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Dihydroceramide- and ceramide-profiling provides
insights into human cardiometabolic disease
etiology
C. Wittenbecher 1,2,3, R. Cuadrat 1,3, L. Johnston 4, F. Eichelmann 1,3, S. Jäger 1,3, O. Kuxhaus1,3,

M. Prada1,3, F. Del Greco M.5, A. A. Hicks 5, P. Hoffman 6,7, J. Krumsiek8, F. B. Hu2,9 &

M. B. Schulze 1,3,10✉

Metabolic alterations precede cardiometabolic disease onset. Here we present ceramide- and

dihydroceramide-profiling data from a nested case-cohort (type 2 diabetes [T2D, n= 775];

cardiovascular disease [CVD, n= 551]; random subcohort [n= 1137]) in the prospective

EPIC-Potsdam study. We apply the novel NetCoupler-algorithm to link a data-driven (dihydro)

ceramide network to T2D and CVD risk. Controlling for confounding by other (dihydro)

ceramides, ceramides C18:0 and C22:0 and dihydroceramides C20:0 and C22:2 are asso-

ciated with higher and ceramide C20:0 and dihydroceramide C26:1 with lower T2D risk.

Ceramide C16:0 and dihydroceramide C22:2 are associated with higher CVD risk. Genome-

wide association studies and Mendelian randomization analyses support a role of ceramide

C22:0 in T2D etiology. Our results also suggest that (dh)ceramides partly mediate the

putative adverse effect of high red meat consumption and benefits of coffee consumption on

T2D risk. Thus, (dihydro)ceramides may play a critical role in linking genetic predisposition

and dietary habits to cardiometabolic disease risk.
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Type 2 diabetes (T2D) and cardiovascular disease (CVD) are
major worldwide contributors to disease burden and pre-
mature mortality1,2. Targeted primary cardiometabolic risk

prevention requires pathway-specific biomarkers to detect the
early metabolic alterations that predispose to developing these
common diseases. Pathway-specific biomarkers can help identify
at-risk individuals and discover the molecular processes that
expose them to higher cardiometabolic risk. Such biomarkers
may also help understand the influence of lifestyle on disease risk,
enabling precise disease prevention.

Altered blood lipid composition is a common metabolic
determinant of T2D and CVD3. Among lipids, ceramides are
crucial second messengers in systemic signaling cascades, trig-
gering cardiometabolic diseases4. In rodents, ceramide metabo-
lites regulate inflammatory signaling, insulin resistance, and
cellular stress responses. Genetic modifications of ceramide
metabolizing enzymes either protected or predisposed animals for
severe metabolic impairments5,6. Epidemiological studies have
shown associations of ceramides and dihydroceramides with
CVD and T2D risk7–11, suggesting that ceramide-dependent
pathogenic mechanisms are also active in human populations.

Concurrently, plasma ceramide concentrations are susceptible
to lifestyle modification, including diet. Double-blinded rando-
mized controlled trials (RCTs) have demonstrated that mod-
ification of the diet’s fatty acid (FA) composition (higher
palmitate- vs. linoleic acid-content) alone increased liver fat
content and plasma ceramide levels12,13. Besides, a post hoc
analysis of the PREDIMED trial suggested that CVD prevention
with a Mediterranean diet intervention particularly alleviated the
higher risk of major cardiovascular events in participants with
elevated ceramide levels before the intervention14.

Accordingly, a beneficial composition of the habitual diet was
related to lower cardiometabolic disease incidence15–18. For
example, we and others have shown that red meat and coffee
consumption were associated with altered cardiometabolic
risk19–23 and altered lipid metabolism24–28. However, the actual
metabolic pathways that connect these foods to cardiometabolic
risk are still poorly understood. Due to their potential role as
disease determinants and the demonstrated sensitivity to dietary
exposures, ceramides are plausibly among metabolic mediators of
the effect of diet on cardiometabolic risk.

Ceramide metabolism is complex, regulated by over 40
enzymes; these enzymes are subject to multiple regulatory pro-
cesses and selectively synthesize or degrade groups of ceramides
with similar acyl chains29. However, it is unclear how molecular
pathways in ceramide metabolism are reflected in circulating
ceramide profiles. In such situations, data-driven networks can
provide information on the biological dependencies that drive the
correlation structure of lipidomics profiles30,31. We have shown
that partial correlation networks of metabolomics data recon-
struct molecular pathways30,31. Through adjusting for metabo-
lomics network neighbors, our new NetCoupler-algorithm
controls for confounding by biologically closely related metabo-
lites. Thereby, the robust associations indicate putative direct
effects of molecular markers on disease risk and are not attri-
butable to the correlations with other metabolites32.

Advanced high throughput lipidomics screens generate
unprecedented insights into ceramide metabolism33. Here we
applied the NetCoupler-algorithm to ceramide-profiling data
from a large human population study to infer the direct effects
of specific ceramides and dihydroceramides on the risk of
developing T2D and CVD. We then conducted genome-wide
association studies (GWAS) on these disease-associated cer-
amides to learn about inherited biological determinants and
select genetic instruments for subsequent Mendelian randomi-
zation studies. We also performed hypothesis-generating

mediation analyses, estimating the extent to which diet-related
(dh)ceramide levels could explain the adverse effects of red meat
consumption and the beneficial effects of coffee consumption on
T2D risk.

Results
Data distribution and the network model. We used the fol-
lowing short notation for ceramides throughout the manuscript:
CerXX:Y for ceramides and dhCerXX:Y for dihydroceramides
with XX carbon atoms and Y double-bounds in the acyl chain
(Supplementary Table 1). In a pilot study in 35 EPIC-Potsdam
participants with two blood samples taken ~6 weeks apart, we
assessed the within-person agreement of (dh)ceramide measure-
ments. The intraclass correlation coefficients (ICC) from the pilot
indicated fair to excellent reliability of most ceramide—and about
half of the dihydroceramide measurements. However, few cer-
amide measurements and about half of the dihydroceramide
measurements showed poor reliability (Supplementary Fig. 1).

The observational analyses were based on the measurement of
12 ceramides and 13 (dh)ceramides from a large lipidomics
dataset in two case-cohort samples nested within the prospective
EPIC-Potsdam study (775 participants with incident T2D among
1886 at-risk participants, and 551 participants with incident CVD
among 1671 at-risk participants). In the random subcohort
(n= 1137; baseline-prevalent T2D cases excluded), representative
for the full EPIC-Potsdam cohort at cardiometabolic risk, the
median plasma concentrations ranged between 0.2 nM (Cer18:1)
and 42 nM (Cer24:0) for ceramides, and 0.62 nM (dhCer14:0)
and 11 nM (dhCer24:1) for dihydroceramides. Median total
concentrations (sum of all single compounds within the lipid
class) were 91 nM (IQR 76–108 nM) for ceramides and 46 nM
(IQR 41–52 nM) for dihydroceramides (Fig. 1A). Log-
transformation and z-standardization of the concentrations
resulted in similarly scaled, approximately normal distributions
(Fig. 1B). Correlation analyses showed moderate to strong
correlations between most (dh)ceramides. Partial correlations
(conditioning on all other (dh)ceramides) were on average weaker
and more specific (Supplementary Fig. 2). Participants with
higher total plasma ceramide concentrations and with higher total
plasma dihydroceramide ceramide concentration likewise tended
to be older, to have a higher waist circumference, to have
unhealthy lifestyle habits, and to be on medication (Supplemen-
tary Tables 2 and 3). Likewise, participants with incident
cardiometabolic diseases had expectedly higher levels of these
known risk factors compared to participants who remained
cardiometabolic disease-free during follow-up (Supplementary
Tables 4 and 5). We adjusted for all these potential confounders
in the prospective analyses.

Dihydroceramide- and ceramide-associated cardiometabolic
risk from standard Cox models. First, we estimated the T2D and
CVD risk associated with each single (dh)ceramide without
considering the possible influence of other (dh)ceramides. In
minimally adjusted models (age and sex only), 9 out of 12 cer-
amides and 11 out of 13 dihydroceramides were statistically
significantly associated with higher T2D risk (FDR < 0.05) (Sup-
plementary Table 6). Further adjustment for lifestyle, anthro-
pometry, medications, blood pressure, and general lipid markers,
including total ceramide and dihydroceramide concentration,
rendered most of these associations non-significant. However,
two ceramides (Cer18:0, Cer22:0) and two dihydroceramides
(dhCer20:0, dhCer22:0) remained significantly associated with
higher T2D risk and Cer24:0 with lower T2D risk after multiple
testing correction (FDR < 0.05). We also observed significant
associations of all 12 ceramides and 12 out of 13
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dihydroceramides with higher CVD risk in minimally adjusted
models. However, in the extensively confounder-adjusted models,
only dhCer22:2 was significantly associated with higher CVD
risk (FDR < 0.05). Most of the significant CVD associations were
rendered non-significant by adjustment for total ceramide
and dihydroceramide plasma concentrations (Supplementary
Table 6).

Direct links between the (dh)ceramide network and cardio-
metabolic risk. Ceramide metabolites, depending on their acyl
chain, are produced by different enzymes and exhibit distinct
signaling functions34. Therefore, we were interested in the direct
effects of specific (dh)ceramides on cardiometabolic risk, con-
trolling for potentially confounding associations with other,
disease-related (dh)ceramides. Our NetCoupler-algorithm exploits
that adjustment for all network variables is not necessary to block
potential confounding and indirect influences in a conditional
independence network. Adjustment for a subset of direct network
neighbors [i.e., the (dh)ceramides that are directly connected with
an edge] is sufficient32,35,36. We first learned a graphical repre-
sentation of the conditional independence structure, the (dh)
ceramide network, from lipidomics data in the random EPIC-
Potsdam subcohort (Fig. 2). In this data-driven network, most
edges reflected known product-substrate-relations in lipid meta-
bolism, such as fatty acid (FA) elongation steps, FA desaturation
steps, or desaturation of dihydroceramides to ceramides. Con-
sistent with our previous reports30,31, the network-encoded
conditional independence structure corresponds well with
known biological relations.

We used the network to estimate the direct effects of specific
(dh)ceramides on cardiometabolic risk, applying Cox propor-
tional hazards regression. To this end, we constructed sets of Cox
models for each (dh)ceramide with time-to-disease incidence as

the endpoint. All models were extensively adjusted for potential
confounders, and the models within each set adjusted for all
possible combinations of direct network neighbors of the
exposure-(dh)ceramide. We classified (dh)ceramides as having
direct effects if they were consistently, statistically significantly
(P < 0.05) associated with disease risk across all the network-
based adjustment sets.

According to these criteria, three ceramides (Cer18:0, Cer20:0,
Cer22:0) and three dihydroceramides (dhCer20:0, dhCer22:2,
dhCer26:1) were associated with T2D risk. When simultaneously
included in a joint Cox model, including adjustments for the
predefined confounder set and total ceramide and dihydrocer-
amide concentration, Cer18:0, Cer22:0, dhCer20:0, and dhCer22:2
were statistically significantly (P < 0.05) associated with higher and
Cer20:0 and dhCer26:1 with lower T2D risk (Table 1 and
Supplementary Table 7). The three saturated FA (SFA)-containing
ceramides were closely related in the network (Fig. 2).

The NetCoupler-algorithm also detected associations of Cer16:0
and dhCer22:2 with CVD risk (Supplementary Table 8). In the
confounder-adjusted joint model, both (dh)ceramides were statis-
tically significantly (P < 0.05) associated with higher CVD risk
(Table 1). In the network, Cer16:0 was linked to the SFA-containing
T2D-associated ceramides, while dhCer22:2 was associated with
higher risk of both cardiometabolic endpoints (Fig. 2).

In sensitivity analyses, neither additional adjustment of the
final model for HDL-cholesterol (Supplementary Table 9) nor
exclusion of participants on lipid-lowering medication at baseline
(Supplementary Table 10) substantially changed the effect
estimates for T2D risk or CVD risk. Similarly, exclusion of
participants with disease incidence within the first 2 years of
follow-up generated directionally consistent estimates for T2D
risk and CVD risk for all selected (dh)ceramides, though the
associations of dhCer20:0 with higher and dhCer26:1 with lower
T2D risk were substantially attenuated (Supplementary Table 11).
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Fig. 1 Distribution of ceramide and dihydroceramide measurements. A Distribution of the absolute (dh)ceramide plasma concentrations; note that the x-
axis is log scaled. B Comparison of Z-scores derived from the non-transformed and log-transformed (dh)-ceramide plasma concentrations. Cer ceramide,
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Genome-wide association studies on disease-associated (dh)
ceramides. We conducted a GWAS with the seven disease-related
(dh)ceramide plasma concentrations as the phenotypes in all
participants in the representative EPIC-Potsdam subcohort with
genetic and lipidomics data (n= 1094). Then, we looked up SNP-
(dh) ceramide associations at a genome-wide suggestive sig-
nificance level (p-value < 10−5) in independent study populations.
To this end, we used partly unpublished results from a previous
GWAS on ceramides Cer18:0, Cer20:0, and Cer22:0 in the
EUROSPAN consortium37,38 (Supplementary Data 1), and results
from a GWAS on Cer22:0 in the Framingham Heart Study Off-
spring Cohort published by Cresci et al.39. GWAS in these
external cohorts supported the association of SNPs in the SPTLC3

gene region with Cer22:0 plasma concentrations (Table 2). Other
suggestive GWAS signals (p-value < 10−5) in EPIC-Potsdam were
either not significant (FDR > 0.05 correcting number of SNPs
available for replication) or not available in the external replica-
tion cohorts and are provided in the supplement (Supplementary
Data 2–8).

Enrichment of ceramide-associated SNPs in cardiometabolic
disease-related pathways. Based on all p-values from our GWAS
in 1094 EPIC-Potsdam participants, we conducted gene set
enrichment analyses with the GSA-SNP2 software40. As the
reference, we considered a curated list of T2D-related pathways
for the T2D-related (dh)ceramides40, and we generated a curated
list of CVD-related pathways for the CVD-related (dh)ceramides.
We selected enriched gene sets at a Q-value of 0.25, a standard
cutoff in gene set enrichment analyses. For T2D, we observed
enriched genetic associations with T2D-associated, long-chain
and very long-chain SFA-containing (dh)ceramides (Cer18:0,
Cer22:0, dhCer20:0, and dhCer26:1) in gene sets related to glu-
cose homeostasis, insulin signaling, and inflammation. For the
very-long-chain FA-containing dhCer22:2, associated with T2D
and CVD risk, enrichment analyses suggested overrepresentation
of genetic associations in gene sets that reflect mitochondrial
dysfunction as well as signaling cascades involved in hemostasis
(Supplementary Fig. 3). No enriched signals in CVD-related gene
sets were detected for the CVD-associated Cer16:0. External data
for replication of the gene set enrichment analyses were not
available.

Mendelian randomization to evaluate the causal role of cer-
amides. The association of several SNPs in the SPTLC3 gene
region with the plasma concentrations of the T2D-associated
Cer22:0 was the single suggestive GWAS signal in EPIC-Potsdam
consistent with the limited available data for external replication.
The detected SNPs in the SPTLC3 gene region in EPIC-Potsdam
were largely synonymous (r2= 0.96-1, D'= 1.0). The association
of variation in rs680379 with Cer22:0 plasma concentrations had
the lowest p-value among SNPs that were available for external
replication in EUROSPAN37,38 and the Framingham Heart Study
Offspring Cohort39, and the SNP was also available in a large
GWAS on T2D (DIAGRAM)41. Therefore, we used rs680379 as
genetic instrument for a univariable, two-sample Mendelian
randomization study (MR). The results suggested higher T2D risk
in participants with higher genetically predicted Cer22:0 plasma
concentrations. Using the same genetic instrument, we replicated
the MR with the SNP-phenotype association from the two pub-
lished GWAS on plasma ceramides that we used for lookup37,39

and found that the MR estimates were also significant (Table 3).
We did not conduct MRs with other (dh)ceramide-endpoint
associations because data for external replication was lacking.

Ceramides as mediators of putative diet-effects on type 2 dia-
betes. Habitual intakes of red meat and coffee consumption were
consistently reported as risk factors of T2D15, but the potential
underlying molecular mechanisms are unclear. A possible
explanation for the relationship with T2D risk is an effect of these
foods on lipid metabolism, possibly involving ceramides. To test
whether association in EPIC-Potsdam were consistent with this
hypothesis, we first assessed if red meat and coffee consumption
were associated with T2D-related (dh)ceramides in a directionally
consistent and statistically significant manner. In mutually
adjusted models and accounting for an extensive set of potential
lifestyle confounders, red meat intake was associated with a
higher concentration of dhCer20:0 and Cer18:0 and lower levels
of Cer20:0 and dhCer26:1 (Fig. 3A). The red meat-related T2D

Table 1 Direct links between circulating (dh)ceramides and
cardiometabolic risk.

T2D CVD

(dh)ceramide HR (95%CI) HR (95%CI)

Cer16:0 – 1.53 (1.15, 2.02)
Cer18:0 1.98 (1.43, 2.74) –
Cer20:0 0.59 (0.39, 0.9) –
Cer22:0 2.77 (1.72, 4.47) –
dhCer20:0 1.32 (1.08, 1.63) –
dhCer22:2 1.32 (1.07, 1.62) 1.55 (1.23, 1.94)
dhCer26:1 0.86 (0.74, 0.99) –

Hazard ratio (HR) per one standard deviation higher plasma concentration in the EPIC-Potsdam
cohort.
Risk estimates are from a model that mutually included all ceramides selected as direct effectors
by the NetCoupler-algorithm (see methods section), further adjusting for total ceramide and total
dihydroceramide concentrations, age (strata variable), sex, height, waist circumference, leisure-
time physical activity, fasting status, antihypertensive medication, lipid-lowering medication,
aspirin, total energy intake, smoking, alcohol consumption, educational attainment, plasma
concentrations of triglycerides, total cholesterol, and systolic and diastolic blood pressure;
baseline-prevalent T2D cases were excluded from the diabetes risk model, and adjusted for in
the CVD risk model.

T2D

+32%

-14%

T2D

+32%

+177%

T2D

T2D

-41%

+98%

T2D

+53%

CVD

+55%
CVD
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Fig. 2 Data-driven conditional independence network of (dh)ceramides.
Bars within nodes show network-adjusted cardiometabolic disease risk.
Left: T2D risk; Right: CVD risk; Orange: increased risk; Blue: decreased risk;
Numbers: percent risk change with 1 standard deviation higher (dh)
ceramide concentration. Frame colors—Green: only T2D-associated;
Purple: only CVD-associated; Brown: T2D- and CVD-associated. CER
ceramide, dhCER dihydroceramide.
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risk in EPIC-Potsdam (HR per 2 SD higher intake 1.31, 95%CI
1.01–1.71) was largely attenuated by adjustment for the red meat-
associated ceramides (proportion explainable 62%, 95%CI 9% to
100%) (Fig. 3B). Coffee consumption was associated with lower
concentrations of the high-risk dihydroceramide C22:2 (Fig. 3C).
Adjusting the inverse coffee-T2D association (HR per 2 cups 0.87,
95%CI 0.78–0.98) for dhCer22:2 attenuated the inverse associa-
tion of coffee with T2D risk by 43% (95%CI 10% to 99%)
(Fig. 3D). Thus, our mediation analyses results are consistent with
the hypothesis that divergent effects on ceramide metabolism
partly mediate the opposite putative effects of red meat and coffee
consumption on T2D risk.

Discussion
In this prospective study in a baseline-healthy, free-living popu-
lation, a metabolic network based on deep ceramide and
dihydroceramide-profiling data revealed several associations of
specific (dh)ceramides with cardiometabolic disease risk robust
against adjustment for other (dh)ceramides. When simulta-
neously included in a confounder- and total ceramide and
dihydroceramide-adjusted Cox model, high plasma concentra-
tions of Cer18:0, Cer22:0, dhCer20:0, and dhCer22:2 were asso-
ciated with a higher T2D risk, while Cer20:0 and dhCer26:1 were
associated with lower T2D risk. The high T2D risk associated
with Cer18:0 and Cer22:0 suggests that these compounds may be
directly involved in molecular mechanisms that implicate cer-
amide metabolism in T2D etiology. Mendelian randomization
estimates were consistent with an effect of Cer22:0 on T2D risk,
and gene set enrichment analyses suggestively linked Cer18:0 to
insulin signaling and both ceramides to cytokine-induced
inflammation. Mediation analyses suggested differential influ-
ences of high red meat and high coffee consumption on ceramide
metabolism, potentially explaining the putative opposite effects of
the two foods on T2D risk. Moreover, when simultaneously
included into the same confounder- and total ceramide and
dihydroceramide-adjusted model, Cer16:0 and dhCer22:2 were
both associated with higher CVD risk. Enrichment analyses
suggested enrichment of dhCer22:2-associated SNPs in gene sets
related to the regulation of hemostasis and platelet aggregation.

Prospective human studies showed an association of ceramides
with T2D risk and diabetes-related traits. In the Strong Heart
Study, Cer16:0, Cer18:0, Cer20:0, and Cer22:0 were associated
with insulin resistance8. The FINRISK-cohort reported that the
Cer18:0-to-Cer16:0-ratio was associated with higher T2D risk42,
suggesting the relation of Cer18:0 to shorter chain precursors as a
predictor for T2D incidence. Another study associated (dh)cer-
amides with T2D incidence in mice and humans, particularly
those with 18 and 22 carbon atoms in the acyl chain43. Despite
heterogeneity due to different included (dh)ceramides and diverse
modeling approaches, these observations are generally consistent
with our results. Based on our network adjustments, we linked
saturated LCFA-containing (dh)ceramides to T2D risk in a chain

Red meat intake

Cer18:0

Cer20:0

dhCer20:0

dhCer26:1

0.170.07

-0.07

-0.15

Type 2
diabetes

Red meat intake

Cer18:0/20:0
dhCer20:0/26:1

Total effect (RR): 1.31 (1.01-1.71)

PE 62% (9%-100%)

dhCer22:2Coffee intake
-0.17

Type 2
diabetes

Coffee intake

dhCer22:2

Total effect (RR): 0.87 (0.78-0.98)

PE 43% (10%-99%)

A

C

B

D

Fig. 3 Mediation analysis. A Adjusted effect estimates (beta coefficients) of red meat on T2D-related (dh)ceramides (direction of associations consistent
with mediation hypothesis; p-values < 0.05, one-sided t-test). B Attenuation of the putative effect of red meat on T2D risk after adjustment for red meat-
and T2D-related (dh)ceramides. C Adjusted effect estimate (beta coefficient) of coffee on T2D-related dhCer22:2 (direction of the association consistent
with the mediation hypothesis; p-value < 0.05, one-sided t-test). D Attenuation of the putative effect of coffee on T2D risk after adjustment for coffee- and
T2D-related dhCer22:2. All models were extensively adjusted for potential confounders (age, sex, fasting status, total energy intake, leisure-time physical
activity, medication, smoking, alcohol consumption, and education). Blue indicates inverse association (i.e., lower ceramide concentration or T2D risk),
orange: positive association (i.e., higher ceramide concentration or T2D risk). Total effect is the confounder-adjusted hazard ratio (95% CI) per exposure
unit: red meat, 2 SD (~1 portion per day); coffee, two cups (300mL) per day. PE Proportion explainable, i.e., relative attenuation of the total effect through
mediator-adjustment. Cer ceramide, dhCer dihydroceramide.

Table 3 Univariable, two-sample Mendelian randomization
studies using genetic proxies to estimate effects of Cer22:0
on the risk of T2D.

T2D-associations from DIAGRAM (n= 74,124 T2D cases and
824,006 controls)

Cer22:0-
associations from

EPIC-
POTSDAM

EUROSPAN FHSOCa

(n= 1094) (n= 4034) (n= 2217)

rs680379 rs680379 rs680379

WR 0.070 0.259 0.452
SE 0.032 0.120 0.210
p-value 0.031 0.031 0.031

Several SNPs near the SPTLC3 gene were associated with Cer22:0 plasma concentrations in
GWAS in the EPIC-Potsdam study. We compared our SNP-phenotype associations with data
from two published GWAS on Cer22:037,39, and SNP-T2D associations were drawn from
DIAGRAM (T2D)41. Among the SNPs available in all these studies, the rs680379 association
with Cer22:0 plasma concentrations in EPIC-Potsdam had the lowest p-value (P= 2.3E-07), and
rs680379 was therefore used for a univariable, two-sample MR in EPIC-Potsdam. We replicated
the MR with SNP-Cer22:0 association from the independent cohorts (EUROSPAN and FHSOC).
SNP-ceramide 22:0 associations were reported per standard deviation (EPIC-Potsdam,
EUROSPAN) and per µM (FHSOC).
aThe beta estimates for the association of rs680379 with Cer22:0 in FHSOC included in the MR
were extracted from Table 2 in ‘Genetic Architecture of Circulating Very-Long-Chain (C24:0 and
C22:0) Ceramide Concentrations’ by Cresci et al.39.
WR Wald ratio, SE standard error, T2D type 2 diabetes, CAD Coronary artery diseases, MR
Mendelian randomization, FHSOC Framingham Heart Study Offspring Cohort.
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length-dependent manner and additionally detected risk markers
among VLCFA-containing (dh)ceramides. In a mutually adjusted
model, high levels of Cer18:0, Cer22:0, dhCer20:0, and dhCer22:2
were associated with higher T2D risk, while Cer20:0 and
dhCer26:1 were associated with lower risk.

In cells, ceramide signaling orchestrates the metabolic response
to elevated levels of non-esterified FAs4. To this end, ceramides
induce triglyceride synthesis (for example, by translocation of
CD36 to the plasma membrane and by induction of SREBP
genes44–46), downregulate nutrient supply (among others by
insulin desensitization and downregulation of lipolysis47–52), and
stimulate FA-utilization (e.g., by decreasing mitochondrial effi-
ciency, which diminishes feedback inhibition of beta-
oxidation53,54). Under a prolonged metabolic challenge, cer-
amides also link cellular stress to immune responses,
apoptosis55,56, and fibrosis57,58. Thereby, intracellular con-
centrations of LCFA-containing ceramides serve as nutrient
sensors. Accordingly, genetic knockout of Cer18:0-producing
ceramide-synthase (CerS)-1 protected mice from the detrimental
effects of a high-fat diet on systemic glucose homeostasis6. Our
study consistently linked Cer18:0 to strongly elevated T2D risk,
while its direct network-neighbor Cer20:0 was moderately
inversely related to T2D risk when simultaneously included in the
same Cox model. Our genetic analyses consistently suggested
functions of LCFA-containing ceramides in metabolic regulation,
particularly linking them to insulin-signaling pathways. Our
results specifically suggest that the interference of Cer18:0 with
insulin sensitivity, which was demonstrated in animal models, is
linked to T2D development in a free-living human population.

Studies in rodents and humans demonstrated that ceramide
signaling partly mediates the adverse effects of an unfavorable
dietary FA composition on metabolic health12,13,45. We related
high habitual red meat consumption to an adverse saturated
LCFA-signature in ceramides, specifically higher levels of
Cer18:0. Moreover, we observed a marked effect attenuation by
controlling the red meat-related T2D risk for LCFA-containing
ceramides, suggesting that the higher T2D incidence among
people with high red meat consumption is partly explainable by
red meat-induced alteration of the saturated LCFA-composition
of ceramides.

The quantitatively most abundant ceramide synthase in the
human liver is CerS2, which synthesizes Cer22:0. Genetic ablation
of CerS2 in mice suppresses the hepatic adaptation to nutritional
challenges. CerS2-knockout mice were protected against liver fat
accumulation and elevated blood sugar in overfeeding regimens
but developed severe hepatic pathologies59,60. However, hepato-
cytes of CerS2-knockout mice were protected against lipid-
induced TNF-α/NF-κB-dependent inflammation and apoptosis61.
In our study, Cer22:0 was among the quantitatively most abun-
dant ceramides in plasma, and it was the strongest T2D risk
marker. Our GWAS results further linked Cer22:0 to NF-κB
activation, and Mendelian randomization suggested that it might
play a biological role in T2D development. Our results suggest
that the human plasma concentration of Cer22:0 may serve as a
biomarker for metabolically induced cellular stress and inflam-
matory signaling that predispose to T2D.

We also observed associations of dhCer22:2 with higher and
dhCer26:1 with lower T2D risk. Gene set enrichment analysis
suggested enrichment of dhCer22:2-associated SNPs in mito-
chondrial function-related pathways and dhCer26:1-associated
SNPs in insulin signaling- and inflammation-related pathways.
Other studies also linked dihydroceramides with 22 carbon atoms
acyl chains to insulin sensitivity and hepatic inflammation but did
not assess dhCer22:2 concentrations43,62. Our network-adjusted
analyses suggested dhCer22:2 and dhCer26:1 as new independent
T2D risk markers and warrant external validation.

Among dietary factors, coffee was associated with lower car-
diometabolic risk19–21, and the effect of coffee on hepatic lipid
metabolism is a potential explanation. Animal studies demon-
strated that coffee and its components affect critical regulators of
lipid metabolism, including SREBP1, CD36, and PPARα and
PPARγ25–28, affecting lipid uptake, excretion, and FA-
metabolism in the liver. As discussed above, ceramides connect
nutrient sensing to the regulation of cellular stress responses; and
our gene set enrichment analysis suggested that dhCer22:2 may
reflect metabolic stress signals and mitochondrial dysfunction.
We observed lower concentrations of dhCer22:2 associated with
coffee consumption and adjusting for this biomarker substantially
attenuated the inverse association of coffee consumption and
T2D risk. These observations are consistent with the hypothesis
that modification of ceramide metabolism could partially explain
the beneficial effects of coffee on cardiometabolic health.

Several studies showed that plasma ceramide concentrations
predict CVD risk7,9,10,14,63,64. Besides distinct source populations,
the different coverage of (dh)ceramides and different modeling
strategies complicates the comparison of these studies. We
detected Cer16:0 and dhCer22:2 as independent CVD risk mar-
kers, using comprehensive lipidomics profiles and a modeling
strategy targeting risk association robust against adjustment for
the total ceramide and dihydroceramide concentrations and other
(dh)ceramides.

Previous reports of Cer16:0 and Cer18:0-associations with higher
CVD risk14,63,64 are consistent with our confounder-adjusted single
(dh) ceramide models that did not adjust for network neighbors
and total dihydroceramide and ceramide concentrations. However,
in our study, only the association of Cer16:0 with CVD risk was
robust against adjustment for total ceramide and dihydroceramide
concentrations and network neighbors.

We found a robust association of dhCer22:2 with CVD risk in
EPIC-Potsdam and did not identify previous reports of the CVD
risk association. The gene set enrichment suggested possible
involvement in immune response, platelet aggregation, and
cell–cell interaction involved in hemostasis. Experimental studies
demonstrated that VLCFA-containing ceramides link inflamma-
tory signals to vascular pathologies65,66. Genetic and pharmaco-
logical inhibition of type 2-neutral sphingomyelinase in mice
reduced the circulating VLCFA-containing ceramide concentra-
tions and prevented lipid-induced atherosclerosis67. Consistently,
the platelet-activating factor activates ceramide production in
erythrocytes, leading to their adhesion68. Moreover, VLCFA-
containing ceramides are functionally involved in necroptosis69,
providing a biological link to vascular health and cardiac cell
death. Our genetics and observational findings suggest dhCer22:2
may be a biomarker at the interface of lipid metabolism,
inflammatory signaling, and cardiovascular health.

Substantial evidence from animal models supports a causal
role of specific (dh)ceramides in cardiometabolic disease
development5,6,44,70,71. Human intervention studies demonstrated
an impact of diet composition on ceramide metabolism12,13.
Against this background, our results suggest that (dh)ceramide
profiling in intervention studies may help to understand the
molecular underpinnings of the effect of dietary composition on
cardiometabolic health. Plasma ceramide profiling may provide
pathway-specific cardiometabolic risk markers, with LCFA-
ceramides potentially reflecting metabolic impairment5,6 and
VLCFA-containing ceramides potentially reflecting immune
responses and cell–cell interactions65–69. However, our study also
suggests that the specificity of (dh)ceramides as molecular pathway
markers depends on simultaneous assessment and modeling of a
comprehensive (dh)ceramide profile.

Our study had limitations. Although delivering a very com-
prehensive lipidomics screen, the manufacturer (Metabolon®) did
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not disclose indicators of the technical variance for single lipids.
We partly compensated for this lack of transparency by assessing
the intra-individual variance of the single lipid measurements
over several weeks in a pilot study, assessing the temporal stability
of the (dh)ceramide measurements. Some (dh)ceramides showed
substantial within-person variance over several weeks. Under the
assumption that the introduced variance is unrelated to the dis-
ease risk, poor reliability is expected to bias single measurement-
based risk estimates towards the null. Accordingly, most disease-
associated (dh)ceramides had fair to excellent ICCs in our
reliability study.

In addition, observed associations might be attributable to
unmeasured confounding. In combination with experimental
data, our selection of specific chain-length (dh)ceramides with
direct effects on disease risk can be useful to elucidate molecular
mechanisms. However, for other applications, including risk
prediction, the total effect of a biomarker is more critical, and it
might not be advantageous to adjust for other correlated (dh)
ceramides or total levels of ceramides and dihydroceramides.

The p-value-based variable selection and inferences in our
observational and genetic analyses depended on the sample size,
complicating comparison to studies with different statistical
power. Particularly, the GWAS on ceramide risk markers had
limited statistical power. External GWAS data to validate SNP-
lipid associations in independent cohorts was not available for
most ceramides and all dihydroceramides. The pathway enrich-
ment analysis generated plausible biological insights from genetic
associations with less stringent significance cutoffs, but datasets
for replicating our findings were not available.

The limited statistical power of the GWAS may also partly
account for only detecting one reliable instrument for the MR
study of Cer22:0 on T2D risk, using a single SNP from the
SPTLC3 gene region, which impeded checks for horizontal
pleiotropy. Genetic variants in this gene region were also impli-
cated in other lipid and metabolic traits. However, the SNPs were
linked to a gene that encodes a subunit of a key enzyme in
sphingolipid biosynthesis, and the MR results were replicated
with SNP-phenotype associations from independent cohorts. Still,
the IVs’ pleiotropic effects on other ceramides must be assumed,
and the attribution of the effect to Cer22:0 depends on the validity
of our network-adjusted observational analysis. Therefore, the
MR estimates alone do not provide conclusive evidence on
causality but complement the observational estimates due to
distinct sources of bias. Our findings encourage larger GWAS on
ceramides that may also generate more genetic instruments for
MR studies. Mediation analyses in observational data do not
prove causality but generate testable hypotheses, which warrant
validation in controlled trials.

To conclude, our study indicates that the cardiometabolic risk
associated with (dh)ceramide plasma concentrations depends on
the contained acyl chain, especially if models are conditioned on
other disease-related (dh)ceramides and total ceramide and
dihydroceramide concentrations. These observations are con-
sistent with the hypothesis that specific (dh)ceramides are
involved in distinct molecular mechanisms of cardiometabolic
disease etiology, which coincides with evidence from animal
models. Our genetic analyses also suggested the implication of the
disease-related (dh)ceramides in cardiometabolic disease-related
molecular pathways. Furthermore, we showed that adjustment for
a few T2D-related (dh)ceramides markedly attenuated the
adverse effect of red meat and the protective effect of coffee
consumption on T2D risk, consistent with the hypothesis that
their effect on ceramide metabolism partially mediates the effect
of these foods on T2D risk. Altogether, these results indicate that
circulating (dh)ceramide profiles integrate information on the
exposure to genetic and environmental cardiometabolic risk

factors and may be applied as pathway-specific biomarkers for
cardiometabolic health.

Methods
All EPIC-Potsdam participants gave informed consent for biomedical research use
of their data, and the study was approved by the Ethics Committee of the State of
Brandenburg, Germany72. The study participants did not receive monetary com-
pensation. All work was performed in accordance with the Declaration of Helsinki.

Study population
EPIC-Potsdam. The prospective EPIC-Potsdam cohort study includes 27,548 par-
ticipants (16,644 women and 10,904 men) recruited within an age range of
35–65 years from the general population between 1994 and 199872. Participants
were then actively contacted by sending out questionnaires and, if necessary, by
telephone every 2–3 years, with response rates between 90% and 96% per follow-up
round73.

Nested case-cohorts were constructed for efficient studies into molecular
phenotypes and disease risk. The case-cohort design relies on a randomly drawn
subsample (the subcohort) and oversampling of all incident disease cases in the full
cohort during the study period to boost the statistical power. Statistically
accounting for the oversampling of cases, this design provides unbiased risk
estimates for the full cohort74. The subcohort (n= 1137; baseline-prevalent T2D
cases excluded) was drawn from all participants who provided blood at baseline
(n= 26,437). Additionally, for each endpoint, all incident cases in the full cohort
until a specified censoring date were included (CVD: 551 incident cases, 28 in the
subcohort; T2D: 775 cases, 26 in the random subcohort).

For T2D, the censoring date was the 31st of August 2005 (820 incident cases).
After excluding participants with missing follow-up information, prevalent
diabetes at recruitment, insufficient blood specimens, or non-verifiable information
on diabetes incidence, the analytical sample comprised 1886 participants (1000
women and 886 men), including 775 participants with incident T2D from whom
26 were part of the subcohort. The median follow-up time for T2D was 6.5 years
(interquartile range 6.0–8.7 years).

For CVD, the censoring date was the 30th of November 2006, with 583 incident
primary cardiovascular events occurring during the study. After equivalent
exclusions (using prevalent and non-verifiable CVD instead of diabetes as
exclusion criterion), the CVD sample comprised 1671 participants (892 women
and 779 men), including 551 participants with incident CVD (283 only myocardial
infarction, 257 only strokes, 11 both) from whom 28 were part of the subcohort.
The median follow-up time for CVD was 8.4 years (interquartile range
7.6–9.2 years).

Baseline assessment. The baseline examination included anthropometric and blood
pressure measurements, a personal interview and a questionnaire on prevalent
diseases and sociodemographic and lifestyle characteristics (including physical
activity, education, and medication), and a validated semi-quantitative food fre-
quency questionnaire (FFQ). Among other foods, the habitual intake of unpro-
cessed and processed red meats and coffee was assessed75,76. We defined total red
meat as the sum of unprocessed red meat and processed meat. The correlations
between quantitative repeated assessment of red meat, processed meat, and coffee
consumption were 0.73, 0.77, and 0.70 from FFQs 6 months apart, indicating good
to excellent reproducibility77. Anthropometric measurements and physical exam-
inations were conducted by trained medical personnel. BMI was calculated as body
weight in kilograms divided by squared height in meters. Waist circumference was
measured midway between the lower rib margin and the superior anterior iliac
spine to the nearest 0.5 cm78,79. Blood pressure was measured in a standardized
procedure with oscillometric devices (BOSO-Oscillomat, Bosch & Sohn, Jungingen,
Germany), and the mean of second and third reading was used80.

At baseline, blood samples were drawn under standardized conditions
regarding room temperature according to the study protocol and stored in liquid
nitrogen (−196 °C) or deep freezers (−80 °C). Per participant, 30 ml of blood were
collected, of which 20 ml were filled in Monovettes containing citrate. Samples were
separated in serum, plasma, buffy coat, and erythrocytes and aliquoted into 0.5 ml
straws as previously described in detail81.

Laboratory measurements. For all laboratory measurements, samples were ran-
domly distributed across batches independent of case status, and all laboratory and
data-processing steps were performed blind to the case status.

Lipid profiling. The (dh)ceramide-profiling data was generated with Metabolon
(Morrisville, US) using the Metabolon® Complex Lipid Panel. The platform gen-
erates the molecular species concentration and complete fatty acid composition of
each covered lipid class, including 13 dihydroceramides and 12 ceramides. From
plasma samples, lipids were extracted in methanol:dichloromethane, concentrated
under nitrogen, and reconstituted in ammonium acetate dichlor-
omethane:methanol (50:50). The extracts were directly infused into the ionization
source of a Sciex SelexION® −5500 QTRAP mass spectrometer. After ionization,
the lipids passed through SelexIon differential mobility spectrometry (DMS), in
which voltages are applied that selectively allow the passage of only a specific lipid
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class at any given time. After the DMS filtering, lipids entered the Multiple
Reaction Monitoring (MRM), where the lipid mass and its characteristic fragment
were measured. The Metabolon® Complex Lipid Panel included >50 isotopically
labeled internal standards introduced in the biological sample early in the process
and permitted accurate quantitation of lipids across and within classes. According
to Metabolon®, the coefficients of variation (CVs) of lipid class concentrations are
all below 10% and the median CV of species at a 1uM concentration in serum or
plasma is ~5%. In a preceding analysis, we estimated intraclass correlation coef-
ficients (ICCs) of repeated blood samples taken several weeks apart. The ICC
relates intraindividual to between-person variation, indicating biological stability
of the measurements, and we used Rosner’s classification of ICCs (ICC < 0.40 poor
reproducibility; ICC from 0.40–0.75 fair to good reproducibility; ICC > 0.75
excellent reproducibility)82.

Genetics. We only considered the random subcohort participants for the genetic
analyses, excluding prevalent T2D and CVD cases (n= 1094). The DNA was
extracted from buffy coats using the chemagic DNA Buffy Coat Kit special on a
Chemagic Magnetic Separation Module I (PerkinElmer Chemagen technologies,
Baesweiler, Germany) according to the manufacturer’s instructions. Eligible sam-
ples were genotyped with three different genotyping arrays as part of different
larger genotyping projects: Human660W-Quad_v1_A (n= 328), HumanCore
Exome-12v1-0_B (n= 587) and Illumina InfiniumOmniExpressExome-8v1-3_A
DNA Analysis BeadChip (n= 179). Genotyping and quality control of the
Human660W-Quad_v1_A and HumanCoreExome-12v1-0_B chips were described
elsewhere83. Genotyping using the Illumina InfiniumOmniExpressExome-8v1-3_A
DNA Analysis BeadChip was performed in the Life and Brain Center in Bonn,
Germany. This array contains about 960 000 genetic variants, allowing to genotype
77% of all common genetic variants within the human genome. Additionally, a
250 K high-value exome content, discovered through exome sequencing studies, is
covered by the chip. The DNA was processed according to the manufacturer’s
instruction using an automatized, LIMS controlled workflow, and the arrays were
finally scanned using an Illumina iScan bead arrays reader. Genotype calling and
quality control of the samples were carried out jointly in all 1094 samples using
Illumina’s GenomeStudio v2011.1 software suite. Protocols suggested by the
CHARGE consortium84, Anderson et al.85., and Guo et al.86. were used to derive
the final dataset. zCall with a threshold of seven was applied87 to improve the
genotype calling for rare variants. Samples with low call rate, discordant sex
information (F-value between 0.2 and 0.8), related or duplicated individuals
(IBD > 0.185), individuals with divergent ancestry, or unclear sample allocation
were excluded from further analysis (n after exclusions= 1094). Phasing and
imputation were conducted using the Michigan Imputation Service88. The Hap-
lotype Reference Consortium (release 1.1) was used as a reference panel89. Before
imputation, pre-phasing was applied using Eagle290,91. Imputation was carried out
in four separated datasets (one for each genotyping chip or two for the
HumanCoreExome-12v1-0_B chip) using minimac388. Pre- and post-imputation
tools (HRC-1000G-check-bim.v4.2.9, icv.1.0.5) for checking data quality were
applied92. The four imputed files were merged using bcftools93, keeping the four
merged files’ minimal R2 score. After, the SNPs were filtered by R2, keeping those
with values >0.6. Data were available for the 22 autosomes but not for the sex
chromosomes.

Targeted biomarkers. The automatic ADVIA 1650 analyzer (Siemens Healthcare,
Erlangen, Germany) was used to assess plasma levels of total cholesterol and tri-
glycerides, and we applied a sex-specific correction for dilution with citrate (cor-
rection factor 1.16 for women and 1.17 for men)94.

Case ascertainment
T2D. Systematic information sources for the incidence of T2D were self-report of
diagnosis, T2D-relevant medication, or dietary treatment due to T2D diagnosis
during follow-up. Additionally, death certificates and information from tumor
centers, physicians, or clinics that provided assessments for other diagnoses were
screened for an indication of incident T2D. For participants classified as potential
cases based on that information, a standard inquiry form was sent to the treating
physician. Only physician-verified cases diagnosed with T2D [International Sta-
tistical Classification of Diseases and Related Health Problems (ICD)-10 code: E11]
and a diagnosis date after the baseline examination were considered confirmed
incident cases of T2D.

CVD. Incident CVD was defined as the incidence of non-fatal and fatal myocardial
infarction (MI) and stroke (ICD-10 codes: I21 for acute MI, I63.0 to I63.9 for
ischemic stroke, I61.0 to I61.9 for intracerebral and I60.0 to I60.9 for subarachnoid
hemorrhage, and I64.0 to I64.9 for unspecified stroke). The incidence of CVD was
assessed by participant self-report or based on information from death certificates.
Self-reported incidence was then validated by contacting the treating physicians,
including assessing the ICD-10 code, date of occurrence, and further information
on symptoms and diagnostic criteria used in the WHO MONICA study. For
myocardial infarction, diagnostic criteria included clinical symptoms, electro-
cardiograms, heart enzymes, and known coronary heart disease. The stroke diag-
nosis was based on anamnesis, clinical symptoms, CT/MRT, angiogram, lumbar
puncture, echocardiogram, Doppler, and ECG, plus imaging techniques if available.

Participants with silent cardiovascular events that have not been documented
within 28 days after occurrence were excluded as non-verifiable cases from all
analyses.

Statistics
Data preparation. A moderate fraction of covariable information was missing
(waist circumference, nmissing= 2; BMI, nmissing= 12; blood lipids, nmissing= 82;
blood pressure, nmissing= 148). Single imputation was used to impute these missing
values, applying the “predictive mean matching method” from the SAS procedure
PROC MI. The “predictive mean matching method” draws information from other
covariables to predict missing values and, compared with linear regression, gen-
erally generates more plausible imputed variable distributions95. The following
variables contributed to the prediction of missing values: incident case (T2D/CVD)
during follow-up (yes, no), sex, age, height, smoking, leisure-time physical activity
(sports, biking, gardening), drug treatment (antihypertensive, lipid-lowering,
aspirin), prevalent disease status (T2D, CVD), total energy intake, intakes of whole-
grain bread, grain flakes, grains, and muesli, fresh fruit, raw vegetables, cooked
vegetables, nuts, coffee, high-energy soft drinks, fish, red meat and processed meat,
total alcohol consumption, and educational attainment.

Smoking was modeled in four categories (never smoker, ex-smoker, current
smoker < 20 units/day, current smoker ≥ 20 units/day). Alcohol intake was
modeled in six sex-specific intake level categories. The alcohol consumption-
categories in men were: abstainers, 0–6 g/d, >6–12 g/d, >12–24 g/d, >24–60 g/d,
>60–96 g/d, >96 g/d. The alcohol consumption-categories in women were:
abstainers, 0–6 g/d, >6–12 g/d, >12–24 g/d, >24–60 g/d, >60 g/d. Coffee intake was
modeled as cups (150 mL) per day and meat intake as grams per day. Educational
attainment was modeled in three categories (in or no vocational training/vocational
training, technical college degree, university degree). Leisure-time physical activity
was modeled as average weekly hours. Fasting status was modeled as a binary
variable (≥8 h, yes/no).

The few participants with missing (dh)ceramide values (three for dhCer14:0, 5
for dhCer18:1 and 20:1 each, 13 participants in total) were excluded from all
analyses that included these variables. The (dh)ceramide concentrations tended to
be right-tailed. Therefore, we log-transformed (dh)ceramide concentrations, which
resulted in approximately normal distributions, and z-scaled the log-transformed
values. Accordingly, all regression estimates were reported per 1 SD.

Prentice-weighted Cox models for (dh)ceramide-cardiometabolic risk analyses in the
case-cohort. Associations between (dh)ceramides and disease risk were evaluated in
Cox proportional hazards regression models with age as the underlying time scale.
Study exit was determined by a diagnosis of diabetes or CVD, dropout, or cen-
soring time, whichever came first. The case-cohort design was accounted for by
Prentice weighting96.

The NetCoupler-algorithm. We aimed to estimate the direct effects of (dh)cer-
amides on cardiometabolic disease risk that could not be attributed to the influence
of related ceramide metabolites. Therefore, we developed a graphical model-based
method, the NetCoupler-algorithm32. In a first step, we estimated a network model
of conditional dependencies, where edges represent covariance between two (dh)
ceramides that could not be explained by adjustment for any subset of other (dh)
ceramides. To this end, we applied an order-independent implementation of the
causal structure learning PC-algorithm36,97. The resulting network graphically
encoded the family of causal models that could have generated the observed
conditional independence structure, i.e., the skeleton of the data-generating DAG.
This conditional independence network was then used to detect links between
individual metabolites and disease incidence that could not be explained by con-
founding influences through other (dh)ceramides. By definition, at least one subset
of direct neighbors is sufficient to block confounding from the whole network35.
However, sufficient adjustment sets could not be unambiguously read from the
graph because the edges were not directed. Therefore, the NetCoupler-algorithm
iterates for each metabolite through adjustment for all possible combinations of
direct network neighbors. A metabolite is then only classified as a direct effector if
the association with disease incidence is robust across all these sub-models (Sup-
plementary Fig. 4). The analyses were conducted with a developmental imple-
mentation (available upon request). We provide detailed documentation and
ready-to-use software implementation of the NetCoupler-algorithm in the R sta-
tistical programing language on GitHub (https://github.com/NetCoupler).

An edge between any possible pair of ceramides was detected based on
dependency at an alpha level of 0.05, conditioning on any subset of other ceramides
to learn the network. To evaluate the direct link of each ceramide with disease
incidence, iterative Cox models were used. Thereby, each ceramide was associated
with time-to-disease-incidence, adjusting for all possible combinations of direct
neighbors in the ceramide network. All models were additionally adjusted for total
ceramide and total dihydroceramide concentrations, age in years (strata variable),
sex, height, waist circumference, leisure-time physical activity, fasting status,
antihypertensive medication, lipid-lowering medication, aspirin, total energy
intake, smoking, alcohol consumption, education, plasma concentrations of
triglycerides, total cholesterol, and systolic and diastolic blood pressure; baseline-
prevalent T2D cases were excluded from the diabetes risk model, and adjusted for
in the CVD risk model. Ceramides that were directionally consistent and
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statistically significantly (alpha < 0.05) associated with the disease endpoint across
all neighbor-adjusted models were classified as direct effects. Because they can only
be confounders but not mediators, each newly identified direct effector ceramide
was included in the fixed adjustment set, and the procedure was repeated until no
further direct effects were detected. Finally, for each endpoint, all the selected
directly disease-associated (dh)ceramides were simultaneously included into the
same Cox model, adjusted for the full set of above-defined covariables, rendering
the mutually adjusted disease hazard ratios.

Genome-wide association study. The software QCtool v1.4 was used to filter the
SNPs by SNP missing rate (removed ≥ 0.05), minimum allele frequency (MAF)
(removed out of interval [0.05–0.5]), and Hardy–Weinberg equilibrium (removed
−log10(p-value) ≥ 3). Then, we used SNPtest v2.5.2 for exploratory single variant
association analysis (n ~ 5,339,213 markers) as exposures and the log-transformed
and z-standardized (dh)ceramides as an outcome. We considered p-values below
10−5 suggestively significant. We assumed a frequentist additive genetic model
(method expected: genotype dosage), adjusted for age at recruitment and sex.
Variants were mapped to Ensembl annotation version 84 (GRCh37)98, and we used
the Ensembl Variant Effect Predictor for annotation99.

For the GWAS on Cer18:0, Cer20:0, and Cer22:0, we performed lookup studies
with partly unpublished results from EUROSPAN (European special populations
research network: quantifying and harnessing genetic variation for gene discovery,
n= 4034), a consortium involving five European populations focusing on the
genomics of >300 phenotypes including lipidomics, that were measured at the
Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University
Medical Center (Germany), using electrospray ionization tandem mass
spectrometry (ESI-MS/MS) in positive ion mode. Genetic association tests between
lipid and allele dosage were performed using a mixed model approach
implemented with the ‘mmscore’ option in the GenABEL software. Results from
the five populations were combined using inverse variance weighted fixed-effects
model meta-analyses using the METAL software. The other (dh)ceramides
associated with cardiometabolic risk in EPIC-Potsdam were not available in
EUROSPAN. We also compared our suggestively significant GWAS results on
Cer22:0 in EPIC-Potsdam with published SNP-Cer22:0 associations from the
Framingham Heart Study Offspring Cohort (n= 2217). To this end, we extracted
beta estimates and p-values from Table 2 in the publication by Cresci et al.39. The
other (dh)ceramides associated with cardiometabolic risk in EPIC-Potsdam were
not available in the Framingham Heart Study Offspring Cohort.

We used summary-level data for the association of ceramide-associated SNPs
with T2D obtained from the DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) consortium, including 32 studies with a total of 898,130 individuals
(74,124 with T2D and 824,006 without) of European ancestry41. In that resource,
the Haplotype Reference Consortium reference panel was used for all component
studies except deCODE GWAS, which was imputed using a population-specific
reference panel (30,440 Icelandic haplotypes)41. We used the T2D data without
BMI adjustment. The EPIC-Potsdam GWAS data were included in the EPIC-
Interact Consortium, which contributed GWAS data to the used DIAGRAM meta-
analysis. The EUROSPAN and FHOCS cohorts did not contribute to the
DIAGRAM data of the utilized publication41.

Pathway enrichment analysis. We used GSA-SNP2 software for gene set enrich-
ment analysis based on GWAS p-values40. This tool employs the Z-statistic of the
random set model. We used a 20 kilobase window upstream and downstream of
the gene for the SNP to gene annotation and removed adjacent genes highly
correlated in the European population. We used pathway annotation from the
MSigDB C2.CP (curated canonical pathways) version 5.2 database100, therein the
C2 canonical pathway database, which consists of 1329 curated gene sets that
represent a biological process compiled by domain experts101,102. From this
knowledge source, we selected pathways that were linked to T2D (previously
published set of gold standard pathways for T2D40) and CVD (defined by us as
pathways that were statistically significantly enriched in the CARDIoGRAM
GWAS data (42,335 CVD cases and 78,240 controls))103. Pathways with a
q-value < 0.25 were considered significantly enriched.

Mendelian randomization. We conducted a univariable two-sample MR study with
Cer22:0 as phenotype and T2D as the outcome41. We only conducted an MR on
the putative Cer22:0 effect on T2D risk because it was the only ceramide for which
genome-wide suggestively significant SNPs were detected in EPIC-Potsdam and
replicated in an independent study. We selected the SNP with the strongest Cer22:0
association in EPIC-Potsdam that was available in the replication datasets as
instrumental variable for a univariable MR and harmonized the data for the
direction of the effects between phenotype and endpoint associations. We used the
R-packages ‘TwoSampleMR’ (v0.5.5) from the MR-Base platform104 and “Men-
delianRandomization” (v0.5.0) to generate SNP specific Wald ratios (SNP-end-
point estimate divided by SNP-phenotype estimate) for the phenotype-endpoint
associations.

Mediation analyses. We used the potential influence of red meat consumption and
coffee consumption on T2D risk to explore the role of (dh)ceramides as potential
mediators of lifestyle effects on cardiometabolic risk. These exposures were chosen

because they contributed to T2D-prediction beyond other established risk factors
in the EPIC-Potsdam study105–107, and the hypothesis that these exposures act
through modification of lipid metabolism is biologically plausible. In a first step, we
selected potential ceramide-mediators by regressing the food of interest on all T2D-
related ceramides, adjusting for potential confounders [age, sex, T2D-related
dietary exposure other than the exposure (from the set of red and processed meat,
coffee, and whole grain), fasting status, total energy intake, leisure-time physical
activity, medication (antihypertensive and lipid-lowering drugs), smoking (four
categories, never, former, current < 20 Units per day, current > 20 Units per day),
alcohol consumption, and education]. T2D-related ceramides were selected as
potential mediators if they were statistically significantly and directionally con-
sistently (one-sided p-value < 0.05) associated with the exposure.

Then, we estimated the proportion explainable (PE) as percentage attenuation of the
association between exposure (food group or anthropometric trait) and outcome (T2D
risk) in Cox models with adjustment for the selected ceramides compared to the same
model without ceramide adjustment, using the delta method24,108,109. Bias corrected
95% bootstrap confidence intervals for the PE were constructed with the bcajack-
function from the bcaboot package (CRAN.R-project.org/package=bcaboot) with 1000
replications and a two-thirds sampling fraction.

Software. Statistical Analysis System (SAS) Enterprise Guide 7.1 with SAS version
9.4 (SAS Institute Inc., Cary, NC, USA) was used to manage and prepare datasets
and transform the lipid values. The pcalg-package in R (version 3.5.2 (20 December
2018)) and a developmental version of the NetCoupler-package (available from
M.B.S. and C.W. upon request) were used to generate the metabolite networks and
link them to disease incidences. QCtool v1.4 and SNPtest v2.5.2110 were used for
the GWAS on lipids. MR studies were conducted using the ‘TwoSampleMR’
(v0.5.5) from the MR-Base platform104 and the “MendelianRandomization”
(v0.5.0)111 R packages in R (version 3.6.3 (29 February 2020)). Mediation analyses
were conducted in R (version 3.5.2 (December 2018)).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are not publicly available due to data
protection regulations. In accordance with German Federal and State data protection
regulations, epidemiological data analyses of EPIC-Potsdam may be initiated upon an
informal inquiry addressed to the PI of the EPIC-Potsdam study, who is the
corresponding author of this manuscript [MBS]. Requests for data access are discussed in
monthly EPIC-Potsdam investigator meetings, where data access proposals are either
directly approved or adjustments of the proposal are requested to ascertain scientific
soundness of EPIC-Potsdam data analysis. GWAS data from the EUROSPAN
consortium are not deposited into publicly available databases in order to comply with
individual cohort informed consent and participant data privacy restrictions. Specific
data access requests can be granted through agreement by the cohort PIs following
request, which can be addressed initially to Andrew Hicks, and which will usually be
processed within 15 days. The utilized data from the FHSOC study were previously
published39. A list with all analyzed ceramides and dihydroceramides along with LIPID
MAPS-ID and HMDB-ID (if available) is provided as Supplementary Data 9. Metabolite
sets for enrichment analysis were obtained from the MSigDB C2.CP database together
with GSA-SNP2 tool (https://sourceforge.net/projects/gsasnp2/files/data/
popular_pathway_data-20170227T151601Z-001.zip).

Code availability
A generalized version (R-package) of the NetCoupler-algorithm can be accessed on
GitHub (https://github.com/NetCoupler/NetCoupler). The development versions and
settings used to generate the results herein are not on GitHub and are available on
request from the corresponding author [M.B.S.].
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