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Inverse design of 3d molecular structures with
conditional generative neural networks
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The rational design of molecules with desired properties is a long-standing challenge in

chemistry. Generative neural networks have emerged as a powerful approach to sample

novel molecules from a learned distribution. Here, we propose a conditional generative neural

network for 3d molecular structures with specified chemical and structural properties. This

approach is agnostic to chemical bonding and enables targeted sampling of novel molecules

from conditional distributions, even in domains where reference calculations are sparse. We

demonstrate the utility of our method for inverse design by generating molecules with

specified motifs or composition, discovering particularly stable molecules, and jointly tar-

geting multiple electronic properties beyond the training regime.
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Identifying chemical compounds with particular properties is a
critical task in many applications, ranging from drug design1–3

over catalysis4 to energy materials5–8. As an exhaustive exp-
loration of the vast chemical compound space is infeasible, pro-
gress in these areas can benefit substantially from inverse design
methods. In recent years, machine learning (ML) has been used to
accelerate the exploration of chemical compound space9–15. A
plethora of methods accurately predicts chemical properties and
potential energy surfaces of 3d structures at low computational
cost16–27. Here, the number of reference calculations required for
training ML models depends on the size of the domain to be
explored. Thus, naive exploration schemes may still require a
prohibitive number of electronic structure calculations. Instead,
chemical space has to be navigated in a guided way with fast and
accurate methods to distill promising molecules.

This gives rise to the idea of inverse molecular design28, where
the structure-property relationship is reversed. Here, the chal-
lenge is to directly construct molecular structures corresponding
to a given set of properties. Generative ML models have recently
gained traction as a powerful, data-driven approach to inverse
design as they enable sampling from a learned distribution of
molecular configurations29. By appropriately restricting the dis-
tributions, they allow obtaining sets of candidate structures with
desirable characteristics for further evaluation. These methods
typically represent molecules as graphs or SMILES strings30,31,
which lack information about the three-dimensional structure of
a molecule. Therefore, the same molecular graph can represent
various spatial conformations that differ in their respective
properties, e.g., due to intramolecular interactions (hydrogen
bonds, long-range interactions) or different orientations of
structural motifs (rotamers, stereoisomers). Beyond that,
connectivity-based representations are problematic in chemical
systems where bonding is ambiguous, e.g., in transition metal
complexes, conjugated systems or metals. Relying on these
abstract representations is ultimately a limiting factor when
exploring chemical space.

Recently, generative models that enable sampling of 3d mole-
cular configurations have been proposed. This includes specifi-
cally designed approaches to translate given molecular graphs to
3d conformations32–38, map from coarse-grained to fine-grained
structures39, sample unbiased equilibrium configurations of a
given system40,41, or focus on protein folding42–46. In contrast,
other models aim at sampling directly from distributions of 3d
molecules with arbitrary composition47–56, making them suitable
for general inverse design settings. These models need to be
biased towards structures with properties of interest, e.g., using
reinforcement learning51,52,56, fine-tuning on a biased dataset48,
or other heuristics54.

Some of us have previously proposed G-SchNet48, an auto-
regressive deep neural network that generates diverse, small
organic molecules by placing atom after atom in Euclidean space.
It has been applied in the 3D-Scaffold framework to build
molecules around a functional group associated with properties of
interest in order to discover novel drug candidates54. Such an
approach requires prior knowledge about the relationship
between functional groups and target properties and might pre-
vent the model from unfolding its potential by limiting sampling
to very specific molecules. G-SchNet has been biased by fine-
tuning on a fraction of the training dataset containing all mole-
cules with a small HOMO-LUMO gap48. For this, a sufficient
amount of training examples in the target space is required.
However, the most interesting regions for exploration are often
those where reference calculations are sparse.

In this work, we propose conditional G-SchNet (cG-SchNet), a
conditional generative neural network for the inverse design of
molecules. Building on G-SchNet, the model learns conditional

distributions depending on structural or chemical properties
allowing us to sample corresponding 3d molecular structures.
Our architecture is designed to generate molecules of arbitrary
size and does not require the specification of a target composition.
Consequently, it learns the relationship between the composition
of molecules and their physical properties in order to sample
candidates exhibiting given target properties, e.g., preferring
smaller structures when targeting small polarizabilities. Pre-
viously proposed methods have been biased towards one parti-
cular set of target property values at a time by adjusting the
training objective or data48,51. In contrast, our conditional
approach permits searching for molecules with any desired set of
target property values after training is completed. It is able to
jointly target multiple properties without the need to retrain or
otherwise indirectly constrain the sampling process. This pro-
vides the foundation for the model to leverage the full informa-
tion of the training data resulting in increased generalization and
data efficiency. We demonstrate that cG-SchNet enables the
exploration of sparsely populated regions that are hardly acces-
sible with unconditional models. To this end, we conduct
extensive experiments with diverse conditioning targets including
chemical properties, atomic compositions and molecular finger-
prints. In this way, we generate novel molecules with predefined
structural motifs, isomers of a given composition that exhibit
specific chemical properties, and novel configurations that jointly
optimize HOMO-LUMO gap and energy. This demonstrates that
our model enables flexible, guided exploration of chemical
compound space.

Results
Targeted 3d molecule generation with cG-SchNet. We represent
molecules as tuples of atom positions R≤n= (r1,…, rn) with ri 2
R3 and corresponding atom types Z≤n= (Z1,…, Zn) with
Zi 2 N. cG-SchNet assembles these structures from sequences of
atoms that are placed step by step in order to build the molecule
in an autoregressive manner, where the placement of the next
atom depends on the preceding atoms (Fig. 1a and c). In contrast
to G-SchNet48, which learns an unconditional distribution over
molecules, cG-SchNet samples from target-dependent conditional
probability distributions of 3d molecular structures (Fig. 1b).

Given a tuple of k conditions Λ= (λ1,…, λk), cG-SchNet learns
a factorization of the conditional distribution of molecules, i.e.,
the joint distribution of atom positions and atom types
conditioned on the target properties:

pðR≤ n;Z≤ njΛÞ ¼
Yn
i¼1

p ri;ZijR≤ i�1;Z≤ i�1;Λ
� �

: ð1Þ

In fact, we can split up the joint probability of the next type
and the next position into the probability of the next type and the
probability of the next position given the associated next type:

p ri;ZijR≤ i�1;Z≤ i�1;Λ
� �

¼ pðZijR≤ i�1;Z≤ i�1;ΛÞ pðrijR≤ i�1;Z≤ i;ΛÞ:
ð2Þ

This allows predicting the next type before the next position.
We approximate the distribution over the absolute position from
distributions over distances to already placed atoms

pðrijR≤ i�1;Z≤ i;ΛÞ ¼
1
α

Yi�1

j¼1

pðrijjR≤ i�1;Z≤ i;ΛÞ ð3Þ

which guarantees that it is equivariant with respect to translation
and rotation of the input. Here α is the normalization constant
and rij= ∣∣ri− rj∣∣ is the distance between the new atom i and a
previously placed atom j. This approximation has previously been
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shown to accurately reproduce a distribution of molecular
structures48.

Figure 2 shows a schematic depiction of the cG-SchNet
architecture. The conditions λ1,…, λk are each embedded into a
latent vector space and concatenated, followed by a fully
connected layer. In principle, any combination of properties
can be used as conditions with our architecture with a suitable
embedding network. In this work, we use three scalar-valued
electronic properties such as isotropic polarizability, vector-
valued molecular fingerprints, and the atomic composition of
molecules. Vector-valued properties are directly processed by the
network while scalar-valued targets are first expanded on a
Gaussian basis. To target an atomic composition, learnable atom
type embeddings are weighted by occurrence. The embedding
procedure is described in detail in the Methods section.

In order to localize the atom placement and stabilize the
generation procedure, cG-SchNet makes use of the same two
auxiliary tokens as in the unconditional setting, namely the origin
and the focus token48. Auxiliary tokens are treated like regular
atoms by the model, i.e., they possess positions and token types,
which are contained in the tuples of atom positions and atom
types serving as input at each step. The origin token marks the
center of the mass of molecules and allows the architecture to
steer the growth from inside to outside. The focus token localizes
the prediction of the next position in order to assure scalability
and allows to break symmetries of partial structures. This avoids
artifacts in the reconstruction of the positional distribution (Eq.

(3)) as reported by Gebauer et al.48. At each step, the focus token
is randomly assigned to a previously placed atom. The position of
the next atom is required to be close to this focus. In this way, we
can use a small grid localized on the focus that does not grow
with the number of atoms when predicting the distribution of the
next position.

We train cG-SchNet on a set of molecular structures, where the
values of properties used as conditions are known for each
molecule. Given the conditions and the partial molecular
structure at each step, cG-SchNet predicts a discrete distribution
for the type of the next atom. As part of this, a stop type may be
predicted that allows the model to control the termination of the
sampling procedure and therefore generate molecules with
variable size and composition. After sampling a type, cG-
SchNet predicts distributions for the distance between the atom
to be placed and each preceding atom and auxiliary token. The
schematic depiction of the atom placement loop in Fig. 1c
includes the auxiliary tokens, the model predictions, and the
reconstruction of the localized 3d grid distribution. During
training, we minimize the cross-entropy loss between the
predicted distributions and the ground-truth distributions known
from the reference calculations. For further details on the model
architecture and training procedure, refer to the Methods section.

Generating molecules with specified motifs. In many applica-
tions, it is advantageous for molecules to possess specific func-
tional groups or structural motifs. These can be correlated with

Fig. 1 Molecule generation with cG-SchNet. a Factorization of the conditional joint probability of atom positions and types into a chain of probabilities for
placing single atoms one after another. b Results of sampling molecules from target-dependent conditional probability distributions. Distributions of the
isotropic polarizability of training structures (orange) and five sets of molecules generated by the same cG-SchNet model (blue curves) conditioned on five
different isotropic polarizability target values (color-matching dots above the x-axis). The generated molecule closest to the corresponding target value and
not contained in the training data (unseen) is shown above each curve. c Schematic depiction of the atom placement loop. For visualization purposes, we
show a planar molecule and a 2d slice of the actual 3d grid distributions in steps 4, 5, and 6.
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desirable chemical properties, e.g., polar groups that increase
solubility, or with improved synthetic accessibility. In order to
sample molecules with specific motifs, we condition cG-SchNet
on a path-based, 1024 bits long fingerprint that checks molecular
graphs for all linear segments of up to seven atoms57 (Supple-
mentary Methods 3). The model is trained on a randomly
selected subset of 55k molecules from the QM9 dataset consisting
of ~134k organic molecules with up to nine heavy atoms from
carbon, nitrogen, oxygen, and fluorine58–60. We condition the
sampling on fingerprints of unseen molecules, i.e., structures not
used during training. Figure 3a shows results for four examples.
We observe that the generated molecules have a higher similarity
with the target fingerprints than the training data. Furthermore,
structures with high target similarity are also sampled with higher
probability, as can be seen from the increased similarity score of
generated duplicates. In the last column of Fig. 3a, we show
sampled molecules with high similarity to each target and see that
in each case various structures with perfectly matching finger-
prints were found. For reference, we also show the most similar
molecule in the training set. Overall, we see that the conditional
sampling with cG-SchNet is sensitive to the target fingerprint and
allows for the generation of molecules with desired structural
motifs. Although there are no molecules with the same finger-
print in the training data for three of the four fingerprint targets,
the ML model successfully generates perfectly matching mole-
cules, demonstrating its ability to generalize and explore unseen
regions of chemical compound space.

Generalization of condition-structure relationship across
compositions. For inverse design tasks, integrating information
gained from different structures and properties is vital to obtain
previously unknown candidates with desired properties. In this
experiment, we target C7N1O1H11 isomers with HOMO-LUMO

gap values outside the range observed during training. To this
end, the model has to learn from other compositions how
molecules with particularly high or low HOMO-LUMO gaps are
structured, and transfer this knowledge to the target composition.
There are 5859 C7N1O1H11 isomers in QM9, where 997 have a
HOMO-LUMO gap smaller than 6 eV, 1612 have a HOMO-
LUMO gap larger than 8 eV, and 3250 lie in between these two
values. We restrict the training data consisting of 55k molecules
from QM9 to contain no C7N1O1H11 isomers with HOMO-
LUMO gap values outside the intermediate range (Fig. 3b). Thus,
the model can only learn to generate molecules with gaps outside
this range from compositions other than C7N1O1H11.

Fig. 3b shows examples of generated C7N1O1H11 isomers for
two target values as well as the respective HOMO-LUMO gap
distributions. In both cases, the majority of generated isomers
exhibit gap values close to the respective target (±1 eV), i.e.,
outside of the range observed for these isomers by the model
during training. This demonstrates that cG-SchNet is able to
transfer knowledge about the relationship between structural
patterns and HOMO-LUMO gaps learned from molecules of
other compositions to generate unseen C7N1O1H11 isomers with
outlying gap values upon request.

Discovery of low-energy conformations. The ability to sample
molecules that exhibit property values that are missing in the
training data is a prerequisite for the targeted exploration of
chemical space. A generative model needs to fill the sparsely
sampled regions of the space, effectively enhancing the available
data with novel structures that show property values of interest.
We study this by training cG-SchNet on a randomly sampled set
of 55k QM9 molecules and query our model to sample low-
energy C7O2H10 isomers—the most common composition in
QM9. We exclude these isomers from the training data, i.e., our
model has to generalize beyond the seen compositions. The
identification of low-energy conformations is desirable in many
practical applications, since they tend to be more stable. However,
the energy of molecules is largely determined by their size and
composition. Since we are mainly interested in the energy con-
tribution of the spatial arrangement sampled by the model, we
require a normalized energy value. To this end, we define the
relative atomic energy, which indicates whether the internal
energy per atom is relatively high or low compared to other
molecules of the same composition in the dataset (see Supple-
mentary Methods 2 for details). Negative values indicate com-
paratively low energy, and thus higher stability than the average
structure of this composition. Note that a similarly normalized
energy has been defined by Zubatyuk et al.61 for their neural
network potential. Using the relative atomic energy allows cG-
SchNet to learn the influence of the spatial arrangement of atoms
on the energy and transfer this knowledge to the unseen target
composition. Examples of generated C7O2H10 isomers with low,
intermediate, and high relative atomic energy are shown in
Fig. 4a. We observe that conformations with highly strained,
small rings exhibit increased relative atomic energy values.

Figure 4a shows that the trained model generalizes from the
training data to sample C7O2H10 isomers capturing the whole
range of relative atomic energies exhibited by the QM9 test
structures. We focus on stable, low-energy isomers for our
analysis in the following. We sample 100k molecules with the
trained cG-SchNet conditioned on the composition C7O2H10 and
a relative atomic energy value of −0.1 eV, i.e., close to the lowest
energies occurring for these isomers in QM9. The generated
molecules are filtered for valid and unique C7O2H10 isomers,
relaxed using density functional theory (DFT), and then matched
with the test data structures. 169 of the 200 isomers with the

Fig. 2 Schematic depiction of the cG-SchNet architecture with inputs and
outputs. “⊕ " represents concatenation and “⊙ " represents the Hadamard
product. Left: Atom-wise feature vectors representing an unfinished
molecule are extracted with SchNet67 and conditions are individually
embedded and then concatenated to extract the conditional features
vector. The exact embedding depends on the type of the condition (e.g.,
scalar or vector-valued). Middle: The distribution for the type of the next
atom is predicted from the extracted feature vectors. Right: Based on the
extracted feature vectors and the sampled type of the next atom,
distributions for the pairwise distances between the next atom and every
atom/token in the unfinished molecule are predicted. See Methods for
details on the building blocks.
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lowest relative atomic energy in the test set have been recovered
by the model as well as 67% of the 1k isomers with relative atomic
energy lower than −0.05 eV (Fig. 4b). Beyond that, cG-SchNet
has generated 416 novel isomers as well as 243 novel
stereoisomers that share the same bonding pattern as a test
structure but show different stereochemistry (Fig. 4c). We found
32% more unique C7O2H10 isomers with relative atomic energy

lower than −0.05 eV with our model than already contained in
QM9. Example isomers are depicted in Fig. 4d. For reference, we
show additional, randomly selected generated novel isomers
along with their most similar counterparts from QM9 in
Supplementary Fig. 1 and depict how atoms in these structures
moved during relaxation in Supplementary Fig. 4. These
examples illustrate that cG-SchNet samples molecules that are

Fig. 3 Targeted exploration of chemical space with cG-SchNet. a Generation of molecules with desired motifs by conditioning cG-SchNet on simple path-
based fingerprints. First column: Four different target fingerprints of structures from the test set. For each, we conditionally sample 20k molecules with cG-
SchNet. Second column: Average Tanimoto similarity of the respective target to training structures (brown) and to generated molecules without duplicates
(blue) and with duplicates (gray). The amount of generated structures is noted next to the dots. Third column: Most similar training molecule. Fourth
column: Three generated unseen examples with high similarity to the target. The Tanimoto similarity to the target structure is noted to the bottom-right of
depicted molecules. b Generation of C7N1O1H11 isomers with HOMO-LUMO gap targets outside the training data range by conditioning cG-SchNet on
atomic composition and HOMO-LUMO gap. The training dataset of 55k QM9 molecules is restricted to not contain any C7N1O1H11 isomers with gap < 6 eV
or gap > 8 eV. The graph shows the distribution of the gap for the C7N1O1H11 isomers in QM9 (brown), the isomers in the restricted training dataset
(orange), and the two sets of isomers generated with cG-SchNet (blue curves) when targeting the composition C7N1O1H11 and two gap values outside the
training data range (color-matching dots on the x-axis). For each target value, the two generated isomers closest to it are depicted.

Fig. 4 Discovery of low-energy isomers for an unseen composition.We sample C7O2H10 isomers with cG-SchNet conditioned on atomic composition and
relative atomic energy (see text for details), where the training dataset was restricted to contain no C7O2H10 conformations. a The distribution of the
relative atomic energy for C7O2H10 isomers in the test set (orange) and for three sets of isomers generated with cG-SchNet (blue curves) when targeting
the composition C7O2H10 and three different relative atomic energy values as marked with color-matching dots on the x-axis. The generated isomer closest
to the respective target is depicted above each curve. b The absolute number of C7O2H10 isomers in the test set (red dotted line) for increasing relative
atomic energy thresholds. The black solid line shows how many of these were generated by cG-SchNet (target energy −0.1 eV). c Bar plot of the absolute
number of C7O2H10 isomers with relative atomic energy ≤0.05 eV in the test set (orange) and generated by cG-SchNet (target energy −0.1 eV, purple).
The bar for generated molecules is divided into isomers that can be found in the test set (unseen isomers), isomers that have different stereochemistry but
share the same bonding pattern as test set structures (novel stereoisomers), and novel constitutional isomers that are not in QM9 (novel isomers). d
Relaxed example low-energy isomers generated by cG-SchNet (target energy −0.1 eV, blue dots) and structures from the test set (orange dots) along with
their relative atomic energy.
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close to equilibrium configurations and thus require only a few
steps of relaxation with DFT or a neural network potential.
Furthermore, we examine different conformations found for the
five most often generated isomers in Supplementary Fig. 3.

The generated molecules include structures and motifs that are
sparse or not included in the QM9 benchmark dataset, which has
previously been reported to suffer from decreased chemical
diversity compared to real-world datasets62. For instance, there
are no C7O2H10 isomers with carboxylic acid groups in QM9,
while twelve of the generated novel low-energy isomers possess
this functional group (e.g., Fig. 4d, top right and Supplementary
Fig. 2). Carboxylic acid groups are a common motif of organic
compounds and feature prominently in fats and amino acids.
While they are only contained in a few hundred molecules in
QM9, cG-SchNet has learned to transfer this group to molecules
of the targeted composition. Moreover, the model has discovered
several acyclic C7O2H10 isomers exhibiting a significantly lower
relative atomic energy than those in QM9 (examples in Fig. 4d,
bottom row). As cG-SchNet generalizes beyond the chemical
diversity of QM9, this demonstrates that it can be employed to
systematically enhance a database of molecular structures.

Targeting multiple properties: Discovery of low-energy struc-
tures with small HOMO-LUMO gap. For most applications, the
search for suitable molecules is guided by multiple properties of
interest. Therefore, a method for exploration needs to allow for
the specification of several conditions at the same time. Here we
demonstrate this ability by targeting HOMO-LUMO gap as well
as relative atomic energy, i.e., two complex electronic properties
at the same time. A particular challenging task is to find mole-
cules with extreme property values, as those are often located at
the sparsely populated borders of the training distribution. In
previous work, we have biased an unconditioned G-SchNet in
order to sample molecules with small HOMO-LUMO gap48. The
model was fine-tuned with all ~3.8k available molecules from
QM9 with HOMO-LUMO gap smaller than 4.5 eV, a small
fraction of the whole QM9 dataset with ~130k molecules. In the
following, we demonstrate that improved results can be achieved
with the cG-SchNet architecture while using fewer training
samples from the target region. We further condition the sam-
pling to particularly stable, low-energy conformations. In a fine-
tuning approach, this would limit the training data to only a few
molecules that are both stable and exhibit small gaps. In contrast,
the conditioned model is able to learn also from reference cal-
culations where only one of the desired properties is present.

We condition cG-SchNet on the HOMO-LUMO gap as well as
the relative atomic energy and train it on 55k randomly selected
QM9 molecules, where only ~1.6k of the ~3.8k molecules with
HOMO-LUMO gap smaller than 4.5 eV are contained. Then, we
sample the same number of molecules as for the biased model48

(20k) with the trained cG-SchNet using a HOMO-LUMO gap
value of 4.0 eV and relative atomic energy of −0.2 eV as
conditions. The generated conformations are filtered for valid
and unique molecules, relaxed using DFT, and then matched with
the training data structures.

Figure 5 compares the sets of generated, unique, unseen
molecules with HOMO-LUMO gap smaller than 4.5 eV obtained
for the cG-SchNet and biased G-SchNet. For biased G-SchNet, we
use the previously published48 dataset of generated molecules
with a low HOMO-LUMO gap and remove all structures with
HOMO-LUMO gap larger than 4.5 eV. Since the energy range
has not been restricted for the biased G-SchNet, it samples
structures that capture the whole space spanned by the training
data, i.e., also less stable molecules with higher relative atomic
energy. The molecules generated with cG-SchNet, in contrast, are

mostly structures with low relative atomic energy (Fig. 5a).
Considering the total amount of unseen molecules with small
gaps found by both models, we observe that cG-SchNet samples a
significantly larger number of structures from the low-energy
domain than the biased G-SchNet. It similarly surpasses the
number of molecules from this domain in the training set,
showcasing an excellent generalization performance (see Fig. 5b).
For example, the model has learned to build molecules close to
the target conditions that contain more than nine heavy atoms,
i.e., larger than the structures from the training data. This can be
seen in Supplementary Fig. 5, where we depict generated
molecules with gap and relative atomic energy values beyond
the training regime.

The statistics about the average atom, bond, and ring count of
generated molecules depicted in Fig. 5c reveal further insights
about the structural traits and differences of molecules with low
HOMO-LUMO gap in the two sets. The molecules found with
cG-SchNet contain more double bonds and a larger number of
rings, mainly consisting of five or six atoms. This indicates a
prevalence of aromatic rings and conjugated systems with
alternating double and single bonds, which are important motifs
in organic semiconductors. The same patterns can be found for
molecules from biased G-SchNet, however, there is an increased
number of nitrogen and oxygen atoms stemming from less stable
motifs such as rings dominated by nitrogen. An example of this is
the molecule with the highest energy depicted in Fig. 5a.
Furthermore, the molecules of biased G-SchNet tend to contain
highly strained small cycles of three or four atoms. cG-SchNet
successfully averts these undesirable motifs when sampling
molecules with a low relative atomic energy target.

We conclude that cG-SchNet has learned to build stable
molecules with a low HOMO-LUMO gap even though it has seen
less than half of the structures that the biased model was fine-
tuned on. More importantly, the training data contains only very
few (~200) structures close to the target conditions at the border
of the QM9 distribution, i.e., with HOMO-LUMO gap smaller
than 4.5 eV and relative atomic energy smaller than −0.1 eV.
However, our model is able to leverage information even from
structures where one of the properties is outside the targeted
range. Consequently, it is able to sample a significantly higher
number of unseen molecules from the target domain than there
are structures in the training data that fulfill both targets. In this
way, multiple properties can be targeted at once in order to
efficiently explore chemical compound space.

The efficiency of cG-SchNet in finding molecular structures
close to the target conditions is particularly evident compared to
an exhaustive enumeration of graphs with subsequent relaxation
using DFT. In both cases, the relaxation required to obtain
equilibrium coordinates and the physical properties is the
computational bottleneck and takes more than 15 min per
structure for the molecules generated in this experiment.
Furthermore, the calculation of the internal energy at zero Kelvin
(U0) requires additional 40 min per molecule. In contrast, the
generation with cG-SchNet takes only 9 ms per structure on a
Nvidia A100 GPU when sampling in batches of 1250. The
training time of about 40 hours is negligible, as it corresponds to
the relaxation and calculation of U0 of only 44 structures. Thus,
the efficiency is determined by the number of molecules that need
to be relaxed for each method. The QM9 dataset was assembled
by relaxing structures from the GDB enumeration60 of graphs for
small organic compounds. Of the ~78k molecules that we did not
use for training, 354 molecules are close to the target region.
Relaxing only the 5283 structures proposed by cG-SchNet, i.e.,
less than 10% of the computations performed by screening all
graphs, we can already recover 46% of these structures.
Additionally, the model has unveiled valid molecules close to
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the target that are not contained in the dataset. More than 380 of
these are larger than QM9 structures and thus not covered.
However, 253 smaller structures were missed by the enumeration
method. This is, again, in line with findings by Glavatskikh et al.62

that even for these small compounds the graph-based sampling
does not cover all structures of interest. Consequently, we obtain
more than two times the amount of molecules close to the target
property values with cG-SchNet than with the exhaustive
enumeration method while requiring less than 10% of the
computation time.

The conditional model is not restricted to the space of low-
energy / low gap molecules, but can also sample low-energy / high
gap structures or any other combination of interest. Thus, the
efficiency of the generative model becomes even more pro-
nounced when there are multiple sets of desirable target values.
Figure 1b depicts an example where cG-SchNet has been trained
on the isotropic polarizability as a condition. Here, the same
model is employed to sample molecules for five different target
values. Again, cG-SchNet is able to generalize to isotropic
polarizabilities beyond the values present in the training data.

Discussion
cG-SchNet enables the targeted discovery of 3d molecular structures
conditioned on arbitrary combinations of multiple structural and
chemical properties. The neural network captures global and local
symmetries of molecular structures by design, enabling it to learn

complex relationships between chemical properties and 3d structures.
This makes it possible to generalize to unseen conditions and
structures, as we have thoroughly evaluated in a line of experiments
where we target property values not included in the training data. In
contrast to previous approaches, the model does not require target-
specific biasing procedures. Instead, the explicit conditioning enables
cG-SchNet to learn efficiently from all available reference calcula-
tions. Desirable values of multiple properties can be targeted simul-
taneously to sample from specific conditional distributions. In this
way, cG-SchNet generates novel 3d candidate molecules that exhibit
the target properties with high probability and thus are perfectly
suited for further filtering and evaluation using ML force fields.

Further work is required to apply the cG-SchNet architecture
to the exploration of significantly larger systems and a more
diverse set of atom types. Although an unconditional G-SchNet
has been trained on drug-like molecules with 50+ atoms in the
3D-Scaffold framework54, adjustments will be necessary to ensure
scalability to materials. In the current implementation, we employ
all preceding atoms to predict the type and reconstruct the
positional distribution of the next atom. Here, a cutoff or other
heuristics to limit the number of considered atoms will need to be
introduced, together with corrections for long-range interactions.
While the small organic compounds considered in this work are
well represented by QM9, the model might benefit from enhan-
cing the training data using representative building blocks such as
“amons”63 or other fragmentation methods64,65. This becomes

Fig. 5 Discovery of low-energy structures with small HOMO-LUMO gap. We compare cG-SchNet to the previous, biased G-SchNet approach48. a The
joint distributions of relative atomic energy and HOMO-LUMO gap for QM9 (left) and for unique, unseen molecules with gap ≤4.5 eV generated with cG-
SchNet (middle) and with biased G-SchNet (right). Biased G-SchNet was fine-tuned on all molecules in QM9 below a gap threshold of 4.5 eV (red, dotted
line). The conditions used for generation with cG-SchNet are marked with a blue cross. The depicted molecules are generated examples with a gap of 4 eV
and different relative atomic energy values (black, dotted lines). More examples as well as the distributions close to the conditioning target for cG-SchNet
and the training data can be found in Supplementary Fig. 5. b The absolute number of unique, unseen molecules with gap ≤4.5 eV generated by cG-SchNet
(black) and biased G-SchNet (red) for increasing relative atomic energy thresholds. For reference, we also show the amount of structures with low gap
included in the training set of cG-SchNet (blue dotted line). c The average number of atoms of different types (left), bonds of different orders (middle), and
rings of different sizes (right) in unique, unseen molecules with gap ≤4.5 eV generated by each model.
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increasingly important when tackling larger molecules where
reference data is hard to obtain. Another direction for future
work is the extended comparison of cG-SchNet to established
methods in different fields, e.g., for the discovery of drugs or
materials, to identify promising applications and possible short-
comings. Furthermore, additional adaptations are necessary to
explore systems with periodic boundary conditions. In cases
where not all targeted properties can be fulfilled simultaneously,
finding suitable molecules becomes harder, if not impossible.
Therefore, another important extension is to explicitly define a
trade-off between multiple conditions or to sample along a
Pareto front.

We have applied cG-SchNet to sample particularly stable, low-
energy C7O2H10 isomers. In this process, we have discovered
molecules and motifs that are absent from the QM9 database,
such as isomers with carboxylic acid groups. Furthermore, we
have sampled more than 800 low-energy molecules with HOMO-
LUMO gaps smaller than 4.5 eV from a domain that is only
sparsely represented in the training data. Although the explora-
tion of such small molecules with an exhaustive sampling of
molecular graphs and subsequent evaluation with DFT is com-
putationally feasible, our model considerably accelerates the
process by providing reasonable candidate structures. cG-SchNet
thus also enables the data-efficient, systematic improvement of
chemical databases, which is particularly valuable considering the
computational cost and unfavourable scaling of electronic struc-
ture calculations. This paves the way for ML-driven, targeted
exploration of chemical compound space and opens avenues for
further development towards generative models for larger and
more general atomistic systems.

Methods
Training data. For each training run, 55k reference structures are randomly
sampled from the QM9 dataset58–60, a collection of 133,885 molecules with up to
nine heavy atoms from carbon, nitrogen, oxygen, and fluorine. We removed 915
molecules from the training pool which are deemed invalid by our validation
procedure that checks the valency and connectedness of generated structures (see
Section Checking validity and uniqueness of generated molecules). For some runs,
limited subsets of the training data pool are used, as described in the results (e.g.,
without C7O2H10 isomers). We train the neural network using 50k randomly
sampled molecules and employ the remaining 5k for validation (see Section Neural
network training). All molecules shown in figures have been rendered with the 3d
visualization package Mayavi66.

Details on the neural network architecture. In the following, we describe the cG-
SchNet architecture as depicted in Figure 2 in detail. We use the shifted softplus
non-linearity

ssp ðxÞ ¼ ln
1
2
ex þ 1

2

� �
ð4Þ

throughout the architecture. Successive linear neural network layers with inter-
mediate shifted softplus activation are written as

mlp ðxÞ ¼ WT
2 ssp WT

1 x þ b1
� �þ b2 ð5Þ

with input x 2 Rnin1 , weights W1 2 Rnin1 ´ nin2 , W2 2 Rnin2 ´ nout , and biases
b1 2 Rnin2 , b2 2 Rnout . While this example shows a succession of two linear layers,
the notation covers any number of successive linear layers with intermediate
shifted softplus activations in the following. The number of layers and neurons as
well as all other hyper-parameter choices for our neural network architecture are
given in Supplementary Table 1.

The inputs to cG-SchNet when placing atom i is a partial molecule consisting
of i− 1 atoms including two auxiliary tokens (focus and origin) and k target
properties Λ= (λ1,…, λk). The atoms and tokens are given as tuples of positions
R≤i−1= (r1,…, ri−1) with rj 2 R3 and types Z≤i−1= (Z1,…, Zi−1) with Zj 2 N.
The first two entries correspond to the auxiliary tokens, which are treated like
ordinary atoms by the neural network. Thus, whenever we refer to atoms in the
following, this also encompasses the tokens. Note that tokens do not influence
the sampling probability of a molecule in Eq. (1), since they are placed with
probability p(R≤2, Z≤2∣Λ)= 1.

We employ SchNet21,67 to extract atom-wise features X≤i−1= (x1,…, xi−1) that
are invariant to rotation and translation. We use the SchNet representation

network as implemented in the SchNetPack software package68 with F= 128
features per atom and 9 interaction blocks.

Additionally, we construct a vector y 2 RD of conditional features from the list
of target properties. To this end, each target property is first mapped into vector
space using an individual embedding network that depends on the form of the
specific property. In this work, we employ different embedding networks for scalar-
valued properties, vector-valued properties, and atomic composition. Scalar-valued
properties are processed by an MLP after applying a Gaussian radial basis function
expansion

f scal ¼ mlp e�
λscal�ðλminþlΔωÞð Þ2

2Δω2

� �
0≤ l ≤

λmax�λmin
Δω

 !
ð6Þ

where the minimum λmin and maximum λmax property values and the grid spacing
Δω are hyper-parameters chosen per target property. Vector-valued properties
such as molecular fingerprints are directly processed by an MLP:

fvec ¼ mlp λvec
� �

: ð7Þ
For the atomic composition, we use two embedding blocks. While the number

of atoms is embedded as a scalar property, we map atom types to learnable
embeddings g comp

Z 2 RG. These vectors are weighted by the fraction of the
corresponding atom type in the target atomic composition, concatenated, and
processed by an MLP. For example, the atomic composition of hydrocarbons
would be encoded as:

f comp ¼ mlp nH g comp
H � nC g

comp
C

� 	� �
ð8Þ

where “⊕ ” is the concatenation of two vectors and nH and nC is the fraction of
hydrogen and carbon atoms in the target atomic composition, respectively. Finally,
the property feature vectors fλ1 ; ¼ ; fλk are aggregated by an MLP

y ¼ mlp fλ1 � fλ2 � ¼ fλk

h i
 �
; ð9Þ

to obtain the combined conditional features y.
Given the conditional features y representing the target properties and the

atom-wise features X≤i−1 describing the partial molecule, the cG-SchNet
architecture predicts distributions for the type of the next atom and its pairwise
distances to all preceding atoms with two output networks. Let Zall � N be the set
of all atom types in the training data including an additional stop marker type. The
type prediction network first computes atom-wise, jZallj-sized vectors

sj ¼ mlp xj � y
h i
 �

with j < i ð10Þ

containing a scalar score for each atom type. Let s z½ �j be the score of type z 2 Zall

predicted for preceding atom j. Then, the probability for the next atom being of
type z is obtained by taking the softmax over all types and averaging the atom-wise
predictions:

pðZi ¼ zjX ≤ i�1; yÞ ¼
1

i� 1
∑
i�1

j¼1

es
z½ �
j

∑
z02Zall

es
z0½ �
j

: ð11Þ

The distance distributions are discretized on a grid with L bins, each covering a
span of Δμ. The bin of a distance d 2 Rþ is given by b : Rþ7!f1; ¼ ; Lg

bðdÞ ¼
dþ1

2Δμ
Δμ

l m
if d ≤ ðL� 1ÞΔμ

L if d > ðL� 1ÞΔμ

(
: ð12Þ

Given the type Zi of the next atom, the distance prediction network computes
scores for each preceding atom and distance bin

uj ¼ mlp xj � g next
Zi


 �
� y

h i
 �
8j < i ð13Þ

where “⊙ ” is the Hadamard product and g next
Z 2 RF is a learnable atom type

embedding. The probability of any distance between the new atom and a preceding
atom is obtained by applying a softmax over all bins

pðrij ¼ djxj; y;ZiÞ ¼
eu

½bðdÞ�
j

∑L
l¼1 e

u½l�j
8j < i ð14Þ

where u½bðdÞ�j is the score of bin b(d) predicted for preceding atom j.

Sampling atom placement sequences for training. The number of sequences in
which a molecule can be built by placing n atoms grows factorially with n. During
training, we randomly sample a new atom placement sequence for every training
molecule in each epoch. However, we use the focus and origin tokens to constrain
how molecules are built by cG-SchNet and thus significantly reduce the number of
possible sequences. Our approach ensures that molecules tend to grow outwards
starting from the center of mass and that each new atom is placed close to one of
the already placed atoms. For the first atom placement step, we set the positions of
the focus and origin tokens to the center of mass of the training molecule and
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choose the atom closest to it as the first atom to be placed. If multiple atoms are
equally close, one of them is randomly chosen as the first atom.

Afterwards, each atom placement step follows the same procedure. One of the
already placed atoms (excluding tokens) is chosen as focus, i.e., the position of the
focus token is set to the position of the chosen atom. Then, from all unplaced
atoms, we select the neighbor of the focus that is closest to the center of mass as the
next atom. If there are no neighbors of the focus among the unplaced atoms, we
insert a step where the type prediction network shall predict the stop marker type.
In this way, the focus atom is marked as finished before randomly choosing a new
focus and proceeding with the next atom placement step. Marked atoms cannot be
chosen as focus anymore and the atom placement sequence is complete when all
placed atoms are marked as finished. Thus, the sequence ends up with 2n steps, as
each atom needs to be placed and furthermore marked as finished.

For our experiments, we consider atoms sharing a bond as neighbors. However,
note that bonding information is not necessarily required as neighborhood can also
be defined by a radial cutoff of, e.g., 3Å centered on the focus atom.

Neural network training. We use mini-batches with M molecules for training.
Each mini-batch contains one atom placement sequence per molecule, randomly
sampled in each epoch as explained in Section Sampling atom placement sequences
for training. Each step of the atom placement sequence a 2 Am consists of types
Z≤i−1 and positions R≤i−1 of already placed atoms and the two auxiliary tokens, of
the values Λ of molecule m for the target properties of the model, and of the type
Znext and position rnext of the next atom.

For each atom placement, we minimize the cross-entropy between the
distributions predicted by the model given Z≤i−1, R≤i−1, and Λ and the
distributions obtained from the ground-truth next type Znext and position rnext. The
ground-truth distribution of the next type is a one-hot encoding of Znext, thus the
cross-entropy loss for the type distributions is

‘typeðaÞ ¼ � log p Zi ¼ ZnextjX ≤ i�1; y
� �� �

: ð15Þ
The average cross-entropy loss for the distance distributions is

‘distðaÞ ¼ � 1
i� 1

∑
i�1

j¼1
∑
L�1

l¼0
q next
jl log p next

jl


 �
ð16Þ

with model predictions

p next
jl ¼ p rij ¼ lΔμjxj; y;Zi


 �
ð17Þ

and Gaussian expanded ground-truth distance

q next
jl ¼ e�γ jjrnext�rj jj2�lΔμð Þ2

∑L�1
l0¼0 e

�γ jjrnext�rj jj2�l0Δμð Þ2 ð18Þ

where L is the number of bins of the distance probability grid with spacing Δμ. The
width of the Gaussian expansion can be tuned with γ, which we set to 10

Δμ in our

experiments.
The loss for a mini-batch C is the average type and distance loss of all atom

placement steps of all M molecules in the mini-batch:

‘ðCÞ ¼ 1
M

∑
M

m¼1
∑

a2Am

‘typeðaÞ
jAmj

þ δðaÞ‘distðaÞ
0:5jAmj

 !
ð19Þ

where jAmj is the number of steps in sequence Am and

δðaÞ ¼ 0 if Znext ¼ STOP

1 else :

�
ð20Þ

The indicator function δ is zero for steps where the type to predict is the stop
marker, since no position is predicted in these steps.

The neural networks were trained with stochastic gradient descent using the
ADAM optimizer69. We start with a learning rate η= 10−4 which is reduced using
a decay factor of 0.5 after 10 epochs without improvement of the validation loss.
The training is stopped at η ≤ 10−6. We use mini-batches of 5 molecules and the
model with the lowest validation error is selected for generation.

Conditional generation of molecules. For the generation of molecules, conditions
need to be specified covering all target properties the model was trained on, e.g., the
atomic composition and the relative atomic energy. The generation is an iterative
process where the type and position of each atom are sampled sequentially using
the distributions predicted by cG-SchNet. Generating a molecule with n atoms
takes 2n steps, as each atom needs to be placed and furthermore marked as finished
in order to terminate the generation process.

At each step, we want to sample the type Znext 2 Zall � N and position rnext 2
G � R3 of the next atom given the types and positions of already placed atoms
(including the two tokens) and the conditions. Here, Zall is the set of all atom types
in the training data including an additional stop marker type and G is a grid of
candidate positions in 3d space (see Supplementary Methods 1). An unfinished
atom is randomly chosen as focus at the start of each step, i.e., the position of the
focus token is aligned with the position of the chosen atom. Then, we predict the
distribution of the type of the next atom with the model (see Eq. (11)) to sample

the next type

Znext � p Zi ¼ ZnextjX ≤ i�1; y
� �

: ð21Þ
If the next type is the stop marker, we mark the currently focused atom as

finished and proceed with the next step by choosing a new focus without sampling
a position. Otherwise, we proceed to predict the distance distributions between
placed atoms and the next atom with the model (see Eq. (14)). Since cG-SchNet is
trained to place atoms in close proximity to the focused atom, we align the local
grid of candidate positions with the focus at each step regardless of the number of
atoms in the unfinished molecule. Then, the distance probabilities are aggregated to
compute the distribution over 3d candidate positions in the proximity of the focus.
The position of the next atom is drawn accordingly

r0next �
1
α

Yi�1

j¼1

p rij ¼ jjrj � r0next jj2jxj; y;Zi


 �
ð22Þ

with

r0next ¼ rnext þ rfocus ð23Þ
where α is the normalization constant and rfocus is the position of the focus token.
At the very first atom placement step, we center the focus and grid on the origin
token, while for the remaining steps, only atoms will be focused.

The generation process terminates when all regular atoms have been marked as
finished. In this work, we limit the model to a maximum number of 35 atoms. If
the model attempts to place more atoms, the generation terminates and the
molecule is marked as invalid.

Checking validity and uniqueness of generated molecules. We use Open Babel57

to assess the validity of generated molecules. Open Babel assigns bonds and bond
orders between atoms to translate the generated 3d representation of atom positions
and types into a molecular graph. We check if the valence constraints hold for all
atoms in the molecular graph and mark the molecule as invalid if not. Furthermore,
the generated structure is considered invalid if it consists of multiple disconnected
graphs. We found that Open Babel may struggle to assign correct bond orders even for
training molecules if they contain aromatic sub-structures made of nitrogen and
carbon. Thus, we use the same custom heuristic as in previous G-SchNet work48 that
catches these cases and checks whether a correct bond order can be found. The
corresponding code is publicly available (see Code availability).

The uniqueness of generated molecules is checked using their canonical
SMILES30 string representation obtained from the molecular graph with Open
Babel. If two molecules share the same string, they are considered to be equal, i.e.,
non-unique. Furthermore, we check the canonical SMILES string of mirror images
of generated structures, which means that mirror-image stereoisomers
(enantiomers) are considered to be the same molecule in our statistics. In case of
duplicates, we keep the molecule sampled first, with the exception of the search for
C7O2H10 isomers, where we keep the structure with the lowest predicted relative
atomic energy. Molecules from the training and test data are matched with
generated structures in the same way, using their canonical SMILES
representations obtained with Open Babel and the custom heuristic for bond order
assignment. In general, we use isomeric SMILES strings that encode information
about the stereochemistry of 3d structures. Only in the search for C7O2H10 isomers,
we also compare non-isomeric canonical SMILES obtained with RDKit70 in order
to identify novel stereoisomers, i.e., structures that share the same non-isomeric
SMILES representation but differ in the isomeric variant.

Prediction of property values of generated molecules. We use pretrained
SchNet21,67 models from SchNetPack68 to predict the HOMO-LUMO gap, iso-
tropic polarizability, and internal energy at zero Kelvin of generated molecules. The
reported mean absolute error (MAE) of these models is 0.074 eV, 0.124 Bohr3, and
0.012 eV, respectively. The predicted values are used to plot the distributions of the
respective property in Fig. 1b, Fig. 3b, and Fig. 4a. We relax generated molecules for
every experiment in order to assess how close they are to equilibrium configura-
tions and to calculate the MAE between predictions for generated, unrelaxed
structures and the computed ground-truth property value of the relaxed structure.
The relaxation procedure is described in Supplementary Methods 4, where fur-
thermore a table with the results can be found (Supplementary Table 2). For the
statistics depicted in Fig. 4b-d and Fig. 5, we use the property values computed
during relaxation instead of predictions from SchNet models.

Data availability
The molecules generated with cG-SchNet are available at www.github.com/atomistic-
machine-learning/cG-SchNet(DOI 10.5281/zenodo.590702771). The QM9 dataset is
available under DOI 10.6084/m9.figshare.978904. The set of molecules with small
HOMO-LUMO gap generated by biased G-SchNet is available at http://quantum-
machine.org/datasets.

Code availability
The code for cG-SchNet is available at www.github.com/atomistic-machine-learning/cG-
SchNet(DOI 10.5281/zenodo.590702771). This includes the routines for training and
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deploying the model, for filtering generated structures, all hyper-parameter settings used
in our experiments, and the splits of the data employed to train the reported models.

Received: 10 September 2021; Accepted: 28 January 2022;
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