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Manual interpretation of variants remains rate limiting in precision oncology. The increasing

scale and complexity of molecular data generated from comprehensive sequencing of cancer

samples requires advanced interpretative platforms as precision oncology expands beyond

individual patients to entire populations. To address this unmet need, we introduce a Platform

for Oncogenomic Reporting and Interpretation (PORI), comprising an analytic framework that

facilitates the interpretation and reporting of somatic variants in cancer. PORI integrates

reporting and graph knowledge base tools combined with support for manual curation at the

reporting stage. PORI represents an open-source platform alternative to commercial

reporting solutions suitable for comprehensive genomic data sets in precision oncology. We

demonstrate the utility of PORI by matching 9,961 pan-cancer genome atlas tumours to the

graph knowledge base, calculating therapeutically informative alterations, and making

available reports describing select individual samples.
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As the research and clinical applications of human cancer
sequencing for precision medicine grow, there is an
increased demand for the interpretation and reporting of

genomic data in both research and clinical settings. Automation
of cancer analysis research pipelines has improved the speed of
reporting and the reproducibility of results. However, portions of
the analysis remain refractory to automation. The human inter-
pretation of genomic data remains one of the largest bottlenecks
in comprehensive precision oncology1,2.

To address this problem, a number of cancer knowledge bases
have been created, including: OncoKB3; Clinical Interpretation of
Variants in Cancer (CIViC)4; Cancer Genome Interpreter (CGI)5;
Catalogue of Somatic Mutations in Cancer (COSMIC)6; Jackson
Laboratory Clinical Knowledge Base (JAX-CKB)7; Precision
Medicine Knowledge Base (PMKB)8; My Cancer Genome9; Per-
sonalized Cancer Therapy (PCT)10; and Cancer Driver Log
(CanDL)11. Despite the increasing availability of publicly acces-
sible knowledge bases, these resources are distributed across a
broad landscape of clinical and biological knowledge that is often
disjointed and of varying structure. Integration of these tools into
a reporting workflow to improve coverage12 is essential, yet left
largely to individual users.

The increasing scale and complexity of the genomic and clin-
ical data collected for sequenced tumour samples requires flexible
analytic platforms suitable for automation2, both for the anno-
tation of molecular profiles as well as the concise reporting of
such information. While there are visualization tools13,14 and
commercial reporting applications available7,15,16, there are few
open-source reporting alternatives17,18. Despite previous work
demonstrating improvements in clinical comprehension of
complex genomic data using interactive over static reports19,
there are currently no open-source web applications for reporting
in precision oncology. Open-source software is essential for
promoting reproducibility and transparency in both research and
healthcare, allowing the community to evaluate the softwares
implementations and ensure their correctness20. This is particu-
larly important in research where the outcomes and insights will
ultimately impact patient care. Furthermore, there is limited
ability to build on and learn from closed source implementations
within the research and clinical communities21.

While institutions have aimed to standardize workflows with
respect to laboratory methods or even the bioinformatic tools
used in variant calling22, reporting and annotation workflows
remain diverse15. Here we present a fully open-source research
platform that integrates variant annotation through knowledge
base matching into a precision oncology workflow and provides
users a reporting interface to curate, edit, and interact with the
resulting data.

Results
Flexible open source reporting with PORI. The Platform for
Oncogenomic Reporting and Interpretation (PORI) was devel-
oped to facilitate the automated analysis of whole-genome and
transcriptome sequencing data from human cancer samples to
support precision oncology23 research initiatives (Fig. 1a). By
providing an open-source reporting platform that can be shared
and improved by stakeholders, we aim to enable consistency in
reporting and reduce redundancy in the development of indivi-
dual bespoke tools. The PORI platform consists of two main
components: a knowledge base (GraphKB) and a reporting tool,
Integrated Pipeline Reports (IPR).

The knowledge base component, GraphKB, is primarily used to
relate variants derived from patient data to known annotations in
the literature. The underlying graph structure fundamental to its
design enables incorporation of disease, drug, and gene

ontologies, biological evidence statements and therapeutic
implications from a large number of external databases3–6,24–29.
There are two ways for the user to interact with GraphKB, via the
application programming interface (API) or the web client
(Supplementary Fig. 1). As a part of a standard precision
oncology workflow, GraphKB annotates patient variants via the
same python module used to create a report (Figs. 1b and 2).

The design of GraphKB builds on previous work in aggregating
knowledge base content12 with several innovations including
supporting: mixed manual and automated content; complex
variant types; and multiple semi-redundant ontologies. GraphKB
is both a standalone knowledge base implementation as well as an
aggregate solution or any combination therein. The advantage of
this duality is the increased control over the data. Users reap the
benefits of consuming and combining multiple external data
sources12 without sacrificing the ability to manually intervene.
This circumvents the need to wait for external updates which can
be critical to a quick turnaround time. From the perspective of
what is stored, GraphKB goes beyond genomic variants and
supports any number of variant types such as expression variants,
and molecular signatures.

The reporting component of PORI, IPR, is a web application
for the visualization and dissemination of the genomic analysis
and corresponding graphics, as well as evidence provided by the
integration with GraphKB. It is used to review and communicate
data both through the interactive web application as well as the
production of portable document format (PDF) summaries
(Fig. 1b) suitable for dissemination of research reports to clinical
personnel.

GraphKB and IPR are highly integrated. This integration is
designed to facilitate the curation of clinically relevant content
such as therapeutic biomarkers encountered during literature
review of a patient’s variants. Reports are generated against a live
version of GraphKB. Content relevant to a given case that was
found through literature review and is not already curated in
GraphKB can be added during case analysis and the report
immediately re-generated. The quick turnaround time (~10 min)
and minimal input requirements promote the updating of the
knowledge base during case analysis which reduces the workload
on the analyst by improving content coverage and consistency
between reports. Additionally, inclusion of knowledge base
entries into the report motivates the review of existing content;
as the analyst reviews the report, they are linked from the report
directly to the entries which have been matched in the knowledge
base (Fig. 2). This encourages relevant content to be accurate and
up to date, as it is reviewed and added with the highest priority.

In order to achieve a comprehensive understanding of a given
patient’s disease profile, the integration of diverse types of
genomic alterations and complex signatures is required30. IPR
collects output from many different types of bioinformatic
analyses in a single report (Fig. 1b). This provides the user with
a central interface to interpret and interact with the data. To
maintain flexibility, and recognizing the diversity of existing
variant calling pipelines and workflows22, the PORI platform is
run post-variant calling. In addition to the standard variant calls
(SNVs, indels, structural variants, copy variants) PORI supports a
number of other analyses including gene expression, mutation
signatures, tumour mutation burden, CIBERSORT31, MiXCR32

and OptiType33. A full list of the possible inputs to PORI can be
found in the user documentation (https://bcgsc.github.io/pori).

Bioinformatics has a well-known software modality where tools
are presented as proof of concept rather than production ready34.
We have addressed this in PORI with standard techniques such as
unit and integration tests using continuous integration and
delivery systems. Additionally, PORI has been developed with
multiple rounds of user testing. As a part of the Personalized
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OncoGenomics (POG) program (NCT02155621), PORI has been
refined based on feedback from three main user groups:
clinicians, clinical trial nurses, and bioinformatic analysts35.
PORI has been used to generate and review 798 reports by 16
different authors covering 171 different diagnoses (Supplemen-
tary Fig. 2).

GraphKB improves concordance of knowledge base sources.
An expanding number of cancer knowledge bases have become
publicly available, providing an opportunity for aggregating and
integrating externally curated clinical and biological knowledge
into cancer genomic analysis. Due to the variability in the
structure and content, integration is necessary to ensure coverage
of all relevant annotations12. GraphKB is able to support loading
content from multiple external knowledge bases as well as adding
content directly. Loading tools have been written for several
popular knowledge bases which are included in the following
knowledge base concordance analysis (Supplementary Table 1):
OncoKB3; CIViC4; COSMIC6 (resistance mutations); Cancer
Genome Interpreter5; and DoCM36. Each knowledge base con-
tains both unique and redundant information pertaining to the
therapeutic, diagnostic, prognostic and biological relevance of
cancer-associated variants. The content of these was compared to
determine concordance between knowledge base sources. This

was done at the level of conclusions, where conclusions are
considered as the relevance (eg. sensitivity or resistance) and
subject (ex. Drug or drug class) of a statement (Fig. 3).

Before normalizing, there were 769 unique clinically informa-
tive (therapeutic, diagnostic, and prognostic) conclusions. After
subject and relevance terms were normalized using ontology
relationships, there were 696 unique conclusions, which demon-
strates that while the different sources may appear initially to
have disparate content, some of that content is in fact shared but
done so with alternate representations such as aliases. By
normalizing content using the graph model we are able to better
quantify the levels of concordance.

The agreement between knowledge base sources increased with
normalization of related terms (Fig. 4) from 14% (raw) to 19%
(normalized) of conclusions shared in more than 1 source.

Integrating multiple overlapping ontologies improves ability
to incorporate external clinical resources. The ability to leverage
existing clinical resources, such as clinical trial registries, repre-
sents one of the most enticing use cases of knowledge base
content. However, many of these resources do not use ontologies
or even controlled vocabulary. In order to import a clinical
resource and therefore relate them to patient data, knowledge
base controlled vocabulary is matched to the terms used by the
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Fig. 1 Platform of Oncogenomic Reporting and Interpretation (PORI) overview. PORI Design showing both the placement of PORI within a precision
oncology workflow (a) and the process of generating a report (b). PORI is used for the interpretation and reporting of genomic findings from tumour
sequencing. Sequencing Data is taken as input to a number of bioinformatic pipelines and analyses defined by the user. The results of these are loaded by
the IPR report python adapter (ipr-python) and annotated with information from GraphKB. After annotation, the results are collated and prioritized based
on matches for output into a report using the IPR interactive web platform. This is optionally manually reviewed by the case analyst who may add content
to GraphKB as part of their literature review for the case and re-generate the report to include the newly added content. This report is shared with the
molecular tumour board (MTB) to inform clinical decisions.
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clinical resource during import. This process is highly dependent
on the controlled vocabulary in the knowledge base covering the
terms used by the clinical resource. To demonstrate an applica-
tion of this, the terms from several widely used disease and drug
ontologies (Supplementary Table 2) were compared to disease
and drug terms listed in the ClinicalTrials.gov database (https://
clinicaltrials.gov), a registry for clinical trials around the world
that stores metadata regarding the trial including location, ther-
apy, eligibility criteria, and phase.

There are many competing ontologies and standards to choose
from. In contrast to other knowledge bases, GraphKB does not
enforce a single preferred or standard ontology to be used. While
GraphKB does standardize the structure of the entries from
external knowledge bases during import, it tries to match the
original terminology and specificity. This decreases the number of
assumptions that are required while coming at the cost of

increased storage size. In order to accomplish this, GraphKB
integrates multiple semi-redundant ontologies which are cross-
referenced to one another using the links defined by each dataset
(Fig. 5). Traditional relational databases are ill-suited to storing
this hierarchical data or highly-related data due to the
prohibitively high cost in time of joining so many relations.
However, graph databases are designed with the connections
between the data as a primary focus which allows complex
relational queries to be performed efficiently37. This ability is
leveraged heavily in GraphKB. Ontologies are used as controlled
vocabulary, but also to resolve redundant or related terminology
through the linking of terms in and between ontologies
(Supplementary Fig. 3).

To demonstrate the benefit of including multiple ontologies, we
have compared the number of clinical trials terms matched by a
single resource to that which we are able to match when resources

Fig. 2 Integrated Pipeline Reports (IPR) web interface. (a) The report front page of an example report displaying patient metadata and a summary of
tumour characteristics and findings. (b) The annotations collected from GraphKB are listed in the knowledge base matches section of the generated report
with links from each match back to its corresponding statement in GraphKB.
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are combined. Three disease resources were selected: OncoTree
(http://oncotree.mskcc.org); Disease Ontology27; and NCI The-
saurus (NCIt: https://ncithesaurus.nci.nih.gov). Four drug
resources were selected: Food and Drug Administration Sub-
stance Registration System (FDA: https://fdasis.nlm.nih.gov/srs);
DrugBank28; ChEMBL29; and NCIt. We define the primary terms
of a resource as only the preferred names (as defined by the
resource itself) of terms which were given a unique identifier
within the resource, excluding aliases, synonyms, or product
aliases. Both the primary and full set of terms (indicated hereafter
with a+) were used for each resource (Supplementary Table 3).
By comparing common names between the full-term sets of each
resource, we observed that more than 90% of disease and drug
terms were unique to a single resource (Supplementary Fig. 4).

This indicates that the total number of terms would be drastically
reduced with the use of a single ontology.

Terms were then extracted from the clinical trial records
resulting in 116,237 therapy terms and 86,204 disease terms from
345,760 clinical trials (See Methods). Clinical trial terms used at a
high frequency in ClinicalTrials.gov (used in >=100 clinical trial
records) had higher coverage across ontology resources compared
to terms that were less frequently used (Fig. 6). The greatest
coverage of clinical trial terms was achieved by combining
ontology terms from all resources compared to any single
resource (diseases: 0.63 and drugs: 0.96). Among the individual
resources, NCIt terms were associated with the greatest coverage
of any resource in isolation (diseases: 0.54; drugs: 0.95). However,
when only primary terms were considered, ChEMBL (0.88)
outperformed the other sources: FDA SRS (0.87); NCIt (0.72);
and DrugBank (0.80). Similarly, when only primary terms were
considered, the Disease Ontology (0.38) outperformed NCIt
(0.14) and OncoTree (0.04). The 9% (7,758 diseases) improve-
ment in disease term coverage of frequently used terms (100+)
shows a clear benefit from the inclusion of multiple sources.

Application of PORI using external data demonstrates the
benefit of integration of multiple data types. To demonstrate
the flexibility of PORI both in using external data and supporting
multiple data types, we analyzed the TCGA pan cancer atlas
cohort38. Open-access data files were downloaded from cBio-
portal.org and analysed using the PORI platform39,40. Mutations
(mut); copy number variants (cnv); gene expression outliers
(exp); and fusions (fus) from all studies were matched to
GraphKB and annotated (see Methods). Across all TCGA studies,
there were 37,916 unique expression outliers (20,110 increased
expression and 17,806 reduced expression); 28,272 unique
protein-coding small mutations; 50,124 unique copy variants
(25,109 amplifications and 25,015 deep deletions); and 527
unique gene fusions from 9,961 samples. There was a median of
23 unique conclusions per sample (1 sample per report), and a
median of 12 conclusions which were therapeutically informative
(Supplementary Fig. 5). Of these 9,961 samples (Supplementary
Data 1), 8,786 (88.2%) had variants which matched to one or
more therapeutic statements and 3,797 (38.1%) were matched to
a Tier I AMP evidence level. The full set of therapeutic statements

StatementBiomarker Evidence

Biomarker Vocabulary

conditions evidence

relevancesubject

Conclusion

ex. PubMed Articleex. BRCA mutation
ex. Breast Cancer

ex. Sensitivityex. Cisplatin

Fig. 3 GraphKB Statement Schema. Statements are composed of four main elements: conditions, subject, relevance, and evidence. A statement may be
linked to any number of conditions but only one subject and relevance. The conclusion of a statement is considered to be composed only of the relevance
and subject.

Fig. 4 Clinically informative conclusion agreement across knowledge
bases. (a) The individual contribution of each source is shown as the
number of unique conclusions which are given for both raw and normalized
counts. The raw values represent the number of conclusions prior to
normalization. (b) The amount of content which is shared between sources
is shown as a fraction of the total number of unique conclusions. Source
data are provided as a Source Data file.
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includes experimental, pre-clinical, and investigational bio-
markers whereas AMP Tier I filtered statements are limited to
FDA-approved treatments. When accounting for disease type,
6,219 (62.4%) samples had therapeutic statements of which 3,469
(34.8%) matched to a tier I AMP evidence level (Fig. 7). These
cases were further analyzed as these represent potential ther-
apeutic interventions or recommendations.

A large proportion of samples had therapeutic matches derived
from a single variant type (small mutations: 18.1%; RNA
expression: 11.3%; copy number: 5.34%), which demonstrates
the importance of the inclusion of multiple variant types. If we
only included a single variant type for GraphKB matching and

reporting, then the number of samples where no therapeutic
matches were found would increase by a minimum of
2,487 samples (25.0%) depending on which variant type was
selected (Fig. 8).

As expected, since small mutations have the greatest coverage
across all public knowledge base sources used in this analysis, we
observed the greatest contribution to therapeutic matches from
statements associated with this variant type (Fig. 8). However,
expression-based variants, as defined by a combination of z-score
and percentile thresholds (z score −2/+2 and percentile 2.5/97.5,
respectively), led to a greater proportion of patients with a
therapeutic match compared to both fusion and copy number

Fig. 5 Graph view of content in the GraphKB web application. A subset of links between disease terms related to colorectal adenocarcinoma are shown
from NCI thesaurus (NCIt) and OncoTree. For brevity, only a small number of links to clinical trials (Clinicaltrials.gov) are shown.

Fig. 6 Coverage of clinical trial terminology in popular ontologies. Proportion of matched drug (a) and disease (b) terms from clinical trials matched by
ontology terms across multiple resources. A distinction was made between the primary/preferred terms for a given resource and the set of all terms
(indicated with a+), which included synonyms, aliases, and commercial product names. The proportion of total clinical trials terms where an exact match
was found in a given ontology is termed coverage. Coverage was calculated for trial terms at 3 frequencies (1+, 10+, or 100+) where the frequency is
calculated as the number of clinical trials a given term was used in. Source data are provided as a Source Data file.
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variants. 1,128 samples (11.3%) had therapeutic matches derived
solely from expression data. This highlights an opportunity for
greater focus on expression variants and their clinical or
biological significance.

PORI identifies therapeutically relevant alterations in a cho-
langiocarcinoma patient. To demonstrate the use of PORI for
clinically relevant interpretation of individual patient data, we
analysed a case of cholangiocarcinoma, which was previously
described as harbouring a fusion involving the oncogene NRG141.
The patient, a 38-year old woman diagnosed with intrahepatic
cholangiocarcinoma, had received chemotherapy with gemcita-
bine and cisplatin and undergone surgery, without disease con-
trol. A metastatic tumour sample was obtained from the liver and
analysed using whole-genome and transcriptome sequencing,
revealing small mutations, copy number changes, structural var-
iants, and gene expression alterations. An ATP1B1-NRG1 gene
fusion was identified which led to the rationalization for treat-
ment with the ErbB family tyrosine kinase inhibitor afatinib, with
dramatic subsequent clinical response41. The data from this
analysis, which was processed with PORI, including matching to
graphKB and display in IPR, has been made available at https://
bcgsc.github.io/pori/demo (IPR, PATIENT0 biop2).

PORI clearly identified the key targetable alteration, the NRG1
fusion, on the summary page (Supplementary Fig. 6) based on
matching to therapeutically relevant statements in GraphKB,
along with the display of a figure describing the structural
variant42 (Supplementary Fig. 7). In addition, mutations in
tumour suppressors TP53 and CDKN2A are highlighted, along
with amplification of the oncogenes NTRK1 and MCL1. A
number of genes have notably increased expression, including
NRG1, consistent with the oncogenic effect of the gene fusion,
and expression information can be viewed, sorted and filtered
within IPR (Supplementary Fig. 8). Details of the GraphKB
associations provide information on drug sensitivity, resistance,
and eligibility for clinical trials, as well as tumour type
information and links to the source data in GraphKB. This
provides critical support for an informed decision about therapy
options, including in this case the potential for sensitivity to
afatinib, which was procured and resulted in a clinical response
for this patient. In addition to specific gene associations, mutation
signatures analysis43 (Supplementary Fig. 9) reveals that this
sample harbours evidence of exposure to platinum therapy
(SBS31 and DBS5) consistent with the treatment history of the
patient. While reports may be generated with a minimal input of
somatic mutations, PORI provides flexibility for the addition of
other data types when available from user-defined analysis
pipelines, including expression correlation (Supplementary
Fig. 10), immune environment, and mutation burden. The
interactive nature of IPR allows the user to quickly view the
genomic events associated with the strongest evidence of clinical
relevance, and to also access the level of detail that is most
pertinent, supporting informed treatment decision-making for
precision oncology.

Discussion
The rapid development of genomic technologies and bioinfor-
matic research represents a significant challenge for precision
oncology30. Platforms and pipelines must be able to readily
incorporate new and varied content. PORI addresses this with
modular reports where sections corresponding to particular
specialized analyses can be added or removed as available. Pre-
vious reporting solutions have required users to input raw data
and use the bioinformatic analysis pipeline integrated into the
tool itself17. This is a barrier to use for many institutions which
have already developed their own mature bioinformatic pipelines.
It also limits the ability of the user to modify the pipeline as new
tools are developed and further data types are added. PORI
overcomes this by requiring inputs post-variant calling. Auto-
mation often comes at the cost of fine-grained control over the

Fig. 7 Division of the therapeutic matches to the TCGA samples
(n= 9,961). The total set of matches is further subdivided by a number of
filters. Samples were considered disease matched when the diagnosis of the
patient matched the disease listed by the annotation (Diagnosis Match)
Samples were considered position matched (Position-Specific) when matches
to non-specific gene-level small mutations were excluded. Other filters
included: matches with AMP Tier I compatible evidence (AMP Tier I); matches
excluding those obtained by second-pass or inferred matching (Direct Match);
and finally only non-synonymous, at the protein level, mutations (Non-
Synon). The union of all matches is given by the shaded portion and vertical
dashed line. Source data are provided as a Source Data file.

Fig. 8 Proportion of samples (n= 9,961) with therapeutic matches
derived from each combination of variant types. Upset plot of the number
of samples with therapeutic matches from annotation of a given variant
type. Sample variants are divided into four types: copy number variants
(cnv); single nucleotide variants and indels (mut); gene fusions (fus); and
gene expression (exp) variants. The left-hand bar plots are the total number
of samples which have 1 or more therapeutic conclusions matched to the
listed variant type. The union of all matches is given by the shaded portion
and vertical dashed line. The upper bar plots show the number of samples
in each of the intersection groups. These groups are mutually exclusive.
Source data are provided as a Source Data file.
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product. While fully automated solutions have shown promise for
very common cancer types, their success with less common
cancers has demonstrated there is still a strong need for human
expert intervention44. PORI balances this by generating a fully
automated report which can be manually altered and supple-
mented as needed.

The importance of an open-source platform is three-fold.
Firstly, due to the flexible design of PORI, users will be able to
contribute content as needed both in the form of additional
loaders for GraphKB and additional sections for new analysis
types in IPR. Community involvement will help ensure the
reporting platform continues to support relevant inputs that
reflect the needs of the community. Secondly, the provision of a
transparent option for reporting genomic data will provide an
opportunity to standardize and improve reporting across multiple
centres which will facilitate simpler comparisons. This is parti-
cularly critical as it has been shown that commercial platforms
provide diverse results that are less amenable to scrutiny15.
Finally, this will provide access to institutions and centres which
might find the commercial alternatives cost-prohibitive.

Significant progress has been made in the area of somatic
variant interpretation for application in precision medicine. The
ability to apply reproducible, evidence-based definitions of clini-
cally actionable variants is a major area of research in the field.
One method that has been employed in the assignment of evi-
dence levels, based on the current landscape of published litera-
ture for a given variant, resulting in the development of several
different evidence tiering schemes. A landmark joint publication
from ASCO, AMP and CAP in 2017 laid a framework for somatic
variant interpretation and evidence tiering, which has been used
in further initiatives, including the Variant Interpretation for
Cancer Consortium, aimed at harmonizing evidence levels from
multiple sources12,45. GraphKB is well-suited to accommodate
multiple evidence schemes, enabling the generation of relation-
ships between evidence tiers from individual resources. Integra-
tion of GraphKB statements and corresponding evidence tiers
enables the end-user to assess the strength of evidence for a given
variant and knowledge base statement. For example, across the
TCGA cohort, we noted a relatively high proportion of samples
had at least one therapeutic statement matched by genomic, or
transcriptomic data (88.2%) representing experimental, off-label,
and pre-clinical treatment options. Recent work in a precision
oncology clinical trial by the German Cancer Consortium has
found a similar rate of experimental biomarkers in their patient
population46. While specific clinical trials are able to treat patients
with this lower tier evidence46,47, in practice, only a subset of
matches corresponding to the disease-matched AMP tier I evi-
dence level statements (34.8% in this data set) are likely to be able
to be clinically acted upon. By incorporating evidence levels from
multiple sources and the ability to map between them, a greater
number of therapeutic statements can be readily assessed through
the integration of GraphKB with IPR in the PORI platform.

While integrating several resources improves coverage of the
knowledge space, the observation that the majority of evidence
statements are only represented in a single resource suggests
existing resources only capture a fraction of current knowledge.
This problem is exacerbated by an increasing number of knowl-
edge bases with restrictive licensing that does not permit re-use or
sharing. Public open data initiatives, like CIViC4, are therefore
increasingly important both in their ability to contribute acces-
sible data but also their advantage in crowd-sourcing curation to
achieve a larger number of annotators. While we encourage PORI
users to contribute to these public resources, we recognize that it
is not always immediately possible. Knowledge may be pre-
publish or not yet supported by the public knowledge bases (ex.
complex variants). Future work on PORI will include

collaborating with external open-data community members to
automate the export of entries annotated privately in instances
GraphKB when users are ready to contribute them to public
portals.

Although PORI represents an important first step in creating
an open-source standard tool for reporting in precision oncology,
there are still many avenues for future development. Currently,
the platform focuses on creating research reports and future
iterations could include clinically accreditable formats of the
report. Work is currently underway to create germline and
pharmacogenomic report variants. Finally, perhaps the most
exciting area for future work is in the application of data captured
from user actions during the analysis process to iteratively
improve and further automate future analysis. As more knowl-
edge is curated, each patient will match more annotations and
reports will become increasingly verbose. There will be an
increased need to succinctly and efficiently summarize the
implications for a given patient. This will involve condensation of
statements not only from different resources but also across
multiple matched variants. Future work on IPR may leverage the
interactive nature of IPR to explore and evaluate partially auto-
mated summarization via machine learning algorithms. Facil-
itating the complex analysis associated with precision oncology in
cancer will not only have direct benefit to the patients analyzed
but also the process as a whole through improved communication
and transparency.

Methods
GraphKB Transformation of sources for Knowledge Base Comparison
Import into GraphKB. Knowledge Base Data is imported into GraphKB via auto-
mated scripts which can be found in our loader repository (Supplementary
Table 4). While there is some logic specific to each source, in general the logic is
that ontology terms are imported from multiple sources. Cross reference links are
imported where defined and the ontology that defines the linkage is set to the
source of the link. Knowledge bases are imported after ontologies as many of them
require the ontologies as dependencies. For terms referenced in a knowledge base
from a particular ontology the statement is linked to the specified ontology. If an
ontology was not given then the term is matched by exact name match or an error
is reported (Supplementary Table 1).

To ensure this process is traceable and repeatable each ontology field is stored
with four main inputs: source, sourceId, name, and sourceIdVersion. The source is
the ontology it was imported from (ex. HGNC). The sourceId is the Id defined by
the source, this should be unique within the source (ex. 6407). The name is the
human readable name of the term (ex. KRAS). and finally the sourceIdVersion is
the version number of that Id. This field is optional. In some cases this may be the
same as the version number of the entire resource but in many the IDs themselves
are versioned independently (ex. ensembl transcript versions).

Processing of resources for ontology term name comparisons. The set of
unique drug (or disease) names defined by each resource as well as any synonyms
or product names was taken. These have been transformed to lowercase and
trimmed.

ClinicalTrials.gov clinical trials. The full XML records for all trials (346,614) were
downloaded on 2020-07-23 from ClinicalTrials.gov [https://clinicaltrials.gov/
AllPublicXML.zip]. From these, conditions and interventions were parsed into a
list of terms and the frequency amongst trials of these terms. Interventions of the
following types were considered drug terms: Drug, Radiation, Combination Pro-
duct, or Dietary Supplement. Normalization of all terms was limited to stripping
trailing and leading whitespace and lowercasing. This resulted in 116,237 therapy
terms and 86,204 disease terms from 345,760 clinical trials.

NCIt. The plain text download version of the NCIt thesaurus was downloaded from
NCIt [https://evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive/2020/20.06e_Release/
Thesaurus.FLAT.zip]. Terms were classified as disease or therapy based on their
semantic type (Supplementary Table 3). Terms with the following semantic types
were considered therapeutic terms (87,427 total; 5,017 primary): Antibiotic; Bio-
logically Active Substance; Biomedical or Dental Material; Chemical Viewed
Functionally; Chemical Viewed Structurally; Chemical; Clinical Drug; Drug
Delivery Device; Element, Ion, or Isotope; Food; ‘Hazardous or Poisonous Sub-
stance; Hormone; Immunologic Factor; Indicator, Reagent, or Diagnostic Aid;
Inorganic Chemical; Medical Device; Organic Chemical; Pharmacologic Substance;
Plant; Steroid; Substance; Therapeutic or Preventive Procedure; and, Vitamin.
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Terms with the following semantic types were considered disease terms (57,276
total; 6,526 primary): Anatomical Abnormality; Congenital Abnormality; Disease
or Syndrome; Experimental Model of Disease; Mental or Behavioral Dysfunction;
Neoplastic Process; Sign or Symptom. Both the names and synonyms of the terms
were considered.

DrugBank. DrugBank28 (v5.1.7) was downloaded in its XML format [https://
go.drugbank.com/releases/5-1-8/downloads/all-full-database]. Names were extrac-
ted from the records based on the name, synonyms, and products tags. This
resulted in 131,412 unique terms (Supplementary Table 3).

FDA SRS. The UNII identifiers (version 27Mar2020) were downloaded from the
FDA substance registration system [https://fdasis.nlm.nih.gov/srs/download/srs/
UNIIs_20200327.zip]. The PT field was used as the name field. This resulted in
109,334 primary terms (all terms have unique identifiers and therefore are con-
sidered non-alias primary terms) (Supplementary Table 3).

Disease ontology. The disease ontology27 (v2020-06-18) was downloaded as a JSON
[https://github.com/DiseaseOntology/HumanDiseaseOntology/blob/v2020-06-18/
src/ontology/releases/2020-06-18/doid.json]. Terms were extracted from the lbl
and synonyms attributes. This resulted in 19,064 primary terms out of 38,489 total
terms (Supplementary Table 3).

ChEMBL. The postgres dump of the ChEMBL29 (version 27) database was
downloaded [https://chembl.gitbook.io/chembl-interface-documentation/
downloads; https://doi.org/10.6019/CHEMBL.database.27] and a plain text version
of the drug names was created from the molecule_dictionary and molecule_
synonym tables. Where the preferred name field of the first table was used as the
primary set of terms and names from the synonyms table were included in the full
set (Supplementary Table 3). This resulted in 35,219 primary terms out of 123,287
total terms.

Processing of TCGA data. All TCGA pan-cancer ATLAS data was downloaded
from cBioportal.org39. This consisted of the all *_tcga_pan_can_atlas_2018 studies:
BLCA, BRCA, CESC, CHOL, COADREAD, DLBC, ESCA, GBM, HNSC, KICH,
KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG,
PRAD, SARC, SKCM, TGCT, THCA, THYM, UCEC, UCS, and UVM. Data was
processed from all studies (Supplementary Data 1) with the exception of LUAD
which was found to be incomplete and therefore not processed further.

Variants were compiled for each sample (includes some repeat samples from the
same patient) from the expression (data_RNA_Seq_v2_mRNA_median_all_
sample_Zscores.txt; TCGA only); copy number (data_CNA.txt); small mutations
(data_mutations_extended.txt); and fusions (data_fusions.txt) files. Copy variants
were classified as deep deletion with a value of −2 or lower and amplification with a
value of 2 or greater. The distribution of copy number values amongst all patients was
plotted as a sanity check that these values would result in outliers and not represent a
large percentage of the calls (Supplementary Fig. 11). The expression z-scores are pre-
calculated in the cBioportal data. A threshold combination of z-score (−2, +2) and
percentile (2.5, 97.5) was used in evaluating expression variants to determine outliers
(See related demo for calculating RNA metrics: https://bcgsc.github.io/pori/ipr/
scripting/RNA_Expression_Metrics). Small mutations and fusion matching was
limited to genes and mutations with protein changes (for small mutations). For
simplicity, matching did not include intergenic mutations.

The number of variants called per sample (n= 9,961) was compared across all
studies for each variant type (Supplementary Fig. 12) which had median values of: 402
expression variants; 0 gene fusions; 84 copy variants; and two small mutations. A one-
way ANOVA was performed to determine significance (F-statistic: 4613.24, p value:
0.0) followed by a TukeyHSD test to investigate pairs. The null hypothesis was
rejected for all combination pairs within a data set (FWER= 0.05, adjusted p value of
0.001) with the exception of fusions and small mutations which had a p value of 0.9.

Each variant was then matched to GraphKB using the GraphKB python adapter
(Supplementary Table 4). From these statement matches, the number of matches
by variant type per each conclusion was determined. As second-pass matching
(https://bcgsc.github.io/pori/faq/#what-is-second-pass-matching) may include
multiple variant types, these matches were excluded from the variant type analysis.
The conclusion of a statement is considered to be the combination of its relevance
and subject fields (Fig. 3).

These matches were then refined by five sets of filters to further characterize
their therapeutic applicability: Association for Molecular Pathology (AMP)
evidence level Tiering (AMP Tier I), disease match status (Diagnosis Match),
positional specificity (Position-Specific), direct matching only (Direct Match), and
non-synonymous protein change (Non-Synon) (Fig. 7)

AMP tier I filter. To create the AMP Tier I filter, evidence levels were mapped to
AMP Tiers12. Within each knowledge base analyzed the following evidence levels
were considered AMP Tier I: CIViC (A); CGI (FDA guidelines, NCCN guidelines,
CPIC guidelines, NCCN/CAP guidelines, and European Leukemianet guidelines);
and OncoKB (1, R1, 2A). For knowledge bases without an evidence scheme (ex.
COSMIC) no statements were considered to be AMP Tier I. Following this matches

were restricted to only statements which contained an AMP Tier I compatible
evidence level.

Diagnosis match filter. Diseases were considered matched (Diagnosis Match) when
the term given in the knowledge base statement matched terms collected on
expanding the diagnosis terms (Supplementary Fig. 3) in the sample metadata. The
OncoTree code, detailed cancer type, and cancer type were expanded to collect the
final set of diagnosis disease terms.

Position specific filter. To facilitate comparison with other related analyses, the
position-specific filter was created. This filter excludes all statements which were
matched based on a non-specific small mutation. This would exclude any state-
ments with small mutation variants that did not give a position by HGVS. For
example, a statement with the variant oncogenic mutations in KRAS would be
excluded.

Direct match filter. GraphKB enables matching via second-pass or indirect
matching (https://bcgsc.github.io/pori/faq/#what-is-second-pass-matching) where
an initially matched variant may match a statement which characterizes that
variant functionally (ex. oncogenic mutations) and using the initially matched
statement a second statement which builds on the functional characterization (ex.
oncogenic mutations in KRAS are associated with resistance to EGFR inhibitors) is
matched. The direct filter excludes all second-pass or indirect matches.

Sequencing and analysis of the cholangiocarcinoma case
Tumour sampling, library construction and sequencing. An ultrasound guided
biopsy of the liver metastasis was collected from the patient, a 38 year-old
woman41. It was then embedded in an optimal cutting temperature compound, and
sectioned. A peripheral blood sample was taken representing a normal cell sample
from the patient. DNA and RNA were purified using the AllPrep DNA/RNA Mini
Kit (Qiagen). PCR-free DNA libraries were constructed by shearing by sonication
(Covaris), end-repair and size selection using AMPure XP beads targeting a
300–400 bp fraction, 3ʹ A-tailing, ligation using full length TruSeq adapters, and
purification using AMPure XP beads. PolyA+ RNA was purified using the Mul-
tiMACS mRNA isolation kit (Miltenyi Biotec, Germany), first-strand cDNA syn-
thesized using the Maxima H Minus First Strand cDNA Synthesis kit (Thermo-
Fisher, USA) with random hexamer primers, and second strand cDNA synthesized
following the Superscript cDNA Synthesis protocol. The RNA library was con-
structed by fragmentation of cDNA by sonication (Covaris), purification using
Ampure XP SPRI beads, end-repair, phosphorylation, 3ʹ A-tailing, ligation using
Illumina adapters, and purification using Ampure XP SPRI beads, followed by PCR
amplification using Illumina’s PE primer set. Genome and transcriptome
sequencing was performed on HiSeq2500 instruments (Illumina, San Diego,
California) using paired-end reads. The tumour DNA was sequenced with 150 bp
reads to 79X average coverage, the normal DNA with 125 bp reads to 46X average
coverage, and the RNA sequenced to 248 million reads trimmed to 75 bp.

Somatic alterations. DNA reads were aligned to human reference hg19 using the
BWA tool (v0.5.7)46. Tumour-specific copy variants were identified with CNAseq
(v0.0.6)47 and regions of LOH using APOLLOH (v0.1.1)48. Structural variants were
identified using ABySS (v1.3.4)49, Trans-ABYSS (v1.4.10)50, DELLY (v0.6.1)51,
Manta (v1.0.0)52, and DeFUSE (v0.6.1)53. These calls were then combined and
validated using MAVIS (v2.1.1)42. Somatic single nucleotide mutations were
identified using Strelka (v1.0.6)54 and MutationSeq (v1.0.2)55. Somatic small
insertions and deletions were identified using Strelka and Trans-ABYSS. Variants
were annotated using Ensembl gene models (v69)56. Mutation signatures were
computed using Strelka somatic SNVs categorized into 96 mutation classes57,
subjected to a non-negative least squares deconvolution based on COSMIC
mutation signatures (https://cancer.sanger.ac.uk/cosmic/signatures_v2)43. HLA
types were determined using OptiType33.

Gene expression. RNA-Seq reads were aligned using Jaguar (v2.0.3)58, from which
expression levels in reads per kilobase per million mapped reads (RPKM) were
computed. To determine genes with outlier expression for reporting, comparison
was made to tumours of The Cancer Genome Atlas (TCGA, https://tcga-
data.nci.nih.gov/tcga), normal samples from Illumina Human Body Map 2.0, and
the Genotype-Tissue Expression (GTEx) Project (https://www.gtexportal.org),
considering percentile, number of interquartile ranges (kIQR) from the median
value, and fold-change. Similar tumour types were identified using spearman
correlation values to TCGA datasets based on a set of 1,744 genes, and also the
machine-learning based classified SCOPE59.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Disease Ontology data used in this study are available from the github repository
(v2020-06-18) [https://github.com/DiseaseOntology/HumanDiseaseOntology/blob/
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v2020-06-18/src/ontology/releases/2020-06-18/doid.json]. The FDA SRS data used in
this study are available from the FDA downloads page (March 27 2020 release)
[https://fdasis.nlm.nih.gov/srs/download/srs/UNIIs_20200327.zip]. The DrugBank
data used in this study are available from the DrugBank releases page (v5.1.8)
[https://go.drugbank.com/releases/5-1-8/downloads/all-full-database]. The NCIt data
used in this study are available from the NCIt ftp downloads page (20.06e)
[https://evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive/2020/20.06e_Release/
Thesaurus.FLAT.zip]. The ChEMBL data used in this study are available
from the ChEMBL FTP downloads page [https://doi.org/10.6019/
CHEMBL.database.27]. The OncoTree data used in this study are available from the
OncoTree API (oncotree_2020_04_01) [http://oncotree.mskcc.org/api/tumorTypes?
version=oncotree_2020_04_01]. The clinical trials data used in this study are
available from ClinicalTrials.gov [https://clinicaltrials.gov/AllPublicXML.zip]. The
CIViC data used in this study is available from the CIViC API [https://civicdb.org/
api]. The OncoKB data are available under restricted access due to licensing
requirements, access can be obtained by registering for a license of the OncoKB data
[https://www.oncokb.org]. The CGI data used in this study is available from the CGI
webpage [https://www.cancergenomeinterpreter.org/data/cgi_biomarkers_latest.zip].
The COSMIC data used in this study is available from the file downloads page of the
COSMIC website (v92) [https://cancer.sanger.ac.uk/cosmic/file_download/GRCh38/
cosmic/v92/CosmicResistanceMutations.tsv.gz]. The DoCM data used in this study is
available from the DoCM API [http://docm.info/api/v1/variants]. TCGA PanCancer
Atlas Studies data was accessed and downloaded from cBioportal.org [http://
www.cbioportal.org/datasets]. A full list of sample accession numbers is provided in
Supplementary Data 1. The Genomic and transcriptomic datasets for the
cholangiocarcinoma case study have been previously deposited and are available in
the European Genome-phenome Archive under accession number
EGAD00001002623. The report for this data is available via the PORI demo
(0bdec40b-04d7-4264-aa3f-7ddb4cbeebf5) [https://bcgsc.github.io/pori/demo]. The
GTEx datasets used for the cholangiocarcinoma case analyses described in this
manuscript were obtained from dbGaP through accession number phs000424.v6.p1
and TCGA data for this case were derived from RNA-Seq gene expression data now
available through the Genomic Data Commons Data Portal (https://
portal.gdc.cancer.gov/), project names starting with “TCGA-“.The Illumina human
body map (2.0) data used for this case is available from the Gene Expression Omnibus
under accession number GSE30611. Source data are provided with this paper.

Code availability
The user manual of PORI can be found at https://bcgsc.github.io/pori. Implementation
and peer review details of code for PORI can be found in the related repositories60–70

(Supplementary Table 4) which are summarized in the user documentation for
convenience at https://bcgsc.github.io/pori/repos. The central repository
[https://github.com/bcgsc/pori] is the access point for those wishing to install their own
instance of PORI or update the user documentation. Code for the various components
of PORI is organized across several repositories. GraphKB consists of an API
[https://github.com/bcgsc/pori_graphkb_api], a web client [https://github.com/bcgsc/
pori_graphkb_client], data loaders [https://github.com/bcgsc/pori_graphkb_loader],
and shared modules between them [https://github.com/bcgsc/pori_graphkb_parser,
https://github.com/bcgsc/pori_graphkb_schema]. IPR consists of an API
[https://github.com/bcgsc/pori_ipr_api] and a web client [https://github.com/bcgsc/
pori_ipr_client]. Users with access to an existing PORI instance, aiming to incorporate
PORI into their own python scripts, can find the code for the python adapters in the
following repositories: GraphKB [https://github.com/bcgsc/pori_graphkb_python], and
IPR [https://github.com/bcgsc/pori_ipr_python], cBioportal reports [https://
github.com/bcgsc/pori_cbioportal].

Received: 8 September 2021; Accepted: 14 January 2022;

References
1. Good, B. M., Ainscough, B. J., McMichael, J. F., Su, A. I. & Griffith, O. L.

Organizing knowledge to enable personalization of medicine in cancer.
Genome Biol. 15, 438 (2014).

2. Mardis, E. R. The 1,000 genome, the 100,000 analysis? Genome Med 2, 84
(2010).

3. Chakravarty, D. et al. OncoKB: A Precision Oncology Knowledge Base. JCO
Precis Oncol 2017, PO.17.00011 (2017).

4. Griffith, M. et al. CIViC is a community knowledgebase for expert
crowdsourcing the clinical interpretation of variants in cancer. Nat. Genet. 49,
170–174 (2017).

5. Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and
clinical relevance of tumor alterations. Genome Med 10, 25 (2018).

6. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer.
Nucleic Acids Res 47, D941–D947 (2019).

7. Patterson, S. E. et al. The clinical trial landscape in oncology and connectivity
of somatic mutational profiles to targeted therapies. Hum. Genomics 10, 4
(2016).

8. Huang, L. et al. The cancer precision medicine knowledge base for structured
clinical-grade mutations and interpretations. J. Am. Med. Inform. Assoc. 24,
513–519 (2017).

9. Taylor, A. D., Micheel, C. M., Anderson, I. A., Levy, M. A. & Lovly, C. M. The
path(way) less traveled: a pathway-oriented approach to providing
information about precision cancer medicine on my cancer genome. Transl.
Oncol. 9, 163–165 (2016).

10. Dumbrava, E. I. & Meric-Bernstam, F. Personalized cancer therapy-leveraging
a knowledge base for clinical decision-making. Cold Spring Harb Mol Case
Stud 4, a001578 (2018).

11. Damodaran, S. et al. Cancer driver log (CanDL): catalog of potentially
actionable cancer mutations. J. Mol. Diagn. 17, 554–559 (2015).

12. Wagner, A. H. et al. A harmonized meta-knowledgebase of clinical
interpretations of somatic genomic variants in cancer. Nat. Genet. 52, 448–457
(2020).

13. Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via
the Xena platform. Nat. Biotechnol. 38, 675–678 (2020).

14. Zhou, X. et al. Exploration of coding and non-coding variants in cancer using
GenomePaint. Cancer Cell 39, 83–95.e4 (2021).

15. Perakis, S. O. et al. Comparison of three commercial decision support
platforms for matching of next-generation sequencing results with therapies in
patients with cancer. ESMO Open 5, e000872 (2020).

16. Katsoulakis, E., Duffy, J. E., Hintze, B., Spector, N. L. & Kelley, M. J.
Comparison of annotation services for next-generation sequencing in a
large-scale precision oncology program. JCO Precis Oncol 4, PO.19.00118
(2020).

17. Meißner, T., Fisch, K. M., Gioia, L. & Su, A. I. OncoRep: an n-of-1 reporting
tool to support genome-guided treatment for breast cancer patients using
RNA-sequencing. BMC Med. Genomics 8, 24 (2015).

18. Nakken, S. et al. Personal Cancer Genome Reporter: variant interpretation
report for precision oncology. Bioinformatics 34, 1778–1780 (2018).

19. Gray, S. W. et al. Interactive or static reports to guide clinical
interpretation of cancer genomics. J. Am. Med. Inform. Assoc. 25, 458–464
(2018).

20. Kaplan, B. Seeing through health information technology: the need for
transparency in software, algorithms, data privacy, and regulation*. J Law
Biosci 7, lsaa062 (2020).

21. Quackenbush, J. Open-source software accelerates bioinformatics. Genome
Biol. 4, 336 (2003).

22. Corbett, R. D. et al. A distributed whole genome sequencing benchmark study.
Front. Genet. 11, 68 (2020).

23. Laskin, J. et al. Lessons learned from the application of whole-genome analysis
to the treatment of patients with advanced cancers. Cold Spring Harb. Mol.
Case Stud. 1, a000570 (2015).

24. Braschi, B. et al. Genenames.org: the HGNC and VGNC resources in 2019.
Nucleic Acids Res 47, D786–D792 (2019).

25. Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).
26. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current

status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44,
D733–D745 (2016).

27. Schriml, L. M. et al. Human disease ontology 2018 update: classification,
content and workflow expansion. Nucleic Acids Res 47, D955–D962 (2019).

28. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database
for 2018. Nucleic Acids Res 46, D1074–D1082 (2018).

29. Gaulton, A. et al. The ChEMBL database in 2017. Nucleic Acids Res 45,
D945–D954 (2017).

30. Zhang, H., Klareskog, L., Matussek, A., Pfister, S. M. & Benson, M. Translating
genomic medicine to the clinic: challenges and opportunities. Genome Med
11, 9 (2019).

31. Newman, A. M. et al. Robust enumeration of cell subsets from tissue
expression profiles. Nat. Methods 12, 453–457 (2015).

32. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity
profiling. Nat. Methods 12, 380–381 (2015).

33. Szolek, A. et al. OptiType: precision HLA typing from next-generation
sequencing data. Bioinformatics 30, 3310–3316 (2014).

34. Mangul, S. et al. Challenges and recommendations to improve the
installability and archival stability of omics computational tools. PLoS Biol. 17,
e3000333 (2019).

35. Pleasance, E. et al. Pan-cancer analysis of advanced patient tumors reveals
interactions between therapy and genomic landscapes. Nat. Cancer 1, 452–468
(2020).

36. Ainscough, B. J. et al. DoCM: a database of curated mutations in cancer. Nat.
Methods 13, 806–807 (2016).

37. Nayak, A. Type of NOSQL databases and its comparison with relational
databases. Int J of App Information Syst. 5, 16–19 (2013).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28348-y

10 NATURE COMMUNICATIONS |          (2022) 13:756 | https://doi.org/10.1038/s41467-022-28348-y | www.nature.com/naturecommunications

https://github.com/DiseaseOntology/HumanDiseaseOntology/blob/v2020-06-18/src/ontology/releases/2020-06-18/doid.json
https://fdasis.nlm.nih.gov/srs/download/srs/UNIIs_20200327.zip
https://go.drugbank.com/releases/5-1-8/downloads/all-full-database
https://evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive/2020/20.06e_Release/Thesaurus.FLAT.zip
https://evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive/2020/20.06e_Release/Thesaurus.FLAT.zip
https://doi.org/10.6019/CHEMBL.database.27
https://doi.org/10.6019/CHEMBL.database.27
http://oncotree.mskcc.org/api/tumorTypes?version=oncotree_2020_04_01
http://oncotree.mskcc.org/api/tumorTypes?version=oncotree_2020_04_01
https://clinicaltrials.gov/AllPublicXML.zip
https://civicdb.org/api
https://civicdb.org/api
https://www.oncokb.org
https://www.cancergenomeinterpreter.org/data/cgi_biomarkers_latest.zip
https://cancer.sanger.ac.uk/cosmic/file_download/GRCh38/cosmic/v92/CosmicResistanceMutations.tsv.gz
https://cancer.sanger.ac.uk/cosmic/file_download/GRCh38/cosmic/v92/CosmicResistanceMutations.tsv.gz
http://docm.info/api/v1/variants
http://www.cbioportal.org/datasets
http://www.cbioportal.org/datasets
https://ega-archive.org/datasets/EGAD00001002623
https://bcgsc.github.io/pori/demo
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v6.p1
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30611
https://bcgsc.github.io/pori
https://bcgsc.github.io/pori/repos
https://github.com/bcgsc/pori
https://github.com/bcgsc/pori_graphkb_api
https://github.com/bcgsc/pori_graphkb_client
https://github.com/bcgsc/pori_graphkb_client
https://github.com/bcgsc/pori_graphkb_loader
https://github.com/bcgsc/pori_graphkb_parser
https://github.com/bcgsc/pori_graphkb_schema
https://github.com/bcgsc/pori_ipr_api
https://github.com/bcgsc/pori_ipr_client
https://github.com/bcgsc/pori_ipr_client
https://github.com/bcgsc/pori_graphkb_python
https://github.com/bcgsc/pori_ipr_python
https://github.com/bcgsc/pori_cbioportal
https://github.com/bcgsc/pori_cbioportal
www.nature.com/naturecommunications


38. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification
of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e6 (2018).

39. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci. Signal. 6, l1 (2013).

40. Cerami, E. et al. The cBio cancer genomics portal: an open platform for
exploring multidimensional cancer genomics data. Cancer Disco. 2, 401–404
(2012).

41. Jones, M. R. et al. Successful targeting of the NRG1 pathway indicates novel
treatment strategy for metastatic cancer. Ann. Oncol. 28, 3092–3097 (2017).

42. Reisle, C. et al. MAVIS: merging, annotation, validation, and illustration of
structural variants. Bioinformatics 35, 515–517 (2019).

43. Alexandrov, L. B. et al. The repertoire of mutational signatures in human
cancer. Nature 578, 94–101 (2020).

44. Zhou, N. et al. Concordance study between ibm watson for oncology and clinical
practice for patients with cancer in China. Oncologist 24, 812–819 (2019).

45. Li, M. M. et al. Standards and guidelines for the interpretation and reporting
of sequence variants in cancer: a joint consensus recommendation of the
Association for Molecular Pathology, American Society of Clinical Oncology,
and College of American Pathologists. J. Mol. Diagn. 19, 4–23 (2017).

46. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

47. Jones, S. J. et al. Evolution of an adenocarcinoma in response to selection by
targeted kinase inhibitors. Genome Biol. 11, R82 (2010).

48. Ha, G. et al. Integrative analysis of genome-wide loss of heterozygosity and
monoallelic expression at nucleotide resolution reveals disrupted pathways in
triple-negative breast cancer. Genome Res. 22, 1995–2007 (2012).

49. Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat.
Methods 7, 909–912 (2010).

50. Birol, I. et al. De novo transcriptome assembly with ABySS. Bioinformatics 25,
2872–2877 (2009).

51. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end
and split-read analysis. Bioinformatics 28, i333–i339 (2012).

52. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline
and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

53. McPherson, A. et al. deFuse: an algorithm for gene fusion discovery in tumor
RNA-Seq data. PLoS Comput. Biol. 7, e1001138 (2011).

54. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from
sequenced tumor–normal sample pairs. Bioinformatics 28, 1811–1817 (2012).

55. Ding, J. et al. Feature-based classifiers for somatic mutation detection in
tumour–normal paired sequencing data. Bioinformatics 28, 167–175 (2011).

56. Flicek, P. et al. Ensembl 2014. Nucleic Acids Res 42, D749–D755 (2014).
57. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer.

Nature 500, 415–421 (2013).
58. Butterfield, Y. S. et al. JAGuaR: junction alignments to genome for RNA-seq

reads. PLoS One 9, e102398 (2014).
59. Grewal, J. K. et al. Application of a neural network whole transcriptome–based

pan-cancer method for diagnosis of primary and metastatic cancers. JAMA
Netw. Open 2, e192597–e192597 (2019).

60. Reisle, C., Davies, A. & Reisle, A. A Platform for Oncogenomic Reporting and
Interpretation, bcgsc/pori. (2021). https://doi.org/10.5281/zenodo.5728141

61. Reisle, C. A Platform for Oncogenomic Reporting and Interpretation, bcgsc/
pori_cbioportal. (2021). https://doi.org/10.5281/zenodo.5730702

62. Reisle, C., Muhammadzadeh, A. & Pellegrini, B. A Platform for Oncogenomic
Reporting and Interpretation, bcgsc/pori_graphkb_api. (2021). https://doi.org/
10.5281/zenodo.5730582

63. Reisle, C., Beckie, I., Pham, D., Li, J. & Davies, A. A Platform for Oncogenomic
Reporting and Interpretation, bcgsc/pori_graphkb_client. (2021). https://
doi.org/10.5281/zenodo.5730456

64. Reisle, C., Muhammadzadeh, A. & Grisdale, C. J. A Platform for Oncogenomic
Reporting and Interpretation, bcgsc/pori_graphkb_loader. (2021). https://
doi.org/10.5281/zenodo.5737760

65. Reisle, C. A Platform for Oncogenomic Reporting and Interpretation, bcgsc/
pori_graphkb_parser. (2021). https://doi.org/10.5281/zenodo.5730403

66. Reisle, C. A Platform for Oncogenomic Reporting and Interpretation, bcgsc/
pori_graphkb_python. (2021). https://doi.org/10.5281/zenodo.5730527

67. Reisle, C. A Platform for Oncogenomic Reporting and Interpretation, bcgsc/
pori_graphkb_schema. (2021). https://doi.org/10.5281/zenodo.5730412

68. Pellegrini, B. et al. A Platform for Oncogenomic Reporting and Interpretation,
bcgsc/pori_ipr_api. (2021). https://doi.org/10.5281/zenodo.5728334

69. Davies, A. et al. A Platform for Oncogenomic Reporting and Interpretation,
bcgsc/pori_ipr_client. (2021). https://doi.org/10.5281/zenodo.5728425

70. Reisle, C., Bleile, D. W. & Douglas, M. A Platform for Oncogenomic Reporting
and Interpretation, bcgsc/pori_ipr_python. (2021). https://doi.org/10.5281/
zenodo.5730677

Acknowledgements
This work would not be possible without the participation of our patients and families,
the POG team, the GSC platform, and the generous support of the BC Cancer Foun-
dation and Genome British Columbia (project B20POG). We also acknowledge con-
tributions towards equipment and infrastructure from Genome Canada and Genome BC
(projects 202SEQ, 212SEQ, 262SEQ, 12002), Canada Foundation for Innovation (pro-
jects 20070, 30981, 30198, 33408 and 35444), the BC Knowledge Development Fund, and
the Canada Research Chairs program to SJMJ. The results published here are in part
based upon data generated by the following projects and obtained from dbGaP (http://
www.ncbi.nlm.nih.gov/gap): The Cancer Genome Atlas managed by the NCI and
NHGRI (http://cancergenome.nih.gov); Genotype-Tissue Expression (GTEx) Project,
supported by the Common Fund of the Office of the Director of the National Institutes of
Health (https://commonfund.nih.gov/GTEx).

Author contributions
C.R. led this work. L.M.W, E.P., K.L.M, E.C., M.R.J., Y.M., M.B., J.M.T.N, A.F., T.M.,
D.J.R., S.Y., and J.Laskin contributed to the conception and refinement of the user
interface. M.A.M., and S.J.M.J. directed the project. C.R., A.D., B.P., D.W.B., I.B., D.P.,
R.M.P., A.M., B.M.P., J.Li, R.S., H.W., L.B., A.R., M.D., E.L., and C.J.G. contributed to the
development of the platform. C.R., A.D., and M.K. designed figures and graphics. All
authors reviewed and approved the final manuscript.

Competing interests
Dr. Stephen Yip has received funding as a member of scientific advisory boards of
Amgen, AstraZeneca, Bayer, Norvatis, and Roche. All other authors declare no com-
peting interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-28348-y.

Correspondence and requests for materials should be addressed to Steven J. M. Jones.

Peer review information Nature Communications thanks other anonymous reviewer(s)
for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28348-y ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:756 | https://doi.org/10.1038/s41467-022-28348-y | www.nature.com/naturecommunications 11

https://doi.org/10.5281/zenodo.5728141
https://doi.org/10.5281/zenodo.5730702
https://doi.org/10.5281/zenodo.5730582
https://doi.org/10.5281/zenodo.5730582
https://doi.org/10.5281/zenodo.5730456
https://doi.org/10.5281/zenodo.5730456
https://doi.org/10.5281/zenodo.5737760
https://doi.org/10.5281/zenodo.5737760
https://doi.org/10.5281/zenodo.5730403
https://doi.org/10.5281/zenodo.5730527
https://doi.org/10.5281/zenodo.5730412
https://doi.org/10.5281/zenodo.5728334
https://doi.org/10.5281/zenodo.5728425
https://doi.org/10.5281/zenodo.5730677
https://doi.org/10.5281/zenodo.5730677
http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
http://cancergenome.nih.gov
https://commonfund.nih.gov/GTEx
https://doi.org/10.1038/s41467-022-28348-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	A platform for oncogenomic reporting and interpretation
	Results
	Flexible open source reporting with PORI
	GraphKB improves concordance of knowledge base sources
	Integrating multiple overlapping ontologies improves ability to incorporate external clinical resources
	Application of PORI using external data demonstrates the benefit of integration of multiple data types
	PORI identifies therapeutically relevant alterations in a cholangiocarcinoma patient

	Discussion
	Methods
	GraphKB Transformation of sources for Knowledge Base Comparison
	Import into GraphKB
	Processing of resources for ontology term name comparisons
	ClinicalTrials.gov clinical trials
	NCIt
	DrugBank
	FDA SRS
	Disease ontology
	ChEMBL
	Processing of TCGA data
	AMP tier I filter
	Diagnosis match filter
	Position specific filter
	Direct match filter
	Sequencing and analysis of the cholangiocarcinoma case
	Tumour sampling, library construction and sequencing
	Somatic alterations
	Gene expression

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




