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Cell specific peripheral immune responses predict
survival in critical COVID-19 patients
Junedh M. Amrute 1, Alexandra M. Perry2, Gautam Anand 2, Carlos Cruchaga 3, Karl G. Hock4,

Christopher W. Farnsworth4, Gwendalyn J. Randolph 4, Kory J. Lavine1 & Ashley L. Steed 2✉

SARS-CoV-2 triggers a complex systemic immune response in circulating blood mononuclear

cells. The relationship between immune cell activation of the peripheral compartment and

survival in critical COVID-19 remains to be established. Here we use single-cell RNA

sequencing and Cellular Indexing of Transcriptomes and Epitomes by sequence mapping to

elucidate cell type specific transcriptional signatures that associate with and predict survival

in critical COVID-19. Patients who survive infection display activation of antibody processing,

early activation response, and cell cycle regulation pathways most prominent within B-, T-,

and NK-cell subsets. We further leverage cell specific differential gene expression and

machine learning to predict mortality using single cell transcriptomes. We identify interferon

signaling and antigen presentation pathways within cDC2 cells, CD14 monocytes, and CD16

monocytes as predictors of mortality with 90% accuracy. Finally, we validate our findings in

an independent transcriptomics dataset and provide a framework to elucidate mechanisms

that promote survival in critically ill COVID-19 patients. Identifying prognostic indicators

among critical COVID-19 patients holds tremendous value in risk stratification and clinical

management.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the pathogenic agent responsible for the novel
coronavirus disease (COVID-19), which has led to a global

pandemic with over 275 million cases and >5.3 million deaths as
of December 20211–3. Patients infected with SARS-CoV-2 display
a wide range of disease severity ranging from asymptomatic or
mild infection to critical illness with multiple organ failure4–8.
Critically ill cases of COVID-19 present with respiratory and
cardiac failure, require intensive care support, and portend high
mortality rates8–12.

While prior studies have utilized single-cell omics to unravel
the immunological landscape of COVID-19 in peripheral blood
mononuclear cells (PBMCs)13–22, there remains an incomplete
understanding of the relationship between peripheral immune
cell activation and patient survival11,23–25. Current cross-sectional
studies have yet to identify immune cell types and transcriptional
programs that contribute to survival in critical COVID-19. This
information is necessary to effectively develop strategies to treat
the sickest COVID-19 patients. Here, we performed single-cell
RNA sequencing (scRNA-seq) of PBMCs from patients with
critical COVID-19 who survived (n= 6) or died (n= 6) at both
days 0 and 7 of study enrollment with associated age-matched
controls (n= 6). To obviate sparsity concerns associated with
scRNA-seq cluster annotations26, we mapped our dataset onto a
Cellular Indexing of Transcriptomes and Epitomes by sequencing
(CITE-seq) PBMC reference dataset (http://www.satijalab.org/
azimuth) to impute high-resolution cell clustering and surface-
protein expression22,26,27.

We find that patients who survive COVID-19 exhibit signatures
associated with humoral immunity including B-cell activation, cell
cycle regulation, and plasmablast antibody processing on day 7.
We also uncovered a negative association between survival and
increased interferon signaling in naive B-cells, naive CD8 T-cells,
NK cells, and MAIT cells at this timepoint. To predict survival
based on the earlier timepoint of enrollment, we utilized a random
forest classifier machine learning model28,29. We identified CD14
monocytes, CD16 monocytes, and type II conventional dendritic
cells (cDC2s) as predictors of mortality on day 0. Interferon sti-
mulated genes (ISGs) such as IFITM1, IFITM3, and IFI27 were
among the strongest early prognostic features. Through an inte-
grated approach consisting of differential gene expression analysis
and gene ranking by feature importance score, we further show
that CEBPD, MAFB, IFITM3, and LGALS1 expression within
CD14 monocytes robustly predict mortality. We validate our fra-
mework and refined genetic signature in an independent dataset
from Liu et al.19, which supports specific enriched expression
among survivors at day 0. Together, our findings provide a fra-
mework to elucidate mechanisms that promote COVID-19 survi-
val among critically ill patients and delineate key cell-specific
transcriptional signatures that are associated with mortality in
critical COVID-19.

Results
Single-cell RNA sequencing reveals the landscape of PBMCs
during the evolution of critical COVID-19. Patients were
selected from approximately 500 subjects enrolled in Washington
University’s COVID-19 WU350 study. We included those with
critical COVID-19 defined by the requirement for admission to
the intensive care unit. Twelve patients were chosen and further
divided into those who survived infection (n= 6) and those who
succumbed to infection (n= 6), all of whom had PBMCs banked
at days 0 and 7 of study enrollment. PBMCs were collected from
age- and sex-matched healthy controls (n= 6). Patient clinical
characteristics were similar between controls and those with
critical COVID-19 and between those who survived and

succumbed to COVID-19 (Fig. 1a). Routine medical laboratory
testing only noted an increase in C-reactive protein in the
deceased cohort (Supplementary Fig. 1).

To profile the immune landscape, we performed droplet based
scRNA-seq on PBMCs extracted from 30 samples and analyzed
199,097 cells expressing 24,675 genes after applying quality
control filters (Fig. 1b and Supplementary Fig. 2). To delineate
key immune cell subtypes, we mapped our dataset onto a publicly
available CITE-seq PBMC reference (azimuth)27 and imputed
surface-protein expression for 228 markers allowing high-
resolution cell identification with resultant annotation of 29
distinct clusters across conditions (Supplementary Fig. 3). We
then computed de novo UMAP visualizations to separate unique
cell states in our data not included in the reference (Fig. 1c, d and
Supplementary Fig. 4). This mapping identified cells with well-
defined canonical gene markers (Fig. 1e) and high prediction
accuracy (Fig. 1f and Supplementary Fig. 5) through differential
gene expression (DGE) testing. We calculated the relative
proportion of each cell type and found an expansion of
progenitor cells, proliferating NK cells, T-cell subsets, plasma-
blasts and platelets but a reduction in cDC2 cells among critical
COVID-19 patients (Supplementary Fig. 6).

Distinct immune cell populations are associated with critical
COVID-19 and survival. We performed cell state-specific DGE
testing between key conditions to identify individual cell popu-
lations associated with disease and survival at each examined
timepoint. Consistent with prior reports comparing healthy
controls and COVID-19 patients13,14,21,22, we observed strong
transcriptional signatures associated with disease in monocytes,
plasmablasts, and B-cell subsets on day 0 and in plasmablasts,
monocytes, and cDCs on day 7 (Fig. 2a, b). Next, to identify
immune cell types and corresponding transcriptional programs
associated with survival, we performed differential gene expres-
sion analysis between samples from the alive and deceased
cohorts at both days 0 and 7. cDC2 cells, CD14 monocytes, CD16
monocytes, NK-cells, naive and intermediate B-cells, and select
T-cell subsets displayed transcriptional signatures associated with
survival on day 0 (Fig. 2c). Immune cell types associated with
survival on day 7 included B-cell subsets (naive, intermediate,
memory, and plasmablasts), MAIT-cells, NK-cells, and select
T-cell subsets (Fig. 2d). These data were leveraged to focus our
subsequent analysis on immune cell populations most associated
with patient survival.

Cell-specific immune activation signatures are associated with
survival in critically ill COVID-19 patients. To define the per-
ipheral immune phenotype of patients who survive critical
COVID-19, we compared patients who eventually lived or suc-
cumbed to infection on day 7. Based on our cell-specific DGE
analysis (Fig. 2), we analyzed B-cell subsets with higher granu-
larity. UMAP embedding plots of B-naive, B-intermediate,
B-memory cells, and plasmablasts revealed evidence of plasma-
blast expansion in COVID-19 (Fig. 3a) –4.0% in control and
12.5% in day 7 COVID-19. Imputed B-cell surface-protein
expression from azimuth further validated our cell-specific
population definitions (Fig. 3b). We identified 35, 20, and 11
differentially expressed genes in naive, intermediate and memory
B-cells, respectively, using a log2 fold-change threshold of 0.58.
Genes differentially expressed in patients who survived were
indicative of early activation and cell cycle regulation signatures
(Fig. 3c). Activation gene signatures showed overlap across B-cell
subsets with three genes common across all populations (JUN,
RHOB, and TSC22D3; Fig. 3d). We computed a z-score for the
composite signature of all differentially expressed activation
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Fig. 1 Single-cell transcriptomic mapping of PBMCs during critical COVID-19. a Demographics and clinical characteristics of patient samples selected for
sequencing. b Study design. c UMAP embedding plots of scRNA sequencing profiles of 199,097 cells with cluster annotations derived from Azimuth
mapping, a CITE-sequencing reference dataset. d UMAP embedding plots for each of the following conditions: Control, Alive Day 0, Alive Day 7, Deceased
Day 0, and Deceased Day 7 (n= 6 each). e Heatmap of the top marker gene for each cell type annotated. f Azimuth mapping cell type prediction scores.
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response genes and overlaid it on the B-cell UMAP embedding,
which revealed robust enrichment in B-cells from patients who
survived (Fig. 3e). Cell cycle regulation genes showed a similar
degree of overlap with 3 genes common to each B-cell subset
(KLF2, BTG1, and H3F3B; Fig. 3f). We combined these cell cycle
regulation genes and overlaid a z-score composite signature on
the B-cell UMAP embedding demonstrating increased expression
of cell cycle regulatory genes in B-cells from patients who sur-
vived (Fig. 3g). B-cells from patients who eventually succumbed
to infection displayed a reduced cell cycle regulatory signature
compared to controls (Fig. 3g).

Plasmablast DGE analysis revealed 15 differentially expressed
genes between patients who survived versus those who
succumbed to COVID-19 (log2 fold-change >0.58). Differentially
expressed genes were enriched in components of antibody
processing (IGLC3, IGHG3, JCHAIN, and CD27). This signature
was selectively found in patients who survived infection (Fig. 3h).
We performed SARS-CoV-2 IgG II testing in our COVID-19
cohort at day 0 and 7 and found no serology differences in our
cohorts reinforcing the importance of high-depth transcriptional
signature profiling in critical COVID-19 (Supplementary Fig. 8c).

Interferon signaling is increased in COVID-19 patients and
thought to contribute to host protection30–34. We explored
whether type I interferon signaling among the B-cells and
plasmablasts was associated with survival. Among these popula-
tions, naive B-cells and plasmablasts expressed ISGs in COVID-
19 patients. We combined canonical ISGs from the B-naive and
plasmablast DGE analyses to create a collective ISG z-score
(IFIT3, ISG15, IFI6, MX1, IFI44L, ISG20, IFITM1, IFI27).
Surprisingly, UMAP embedding plots and direct comparison of
z-scores showed an increase in ISG expression in B-naive cells
from the deceased cohort but an increase in this signature in

plasmablasts from patients who survived (Fig. 3i). These findings
highlight the significance of interferon signaling in distinct cell
states and types with respect to survival in critical COVID-19
patients.

Naive CD8-, NK-, and MAIT-cells showed similar patterns to
B-cells in regard to activation and cell cycle regulation gene
signatures in alive versus deceased patients with increased z-
scores in patients who survived (Supplementary Fig. 7). Each of
these immune subsets showed increased ISG signatures in the
deceased cohort (Supplementary Fig. 7). GZMA and CCL5
expression in naive CD8 T-cells was increased in surviving
patients. Analysis of transcriptional signatures associated with
survival in cDC2 cells on day 7 revealed several differences.
Patients who survived displayed an enrichment for genes
associated with antigen-presentation, while patients who died
expressed genes associated with cell activation (NFKBIA, FOS,
KLF10) (Supplementary Fig. 7). Together these findings identify
that cell-specific immune responses including B-cell activation
and cell cycle regulation, plasmablast antibody processing, and
cDC2 antigen presentation are associated with survival.

Early cell-specific gene expression predicts COVID-19 survival.
To identify cell-specific transcriptional signatures that predict
COVID-19 survival, we utilized DGE testing and a machine
learning model. Based on our DGE analysis comparing alive
and deceased patients on day 0 (Fig. 2), we interrogated CD14
monocytes, CD16 monocytes, and dendritic cells with higher
granularity (Fig. 4a). DGE analysis revealed 11, 9, and 30
genes differentially expressed between patients who survived
versus those who succumbed to COVID-19 (log2 fold-
change > 0.58) in CD14 monocytes, CD16 monocytes, and
cDC2 cells, respectively. CD14 monocytes and cDC2 cells
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Fig. 2 Single-cell transcriptomics reveal number and magnitude of differential gene expression in specific cell populations during the evolution of
critical COVID-19. Number of differentially expressed genes (adjusted p-value < 0.05 and log2FC > 0.58) in annotated populations between a Control
versus Day 0, b Control versus Day 7, c Alive vs Deceased Day 0, and d Alive vs. Deceased Day 7. Dot plots within each subfigure show magnitude of fold-
change for each cell type in the same order as the corresponding bar plot. Red dots in dot plots denote differentially expressed genes that reached
statistical significance. Differential expression analysis was performed using the default Seurat non-parametric Wilcoxon rank-sum test.
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displayed signatures of antigen-presentation and interferon
signaling in patients who survived relative to controls and the
deceased cohort. CD16 monocytes also displayed signatures of
cell activation and antigen-presentation selectively in surviv-
ing patients whereas interferon signaling was increased in
both patients who survived and died compared to controls

(Fig. 4b–e). We detected decreased expression of elongation
factor genes (EEF1A1, EEF1B2, EEF1G, EIF3L) in cDC2 cells
from patients who survived compared to the other groups.
Within CD14 and CD16 monocytes, this elongation factor
signature was similarly reduced among surviving and deceased
cohorts relative to controls (Fig. 4f).
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We also detected signatures that predicted survival in other
immune cells. Naive, intermediate, and memory B-cells displayed
cell cycle regulation and activation signatures in patients who
survived (Supplementary Fig. 8a, b) although SARS-CoV-2 IgGII
titers were not different (Supplementary Fig. 8c). CD4 T-cells
with cytotoxic activity (CD4 CTLs) and NK-cells displayed
enhanced interferon signaling and effector activation markers
(GZMB, GZMH, CCL4, XCL2) in patients who succumbed to
COVID-19 (Supplementary Fig. 8d, e). These data highlight the
early role of adaptive immune cells in the immune response of
critically ill COVID-19 patients.

Next, we used a cell type-specific random forest classifier to
predict survival based on single-cell transcriptomes. We trained
the model on 70% of the cells with 3000 highly variable genes and
used 10-fold cross-validation with 5 trials to determine optimal
hyperparameters (Supplementary Fig. 9). We then used these
parameters to calculate prediction accuracy on the remaining 30%
of cells (Fig. 4g). This random forest classifier prediction showed
that CD14 monocyte transcriptomes exhibit the strongest
prediction of mortality with a 90% accuracy and 0.97 ROC.
cDC2, CD8 T-cells, and CD16 monocytes also show high
predictive power (>85%). To delineate which genes contribute
most to survival prediction accuracy, we then examined ranked
feature importance scores for these monocytes and dendritic cells
(Fig. 4h). ISGs such as IFI27, IFITM1, IFITM3, IFITM2, IFI30,
and OAS1 were identified as key in predicting survival in CD14
monocytes, CD16 monocytes, and cDC2 cells.

In CD14 monocytes, early-response genes such as NKFBIA,
JUNB, and CEBPD were among the highest ranked features
(Fig. 4h), while antigen-presenting genes (HLA-DQA1, HLA-
DRB5, HLA-DPB1) were the most predictive in CD16 monocytes
(Fig. 4h). In cDC2 cells protein synthesis genes such as elongation
factors (EEF1A1, EEF1B2) and ribosomal genes (RPS4Y1) were
also highly ranked (Fig. 4h). Adaptive immune cell populations
also showed strong predictive power. Early response and cell cycle
regulation genes were most predictive among CD8 and CD4
T-cell subsets (Supplementary Fig. 10a, b). Consistent with our
differential gene expression findings, CD4 CTL and NK cells
show ISGs as strongly predictive of survival (Supplementary
Fig. 10b, c), and antigen-presentation and ISGs were among the
key predictive features within the B-cell subsets and plasmablasts
(Supplementary Fig. 10d).

To verify the ranked features manifest transcriptional differ-
ences, we took the intersecting genes from the top 100 feature
importance genes for CD14 monocytes, CD16 monocytes, and
cDC2 cells and plotted a combined z-score on a UMAP
embedding for the entire dataset (Fig. 4i). This visualization
showed that the combined gene signature is enriched in the alive

cohort and localized to the monocytes and dendritic cells (Fig. 4i).
This validation bolsters the cell type-specific nature of the
signatures discovered in our model. Finally, to build a refined
gene signature of most significance, we took the intersecting genes
for CD14 monocytes using the top 25 predictive features, alive
versus deceased cohort DGE at day 0, and control versus all
patients DGE at day 0. This integrated approach yielded a list of 4
intersecting genes: CEBPD, MAFB, LGALS1, and IFITM3 (Fig. 4j).
UMAP embedding analysis showed that the composite z-score for
these four genes demonstrates a strong enrichment among
patients who survived COVID-19 (Fig. 4k). As CEBPB and
LGALS3 are known regulators of IL-6 signaling35–37, we further
interrogated IL-6 signaling genes in our dataset. CEBPB was
strongly enriched in the alive cohort (Supplementary Fig. 11a) at
day 0 and 7 while LGALS3 was enriched in the alive cohort at day
0 and the deceased cohort at day 7 (Supplementary Fig. 11b). We
calculated a combined IL-6 pathway score, which was elevated in
the alive cohort in CD14 monocytes and 16 monocytes at both
day 0 and day 7 (Supplementary Fig. 11c, d), suggesting that IL-6
signaling may have a protective role in the most critically ill
patients.

Cross-validation of random forest classifier framework. To
robustly validate our transcriptional signature found via random
forest classification and differential gene analysis, we leveraged a
previously published CITE-seq dataset19. This dataset incorpo-
rated 18,693 CD14 monocytes from 21 patients who lived and
2082 from 4 patients who died (Fig. 5a). To assess the applic-
ability of our random forest framework, we trained and tested our
algorithm on the CD14 monocytes from this critically ill cohort at
timepoint 0. Our algorithm predicted mortality in this dataset
with 94% accuracy and identified several genes in common with
our dataset—specifically, IFITM3 and JUNB were some of the key
features associated with patient survival outcome (Fig. 5b). As
this dataset subclassified severity of illness, we calculated a z-score
for our intersecting gene list (CEBPD, MAFB, LGALS1, and
IFITM3) and found gene set expression enrichment in critically ill
patients compared to controls and lesser severity illness patients;
however, there was no difference between moderate and severe
patients at time 0 (T0, Fig. 5c). Finally, we calculated this z-score
in their healthy controls, surviving critically ill and deceased
patients. This signature was enriched among critically ill patients
who survived infection relative those who died and controls
(Fig. 5d). These findings validate our computational framework
and serve as an independent benchmark for the significance of
our refined gene list in predicting outcomes among critically ill
COVID-19 patients.

Fig. 3 B-cell subsets display the strongest transcriptional differences between alive and deceased patients on day 7. a UMAP embedding plots of B-
naive, B-intermediate, B-memory cells, and plasmablasts for the following sample conditions: control, Alive day 7, and Deceased day 7. b UMAP
embedding plots of B-cell subsets with imputed CITEseq surface-protein expression for canonical markers. c Hierarchical clustering heatmap of average
normalized gene expression for statistically significant differentially expressed genes (adjusted p-value < 0.05 and log2FC > 0.50) between Alive and
Deceased day 7 B-naive, B-intermediate, and B-memory cells. d Venn diagram of activation genes from c denoting overlapping signatures across B-cell
subsets. e B-cell activation signature z-score for all genes in d overlaid on UMAP embedding plots of B-cells (left) and quantified (right). f Venn diagram of
cell-cycle regulation genes from c denoting overlapping signatures across B-cell subsets. g B-cell activation signature z-score for all genes in f overlaid on
UMAP embedding plots of B-cells (left) and quantified (right). h Hierarchical clustering heatmap of average normalized gene expression for statistically
significant differentially expressed genes (adjusted p-value < 0.05 and log2FC > 0.50) between Alive and Deceased day 7 plasmablasts (left) and antibody
processing gene z-scores overlaid on UMAP embedding plots of plasmablasts (middle) and quantified (right). i SARS-CoV-2 IgGII serology at day 7 in
critical COVID-19 cohort by outcome. j Interferon signaling gene z-scores overlaid on UMAP embedding of B-cell subsets with quantification in B-naive
cells (left) and plasmablasts (right). On all heatmaps blue (low) to red (high) expression. 3261 Control, 5270 Alive day 7, and 2397 Deceased day 7 B-cells
were examined across 18 patients. 135 Control, 804 Alive Day 7, and 287 Deceased Day 7 Plasmablasts were examined across 18 patients. Ordinary one-
way ANOVA statistical tests were used for each comparison. ** denotes p < 0.01, **** denotes p < 0.0001, and ns denotes not significant.
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Discussion
In this study, we use scRNA-seq and CITE-seq mapping of
PBMCs to dissect longitudinal transcriptional differences asso-
ciated with survival in critical COVID-19 patients. Prior mul-
tiomic studies have profiled large cohorts and delineated key
immunological findings in COVID-1914,19,21,22; however, to our

knowledge there is no robust dataset, which identifies transcrip-
tional signatures associated with survival in critically ill patients.
Broadly we found cell cycle regulation, cell-specific activation
markers, and antibody processing genes within B-, T-, and NK-
cell subsets were preferentially increased in patients who survived
infection. Common early-response cell activation markers
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included JUN and RHOB. Patients who survived displayed
expression of ISGs in plasmablasts. Similar to prior studies, we
found plasmablast expansion in all critical COVID-19 patients
relative to controls14,22,38,39. We also identified later (day 7)
signatures associated with mortality. cDC2 cells from patients
who ultimately died showed an increase in inflammatory acti-
vation markers (NFKBIA, FOS, KLF10). Naive B-, naive CD8 T-,
NK-, and MAIT-cells displayed a robust interferon signature in
these patients.

To elucidate signatures that predicted survival early in critical
COVID-19, we used multiple approaches. First, we used DGE

analyses to isolate transcriptional differences between specific cell
types in the alive and deceased cohort at day 0. Monocyte subsets,
cDC2 cells, and B-cell subsets were markedly changed in genes
associated with activation, antigen-presentation, and interferon
responses in patients who survived infection. In contrast, CD4 CTL
T-cells and NK-cell subsets displayed increased expression of
effector activation markers (GZMB, GZMH, CCL4, XCL2) and
ISGs in patients who succumbed to COVID-19. These findings
bolster monocyte interferon response findings from previous
studies14,31,32,40. Similarly, prior studies have also shown heigh-
tened cytotoxic T-cell activation signatures in COVID-1917,22,41,42.

Fig. 4 Innate immune cells dominate early peripheral immune responses and predict survival in critical COVID-19. a UMAP embedding plot of CD14
monocytes, CD16 monocytes, and cDC2 cells for the following sample conditions: Control, Alive day 0, and Deceased day 0. b Hierarchical clustering
heatmap of average normalized gene expression for statistically significant differentially expressed genes (adjusted p-value < 0.05 and log2FC > 0.50)
between Control, Alive day 0 and Deceased day 0 CD14 monocytes, CD16 monocytes, and cDC2 cells. UMAP embedding plots and quantification for
Control, Alive day 0, and Deceased day 0 samples for c inflammatory activation gene set z-scores, d antigen-presentation gene set z-scores, e ISG set
z-scores, and f protein synthesis gene set z-scores from genes in b. All comparisons were statistically significant (p < 0.0001) except the ones marked n.s.
g Random forest classifier model survival prediction accuracy using 3000 highly variable gene normalized counts in all cell types with at least 100 cells.
Red boxed cell types are those with a prediction accuracy of >80%. h Ranked feature importance score from random forest classifier model with key genes
annotated in CD14 monocytes (top), CD16 monocytes (middle), and cDC2 cells (bottom). i Global UMAP embedding plot of the top 100 predictive
features in CD14 monocytes, CD16 monocytes, and cDC2 cells for Control (top), Alive day 0 (middle), and Deceased day 0 (bottom). j Venn diagram of
overlapping genes from the top predictive features for the CD14 monocytes random forest classifier, statistically significant differentially expressed genes
between Alive day 0 and Deceased day 0 CD14 monocytes, and statistically significant differentially expressed genes between Control and day 0 CD14
monocytes. k UMAP embedding plot from a of Control (left, top), Alive day 0 (left, middle), and Deceased day 0 (left, bottom) for four overlapping genes
(CEBPD, MAFB, IFITM3, and LGALS1) identified from j with z-score quantification (right). On all heatmaps blue (low) to red (high) expression.12,044
Control, 8530 Alive day 0, and 5385 Deceased day 0 CD14 Monocytes were examined across 18 patients. 1694 Control, 1559 Alive day 0, and 1216
Deceased day 0 CD16 Monocytes were examined across 18 patients. 553 Control, 108 Alive day 0, and 104 Deceased day 0 cDC2 cells were examined
across 18 patients. Ordinary one-way ANOVA statistical tests were used for each comparison. **** denotes p < 0.0001.

2

Fig. 5 Cross-validation of random forest predicted gene signature in an independent cohort of critical COVID. a Number of CD14 monocytes, CD16
monocytes, and cDC2 cells sequenced by outcome in this study and that by Liu et al.19. b Ranked feature importance score from random forest classifier
model with key genes annotated in CD14 monocytes in the critically ill cohort in Liu et al.19. z-score for CEBPD, MAFB, IFITM3, and LGALS1 in CD14
monocytes from Liu et al.19 c By disease severity pooled at day 0 and d by survival outcome at day 0 (healthy controls, n= 14, and critically ill patients,
n= 25; 21 alive and 4 deceased). 13,464 Control, 1297 Moderate day 0, 2798 Severe day 0, and 20,775 Critical day 0 CD14 Monocytes were examined.
Ordinary one-way ANOVA statistical tests were used for each comparison. ns denotes not significant and **** denotes p < 0.0001.
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Second, we trained a random forest classifier model within each
cell type to predict survival using its cell-specific transcriptome.
CD14 monocytes, CD16 monocytes, and cDC2 cells were among
the cell types with the strongest predictive power; CD14 monocytes
had 90% accuracy. Finally, we constructed a refined gene signature
identified from both DGE testing and random forest classification
in CD14 monocytes. This analysis identified a signature for 4
genes, CEBPD (0.93 log2FC), MAFB (0.83 log2FC), IFITM3 (0.55
log2FC), and LGALS1 (−0.53 log2FC), that was markedly enriched
in CD14 monocytes in patients who ultimately survived infection.
We validated our gene list in an independent dataset from Liu
et al.19 within the critical cohort at day 0 and found enrichment of
CEBPD, MAFB, LGALS1, and IFITM3 among those who survived.
Furthermore, we trained and tested the CD14 monocytes in Liu
et al.19 critically ill cohort at day 0 and found consistent genes
associated with mortality. The predictive genes CEBPD and
LGALS1 regulate IL-6 signaling, and this pathway has been tar-
geted clinically by monoclonal antibody administration with
varying success17,43–46. Further interrogation of the IL-6 signaling
pathway showed that IL-6 signaling is enriched in monocytes in
patients who survive infection, particularly at early time points.
This finding highlights a potentially protective role of IL-6 sig-
naling in critically ill patients and demonstrates the importance of
further investigation into IL-6 signaling targeting therapies.

There are several limitations to our study. First, our sample size
was limited to six patients per group, which precludes exploration
of gender, age, race, and comorbidities. Second, our analysis was
focused on transcriptomic data. Recent studies have demon-
strated the added benefit of utilizing multiomic mapping in
multiple tissue contexts13,16,22,47. Future studies with greater
sample size are required to validate our findings, understand their
generalizability to patients with differing disease severity, and
gauge the added importance of demographic variables, epige-
nomic, and proteomic predictors of survival.

Herein, we provide a longitudinal transcriptomic reference
among critically ill COVID-19 patients and shed insight into the
cell-specific immunological mechanisms associated with survival
among critically ill COVID-19 patients using peripheral blood
mononuclear cells transcriptomics and random forest classifica-
tion. We delineate early key molecular cell type-specific sig-
natures that predict mortality, which may allow early risk
stratification and provide insights into immune mechanisms most
critical for survival in our sickest patient population.

Methods
Subject selection criteria and specimen collection. This study complied with all
relevant ethical regulations and utilized samples obtained from the Washington
University School of Medicine’s IRB approved WU350 study, a COVID-19 bior-
epository, under which patient consent was provided. Patient samples were selected
based on severity of illness as defined by admission to the intensive care unit. Those
selected had availability of PBMC samples at both day 0 and day 7 of enrollment
and were demographic matched into eventual surviving and deceased cohorts.
Control PBMCs were obtained from Washington University’s Alzheimer’s Disease
Research Center specimen collection from age-matched healthy people without
dementia.

PBMC isolation and single-cell RNA sequencing. Cryopreserved PBMCs were
thawed and washed with HBSS with 2 mM EDTA and 0.04% LPS-free BSA twice.
Cell viability was assessed by trypan blue staining and samples with >80% viability
were submitted to the McDonnell Genome Institute at Washington University in
St. Louis. cDNA was prepared after the GEM generation and barcoding, followed
by the GEM-RT reaction and bead cleanup steps. Purified cDNA was amplified for
10–14 cycles before being cleaned up using SPRIselect beads. Samples were then
run on a Bioanalyzer to determine the cDNA concentration. GEX libraries were
prepared as recommended by the 10x Genomics Chromium Single Cell V(D)J
Reagent Kits (v1 Chemistry) user guide with appropriate modifications to the PCR
cycles based on the calculated cDNA concentration. For sample preparation on the
10x Genomics platform, the Chromium Single Cell 5′ Library and Gel Bead Kit
(PN-1000006), Chromium Single Cell A Chip Kit (PN-1000152) and Chromium
Dual Index Kit TT Set A (PN-1000215) were used. The concentration of each

library was accurately determined through qPCR utilizing the KAPA library
Quantification Kit according to the manufacturer’s protocol (KAPA Biosystems/
Roche) to produce cluster counts appropriate for the Illumina NovaSeq6000
instrument. Normalized libraries were sequenced on a NovaSeq6000 S4 Flow Cell
using the XP workflow and a 151 × 10 × 10 × 151 sequencing recipe according to
manufacturer protocol. A median sequencing depth of 50,000 reads/cell was tar-
geted for each Gene Expression Library.

scRNA-seq analysis pipeline. The sequenced fastq files were aligned to a human
reference genome (GRCh38) using the CellRanger Software (v4.0, 10x Genomics)
to generate feature-barcoded count matrices. Subsequent analysis was performed
using the R Seurat v4.0.0 package. The following quality control steps were per-
formed to filter the count matrices: 1. genes expressed in <3 cells and cells
expressing fewer than 200 genes were removed; 2. Cells expressing >5000 genes
were discarded as these could be potential multiplet events where more than a
single cell was encapsulated within the same barcoded GEM; 3. Cells with >10%
mitochondrial content were filtered out as these were deemed to be of low-quality.
Normalization and variance-stabilization of raw counts was performed using
SCTransform to find 3000 variably expressed genes and percentage mitochondrial
reads were regressed out. The normalized R object was use for subsequent azimuth
mapping and differential expression testing.

Mapping scRNA-seq data to a CITE-seq reference using azimuth. The normalized
scRNA-seq PBCM dataset (query) was mapped onto a CITE-seq reference of
162,000 PBMCs measured with 228 antibody derived tags. First, we found anchors
between the reference and the query using the FindTransferAnchors function with
a precomputed supervised principal component analysis transformation and 50
dimensions. Next, we annotated each cell in our query using reference-defined cell
states and imputed surface-protein expression from the reference using the Map-
Query function. Finally, we projected out query dataset onto the reference pre-
computed UMAP embedding. We verified accurate cell type annotation using
azimuth computed cell state prediction scores and expression of canonical marker
genes within each cell state. To further confirm cellular identity, we used the
FindAllMarkers function with default parameters and a Wilcoxon rank-sum test to
generate a differential expression gene list for all annotated clusters. We merged the
reference and query datasets and recomputed a new UMAP embedding de novo to
delineate new cell types in our query not included in the reference. Despite filtering
out cells expressing >5000 genes, azimuth detected several doublets, which were
removed. Cells annotated as erythrocytes were also removed from the parent R
object. For all subsequent analysis, the recomputed UMAP embedding was used for
visualization.

Differential expression testing. The normalized and annotated Seurat object was
split into each cell type and we used the FindAllMarkers function with default
parameters and a Wilcoxon rank-sum test to find differentially expressed genes
between the following conditions: Control vs critical COVID-19 Day 0, Control vs
critical COVID-19 Day 7, critical COVID-19 Day 0 vs critical COVID-19 Day 7,
and Alive Day 0 vs Deceased Day 0 critical COVID-19. Genes with an adjusted
p-value < 0.05 and log2FC > 0.50 were deemed significant. Cell states with the most
statistically significant different genes were further interrogated. Heatmaps of
statistically significant differentially expressed genes (adjusted p-value < 0.05 and
log2FC > 0.50) were generated using bulk RNA expression of normalized counts
with the AverageExpression() function in R for each condition. Gene set module z-
scores were calculated by grouping statistically significant differentially expressed
genes into biologically relevant sets.

SARS-CoV-2 antibody testing. Serological testing was performed using the
AdviseDx SARS-CoV-2 IgG II assay on an Architect (Abbott Laboratories,
#H18575R01) according to the manufacturer’s instructions. https://www.fda.gov/
media/146371/download This assay utilizes a two-step chemiluminescent micro-
particle that detects IgG antibodies to the RBD domain of the viral Spike protein
semi-quantitatively. A result ≥50 AU/mL is considered positive.

Random forest classification. To predict survival in critical COVID-19 from early
transcriptional data we trained a random forest classifier using the scikit-learn
package in Python v3. The parent R object was subsetted to get the Alive and
Deceased Day 0 cells and cell clusters with fewer than 100 cells (ASDC, ILC, cDC1)
were discarded from subsequent analysis. Normalized SCTransform RNA counts
for the 3000 most highly variable genes were used as features and “Alive” or
“Deceased” was used as the label. A random forest classifier model was trained for
each cell cluster and a prediction accuracy was calculated in a test dataset to assess
importance of each cell type in predicting survival in the context of critical
COVID-19. The dataset was split into a train and test set (70% train and 30% test)
and the training data was used to optimize the hyperparameters for the Random
Forest Classifier. Hyperparameter optimization was performed on the number of
estimators (10, 50, 100, 500, 1000) and max features (log and sqrt) through a grid
search with 10-fold cross-validation and 5 repeats (50 trials per iteration). Using
the optimal hyperparameters for each cell type a random forest classifier was
trained and then tested to calculate prediction labels (“Alive” or ‘Dead”) in the test
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dataset. The sklearn package was used to build a confusion matrix and the pre-
diction accuracy was calculated to compare “cell importance”. For each cell type a
list of features was generated and ranked by the feature importance score in the
random classifier model.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the GEO database under
accession code GSE192391. It can be found at the following link: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE192391.

Code availability
All scripts used for single-cell data analysis and random forest classification are available
from GitHub (https://github.com/jamrute/2021_COVID_amrute_steed). [https://
doi.org/10.5281/zenodo.5748636].
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