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Anti tumour necrosis factor (anti-TNF) drugs increase the risk of serious respiratory infection

and impair protective immunity following pneumococcal and influenza vaccination. Here we

report SARS-CoV-2 vaccine-induced immune responses and breakthrough infections in

patients with inflammatory bowel disease, who are treated either with the anti-TNF antibody,

infliximab, or with vedolizumab targeting a gut-specific anti-integrin that does not impair

systemic immunity. Geometric mean [SD] anti-S RBD antibody concentrations are lower and

half-lives shorter in patients treated with infliximab than vedolizumab, following two doses of

BNT162b2 (566.7 U/mL [6.2] vs 4555.3 U/mL [5.4], p <0.0001; 26.8 days [95% CI 26.2 –

27.5] vs 47.6 days [45.5 – 49.8], p <0.0001); similar results are also observed with ChAdOx1

nCoV-19 vaccination (184.7 U/mL [5.0] vs 784.0 U/mL [3.5], p <0.0001; 35.9 days [34.9 –

36.8] vs 58.0 days [55.0 – 61.3], p value < 0.0001). One fifth of patients fail to mount a T cell

response in both treatment groups. Breakthrough SARS-CoV-2 infections are more frequent

(5.8% (201/3441) vs 3.9% (66/1682), p = 0.0039) in patients treated with infliximab than

vedolizumab, and the risk of breakthrough SARS-CoV-2 infection is predicted by peak anti-S

RBD antibody concentration after two vaccine doses. Irrespective of the treatments, higher,

more sustained antibody levels are observed in patients with a history of SARS-CoV-2

infection prior to vaccination. Our results thus suggest that adapted vaccination schedules

may be required to induce immunity in at-risk, anti-TNF-treated patients.
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Vaccination programmes have reduced SARS-CoV-2
transmission, hospitalisation and deaths1. Patients trea-
ted with immunosuppressive drugs were excluded from

the original trials for COVID-19 vaccines2,3. Consequently, data
relating to the magnitude and durability of immune responses
and subsequent vaccine effectiveness in this population are
limited4.

Drugs targeting tumour necrosis factor (TNF), such as inflix-
imab, are the most frequently prescribed biologic therapies used
in the treatment of immune-mediated inflammatory disorders
(IMIDs). Observational studies indicate that most patients with
inflammatory bowel disease (IBD), an archetypal IMID, mount
serological responses following SARS-CoV-2 vaccines, although
most were underpowered to discern the impact of specific drugs,
including immunomodulators (azathioprine, mercaptopurine and
methotrexate) and/or biologic therapies5–8. We reported that
antibody responses following SARS-CoV-2 infection9,10 or a
single dose of either the BNT162b2 or ChAdOx1 nCoV-19SARS-
CoV-2 vaccines were impaired in anti-TNF treated patients when
compared to vedolizumab-treated patients11. Vedolizumab, is a
gut-selective anti-integrin α4β7 monoclonal antibody that, unlike
anti-TNF drugs, is not associated with increased susceptibility to
systemic infection or attenuated serological responses to
vaccination12.

In this work, we show that anti-SARS-CoV-2 spike antibody
responses are attenuated and less durable following two doses of
the BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in
infliximab-treated compared with vedolizumab-treated patients
with IBD. Irrespective of biologic drug type, one-fifth of all
patients do not mount a T cell response and a minority mount
neither antibody nor T cell responses. Breakthrough SARS-CoV-2
infections, which are associated with lower antibody levels after
the second dose of vaccine, are more common and occur earlier
in infliximab-treated patients. Higher and more sustained anti-
body levels are observed in patients with a history of SARS-CoV-
2 infection. Further work to define immunity after third primary
and booster vaccine doses is needed to inform the need for
adapted vaccination schedules in at-risk anti-TNF treated
patients.

Results
Patient characteristics. Between September 22, 2020 and
December 23, 2020, 7226 patients were recruited to the CLARITY
study from 92 UK hospitals10. In this analysis we included 2279
infliximab-treated and 1031 vedolizumab-treated participants
without a history of prior SARS-CoV-2 infection, who had
received uninterrupted biologic therapy since recruitment and
had an antibody test between 14 and 70 days after the second
dose of either the BNT162b2 and ChAdOx1 nCoV-19 SARS-
CoV-2 vaccines. Participant characteristics are shown in Table 1.

Additional analyses are presented for a subset of 211
infliximab-treated and 71 vedolizumab-treated patients included
in our T cell experiments (Supplementary Table 1), and a further
530 infliximab-treated and 224 vedolizumab-treated participants
who had a history of SARS-CoV-2 infection before vaccination
(Supplementary Table 2).

Anti-SARS-CoV-2-spike (S) antibody level following two doses
of SARS-CoV-2 vaccine. Overall, the geometric mean [geometric
SD] of anti-S receptor-binding domain (RBD) antibody con-
centration was higher in recipients of two doses of the BNT162b2
than ChAdOx1 nCoV-19 vaccines (1084.1 U/mL [7.6] vs 289.9 U/
mL[5.2], p < 0.0001). Anti-S RBD antibody concentrations were
lower in patients treated with infliximab than in those treated
with vedolizumab, following a second dose of BNT162b2

(566.7 U/mL [6.2] vs 4555.3 U/mL [5.4], p < 0.0001) and ChA-
dOx1 nCoV-19 (184.7 U/mL [5.0] vs 784.0 U/mL [3.5],
p < 0.0001) vaccines (Fig. 1).

Crude sensitivity analyses, excluding patients treated with a
concomitant immunomodulator, confirmed lower anti-S RBD
antibody concentrations in patients treated with infliximab alone
versus vedolizumab alone (BNT162b2 809.1 U/mL [4.9] vs
4691.5 U/mL [5.9], p < 0.0001, ChAdOx1 nCoV-19 178.5 U/mL
[4.6] vs 778.0 U/mL [3.5], p < 0.0001).

After propensity matching for immunomodulator use and the
other factors associated with choice of biologic, we confirmed
lower anti-S RBD antibody concentrations in infliximab-treated
compared to vedolizumab-treated patients (BNT162b2 600.1 U/
mL [6.0] vs 4674.1 U/mL [4.7], p < 0.0001, ChAdOx1 nCoV-19
195.2 U/mL [4.5] vs 779.2 U/mL [3.6], p < 0.0001) (Supplemen-
tary Table 3).

Multivariable linear regression analyses in patients without
prior SARS-CoV-2 infection confirmed that antibody concentra-
tions were reduced six and four-fold in infliximab-treated
compared with vedolizumab-treated participants who received
the BNT162b2 (fold change [FC] 0.15 [95% CI 0.12, 0.19],
p < 0.0001) and ChAdOx1 nCoV-19 ([FC] 0.24 [95% CI 0.21,
0.28], p < 0.0001) vaccines (Fig. 2a, b respectively). Age ≥60 years
and Crohn’s disease were also independently associated with
lower anti-S RBD antibody concentrations in vaccinated
participants. Thiopurine or methotrexate use was independently
associated with lower anti-S RBD antibody concentrations in
participants who received the BNT162b2, but not the ChAdOx1
nCoV-19, vaccine. Current smoking, non-white ethnicity and
steroid use were associated with lower anti-S RBD antibody
concentrations in participants who received the ChAdOx1 nCoV-
19 but not the BNT162b2 vaccine. To assess the effect of vaccine
type on antibody responses, we combined our response data in a
model that included vaccine type in addition to the significant
factors above. Vaccination with the BNT162b2 vaccine compared
to the ChAdOx1 nCoV-19 was independently associated with a
3.7 fold [95% CI 3.29–4.12] higher anti-S RBD antibody
concentration (p < 0.0001) (Fig. 2c).

Seroconversion rates after the first vaccine dose were lower in
infliximab-treated compared to vedolizumab-treated participants
(Fig. 1). However, administration of a second vaccine dose
resulted in a >100-fold and >25-fold increase in antibody
concentrations in recipients of the BNT162b2 and ChAdOx1
nCoV-19 vaccines, respectively (Fig. 1). Overall, more infliximab-
treated than vedolizumab-treated patients failed to seroconvert
after their second vaccine dose (5.9% vs 1.3%, p < 0.0001).
Seroconversion rates stratified by biologic therapy and vaccine
type are reported in Supplementary Table 4.

Anti-spike T cell responses following two doses of BNT162b2
and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines. There were no
significant differences in the magnitude of anti-spike T cell
responses observed in infliximab-treated compared with
vedolizumab-treated patients after one or two doses of either
vaccine (Fig. 3a). The proportion of patients failing to mount
detectable T cell responses were similar in both groups (inflix-
imab 19.6% vs. vedolizumab 19.2%). For recipients of one and
two doses of the BNT162b2 vaccine, there was a modest positive
correlation between T cell responses and antibody concentration.
This association was not observed in recipients following either
dose of the ChAdOx1 nCoV-19 vaccine (Fig. 3b). When T cell
responses were ranked by magnitude of antibody responses, most
patients who did not mount an antibody response after the first
vaccine dose (indicated by the dark grey bar) had a detectable T
cell response (Fig. 4). In addition to the uncoupling of the T cell
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and antibody responses demonstrated, this analysis emphasised
that about one-fifth of participants made no T cell responses
irrespective of vaccine used (indicated by the light grey bars).
Moreover, a minority of individuals (3/67) 4.5% for BNT162b2
and (1/56) 1.8% for ChAdOx1 nCoV-19 vaccines carry neither
detectable antibody nor T cell responses after two doses of vac-
cine (Figs. 3b, 4).

Durability of antibody responses following two doses of
BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines. The
estimated half-life of anti-S RBD antibodies was shorter in par-
ticipants receiving the BNT162b2 compared to the ChAdOx1
nCoV-19 vaccines (30.8 days [95% CI 30.3–31.5] vs 40.5 days
[95% CI 39.2–41.6], p value <0.0001). When stratified by biologic,
half-life estimates were shorter in infliximab-treated than
vedolizumab-treated patients following two doses of BNT162b2
(26.8 days [95% CI 26.2–27.5] vs 47.6 [95% CI 45.5–49.8], p value
<0.0001) and ChAdOx1 nCoV-19 (35.9 days [95% CI 34.9–36.8]
vs 58.0 days [95% CI 55.0–61.3], p value <0.0001) (Supplemen-
tary Fig. 1 and Supplementary Table 5).

Overall, following two doses of either vaccine, anti-S RBD
antibodies showed minimal decay to the last follow-up in patients
treated with vedolizumab (Fig. 5 and Supplementary Fig. 2) and
were similar to those observed in participants in the Virus Watch
community cohort (Supplementary Fig. 3). However, in
infliximab-treated participants, the geometric mean concentra-
tions dropped to the seroconversion threshold by about 25 weeks
after the second dose irrespective of the vaccine administered
(Fig. 5). Infliximab compared to vedolizumab treatment, current
smoking and white ethnicity were associated with a faster fall in
anti-S RBD antibody concentration below the seroconversion
threshold. (Supplementary Figs. 4, 5).

Breakthrough SARS-CoV-2 infections following two doses of
vaccine. Of 5123 participants without polymerase chain reaction
(PCR)-positive or serological evidence of prior SARS-CoV-2
infection, 267 had a first positive SARS-CoV-2 PCR test 2 or
more weeks after the second vaccine dose. Overall, 89.2% patients
were symptomatic: the most commonly reported symptoms were
fatigue (73.7%), anosmia/ageusia (71.4%), fever (57.1%), cough

Table 1 Baseline characteristics of participants who had anti-S receptor-binding domain antibodies measured 2 to 10 weeks
following two doses of SARS-CoV-2 vaccine.

Variable Vedolizumab Infliximab p

Vaccine
BNT162b2 40.1% (413/1031) 40.1% (914/2279) 1.0
ChAdOx1 nCoV-19 59.9% (618/1031) 59.9% (1365/2279)

Age (years) 48.0 (35.2–61.6) 40.2 (30.1–53.1) <0.0001
Sex
Female 48.0% (492/1024) 45.9% (1040/2267) 0.15
Male 51.8% (530/1024) 54.1% (1226/2267)
Intersex 0.0% (0/1024) 0.0% (0/2267)
Prefer not to say 0.2% (2/1024) 0.0% (1/2267)

Ethnicity
White 89.9% (920/1023) 92.5% (2096/2266) 0.037
Asian 6.5% (66/1023) 4.6% (104/2266)
Mixed 2.4% (25/1023) 1.4% (32/2266)
Black 0.5% (5/1023) 0.8% (18/2266)
Other 0.7% (7/1023) 0.7% (16/2266)

Diagnosis
Crohn’s disease 36.9% (380/1031) 67.2% (1531/2279) <0.0001
UC/IBDU 63.1% (651/1031) 32.8% (748/2279)

Duration of IBD (years) 9.0 (5.0–17.0) 8.0 (3.0–16.0) 0.00017
Age at IBD diagnosis (years) 33.5 (22.8–47.3) 27.6 (20.1–39.6) <0.0001
Immunomodulators at vaccine 20.4% (210/1031) 57.2% (1304/2279) <0.0001
5-ASA 33.9% (349/1031) 20.6% (469/2279) <0.0001
Steroids 5.9% (61/1031) 2.8% (64/2279) <0.0001
BMI 26.0 (23.0–29.8) 25.9 (22.8–30.0) 0.74
Heart disease 4.9% (50/1023) 2.6% (59/2261) 0.0011
Diabetes 7.6% (78/1023) 3.6% (82/2261) <0.0001
Lung disease 16.4% (168/1023) 13.1% (296/2261) 0.013
Kidney disease 1.9% (19/1023) 0.8% (17/2261) 0.065
Cancer 1.6% (16/1023) 0.3% (6/2261) <0.0001
Smoker
Yes 8.2% (84/1023) 10.8% (245/2261) 0.0010
Not currently 37.7% (386/1023) 30.2% (682/2261)
Never 54.1% (553/1023) 59.0% (1334/2261)

Exposure to documented cases of COVID-19 7.8% (80/1023) 8.6% (195/2261) 0.46
Income deprivation score 0.089 (0.055 - 0.146) 0.091 (0.052 - 0.153) 0.92
Active disease (PRO2) 10.4% (102/977) 5.2% (111/2153) <0.0001
Time between vaccine doses (weeks) 10.9 (9.7–11.1) 11.0 (10.0–11.3) 0.0030
Time from second dose to serum sample (weeks) 5.7 (3.7– 7.7) 5.7 (3.7–7.7) 0.73

Values presented are median (interquartile range) or percentage (numerator/denominator).
P values represent the results of a Mann–Whitney U, Kruskal–Wallis or Fisher’s exact test.
UC ulcerative colitis, IBDU IBD unclassified, IBD inflammatory bowel disease, 5-ASA 5-aminosalicylic acid, BMI body mass index, PRO2 IBD disease activity.
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(54.9%), myalgia (45.9%), hoarse voice (30.8%), confusion
(27.8%) and chest pains (23.3%). Overall, 1.2% (3/253) of parti-
cipants with PCR-confirmed infection were hospitalised because
of COVID-19.

Breakthrough SARS-CoV-2 infections were more frequent
(5.8% (201/3441) vs 3.9% (66/1682), p= 0.0039) and the time to
breakthrough shorter in patients treated with infliximab than
vedolizumab (p= 0.0027) (Fig. 6b). In contrast biologic class did
not impact on time to PCR-confirmed infection prior to
vaccination (p= 0.63) (Fig. 6a). In a model that included biologic
and vaccine type, shorter time to breakthrough infection was
associated with infliximab (Hazard Ratio (HR) 1.52 [95% CI
1.15–2.01], p= 0.003) and having received the ChAdOx1 nCoV-
19 (HR 1.49 [95% CI 1.15–1.92], p= 0.0023) vaccine. Geometric
mean [geometric SD] anti-S RBD antibody concentrations
measured 2 to 10 weeks after a second vaccine dose were
significantly lower in participants who subsequently had a PCR-
confirmed breakthrough SARS-CoV-2 infection: for every tenfold
rise in anti-S RBD antibody concentration we observed a 0.8-fold
reduction in odds of breakthrough infection ([95% CI 0.70–0.99],
p= 0.03).

Antibody responses in patients with prior SARS-CoV-2 infec-
tion. Amongst patients with a history of SARS-CoV-2 infection
before vaccination, geometric mean [SD] anti-S RBD antibody
concentrations were lower in infliximab-treated compared with
vedolizumab-treated patients after a second dose of BNT162b2
(1330.0 U/mL [5.3] vs 7169.5 U/mL [4.6], p < 0.0001) and ChA-
dOx1 nCoV-19 (399.7 U/mL [5.4] vs 2077.3 [4.6] p < 0.0001)
vaccines. In all patients, antibody concentrations following vac-
cination were higher in patients without a history of SARS-CoV-2
infection (Fig. 1). Irrespective of vaccine or biologic type, minimal

decay of anti-S RBD antibodies were observed up to a follow-up
of 21 weeks.

Discussion
We have shown that in infliximab-treated patients, anti-SARS-
CoV-2 spike antibody responses are attenuated following two
doses of the BNT162b2 and ChAdOx1 nCoV-19SARS-CoV-2
vaccines. One-fifth of both infliximab-treated and vedolizumab-
treated patients did not mount a T cell response and a small
subset of patients had neither antibody nor T cell responses.
Antibody half-lives were shorter in infliximab-treated patients.
Breakthrough SARS-CoV-2 infections were more common and
occurred earlier in infliximab-treated patients who received the
ChAdOx1 nCoV-19 vaccine. The risk of breakthrough infection
was predicted by lower antibody levels after the second dose of
the vaccine. Irrespective of biologic treatment, higher and more
sustained antibody levels were observed in patients with a history
of SARS-CoV-2 infection.

Sustained antibody responses observed in vaccinated patients
with a history of prior SARS-CoV-2 infection indicate that third
antigen exposure enhances the serological response. This sup-
ports the rationale for prioritising a third dose of vaccine to
clinically vulnerable patient populations13–16, who otherwise may
face further periods of social distancing or hospitalisation fol-
lowing infection. Whilst drawing direct comparisons between
IBD patients and patients treated with more potent che-
motherapies is limited by the degree to which patients are
immunosuppressed, data from solid organ transplant recipients
shows that a third dose of vaccine also leads to sustained immune
responses17.

Irrespective of biologic or immunosuppressant use, and in
keeping with the original trials2,18, the highest antibody responses

Fig. 1 Anti-S RBD antibody concentration stratified by biologic therapy (infliximab vs vedolizumab), type of vaccine, vaccine dose and history of prior
SARS-CoV-2 infection. The wider bar represents the geometric mean, while the narrower bars are drawn one geometric standard deviation on either side
of the geometric mean. Based on published data using neutralisation assays threshold shown of 15 U/mL was used to determine seroconversion11. The
biologic treatment infliximab is shown in green and vedolizumab in orange. The number of individuals tested for each group are shown in black at the top of
each panel. Source data are provided as a Source Data file.
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were seen in recipients of the BNT162b2 vaccine. Like in the
general population, these responses waned more quickly than in
the recipients of the ChAdOx1 nCoV-19 vaccine19. Unlike the
general population20, but similar to renal transplant recipients4,
we did not observe differences in T cell ELISpot responses
between recipients of the BNT162b2 and ChAdOx1 nCoV-19
vaccines. The differences observed in breakthrough infection by
vaccine type reported here are consistent with the differences in
efficacy reported in the respective clinical trials2,3,21. The higher
peak antibody levels and the lower rate of SARS-CoV-2 break-
through infections suggest that the BNT162b2 rather than the
ChAdOx1 nCoV-19 vaccine should be used for primary vacci-
nation in infliximab-treated patients and, although untested,
supports the use of BNT162b2 for third doses in all patients
treated with an anti-TNF regardless of the primary vaccine type.

All patients treated with anti-TNF therapy should receive a
third primary dose of the SARS-CoV-2 vaccine and our data
support recent recommendations that this should occur about
4–8 weeks after the second dose13,14,16 during periods of high
transmission in the population. Our data demonstrate that
patients treated with vedolizumab and infliximab-treated patients
with prior SARS-CoV-2 infection have sustained antibody levels
beyond 6 months.

When starting a biologic, it would be reasonable to consider
differences in SARS-CoV-2 vaccine response as one of the factors
when determining which drug to use. For patients who need to
start anti-TNF therapy, the benefits of combination immuno-
modulator therapy should be weighed against the risk of atte-
nuated vaccine response, and whenever feasible, patients should
first receive a SARS-CoV-2 vaccine dose. Further research to

determine whether timing third vaccine doses towards the end of
anti-TNF treatment cycles when drug levels are lowest leads to
greater immunogenicity9 is needed. Other strategies including the
temporary discontinuation of immunomodulators22, the use of
heterologous vaccines23 and adjuvants including the influenza
vaccines (ComFluCOV)24 need to be studied in immunosup-
pressed patient groups.

The biology underpinning loss of durable antibody responses
and uncoupling of the B cell and T cell responses merit further
research. TNF is a pleiotropic cytokine and its activities include
maturation of antigen-presenting cells, modulation of T cell
responses and stimulation of immunoglobulin synthesis25–27.
TNF neutralisation, or genetic ablation, results in substantial loss
of B-cells in primary follicles in germinal centres, reduced
numbers of memory B-cells in the periphery but preserved
numbers of T cells25. Uncoupling of humoral and T cell immu-
nity to SARS-CoV-2 has been observed in healthy individuals28,
and although the relative contributions of memory B cell and T
cell responses have yet to be fully defined in SARS-CoV-2
immunity, the preservation of T cell immunity reported here
should provide some reassurance for anti-TNF treated patients.
However, it is noteworthy that one-fifth made no anti-spike T cell
response following two doses of either vaccine. Chronic TNF
exposure, a feature of many IMIDs, can render T cells anergic and
can be reversed by anti-TNF treatment29. This may in part
explain why the magnitude of T cell responses observed in anti-
TNF-treated patients in this study did not differ significantly
from patients treated with vedolizumab.

Although our data show major differences in the magnitude
and durability of antibody responses, we have not assessed the

Fig. 2 Exponentiated coefficients of linear regression models of log anti-S RBD antibody concentration. Exponentiated coefficients of the linear
regression model of log anti-S RBD antibody concentration in participants who received a BNT162b2 vaccine. b ChAdOx1 nCoV-19 vaccine. c either the
BNT162b2 or ChAdOx1 nCoV-19 vaccine. The resultant values represent the fold change of antibody concentration associated with each variable (black
square). The horizontal solid line through each square represents the 95% confidence interval. Each vaccine was modelled separately, and then a further
model was created using all available data. The vertical dotted line represents a fold change of 1. Tests were two-tailed. p values were derived from linear
regression using the t-test statistic and reported without correction for multiple testing. Source data are provided as a Source Data file. UC ulcerative
colitis, IBDU IBD unclassified.
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impact of biologic therapy on specific immunoglobulin classes,
antibody neutralisation or mucosal immune responses, which
may be impaired, in particular, with anti-a4b7 therapy30,31.
However, previous studies have demonstrated that anti-RBD
antibody levels such as the ones measured in this study, strongly
correlate with Wuhan Hu-1 live virus and variant S RBD neu-
tralisation assays32,33, and we have demonstrated here that early
antibody responses to vaccination correlates with the subsequent
risk of breakthrough infection in immunosuppressed patients.

Infliximab was associated with attenuated, less durable vaccine-
induced anti-SARS-CoV-2 spike antibody responses and a 50%
increase in subsequent breakthrough SARS-CoV-2 infection.
Further work to define immunity after third primary and booster
vaccine doses is needed to inform the need for adapted vacci-
nation schedules in at-risk anti-TNF treated patients.

Methods
Patient and settings. impaCt of bioLogic therApy on saRs-cov-2 Infection and
immuniTY (CLARITY) IBD is a UK-wide, multicentre, prospective observational
cohort study investigating the impact of infliximab and vedolizumab and/or con-
comitant immunomodulators (azathioprine, mercaptopurine and methotrexate) on
SARS-CoV-2 acquisition, illness and immunity in patients with IBD.

Study methods have been previously described10,11. Consecutive patients were
recruited at the time of attendance at infusion units between 22 September 2020
and 23 December 2020 (Supplementary Table 1). Patients aged 5 years and over,
with a diagnosis of IBD, treated with infliximab or vedolizumab were eligible for
inclusion. Follow-up visits coincided with biologic infusions and occurred eight-
weekly. Here, we report vaccine-induced antibody responses after the second dose
of either the BNT162b2 or ChAdOx1 nCoV-19 vaccines. Participants were eligible
for our primary immunogenicity analysis, if they had had an anti-S RBD antibody

test between 14 and 70 days after a second-dose vaccine, defined as the second dose
of any of the licenced COVID-19 vaccines, 10-14 weeks after the first dose. Anti-S
RBD antibody levels were compared with samples from 605 fully vaccinated adult
participants from the Virus Watch study, a household community cohort of 10,000
individuals representative of the UK population of England and Wales recruited
between 1 June 2020 to 31 August 202119. Peripheral blood mononuclear cells
(PBMC) for T cell experiments were collected from patients 4 to 6 weeks after the
first and second dose of vaccine at the time of biologic infusions, at selected sites
which could facilitate PBMC extraction within 12 h of venepuncture.

Outcome measures. Our primary outcome was anti-S RBD antibodies 2 to
10 weeks after the second dose of the BNT162b2 or ChAdOx1 nCoV-19 vaccines.

Secondary outcomes were:

(i) the proportion of participants who seroconverted
(ii) anti-spike T cell responses in patients following the first and second dose of

vaccines
(iii) the durability of vaccine responses
(iv) risk of breakthrough infections two or more weeks after two doses of vaccine
(v) antibody concentrations and seroconversion rates in patients with PCR or

serological evidence of past SARS-CoV-2 infection at, or prior, to the post-
vaccination serum sample

Variables. Variables recorded by participants were demographics (age, sex, eth-
nicity, comorbidities, height and weight, smoking status, and postcode), IBD dis-
ease activity (PRO2), SARS-CoV-2 symptoms aligned to the COVID-19 symptoms
study (symptoms, previous testing, and hospital admissions for COVID-19) and
vaccine uptake (type and date of primary vaccination). Study sites completed data
relating to IBD history (age at diagnosis, disease duration, and phenotype
according to the Montreal classifications, previous surgeries, and duration of
current biologic and immunomodulator therapy)10. We linked our data by NHS
number or Community Health Index to Public Health England, Scotland, and
Wales archive dates and results of all SARS-CoV-2 PCR tests undertaken and

Fig. 3 Anti-SARS-CoV-2 spike T cell responses stratified by vaccine platform (BNT162b2 vs ChAdOx1 nCoV-19), biologic therapy (infliximab vs
vedolizumab) and vaccine dose (one vs two). a Spike MEP T cell responses SFC per 106 PBMC stratified by vaccine platform, biologic therapy (infliximab
vs vedolizumab) and the number of vaccine doses. The horizontal bar represents the geometric mean and the narrow bars represent one geometric
standard deviation on either side of the geometric mean. The number of T cell responders / total number of individuals tested are shown in black at the top
of each panel. b Scatterplot demonstrating the correlation between T cell responses against spike MEP pool (SFC per 106 PBMC) and anti-SARS-CoV-2
spike antibody concentration after the first (LHS) and second (RHS) dose of BNT162B2 (top) and ChAdOx1 nCoV-19 (bottom) vaccine. The number of
non-T cell responders/total number of individuals tested is shown in blue on the bottom RHS of each panel. The shaded grey band represents the 95%
confidence interval. The horizontal dotted line in b represents a threshold of 15 U/mL of anti-S1 SARS-CoV-2 antibody. The tests were two-tailed and p
values were reported without correction for multiple testing. The biologic infliximab is shown in green and vedolizumab is shown in orange. Source data are
provided as a Source Data file. MEP mapped epitope peptide, SFC spot forming cells, PBMC peripheral blood mononuclear cell, LHS left-hand side, RHS
right-hand side, R Spearman’s rank correlation.
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vaccines administered. Data were entered electronically into a purpose-designed
REDCap database hosted at the Royal Devon and Exeter NHS Foundation Trust34.
Participants without access to the internet or electronic device completed their
questionnaires on paper case record forms that were subsequently entered by local
research teams.

Laboratory methods. To determine antibody responses specific to vaccination we
used the Roche Elecsys Anti-SARS-CoV-2 spike (S) immunoassay35 alongside the
nucleocapsid (N) immunoassay36. This double sandwich electro-
chemiluminescence immunoassay uses a recombinant protein of the receptor-
binding domain on the spike protein as an antigen for the determination of
antibodies against SARS-CoV-2. Sample electrochemiluminescence signals are
compared to an internal calibration curve and quantitative values are reported as
units (U)/mL. In-house assay validation experiments on the Roche Elecsys Anti-
SARS-CoV-2 spike (S) immunoassay were performed on 20 samples from healthy
individuals who have been vaccinated. This demonstrated:

i. The intra-assay and inter-assay coefficient of variation were 1.3% and 5.6%,
respectively

ii. Anti-SARS-CoV-2 (S) antibodies were stable in uncentrifuged blood and
serum at ambient temperature for up to seven days permitting postal
transport

iii. No effect was observed on recovery of anti-SARS-CoV-2 (S) antibodies
following four freeze/thaw cycles

iv. No analytical interference was observed for the detection of anti-SARS-
CoV-2 (S) with infliximab or vedolizumab up to 10,000 and 60,000 mg/L,
respectively, or with anti-drug antibodies to infliximab or vedolizumab up to
400 and 38 AU/mL, respectively (data not shown).

Seroconversion was defined at a threshold of 15 U/mL. ElecSys Anti-SARS-
CoV-2 spike (S) RBD concentrations of greater than or equal to 15 U/ml are

associated with neutralisation of ≥20% with a positive predictive value of 99.10%
(95% CI: 97.74–99.64)11.

At the entry to CLARITY IBD and at follow-up visits, all patients were tested
for previous SARS-CoV-2 infection using the Roche Elecsys anti-SARS-CoV-2 (N)
immunoassay. We have previously reported that anti-N antibody responses
following SARS-CoV-2 natural infection are impaired in patients treated with
infliximab or vedolizumab11. As such, a threshold 0.12 times above the cut-off
index was set, using receiver operator characteristic curve and area under the curve
analysis of anti-N antibody results from participants two weeks following a PCR-
confirmed infection to maximise specificity, beyond which patients were deemed to
have had prior SARS-CoV-2 infection (Supplementary Fig. 6). Patients with a PCR
test confirming SARS-CoV-2 infection at any time prior to vaccination were
deemed to have evidence of past infection irrespective of any antibody test result.
Breakthrough infections were defined by a positive SARS-CoV-2 PCR test 2 or
more weeks after the second vaccine dose.

Peripheral blood mononuclear cell isolation. Whole blood was collected in
lithium heparin tubes and PBMCs were isolated by density-gradient centrifugation
using LymphoprepTM (Stem Cell Technologies) layered onto SepMateTM (Stem
Cell Technologies) tubes. PBMC isolation was performed within 12 h of vene-
puncture. Purified PBMCs were cryopreserved in 10% DMSO/50% FBS and stored
in liquid nitrogen pending batch analysis.

Spike-peptide specific T cell responses. IFN-γ T cell ELISpot assays were per-
formed using pre-coated plates (Mabtech 3420-2APT) and using the protocol
described previously28,32. Two-hundred thousand cells were seeded per well and
cells were stimulated with a peptide pool, containing 18 peptides derived from
SARS-CoV-2 spike protein37 at a concentration of 10 μg/ml/peptide; the peptide
pool utilises a mapped epitope pool (MEP) or 12–20mer peptides, mapped as

Fig. 4 Anti-spike T cell responses ordered by the cumulative magnitude of anti-S RBD following two doses of the BNT162b2 or ChAdOx1 nCoV-19
vaccine show uncoupling of the T cell and antibody responses. Top panel shows T cell responses to spike, and the bottom panel shows anti-S RBD
responses plotted for individual study participants ordered by increasing magnitude of anti-S RBD antibody concentration (U/mL). The vertical dark grey
bars at the LHS of the panels indicate individuals with no anti-S RBD response. The vertical light grey bars in the panels indicate individuals with no T cell
response. The horizontal dotted line represents a threshold shown of 15 U/mL of anti-S RBD. Source data are provided as a Source Data file. LHS left-hand
side, MEP mapped epitope peptide, SFC spot forming cells.
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eliciting high-prevalence CD4 responses covering diverse HLA-II haplotypes28,32.
Use of this spike MEP in otherwise healthy SARS-CoV-2 seropositive individuals
elicits a T cell response in 83% of individuals at 16–18 weeks after natural SARS-
CoV-2 infection and 91% of healthy individuals 2–3 weeks after two-dose vacci-
nation with seronegative individuals showing a level of response indistinguishable
from pre-pandemic controls28,32. Plates were cultured for 18–20 h before

development and data were collected using an AID classic ELISpot plate reader
(Autoimmun Diagnostika GMBH). Results are expressed as differences in (delta)
spot forming cells (SFC) per 106 PBMC between peptide stimulation and a media-
only control. A response below 2 standard deviations of the media-only control
wells was deemed to be a null response. Data were excluded if the response to the
positive control anti-CD3 stimulation was <200 SFC per 106 PBMCs.

Fig. 5 Rolling geometric mean antibody concentration over time from the date of the second dose of the SARS-CoV-2 vaccine (week 0) stratified by
biologic therapy (infliximab vs vedolizumab), vaccine and history of prior SARS-CoV-2 infection. Geometric means are calculated using a rolling 15-day
window (i.e. 7 days on either side of the day indicated). The shaded areas represent the 95% confidence intervals of the geometric means. The horizontal
blue line represents the seroconversion threshold (15 U/mL). The number of participants included at each time point is presented in Supplementary Fig. 2.
Overall, data from 4474 participants with no history of prior infection (3029 on infliximab and 1445 on vedolizumab) and 1179 participants with a history of
prior infection (833 on infliximab and 346 on vedolizumab) were included in this graph between 22 weeks before and 29 weeks after the second vaccine
dose. The biologic treatment infliximab is shown in green and vedolizumab is shown in orange. Source data are provided as a Source Data file.

Fig. 6 Kaplan–Meier graphs comparing the time to PCR-confirmed SARS-CoV-2 infection stratified by biologic therapy (infliximab vs vedolizumab) in
participants before vaccination and after receiving two doses of vaccine. a The time to PCR-confirmed SARS-CoV-2 infection in participants who have
not received any dose of either vaccine stratified by biologic therapy (infliximab vs vedolizumab). b The time to a PCR-confirmed SARS-CoV-2
breakthrough infection in participants following two doses of either vaccine stratified by biologic therapy. The biologic treatment infliximab is shown in
green and vedolizumab in orange. The number of participants at each time point are displayed in black at the bottom of each figure. P values are calculated
using the log-rank test. Source data are provided as a Source Data file.
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Sample size. The sample size for CLARITY IBD was based on the number of
participants required to demonstrate a difference in the impact of infliximab and
vedolizumab on seroprevalence and seroconversion following SARS-CoV-2 infec-
tion, with an estimated background seroprevalence of 0.05. We calculated that a
sample of 6970 patients would provide 80% power to detect differences in the
seroprevalence of SARS-CoV-2 antibodies in infliximab-treated compared with
vedolizumab-treated patients, whilst controlling for immunomodulator status at
the 0.05 significance level.

Statistical analyses. Analyses were undertaken using R 4.1.2 (R Foundation for
Statistical Computing, Vienna, Austria). All tests were two-tailed and p values were
reported without correction for multiple testing. P values <0.05 were considered
significant. We included patients with missing clinical data in analyses for which
they had data and have specified the denominator for each variable. Anti-S RBD
antibody concentrations are reported as geometric means and standard deviations.
Other continuous data are reported as a median and interquartile range, and
discrete data as numbers and percentages, unless otherwise stated.

Univariable analyses, using Spearman’s rank correlation coefficients, and t-tests
of log-transformed anti-S RBD antibody concentration were used to identify
demographic, disease, vaccine and treatment-related factors associated with the
concentration of anti-S RBD antibodies across the cohort. Crude sensitivity
analyses excluding patients treated without a concomitant immunomodulator were
undertaken to control for the effect of immunomodulator use on anti-S RBD
antibody concentrations. Propensity matching was used to account for the other
significant differences in baseline variables between infliximab-treated and
vedolizumab-treated patients using the MatchIt package38. A priori, patients were
matched exactly on diagnosis, immunomodulator use, and then using optimal
matching, on age, the number of comorbidities, ethnicity, and presence of active
disease. Multivariable linear regression models were used to identify factors
independently associated with log anti-S RBD concentration. A priori, we included
age, ethnicity, biologic medication and immunomodulator use. Results are
presented after exponentiation so that the coefficients of the model correspond to
the fold change (FC) associated with each binary covariate. For age, a cut-off was
chosen based on a graphical inspection of the relationship between age and anti-S
RBD antibody concentrations.

Mann–Whitney U-test was used to compare the magnitude of T cell response
(SFC/106 PBMCs) stratified by treatment and vaccine received, and Spearman’s
rank correlation coefficient was calculated to determine the correlation between
antibody and T cell responses.

Anti-S RBD antibody half-lives were estimated using an exponential model of
decay. Linear mixed models were fit using the lme4 and lmerTest package, with
biologic treatment and vaccine type as fixed effects and each subject as a random
effect. Each of these effects were estimated independently for gradient and
intercept. 95% confidence intervals of fixed effects were calculated using likelihood
ratios. P values for comparison of half-lives were estimated from the full linear
mixed-effects model that incorporated vaccine, biologic drug and prior SARS-CoV-
2 infection status.

We visualised the durability of antibody responses by calculating 15-day rolling
geometric mean anti-S RBD antibody concentrations. For this analysis we included
participants who had an antibody test carried out between 1 and 70 days after the
second vaccine dose. Cox proportional hazard regression models were used to
identify the demographic, disease and treatment-related factors associated with the
time to fall in anti-S RBD antibody concentration below the seroconversion
threshold.

Kaplan–Meier curves and Cox proportional hazard regression model was used
to identify treatment-related factors associated with time to breakthrough infection.
A linear regression model of log-transformed geometric mean anti-S RBD antibody
concentration was used to determine the risk of breakthrough infections.

Where appropriate the same analyses were used to compare antibody responses
in participants with PCR evidence of SARS-CoV-2 infection at any time prior to
vaccination.

Ethical consideration. Patients were included after providing informed, written
consent and compensation for participation was not provided. The sponsor was the
Royal Devon and Exeter NHS Foundation Trust. The Surrey Borders Research
Ethics committee approved the study (REC reference: REC 20/HRA/3114) in
September 2020. The protocol is available online at https://www.clarityibd.org. The
study was registered with the ISRCTN registry (https://doi.org/10.1186/
ISRCTN45176516).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The study protocol including the statistical analysis plan is available at https://
www.clarityibd.org/. Individual participant de-identified data that underlie the results
reported in this article will be available immediately after publication for a period of 5
years. Due to the sensitive nature of the data, this will be made available to investigators
whose proposed use of the data has been approved by an independent review committee.

Analyses will be restricted to the aims in the approved proposal. Proposals should be
directed to tariq.ahmad1@nhs.net. To gain access data requestors will need to sign a data
access agreement. Data from the Virus Watch study is currently being archived on the
Office of National Statistics Secure Research Service and will be available shortly. Source
data are provided with this paper in the Source Data file. Source data are provided with
this paper.

Code availability
Statistical analyses were undertaken in R 4.1.2 (R Foundation for Statistical Computing,
Vienna, Austria. Code has been made available at: https://github.com/exeteribd/
clarityibd-public.
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