling or clustering, can
be used to build even higher-quality features from unstructured
text. There are also an increasing number of deep learning models
that can be used to identify interpretable insights26. We are
interested in how these deep learning methods can be applied to
generate causal insights on another study population with a larger
sample size. We are also interested in developing ways to better
address ambiguity in the notes (e.g., “it is unclear if the patient
has chest pain”).

Second, we rely on the proportional hazard assumption for our
Cox-PH models. In cases of many covariates, the assumption may
be violated. We feel the simplicity and interpretability of the
model outweigh the performance improvement resulting from
increased complexity. For EMR datasets with many covariates,
the assumption is often used and does not seem to present a
practical issue24. Future work could explore alternative models
that do not rely on the assumption42.

Third, more work can be done to mitigate immortal-time bias
in our HR estimates. We discuss our approach in “Study cohort”.
An alternative method to address this problem would be to use a
time-dependent Cox-PH model43.

Fourth, we focus on the comparison of methods that can be
applied in a time-to-event setting, and leave out more novel
methods that are developed for continuous settings of ATE
estimation. It would be interesting to explore how these methods
can be extended and applied to a time-to-event setting.

Fifth, our approach of selecting intersection covariates is an
empirical approach designed for uncovering the most valuable
potential confounders. As a result, we filtered out most of the
features and only focused on a few confounders. While our
approach works well empirically in this study, future work
involves developing more sensitive and statistically grounded
methods for identifying potential confounders.

Sixth, our work is constrained to localized prostate and lung
patients at the Stanford Hospital and state cancer registry data. It
would strengthen the validity of our methods if experiments can
be performed on large multiinstitutional registries for cancer or
other diseases.

Seventh, we acknowledge that an average follow-up of about 4
years is relatively short for prostate cancer survival analysis. For
this sample from the EMR, the actual follow-up time for each
patient varies from 6 months to 10 years. Future studies can
perform the analysis on larger multi-institutional datasets.

Eighth, we include a limited set of structured features as
structured data such as diagnosis codes are often under-reported
in the EMR. For example, we did not include the PSA scores
because they are not well recorded in the structured data as many
patients had PSA tests done at outside facilities44. We do include
tumor grade in the structured data, which is shown to have a
strong correlation to PSA45. We acknowledge this as a limitation
of our study and future work can be done to augment the
structured features.

In addition to future works, we also outline two limitations to
applying our framework. First, our method can only uncover
potential confounders that can be observed in notes. There are
many sources of confounding in observational data and even rich
EMR data cannot capture everything. If the confounding is
unknown and unobservable, no method to our knowledge will be
able to adjust for it. Hence, it would be good practice to perform
sensitivity analysis to evaluate the result’s robustness to unknown
confounding. Please see Supplement 3 for additional discussion
on the potential confounding situations we can capture.

Second, the validity of causal inference models cannot be
determined without prospective experimental data. Therefore, the
uncovered confounders and estimated HR can only be validated
by clinicians. We are identifying potential candidates for the bias
and then evaluating these candidates of bias against RCTs.

Many challenges remain for employing unstructured data for
causal inference analysis and medical settings. We hope this work
interests both clinical practitioners augmenting existing clinical
support tools and researchers using textual data to reduce con-
founding in observational data. We hope our workflow, problem
framing, and experimental design can serve as such a sandbox for
testing more complex algorithms or adapting to other application
areas. Ultimately, we hope this research will find causal infor-
mation in clinical notes and provide a transparent way for
machine learning to inform medical decision-making.

Methods
Dataset. Our research conforms with all relevant ethical regulations and is
approved by the Stanford Institutional Review Board (IRB). Patient consent was
waived through obtaining the IRB. We curate a dataset of non-metastatic prostate
and lung cancer patients from the Stanford Cancer Institute Research Database
(SCIRDB). The database includes patients seen in the Stanford Health Care (SHC)
system from 2008 to 2019 for prostate cancer and 2000 to 2019 for lung cancer.
SHC clinical sites include one academic hospital, one freestanding cancer center,
and several outpatient clinics. From SCIRDB, we pull a total of 3638 prostate
cancer patients with 552,009 clinical notes and 3274 non-small cell lung cancer
(NSCLC) patients with 648,505 clinical notes. The clinical notes include progress
notes, letters, discharge summaries, emergency department notes, history and
physical notes, and treatment planning notes.

For each patient, we also pull the structured EMR and data from the inpatient
billing system. From the California Cancer Registry (CCR), we pull the available
initial treatment information, cancer staging, tumor description, date of diagnosis,
date of death, and date of the last follow-up for these selected patients. For NSCLC,
we also pull the recorded Epic cancer staging information. Demographic
information such as age, race, gender, and ethnicity are self-reported in our dataset.

Study cohort. We build our study cohorts from SCIRDB with reference to existing
observational study principles and clinical expertise. We try our best to select
patients for each treatment group built from the EMRs to match the RCTs criteria.

For each patient, we combine all treatments with the same Diagnosis ID in the
CCR as the initial line of treatment. For patients with multiple Diagnosis ID, we
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keep the first record of treatment. For prostate cancer, patients without a recorded
treatment are labeled as active monitoring. To avoid explicit revelation of the
treatment choice, we only include notes more than 2 months before the treatment
start date for prostate cancer and 1 month for NSCLC. We rely on domain
expertise to determine the 1 or 2-month pre-treatment cutoffs. Lung cancer
patients typically have higher mortality and tend to start treatment pretty quickly.
For prostate cancer, patients progress more slowly and get second opinions before
making a treatment decision. We then select for patients with at least one note
before the specified time. We select only patients who survived at least 6 months
past their date of diagnosis to mitigate immortal-time bias43. We then filter for only
patients with treatment of interest for analysis. Because we extract only initial
treatments (rather than treatments for cancer recurrence) as recorded in SEER,
most of the treatments are administered within 6 months of the diagnosis date46.
This is similar to the setup for traditional landmark analysis43. To ensure the
proportional hazard condition, patients who are still living are censored at the time
of last follow-up47. The patient filtering and cohort selection process is shown in
Fig. 4.

For patients with unknown clinical stage but known pathological stage, we
impute the clinical stage by training a clinical-stage classification model using the
pathological stage and other patient information. The pathological stage is usually a
little higher than clinical stage due to the staging based on biopsy samples instead
of imaging; hence, it is inaccurate to group them together. Clinical stage is more
frequently used for similar observational studies8,33 and it is more rigorous to
impute the missing clinical stage with a model trained on the pathological stage
and other relevant covariates. We train the clinical-stage imputation model with
struct:patient_age, struct:pathological_stage, struct:diagnosis_year, and
struct:tumor_grade. For NSCLC, text:tumor_grade is not included due to missing
information. For both prostate and NSCLC, we train and validate a random forest
model48,49 on patients with both clinical and pathological stage available. The
imputed stages are used as the clinical stage for those patients. For patients with
both clinical and pathological stage missing, we are able to fill in some through
clinical chart reviews.

We assign patients to the treatment groups based on the initial treatment
decision to capture the intent to treat rather than the actual treatments
administered. We assign patients with only surgery records into the surgery group
and patients with only radiation records into the radiation group. For patients with
both radiation and surgery, patients who received surgery first are assigned to the
surgery group and patients who received radiation first to the radiation group. For
prostate cancer, patients from all stages are included, except for patients with
distant metastases, and patients with no recorded treatment are assigned to the
active monitoring group. For NSCLC, only patients with clinical stage I are
included. The data processing is performed in python with pandas50.

Data processing and representation. We build the covariates used for unco-
vering confounders through the process shown in Fig. 1a. We compile the data
from SCIRDB, CCR, and Epic for each patient.

We include age, race, ethnicity, clinical stage, and diagnosis year as part of the
structured data. For prostate cancer, we also include SEER-recorded tumor grade,
which are highly correlated with the Gleason grade. For NSCLC, we also include
gender. Based on age range categories used in Li et al.51, we form the categorical
variable struct:patient_age by splitting age into ranges of ≤49 years old, 5-year
buckets from 50–84 years old, and ≥85 years old. Race and ethnicity are encoded as
one-hot vectors, with each feature indicating one race or ethnicity. Race is
combined based on what is done in Li et al.51. We select these structured covariates
because they are commonly accepted by clinicians as potential confounders and
often included in CER studies7. For race, struct:race_unknown is not included as a

covariate. For ethnicity, only struct:hispanic is included as a covariate. For tumor
grade, patients with unknown grade are imputed with the median grade value. The
indicator variable struct:grade_unknown is added to indicate which patients have
been imputed. The covariates struct:tumor_grade and struct:grade_unknown are
not included for NSCLC due to missing information of tumor grade and clinical
judgment. In the end, we have nine structured covariates for prostate cancer and
seven structured covariates for NSCLC. While billing codes can be used to generate
additional structured features for diagnosis and past treatments, existing studies
have found these can be unreliable27,28. Hence, we chose to focus mainly on clinical
notes to capture additional information that can influence survival time, such as
patient symptoms and performance status.

We build word frequency representations of the clinical notes for the
unstructured covariates. For each patient, we compile notes within the specified
time (i.e., 2 months prior to the treatment start date for prostate cancer and
1 month prior for NSCLC). We only use notes from before treatment so that we are
not predicting survival outcome with information unavailable at the time of
treatment decision. The different time windows for the two diseases were selected
as NSCLC treatment generally starts more quickly than prostate cancer treatment
due to the more rapidly progressing nature of cancer. The notes are segmented
based on clinical field labels (e.g., “IMPRESSION:”, “HISTORY:”), tab spaces,
NLTK sentence tokenization52. To remove noise, we remove clinical field labels
and two sentences from the beginning and end of each document. We also remove
sentences with common locations (e.g., “Stanford Medical Center”, “Palo Alto”)
and medical doctor names (e.g., “xx xx, M.D.”) as these are often prefix or suffix to
note documents. To avoid including conditions patients do not have, we remove
sentences if they contain less than 15 words including a negation term (i.e., “no”,
“denies”, “does not”, “none”). For example, this prevents us from extracting
“smoking” as a covariate from “No history of smoking.”

We then identify biomedical entities from the preprocessed clinical notes with
scispaCy53. scispaCy is a spaCy54-based model for processing biomedical, scientific,
and clinical text. The scispaCy models identifies a list of all the entities in the text that
exist in a biomedical dictionary, such as the Unified Medical Language System55. We
then lemmatize and combine all biomedical entities identified from the sentences for
each patient into a single document. For lemmatization, we used the scispaCy
lemmatizer, which is based on the spaCy lemmatization model. To further remove
noise, we remove stopwords using a combination of the NLTK stopwords52 and data-
specific stopwords such as medical units (e.g., “lb”, “oz”, “mmhg”), time terms (e.g.,
“months”, “days”), and medical or Stanford specific terms (e.g., “stanford”, “patient”,
“doctor”) that are very common but irrelevant to the task at hand. We also create a
dictionary of synonyms in the dataset and use the dictionary to combine these words.
The dictionary includes lexical variations that are not reduced to the same root during
lemmatization (e.g., “abnormality”→ “abnormal”, “consult”→ “consultation”),
abbreviations (e.g., “hx”→ “history”, “fu”→ “follow-up”), and common synonyms
(e.g., “assistance→ “service”, “action”→ “movement”). Please see a list of the
synonyms included in the Appendix.

Finally, we remove punctuation and generate term frequency representations of
the text using bag-of-words (BOW) with term frequency–inverse document
frequency (TF-IDF) weighting56. Bag-of-words (BOW) model is a simplifying
representation in natural language processing. It represents text (such as sentence
or document) as a vector of word occurrence count. TF-IDF, is a score that
reweighs the BOW matrix to reflect how important a word is to a document in a
collection or corpus. We implement this with scikit-learn49. For prostate cancer, we
select for the top 500 most frequent features using only unigrams. For NSCLC, we
select for the top 1000 most frequent features using both unigrams and bigrams,
and apply a document frequency threshold strictly lower than 0.7 to filter out
dataset-specific stopwords. Although there are more prostate cancer patients, the
lower number of death events makes it more difficult to include as many covariates

Fig. 4 Patient cohort selection process for prostate and lung cancer patients. a We show the cohort filtering process the the subsequent number of
patients selected for prostate cancer. b We show the filtering process for NSCLC.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28546-8 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1014 | https://doi.org/10.1038/s41467-022-28546-8 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


when performing survival analysis. Hence, we have 500 unstructured covariates for
prostate cancer and 1000 unstructured covariates for NSCLC.

We scale and normalize both the structured and unstructured covariates before
concatenating them. In total, we build 509 covariates for prostate cancer and 1007
covariates for NSCLC. These covariates are then used to uncover potential dataset-
specific confounders.

Outcomes. We define our survival outcome as (Yi, Ei), where Yi 2 Zþ is the
number of survival days since the diagnosis and Ei∈ {0, 1} is an indicator for
whether a death event has been observed during follow-up. The treatment, Wi∈
{0, 1}, is an indicator for either surgery, radiation, or monitoring, depending on the
treatment group. The covariates, Xi, includes the structured dataset pulled from the
EMR data and the bag-of-words matrix representation generated from EMR notes.

Uncover and evaluate confounders. We uncover interpretable potential con-
founders from the covariates and evaluate the confounders we’ve identified with
survival analysis. The approach is shown in Fig. 1b.

We find the potential confounders by identifying covariates that are predictive
of both treatment and survival outcome. We train prediction models for treatment
(Wi= 1) and the survival outcome (Yi, Ei) with Lasso32 using glmnet57. Lasso is a
L1− penalized linear regression that can produce coefficients for covariates that
are exactly zero, and is, hence, often used for creating sparse models58 or variable
selection15. We select the intersection of covariates with non-zero coefficients from
both the treatment and survival outcome models as potential confounders. For
surgery vs. radiation and surgery vs. active monitoring for prostate cancer, we
select the intersection covariates that correspond to the Lasso shrinkage penalty for
the most regularized model such that the error is within one standard error of the
minimum, lambda.1se. With radiation vs. monitoring for prostate cancer and
surgery vs. radiation for stage I NSCLC, we select the intersection covariates that
correspond to the shrinkage penalty that gives the minimum mean cross-validated
error, lambda.min. The intersection terms selected are more stable with lambda.1se.
However, we choose lambda.min for the latter two treatment groups because
lambda.1se did not select any covariates from the text.

We then evaluate each of the covariate combinations with propensity score-
adjusted survival analysis. Propensity scores for patient i is the probability of
receiving the treatment of interest, Wi= 1, given the covariates Xi

59. Conditional
on the propensity score, the distribution of observed covariates is expected to be the
same in both branches of the treatment group. It is often used to reduce the effect
of confounding in observational studies59,60. In survival analysis, the hazard rate
h(t∣X) is the probability the patient will die within time t given covariates X. The
HR is the ratio of the hazard rate of the two treatments. In survival outcomes
analysis, the HR is interpreted as the effect on survival for choosing the treatment
of interest, Wi= 1.

We use the Cox-proportional hazard (Cox-PH) model to perform survival
regression61. We assume the proportional hazards condition62, which states that
covariates are multiplicatively related to the hazard, e.g., a covariate may halve a
subject’s hazard at any given time t while the baseline hazard may vary. Hence, the
effect of covariates estimated by any proportional hazards model can be reported as
the HR of the covariate.

In a Cox-PH model, the hazard rate of an individual is a linear function of their
static covariates and a population-level baseline hazard that changes over time. We
adjust for covariates (e.g., struct:patient_age, struct:race_white, etc.) against the
duration of survival and a binary variable indicating whether the outcome event
has occurred. We estimate

hðtjXÞ ¼ h0ðtÞ exp bwW þ ∑
p

j¼1
bjXj

� �
; ð1Þ

where p is the number of covariates, h0(t) the baseline hazard, bW the effect size of
the treatment, and bj the effect size of the jth covariate. The HR for a covariate is
equal to ebi . We define the HR of the treatment as ebw . The Lasso regularization can
also be applied to a Cox-PH model for variable selection.

We use three methods to estimate the HR:

● Nearest-Neighbor Matching on Propensity Score (matching)22: We
perform nearest-neighbor propensity score matching (NNM) on selected
covariates and estimate the HR on the matched population using a
univariate Cox-PH model regressed on the treatment.

● Inverse Propensity of Treatment Weighting (IPTW)22,63: We estimate the
HR using a univariate Cox-PH model regressed on the treatment with
inverse propensity score weighting with stabilization63. The weights are
defined as

wi ¼ Wi þ ð1�WiÞ
eðXiÞ

1� eðXiÞ

� �
ð2Þ

● Multivariate Cox proportional hazard (multi.coxph)7,61,64: We estimate
the HR using a multivariate regression model on the treatment and selected
covariates to see how covariates interact with each other. The multivariate
model is also weighted with the inverse propensity scores above to form a
doubly robust model.

All Cox-PH models are trained using the survival R package65 with robust
variance. Nearest-neighbor matching is performed using the MatchIt R package66.

We estimate the propensity scores using logistic regression67 with glmnet57,
stochastic gradient boosting68 with gbm69, and generalized random forests with
grf13. We select the propensity score estimation method with the best overlap and
covariate balance post propensity score adjustment.

We then compare the three methods for estimating HR using forest plots.
For each covariate in struct+intersect, we also show the univariate and

multivariate Cox-PH model HR, 95% HR confidence interval, and P value
calculated using the Wald test from the survival R package65. Note that for the
multivariate Cox-PH covariate analysis, we do not weight the model with the
inverse propensity scores.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets analyzed for the study are not publicly available. We extracted the data from
the Stanford Cancer Institute Research Database, the California Cancer Registry, and the
Epic System. The EHR data cannot be redistributed to researchers other than those
approved through the Stanford Institutional Review Board and those who have obtained
a Material Transfer Agreement. We have therefore given a detailed description of our
data selection and processing pipeline in the Methods section. To request access to the
data, please contact Jiaming Zeng at jiaming@alumni.stanford.edu.

Code availability
Code for uncovering potential confounders after data processing is available at https://
github.com/jmzeng/interpretable-potential-confounders70. A list of relevant packages
used can be found in the README.
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