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Coordinated hippocampal-thalamic-cortical
communication crucial for engram dynamics
underneath systems consolidation
Douglas Feitosa Tomé 1, Sadra Sadeh 1 & Claudia Clopath 1✉

Systems consolidation refers to the time-dependent reorganization of memory representa-

tions or engrams across brain regions. Despite recent advancements in unravelling this

process, the exact mechanisms behind engram dynamics and the role of associated pathways

remain largely unknown. Here we propose a biologically-plausible computational model to

address this knowledge gap. By coordinating synaptic plasticity timescales and incorporating

a hippocampus-thalamus-cortex circuit, our model is able to couple engram reactivations

across these regions and thereby reproduce key dynamics of cortical and hippocampal

engram cells along with their interdependencies. Decoupling hippocampal-thalamic-cortical

activity disrupts systems consolidation. Critically, our model yields testable predictions

regarding hippocampal and thalamic engram cells, inhibitory engrams, thalamic inhibitory

input, and the effect of thalamocortical synaptic coupling on retrograde amnesia induced by

hippocampal lesions. Overall, our results suggest that systems consolidation emerges from

coupled reactivations of engram cells in distributed brain regions enabled by coordinated

synaptic plasticity timescales in multisynaptic subcortical-cortical circuits.
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P ioneering hippocampal lesion studies1–3 have motivated an
ever-growing body of lesion experiments4,5 with a common
goal of understanding the role of hippocampus (HPC) and

neocortex in systems consolidation of memory. In turn, this
spawned many theories of this process but with widely different
views concerning its underlying mechanisms and properties.
These discrepancies can be mainly attributed to seemingly con-
flicting reports in the retrograde amnesia literature4,5. Specifically,
retrograde amnesia induced by hippocampal damage has been
reported as temporally-graded (i.e., recent memories are lost but
remote memories are spared following hippocampal lesion), flat
(i.e., recent and remote memories are disrupted by hippocampal
lesion), or absent (i.e., recent and remote memories are preserved
post hippocampal lesion). In light of these experimental findings,
some systems consolidation theories posited that HPC is essential
for recent but not for remote memory recall6–16 while others have
proposed that HPC is either always necessary for recall4,17–19 or
required for recall depending on the circumstances of encoding
and retrieval20–29. Despite their differences, these theories share
the view that systems consolidation relies on interactions between
HPC and neocortex. Surprisingly, it has been recently demon-
strated that thalamic spindles have a causal role in systems
consolidation by coupling hippocampal, thalamic, and cortical
oscillations30. Therefore, current theories of systems consolida-
tion fail to provide a unifying framework that reconciles the
available experimental data.

Recent advances in experimental technologies have the potential
to clarify the nature and dynamics of systems consolidation by
enabling the identification and manipulation of engrams – more
specifically of engram cells31. These cells are defined as a set of
neurons that become active in response to learning, undergo
enduring changes as a result of learning, and are able to be reac-
tivated when presented part of the original stimuli resulting in
memory recall32. Adopting this definition, a landmark contextual
fear conditioning (CFC) study found that engram cells in medial
prefrontal cortex (CTX) are initially generated in a silent state (i.e.,
cannot be reactivated from a partial cue) but over time gradually
become active (i.e., can be reactivated from a partial cue)33. In
contrast, engram cells in HPC are active following learning but
eventually turn silent. The silent-to-active transition in CTX
engram cells was named maturation and the active-to-silent switch
in HPC engrams was termed de-maturation. Both engram
dynamics are associated with systems consolidation of memory.
Moreover, the output of HPC engram cells after learning was found
to be crucial for the subsequent maturation of CTX engrams. It has
been proposed that the observed dynamics of engrams in CTX and
HPC33 are “mirrored” in different types of episodic memory5.
Nevertheless, the exact neural mechanisms underlying these engram
dynamics and the role of associated circuits remain unknown and,
consequently, the ability of recent engram findings to advance our
knowledge towards a consistent view of systems consolidation is
hindered. This is at least in part due to existing theoretical and
computational models lagging behind the groundbreaking
advancements in engram cell research enabled by new technologies
developed in the past decade31,32,34,35. In particular, previous
computational studies have employed abstract neuronal models that
are intended to capture high-level properties of systems con-
solidation (e.g., recent memory recall relies on HPC) but are unable
to reproduce engram cell-level data produced by recent
experiments9,11,25,36–40.

Here, our goal is to provide insights into engram cell dynamics
and associated pathways using computational modeling. To that
end, we simulate systems consolidation in an episodic memory
task using a multi-region spiking recurrent neural network model
subject to biologically-plausible plasticity mechanisms acting on
different timescales in distinct brain regions. Contrary to current

theories4,6–29, our results show that direct, monosynaptic
HPC→ CTX projections cannot reproduce the known inter-
dependencies between engrams in these regions33. However, a
network with hippocampal-thalamic-cortical communication is
able to overcome this limitation. Specifically, after verifying that
our model with three-region communication displays engram cell
maturation in CTX and de-maturation in HPC, we then show
that HPC engram cells as well as coupled engram reactivations
across brain regions are essential for proper engram dynamics in
line with previous experiments30,33. Our modeling results also
yield the following experimentally-testable predictions: engram
cells in mediodorsal thalamus (THL) are active in recent and
remote recall and are crucial for the maturation of engram cells in
CTX; engram cells in HPC and THL are crucial for coupling
engram reactivations across HPC, THL, and CTX in consolida-
tion periods; inhibitory engram cells have distinct region-specific
dynamics with coupled reactivations; inhibitory input to THL is
critical for CTX engram maturation; and THL→ CTX synaptic
coupling is predictive of CTX engram dynamics and the retro-
grade amnesia pattern induced by HPC damage—thus providing
a unifying mechanistic account for reconciliation of HPC lesion
studies. Altogether, our results suggest that coordinated
hippocampal-thalamic-cortical communication underlies engram
dynamics subserving systems consolidation.

Results
Synaptic plasticity timescales drive engram cell dynamics. To
understand the mechanisms underlying engram cell dynamics, we
start by examining the effects of synaptic plasticity timescales on the
initial state and subsequent evolution of engram cells. We use
spiking neural network models that consist of a stimulus population
(STIM) that projects to both HPC and CTX (Fig. 1a). Feedforward
and recurrent synapses are initialized at random with excitatory
synapses onto excitatory neurons displaying long-term plasticity and
inhibitory synapses onto excitatory neurons exhibiting inhibitory
plasticity. Long-term excitatory plasticity is composed of a combi-
nation of Hebbian and non-Hebbian forms of plasticity41. The
Hebbian term takes the form of triplet spike-timing-dependent
plasticity (STDP)42 while the non-Hebbian terms include hetero-
synaptic plasticity43 and transmitter-induced plasticity44. Impor-
tantly, the heterosynaptic plasticity term incorporates synaptic
consolidation dynamics41. Inhibitory synaptic plasticity consists of a
network activity-based STDP term41 whose primary goal is to reg-
ulate firing rate levels45 (for a detailed description of the model,
see Methods). One of four non-overlapping random stimuli is
presented to the network at a time either for training or testing
(Fig. 1a), and the network is subject to an episodic memory task to
investigate engram dynamics. Following a brief burn-in period to
stabilize network activity, the network simulation consists of three
consecutive phases: training, consolidation, and testing (Fig. 1b). In
the training phase, the complete stimuli (i.e., full patterns) are ran-
domly presented to the network. Next, no stimulus is presented to
the network during the consolidation phase and, consequently, the
network is allowed to evolve spontaneously. At different points
throughout the consolidation phase, the network proceeds to the
final testing phase where partial cues of the original stimuli are
presented and the ability of HPC and CTX to recall the encoded
memory is evaluated.

Engram cells are formed in both HPC and CTX at the end of
training (Fig. 1c). These cells are identified via the average
stimulus-evoked firing rate of neurons (see Methods). We then
compute the mean recurrent excitatory weights between engram
cells encoding the same stimulus (i.e., within-ensemble) and
between engram cells representing different stimuli (i.e., inter-
ensemble). We plot the computed weights in a matrix format
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where within-ensemble mean weights are located in the diagonal
while inter-ensemble mean weights are positioned off-diagonal.
The resulting block diagonal structure (i.e., strong diagonal and
weak off-diagonal mean weights) of the recurrent excitatory
synapses in HPC and CTX shows that engram cells in these
regions have encoded the four stimuli by the end of the training
phase. After 12 h of consolidation, the diagonal structure is
preserved in both regions. However, feedforward synapses
projecting to HPC and CTX evolve in opposite ways in the
consolidation phase. Specifically, while the cumulative distribu-
tion of the total feedforward synaptic weights to individual
engram cells in HPC shows that there is a decrease in
STIM→HPC weights, the reverse was observed in CTX. These
changes in STIM feedforward weights are consistent with
experimental findings which showed that changes in the dendritic
spine density of engram cells over time are region-specific with
cells in HPC experiencing a decrease but neurons in CTX
undergoing an increase in spine density33. Furthermore, we plot
the population activity of engram cells encoding each stimulus
(i.e., average firing rate of engram cells without smoothing or

convolution, see Methods) and we measure the degree of coupling
between engrams in two different regions in our network by
defining lagmax as the lag that maximizes the correlation between
the population activity of engram cells in one region and the
population activity of engram cells in another region (see Meth-
ods). Although engrams are spontaneously reactivated during the
consolidation period in the two regions of the model (Fig. 1c),
engram reactivations are not coupled as evidenced by engrams
encoding the same stimulus in HPC and CTX having jlagmaxj
between 132.56 and 940.17 s. (Supplementary Fig. 1). This was
expected given that there are no connections between HPC and
CTX (Fig. 1a) and, hence, they behave independently in this
network configuration. In addition, the timescale and firing rate
of engram reactivations in the model are set by the rate of
transmitter-induced plasticity and the time constants of spike-
triggered adaptation (compare Fig. 1c to Supplementary Fig. 2).
Critically, the differences in engram dynamics in HPC and CTX
are a direct result of their diverging synaptic plasticity timescales:
learning rate (η) and synaptic consolidation time constant (τcons)
are higher in HPC relative to CTX.

Fig. 1 Divergent synaptic plasticity timescales lead to opposite engram cell dynamics. a Schematic of network model with Stimulus (STIM),
Hippocampus (HPC), and Cortex (CTX) (top) and stimuli presented in the training phase with their respective partial cues used in the testing phase
(bottom). In STIM, training stimuli, and testing stimuli, light gray indicates active neurons firing above baseline whereas the remaining background color
(i.e., black in STIM and red/blue/green/purple in training and testing stimuli) indicates neurons at baseline firing rate. Each background color in training
and testing stimuli denotes a distinct non-overlapping stimulus and its respective partial cue. b Schematic of simulation protocol. c From left to right: mean
weight strength of recurrent excitatory synapses onto excitatory neurons at the end of the training phase clustered according to engram cell preference
(i.e., only mean weights between engram cells), mean weight strength of recurrent excitatory synapses onto excitatory neurons after 12 h of consolidation
clustered according to engram cell preference (i.e., only mean weights between engram cells), cumulative distribution of the total feedforward synaptic
weights from STIM onto individual engram cells, and population activity of engram cells in the consolidation phase (each color designates the engram cells
encoding the respective stimulus in (a); dashed line indicates threshold ζthr= 10 Hz for engram cell activation). Top: CTX. Bottom: HPC. Two-sided
Kolmogorov–Smirnov test between the distribution of recurrent excitatory weights among engram cells encoding the same stimulus (i.e., diagonal) and
that of recurrent excitatory weights among engram cells encoding different stimuli (i.e., off-diagonal) at the end of training (CTX: p-value= 0; HPC:
p-value= 0) and at the end of consolidation (CTX: p-value= 0; HPC: p-value= 0). Two-sided Kolmogorov–Smirnov test between the distribution of
feedforward stimulus weights onto excitatory engram cells at consolidation time= 0 and 12 h (CTX: p-value= 3.387302 × 10−182; HPC: p-value= 0).
d–f Memory recall in the testing phase as a function of consolidation time. n= 10 trials. Mean values and 90% confidence intervals shown. d Recall
accuracy. Two-sided Mann–Whitney U test between accuracy in HPC and CTX at consolidation time= 0 (p-value= 1.004910 × 10−4) and 12 h
(p-value= 1.333409 × 10−4). e Recall true positive rate. Two-sided Mann–Whitney U test between true positive rate in HPC and CTX at consolidation
time= 0 (p-value= 1.004910 × 10−4) and 12 h (p-value= 1.277653 × 10−4). f Recall false positive rate. Two-sided Mann–Whitney U test between false
positive rate in HPC and CTX at consolidation time= 0 (p-value= 1.407747 × 10−4) and 12 h (p-value= 2.194140 × 10−4). *p-value < 0.05 (see Methods).
c–f Color as in (a).
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We next evaluate the ability of the network to retrieve
memories from partial cues by computing three memory recall
metrics. First, we compute recall true positive rate (t.p.r.) as the
fraction of cue presentations in the testing phase that elicit
population responses of the corresponding engram cells above the
threshold ζthr= 10 Hz. Second, we measure recall false positive
rate (f.p.r.) as the average fraction of engram cell ensembles
encoding stimuli different than the one corresponding to a partial
cue whose population responses were nonetheless above the
threshold ζthr= 10 Hz. Third, we define recall accuracy as the
fraction of cue presentations that only elicited a population
response above the threshold ζthr= 10 Hz for the engram cells
encoding the respective stimulus (for further details on the
previous recall metrics, see Methods). The resulting memory
recall curves show that the model exhibits de-maturation and
maturation of engram cells in HPC and CTX, respectively
(Fig. 1d–f), in line with reported experiments33. At the end of
training (i.e., 0 h of consolidation), t.p.r. is nearly 100% and f.p.r.
is virtually 0% in HPC, leading to a corresponding recall accuracy
of almost 100%. In CTX, however, t.p.r. is approximately 40% and
f.p.r. is around 20% with a resulting accuracy of ~40% at the end
of encoding. Over the course of the consolidation phase, though,
the recall metrics reverse: t.p.r. and accuracy decrease in HPC but
they increase in CTX. Importantly, the changes in recall accuracy
are reflected in the changes in t.p.r. in both regions. This means
that engram cells in HPC are initially reactivated in response to
partial cues but over time become unable to do so while those in
CTX cannot be reactivated by cues immediately after training but
acquire this ability over the course of consolidation. Conse-
quently, memory recall switches from HPC to CTX with systems
consolidation. These engram dynamics are a direct result of
region-specific changes in STIM feedforward weights: depression
of STIM→HPC synapses and potentiation of STIM→ CTX
projections (Fig. 1c). Note that (I) HPC engram cells are able to
retain their recurrent excitatory structure despite turning silent
because of engram reactivations during consolidation (Fig. 1c)
and (II) CTX engram cells already have structured recurrent
excitatory connectivity at the end of encoding when they are still
silent and this enables engram reactivations throughout con-
solidation (Fig. 1c). Given the block diagonal structure of the
recurrent excitatory weights of silent engram cells in both HPC
and CTX, our model suggests that optogenetically stimulating
silent engrams in either region triggers memory recall. Interest-
ingly, previous experiments have demonstrated that this is the
case33. Altogether, our modeling results suggest that variability in
synaptic plasticity timescales underlies the observed divergence in
engram dynamics across distinct regions of the brain.

We also perform additional analyses to gain further mechan-
istic insights into the engram dynamics in our model. First, we
train our network on overlapping stimuli and find that it exhibits
engram dynamics analogous to our original results with non-
overlapping stimuli (Supplementary Fig. 3). Specifically, we train
the network on a set of random stimuli where each stimulus is
represented by a random 25% of the neurons in the stimulus
population resulting in an average overlap of 25% between
stimulus pairs (Supplementary Fig. 3a). We test memory recall
with partial cues consisting of a random 50% of the correspond-
ing full stimulus (Supplementary Fig. 3a) following a consolida-
tion phase (Supplementary Fig. 3b). Our results show that CTX
engrams undergo maturation and HPC engrams are subject to
de-maturation (Supplementary Fig. 3c) as evidenced by their
respective t.p.r. curves (Supplementary Fig. 3d) in a manner
analogous to the network trained on random non-overlapping
stimuli (Fig. 1d, e). Notably, the f.p.r. of CTX engrams with
overlapping stimuli does not settle at near-zero as it does with
non-overlapping stimuli (compare Supplementary Fig. 3e and

Fig. 1f). This leads to differences in the CTX recall accuracy curve
between the two stimulus conditions (compare Supplementary
Fig. 3c and Fig. 1d). However, engram cells in CTX are initially
silent and become active with consolidation in both cases
(compare Supplementary Fig. 3d and Fig. 1e). Therefore, our
model predicts that CTX engram maturation and HPC engram
de-maturation also underlie systems consolidation with over-
lapping training stimuli but that in this case remote memory
recall has a higher f.p.r. compared to training with non-
overlapping stimuli. This prediction could be tested in
future experiments investigating the effects of task similarity on
the consolidation dynamics of multiple engrams encoding
different tasks.

In addition, we perform ablation simulations and demonstrate
that each Hebbian and non-Hebbian form of synaptic plasticity in
our model is essential to reproduce engram dynamics observed in
experiments (Supplementary Fig. 4). Specifically, we train our
network on the original non-overlapping stimuli (Fig. 1a)
following the same simulation protocol (Fig. 1b) but blocking
the triplet STDP, heterosynaptic, and transmitter-induced forms
of plasticity one at a time and verify that this disrupts engram
dynamics in the network in each case. First, blocking triplet STDP
leads to silent engram cells in both CTX and HPC at the end of
training and after 12 h of consolidation (Supplementary Fig. 4a)
because this prevents learning recurrent excitatory weights with a
block diagonal structure (Supplementary Fig. 4b). As a result,
although engram cells in CTX and HPC initially become active
with consolidation, they eventually turn silent again due to
indiscriminate potentiation of inhibitory synapses onto engram
cells as evidenced by the t.p.r. in these regions (Supplementary
Fig. 4a). This behavior was expected since in the absence of triplet
STDP there is no Hebbian learning in the network and, hence,
potentiation of excitatory synapses is non-specific (see Eq. (10a)
in Methods). Second, blocking heterosynaptic plasticity prevents
accurate memory recall in both CTX and HPC (Supplementary
Fig. 4c). In this case, engram cells are active in both regions at the
end of training and throughout consolidation but presenting
partial cues of one stimulus leads to reactivation of the engrams
encoding all stimuli as evidenced by the 100% t.p.r. and f.p.r. in
these regions. This is a result of large and indiscriminate
potentiation of recurrent excitatory weights in both CTX and
HPC (Supplementary Fig. 4d). In turn, this effect is a
consequence of potentiation due to triplet STDP being left
unchecked in the absence of heterosynaptic plasticity (see Eq.
(10b) in Methods). Third, blocking transmitter-induced plasticity
prevents engram maturation in CTX because this disrupts
engram reactivations in this region and as a result suppresses
the potentiation of STIM→ CTX synapses that would normally
drive the maturation of CTX engram cells (Supplementary
Fig. 4e). This is consistent with previous results showing that
blocking transmitter-induced plasticity impairs engram
reactivations41. Note that in this case some engram cell ensembles
in CTX have strong inter-ensemble synaptic weights (Supple-
mentary Fig. 4f). Importantly, the previous work that proposed
combining the Hebbian and non-Hebbian forms of plasticity used
in our model also showed that each is essential for stable memory
formation and recall in a single-region spiking recurrent
network41. Furthermore, a mean-field analysis incorporating this
combination of plasticity mechanisms also supports their
essential role for stable memory41. Thus, our ablation simulations
show that each Hebbian and non-Hebbian form of plasticity in
our model is crucial to reproduce experimentally-observed
engram dynamics by impacting the evolution of engram cells in
specific ways. Lastly, we conduct a sensitivity analysis that shows
that the engram dynamics in our network are robust to changes
in E/I ratio in CTX and HPC (Supplementary Fig. 5).
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Subcortical engram cells are essential for cortical engram
maturation. Despite replicating major engram cell dynamics in
HPC and CTX, the network model in Fig. 1a cannot capture any
interdependence between these regions. Given that it has been
shown that the output of HPC engram cells after training is
crucial for the maturation of CTX engram cells33, we evaluated
whether monosynaptic projections from HPC to CTX could
reproduce this experimental finding. However, neither plastic
(Supplementary Fig. 6) nor static (Supplementary Fig. 7)
HPC→ CTX synapses can replicate both cortical engram
maturation and its reliance on hippocampal engram cells. Bidir-
ectional HPC↔ CTX synapses cannot reproduce these experi-
mental findings either (Supplementary Fig. 8). To find a solution
to this dilemma, we re-examined the brain regions that provide
monosynaptic input to engram cells in CTX. Specifically, it has
been reported that in CFC the ventral HPC (vHPC) is the only
hippocampal area that has direct projections to CTX engram
cells, but this amounts to only ~5% of their total monosynaptic
input33. This led us to hypothesize that HPC engram cells use a
multisynaptic pathway to CTX to support the maturation of its
engrams.

In order to test this hypothesis, we include THL in our model
since it simultaneously (I) receives input from HPC (via the
medial temporal lobes: entorhinal and perirhinal cortices46,47),
(II) has a large share of the monosynaptic projections to CTX
engram cells in CFC (~20%)33, (III) is essential for remote
memory recall in CFC48, and (IV) has increased activity around

hippocampal ripples coupled to spindles49—noting that the latter
have a causal role in the systems consolidation of an episodic
memory30. As a result, we expand the network with THL and set
plastic and static circular receptive fields in STIM→HPC and
STIM→ THL, respectively (Fig. 2a). We then use a different set
of stimuli for training (i.e., four non-overlapping horizontal bars)
and testing (i.e., the central 50% of each bar) (Fig. 2a, see
also Methods). In this network configuration, HPC and CTX are
readout populations but not THL on its own. This means that
memory recall from a partial cue is only considered successful if it
can be retrieved in either HPC or CTX in a manner consistent
with previous experiments33. We then set the learning rates
(ηexchpc!thl ¼ ηexcthl ¼ ηexchpc and ηexcthl!ctx ¼ ηexcctx with ηexchpc > ηexcctx )
reflecting that subcortical synapses tend to change at a faster
rate than their cortical counterparts. In line with our previous
results (Fig. 1), STIM→HPC synapses have a longer synaptic
consolidation time constant τconsstim!hpc relative to the other
excitatory projections in the network (for further details,
see Methods). Altogether, this network configuration allows us
to evaluate whether the HPC→ THL→ CTX multisynaptic
circuit can provide a pathway for HPC engram cells to support
the maturation of CTX engrams.

We then subject the three-region network (Fig. 2a) to training,
consolidation, and testing (Fig. 2b) and verify that it also exhibits
de-maturation and maturation of engram cells in HPC and CTX,
respectively (Fig. 2c). Hence, memory recall switches from HPC
to CTX with consolidation (Supplementary Figs. 9 and 10) due to
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changes in engram cell state that are reflected in changes in t.p.r.
This is consistent with previous findings33 and is a result of
region-specific plastic changes in feedforward afferent synapses:
depression of STIM→HPC projections and potentiation of
THL→ CTX synapses (Supplementary Fig. 11) in a manner
analogous to the two-region network (Fig. 1c). Additionally,
engram cells in THL are initially active and remain so throughout
the consolidation period in our simulations. Importantly,
excitatory and inhibitory plasticity are required for proper
engram dynamics (Supplementary Fig. 12).

We can also directly compare neural activation rates reported in
previous experiments to those in our model (Supplementary
Fig. 13). Specifically, previous experiments have subjected mice to
CFC in Context A (training) and subsequently either placed them
back in Context A or in a novel Context B (testing) after a delay
period had elapsed33 (Supplementary Fig. 13a, c). When mice were
placed back in Context A, the fraction of activated engram and non-
engram cells in medial prefrontal cortex did not differ in recent
recall (i.e., delay of 1 day) but cortical engram cells had a higher
activation rate in remote recall (i.e., delay of 12 days) (Supplemen-
tary Fig. 13a) whereas hippocampal engram cells had higher
activation rates than non-engram cells in recent recall but not in
remote recall (Supplementary Fig. 13c). In our model, engram and
non-engram cells in CTX and HPC displayed analogous trends
(compare Supplementary Fig. 13b–a and Supplementary Fig. 13d–c)
but in an accelerated timescale (24 h in our model vs. 12 days in
experiments, noting that this timescale in our model is subjective as
it depends on the learning rate used in simulations). This
observation indicates that cortical engram cells maturate while
hippocampal engram cells de-maturate in our model in a manner
consistent with the reported experimental findings33. We also note
that there are a few differences between our model and the reported
experimental data. First, hippocampal engram and non-engram

cells in our model exhibit comparable activation rates in remote
recall while in experiments hippocampal engram cells have a lower
activation rate than non-engram cells (compare Supplementary
Fig. 13c, d). However, hippocampal engram cells are not robustly
activated by partial cues in remote recall neither in our model nor
in the reported experiments and, hence, they become silent in both
cases. Second, engram and non-engram cells have comparable
activation rates in experiments when testing is conducted with recall
cues not present during training but in our model this is not always
the case (compare Supplementary Figs. 13a–d). This is a result of
strongly-potentiated inhibitory synapses onto engram and non-
engram cells in our model and, consequently, it reflects the near-
zero f.p.r. observed in our network (Fig. 2c). Lastly, activation rates
of active engram cells in the reported experiments range roughly
between 10 and 40% while in our model they vary from
approximately 60–80% (compare Supplementary Fig. 13a–d). The
low activation rates of active engram cells in experiments have been
hypothesized to either be a consequence of imprecise tagging of
active neurons or to reflect that engrams are dynamic with neurons
“dropping into” or “dropping out of” the engram31. In our model,
the relatively high activation rates of active engram cells reflect
pattern completion. Taken together, the previous analysis shows
that our model has engram cell dynamics consistent with previous
experiments.

In addition, we find that the engram dynamics observed in HPC,
THL, and CTX are accompanied by coupled engram reactivations
across these three regions in our model (Fig. 2c and Supplementary
Fig. 14a). Specifically, engrams encoding the same stimulus in two
different regions have jlagmaxj between 0 and 140 ms whereas
engrams encoding distinct stimuli exhibit jlagmaxj of at least
450.34 s. Therefore, engram reactivations in consolidation periods
are coordinated throughout the network in our model. In the brain,
the precise coupling of hippocampal sharp-wave ripples, thalamic

Fig. 2 Hippocampal and thalamic engram cells are crucial for the maturation of cortical engrams. a Schematic of network model with Stimulus (STIM),
Hippocampus (HPC), Thalamus (THL), and Cortex (CTX) (top) and stimuli presented in the training phase with their respective partial cues used in the
testing phase (bottom). STIM→ THL synapses are static but the remaining feedforward projections are plastic. In STIM, training stimuli, and testing
stimuli, light gray indicates active neurons firing above baseline whereas the remaining background color (i.e., black in STIM and red/blue/green/purple in
training and testing stimuli) indicates neurons at baseline firing rate. Each background color in training and testing stimuli denotes a distinct non-
overlapping stimulus and its respective partial cue. b Schematic of simulation protocol. c Memory recall in the testing phase as a function of consolidation
time (left) and population activity of engram cells in the consolidation phase (right). Recall curves (top to bottom): accuracy, true positive rate, and false
positive rate (n= 5 trials, mean values and 90% confidence intervals shown). For each recall metric, two-sided Mann–Whitney U test. Accuracy:
consolidation time= 0 (HPC vs. CTX p-value= 7.494958 × 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h
(HPC vs. CTX p-value= 1.192523 × 10−2; HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 7.290358 × 10−3). True positive rate:
consolidation time= 0 (HPC vs. CTX p-value= 7.494958 × 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h
(HPC vs. CTX p-value= 1.192523 × 10−2; HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 7.290358 × 10−3). False positive rate:
consolidation time= 0 (HPC vs. CTX p-value= 7.290358 × 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.290358 × 10−3) and 24 h
(HPC vs. CTX p-value= 0.920340; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 0.920340). Population activity of engram cells (top to
bottom): CTX, THL, and HPC (each color designates the engram cells encoding the respective stimulus in (a); dashed line indicates threshold ζthr= 10 Hz
for engram cell activation). d Same as (c) but with the output of engram cells in HPC blocked during consolidation (recall curves: n= 5 trials, mean values
and 90% confidence intervals shown). For each recall metric, two-sided Mann–Whitney U test. Accuracy: consolidation time= 0 (HPC vs. CTX p-
value= 7.494958 × 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h (HPC vs. CTX p-value= 1.192523 × 10−2;
HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 7.290358 × 10−3). True positive rate: consolidation time= 0 (HPC vs. CTX p-
value= 7.494958 × 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h (HPC vs. CTX p-value= 1.192523 × 10−2;
HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 7.290358 × 10−3). False positive rate: consolidation time= 0 (HPC vs. CTX p-
value= 7.290358 × 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.290358 × 10−3) and 24 h (HPC vs. CTX p-value= 0.920340; HPC
vs. THL p-value= 0.920340; THL vs. CTX p-value= 0.920340). e Same as (c) but with the output of engram cells in THL blocked during consolidation
(recall curves: n= 5 trials, mean values and 90% confidence intervals shown). For each recall metric, two-sided Mann–Whitney U test. Accuracy:
consolidation time= 0 (HPC vs. CTX p-value= 7.494958 × 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h
(HPC vs. CTX p-value= 0.342782; HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 7.494958 ⋅ 10−3). True positive rate: consolidation
time = 0 (HPC vs. CTX p-value= 7.494958 ⋅ 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h (HPC vs. CTX p-
value= 0.342782; HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 7.494958 × 10−3). False positive rate: consolidation time= 0 (HPC vs.
CTX p-value= 7.290358 × 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.290358 × 10−3) and 24 h (HPC vs. CTX p-value= 0.920340;
HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 0.920340). *p-value < 0.05 (see Methods). b–e Color as in (a).
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spindles, and cortical slow oscillations taking place during non-
rapid-eye-movement (NREM) sleep has been shown to have a
causal role in memory consolidation30. These cardinal rhythms are
marked by characteristic oscillations in local field potential (LFP)
that are thought to facilitate the coupling of engram reactivations
across cortical and subcortical structures50,51. Importantly, it has
been shown that memory engrams in HPC and CTX are reactivated
mostly during NREM sleep50 but the neural mechanisms through
which engram reactivations can lead to systems consolidation
remain elusive. Although our model is not designed to reproduce
the stereotypical LFP oscillations associated with NREM sleep as we
use point leaky integrate-and-fire neurons (see Methods) from
which LFPs cannot be computed directly52, our previous analysis
shows that our network exhibits coupled engram reactivations
throughout the HPC→THL→CTX circuit in line with the
purported role of coupled LFP oscillations across these regions50,51.
Critically, coupled engram reactivations in our model drive the de-
maturation of HPC engram cells and the maturation of CTX
engram cells by promoting the depression of feedforward synapses
onto HPC engrams and the potentiation of feedforward projections
onto CTX engrams over the course of consolidation (Supplemen-
tary Fig. 11). These opposing effects of engram reactivations on the
dynamics of engram cells in HPC and CTX are a consequence of
the distinct synaptic plasticity timescales in our network as
previously discussed. Furthermore, in our model the presence of
both coupled engram reactivations during consolidation and
opposite engram cell responses in HPC and CTX during recall
requires a multisynaptic circuit between HPC and CTX via THL
(compare Supplementary Figs. 14a and 1). Thus, our model
proposes neural mechanisms through which coupled engram
reactivations can subserve systems consolidation of memory.

We also examine the behavior of extensions of the HPC→
THL→ CTX circuit in Fig. 2a to gain further insights into the
functional roles of coupled engram reactivations in our model.
First, a network with two cortical regions and reentrant
connectivity exhibits analogous engram dynamics and reactiva-
tion patterns but with bidirectional multisynaptic coupling
between hippocampal and cortical regions (Supplementary
Fig. 15). It has been reported that a number of brain regions
are engaged in the encoding, consolidation, and recall of
memories33,53 and our expanded network model suggests that
coupled engram reactivations may be a generic mechanism used
to coordinate activity among multiple brain regions to support
these brain-wide mnemonic processes. Second, we probe the
ability of our two- (Fig. 1a) and three-region (Fig. 2a) networks to
support stable recall in a shared downstream readout region
(RDT). We find that the extended two-region model has
decoupled engram reactivations that disrupt recall in RDT
(Supplementary Fig. 16) while the extended three-region circuit
has coupled engram reactivations that enable stable recall in RDT
throughout consolidation (Supplementary Fig. 17). This suggests
that while the inclusion of THL as an intermediary region
between HPC and CTX increases the complexity of the circuit
underlying systems consolidation, it expands the computational
functions supported by engrams in these regions through
coordination of engram reactivations across the network.
Notably, RDT in our extended three-region model (Supplemen-
tary Fig. 17) has parallels with the basolateral amygdala (BLA) in
CFC: both receive projections from HPC and CTX and maintain
active engram cells throughout consolidation33.

We next probe the role of HPC engram cells in the maturation
of CTX engrams. To that end, we block the output of engram cells
in HPC during consolidation and subsequently test memory
recall (Fig. 2d). Although recall accuracy in CTX initially shows a
modest increase, it goes on to suffer a sharp decline and
eventually settles at nearly zero. This is reflected in the CTX t.p.r.

curve which displays the same pattern. Hence, engram cells in
HPC are crucial for the maturation of CTX engram cells in the
three-region network and are consistent with previous findings33.
Plotting the population activity of engram cells in the network
reveals that the blockage of HPC engram cells disrupts the
coupling of engram reactivations in the consolidation phase
(Fig. 2d and Supplementary Fig. 18a). Recent experiments that
tampered with the coupling of oscillations in HPC, THL, and
CTX have demonstrated that this has an adverse effect on the
systems consolidation of episodic memory30,54. Thus, our model
suggests that engram cells in HPC are essential for the maturation
of CTX engrams because they support coupling engram
reactivations across brain regions throughout consolidation
periods.

We then evaluate whether THL engram cells are also critical
for CTX engram maturation. In a manner analogous to our
previous probe of HPC engram cells, we block the output of
engram cells in THL in the consolidation phase. The resulting
memory recall curves show that THL engram cells are also crucial
for the maturation of engram cells in CTX (Fig. 2e). The CTX
recall accuracy curve in this case has a different shape though: at
first accuracy increases substantially and reaches a level similar to
the control network (Fig. 2c) before gradually declining and
finally reaching a low point after more than 20 hours of
consolidation (compare to Fig. 2d). This trend in recall accuracy
is reflected in the CTX t.p.r. and suggests that THL engram cells
are essential for stabilizing active engram cells in CTX. As
expected, blocking the output of THL engram cells does not affect
the coupling of reactivations in HPC and THL but it decouples
reactivations in HPC and CTX and in THL and CTX (Fig. 2e and
Supplementary Fig. 18b). Despite the differences in recall profile
between blocking HPC and THL engram cells, both lead to
decoupled engram reactivations in the network (Fig. 2d, e and
Supplementary Fig. 18) due to disruption of the synaptic coupling
in the HPC→ THL→ CTX circuit (Supplementary Fig. 19).
Taken together, our modeling results predict that THL engram
cells are essential for CTX engram cell maturation as they also
support the coupling of subcortical–cortical engram reactivations
in a manner similar to HPC engram cells.

Inhibitory engram cells have distinct dynamics. Engram cell
experiments have focused on excitatory neurons given that
expression of immediate early genes (IEGs) used for activity-
dependent labeling occurs predominantly in these cells35,55,56.
However, growing evidence suggests that inhibitory engram cells
co-exist with excitatory engram cells57,58. We therefore also
investigate the behavior of inhibitory neurons in our model. We
start by comparing the recall profile of inhibitory and excitatory
engram cells (Figs. 2c and 3a, respectively). The CTX recall
accuracy of both sets of engram cells increases over the con-
solidation period but this rise is reflected in a decrease in f.p.r. in
the case of inhibitory engrams while it is reflected in an increase
in t.p.r. for excitatory engrams. Effectively, CTX inhibitory
engram cells have a high t.p.r. post-training with only minor
subsequent oscillations but CTX excitatory engrams have a flat
near-zero f.p.r. throughout consolidation. Therefore, inhibitory
engram cells in CTX become stimulus-specific with consolidation
whereas excitatory engrams become active. The sharpening of the
response of CTX inhibitory engrams can be attributed to
potentiation of their inhibitory synapses onto excitatory engram
cells in the consolidation period (Fig. 3b). In addition, the recall
accuracy of THL inhibitory engram cells immediately after
training is at 100% and then quickly decays to zero in association
with a sharp uptake in f.p.r. while t.p.r. remains at 100%. This
means that THL inhibitory engrams are continuously active after
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encoding but become progressively more unspecific to stimuli with
consolidation as a result of depression of their inhibitory synapses
projecting to excitatory engrams (Fig. 3b). This is in stark contrast
to THL excitatory engrams which remain active and stimulus-
specific after training. Furthermore, excitatory and inhibitory
engram cells in HPC undergo de-maturation in a cascading
manner: excitatory engram cells encoding a given stimulus become
silent with consolidation and, consequently, the corresponding
inhibitory engram cells are no longer activated by partial cues
either. Note that de-maturation of HPC inhibitory engrams is
accompanied by potentiation of their inhibitory synapses onto
excitatory engram cells (Fig. 3b). Lastly, excitatory and inhibitory
engram cells have different composition profiles (Supplementary
Fig. 20). Overall, the dynamics of inhibitory engram cells in our
model vary by brain region.

Inhibitory engram cells in HPC, THL, and CTX also have
coupled reactivations in the consolidation phase (Fig. 3c and
Supplementary Fig. 14b). Note that reactivations of inhibitory
engrams in the three regions remain coupled despite the fact that
the activity of HPC inhibitory engrams becomes gradually lower

as consolidation progresses. Comparing the activity of excitatory
and inhibitory engram cells (Figs. 2c and 3c, respectively), we can
see that excitatory and inhibitory engram reactivations are
coupled across regions during consolidation (Supplementary
Fig. 21). The activity of inhibitory engram cells combined with
inhibitory synaptic plasticity (Fig. 3b, c) is able to tame the
activity of excitatory neurons in each individual area (Fig. 3d and
Supplementary Fig. 22) while still allowing coupled reactivations
of excitatory engram cells. Taken together, our results predict that
inhibitory engram cells have region-specific dynamics and that
reactivations of inhibitory and excitatory engrams are coupled in
consolidation periods.

Inhibitory input is crucial for cortical engram dynamics. We
probe the role of region-specific inhibitory input in the engram
dynamics throughout the network by blocking the output of
inhibitory neurons during consolidation. Specifically, we first
block the output of HPC inhibitory neurons in the consolidation
phase and this disrupts CTX engram maturation and the coupling
of engram reactivations in the HPC→ THL→ CTX circuit

Fig. 3 Dynamics of inhibitory engram cells are region-specific. a–d Analysis of engram dynamics in Fig. 2b. a Recall of inhibitory engram cells in HPC,
THL, and CTX during the testing phase as a function of consolidation time. Top to bottom: accuracy, true positive rate, and false positive rate. Color as in
Fig. 2a. n= 5 trials. Mean values and 90% confidence intervals shown. For each recall metric, two-sided Mann–Whitney U test. Accuracy: consolidation
time= 0 (HPC vs. CTX p-value= 1.166731 × 10−2; HPC vs. THL p-value= 7.491290 × 10−2; THL vs. CTX p-value= 8.968602 × 10−2) and 24 h (HPC vs.
CTX p-value= 7.290358 × 10−3; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.290358 × 10−3). True positive rate: consolidation time= 0
(HPC vs. CTX p-value= 7.200566 × 10−2; HPC vs. THL p-value= 0.920340; THL vs. CTX p-value= 7.200566 × 10−2) and 24 h (HPC vs. CTX p-
value= 7.290358 × 10−3; HPC vs. THL p-value= 3.976752 × 10−3; THL vs. CTX p-value= 7.290358 × 10−3). False positive rate: consolidation time= 0
(HPC vs. CTX p-value= 1.218578 × 10−2; HPC vs. THL p-value= 7.491290 × 10−2; THL vs. CTX p-value= 9.469294 × 10−2) and 24 h (HPC vs. CTX p-
value= 0.920340; HPC vs. THL p-value= 3.976752 × 10−3; THL vs. CTX p-value= 3.976752 × 10−3). b Cumulative distribution of the total inhibitory
synaptic weights onto individual excitatory engram cells at the end of training and after 24 h of consolidation. Top to bottom: CTX, THL, and HPC. Two-
sided Kolmogorov–Smirnov test between the distribution of inhibitory weights onto excitatory engram cells at consolidation time= 0 and 24 h (CTX: p-
value= 0; THL: p-value= 0; HPC: p-value= 0). c Population activity of inhibitory engram cells in the consolidation phase. Top to bottom: CTX, THL, and
HPC. Each color designates the inhibitory engram cells encoding the respective stimulus in Fig. 2a. d Population activity of excitatory neurons in the
consolidation phase. Top to bottom: CTX, THL, and HPC. *p-value < 0.05 (see Methods). c, d Dashed line indicates threshold ζthr= 10 Hz for engram cell
activation.
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(Fig. 4a and Supplementary Fig. 23a). Blocking inhibitory neu-
rons in CTX also tampers with CTX engram dynamics and the
subcortical-cortical coupling of engram reactivations (Fig. 4b and
Supplementary Fig. 23b). These results are aligned with previous
findings that showed that blocking parvalbumin-positive inter-
neurons either in HPC or CTX decoupled oscillations in these
regions in consolidation periods and disrupted systems
consolidation54. We then block inhibitory neurons in THL and
this also prevents engram cell maturation in CTX and the cou-
pling of engram reactivations in the network (Fig. 4c and

Supplementary Fig. 23c). In each of the previous simulations,
blocking inhibitory input to one region significantly alters the
dynamics of engrams in that region and in any downstream areas
(Fig. 4a–c) as inhibitory drive is essential for the consolidation of
subcortical-cortical synaptic coupling (Supplementary Fig. 24).
Our model then predicts that inhibitory input to HPC, CTX, and
THL is essential for CTX engram maturation by coupling engram
reactivations in consolidation periods. Note that our simulations
with blockage of inhibitory neurons are motivated by previous
experiments that blocked parvalbumin-positive interneurons

Fig. 4 Inhibitory input is critical for cortical engram maturation. a Memory recall as a function of consolidation time (left) and population activity of
excitatory engram cells in the consolidation phase (right) when inhibitory neurons in HPC are blocked in the consolidation phase of the protocol in Fig. 2b. Recall
curves (top to bottom): accuracy, true positive rate, and false positive rate (n= 5 trials, mean values and 90% confidence intervals shown). For each recall
metric, two-sided Mann–Whitney U test. Accuracy: consolidation time=0 (HPC vs. CTX p-value= 7.494958 × 10−3; HPC vs. THL p-value=0.920340; THL
vs. CTX p-value= 7.494958 × 10−3) and 24 h (HPC vs. CTX p-value=0.177016; HPC vs. THL p-value= 3.976752 × 10−3; THL vs. CTX p-value= 6.501702 ×
10−3). True positive rate: consolidation time=0 (HPC vs. CTX p-value= 7.494958 × 10−3; HPC vs. THL p-value=0.920340; THL vs. CTX p-value=
7.494958 × 10−3) and 24 h (HPC vs. CTX p-value=0.177016; HPC vs. THL p-value= 3.976752 × 10−3; THL vs. CTX p-value= 6.501702 × 10−3).
False positive rate: consolidation time=0 (HPC vs. CTX p-value= 7.290358 × 10−3; HPC vs. THL p-value=0.920340; THL vs. CTX p-
value= 7.290358× 10−3) and 24 h (HPC vs. CTX p-value=0.920340; HPC vs. THL p-value=0.920340; THL vs. CTX p-value=0.920340). Population
activity of excitatory engram cells (top to bottom): CTX, THL, and HPC (each color designates the engram cells encoding the respective stimulus in Fig. 2a;
dashed line indicates threshold ζthr= 10Hz for engram cell activation). b Same as (a) but with inhibitory neurons in CTX blocked during consolidation (recall
curves: n= 5 trials, mean values and 90% confidence intervals shown). For each recall metric, two-sided Mann–Whitney U test. Accuracy: consolidation
time=0 (HPC vs. CTX p-value= 7.494958 × 10−3; HPC vs. THL p-value=0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h (HPC vs. CTX p-
value= 2.536986 × 10−2; HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 3.976752 × 10−3). True positive rate: consolidation time=0 (HPC
vs. CTX p-value= 0.494958 × 10−3; HPC vs. THL p-value=0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h (HPC vs. CTX p-
value= 2.536986 × 10−2; HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 3.976752 × 10−3). False positive rate: consolidation time=0 (HPC
vs. CTX p-value= 7.290358 × 10−3; HPC vs. THL p-value=0.920340; THL vs. CTX p-value= 7.290358 × 10−3) and 24 h (HPC vs. CTX p-value=0.920340;
HPC vs. THL p-value=0.920340; THL vs. CTX p-value=0.920340). c Same as (a) but with inhibitory neurons in THL blocked during consolidation (recall
curves: n= 5 trials, mean values and 90% confidence intervals shown). For each recall metric, two-sided Mann–Whitney U test. Accuracy: consolidation
time=0 (HPC vs. CTX p-value= 7.494958 × 10−3; HPC vs. THL p-value=0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h (HPC vs. CTX p-
value= 2.536986 × 10−2; HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 3.976752 × 10−3). True positive rate: consolidation time=0 (HPC
vs. CTX p-value= 7.494958 × 10−3; HPC vs. THL p-value=0.920340; THL vs. CTX p-value= 7.494958 × 10−3) and 24 h (HPC vs. CTX p-
value= 2.536986 × 10−2; HPC vs. THL p-value= 7.494958 × 10−3; THL vs. CTX p-value= 3.976752 × 10−3). False positive rate: consolidation time=0 (HPC
vs. CTX p-value= 7.290358 × 10−3; HPC vs. THL p-value=0.920340; THL vs. CTX p-value= 7.290358 × 10−3) and 24 h (HPC vs. CTX p-value=0.920340;
HPC vs. THL p-value=0.920340; THL vs. CTX p-value=0.920340). The white space above the horizontal axis in the activity plots in (a–c) indicates that the
population activity of engrams is continuously above 0 for a short period even when it is computed every 10ms without smoothing or convolution
(see Methods). This is a consequence of blocking inhibitory neurons: excitatory engram cells exhibit periods of very high activity in the absence of inhibition due
to recurrent excitatory interactions. *p-value < 0.05 (see Methods). a–c Network and simulation parameters are the same as in Fig. 2a except for blocked
inhibitory neurons during consolidation. Color as in Fig. 2a.
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irrespective of how they responded to the conditioning
stimulus54. We also examine the effects of blocking exclusively
inhibitory engram cells in each region of our model. Interestingly,
we find that this does not prevent CTX engram maturation
because the remaining unblocked inhibitory neurons are still able
to support coupled engram reactivations due to strong poten-
tiation of their inhibitory synapses onto excitatory engram cells
(Supplementary Fig. 25). This suggests that inhibitory engram
cells may be replaced by inhibitory neurons that were originally
unresponsive to the training stimuli as long as their inhibitory
synapses can be sufficiently potentiated. Given that blocking
excitatory engram cells in HPC and THL (Fig. 2d, e) and blocking
inhibitory input to HPC, CTX, and THL (Fig. 4a–c) both
decouple engram reactivations across these regions (Supplemen-
tary Figs. 18 and 23) and disrupt CTX engram maturation, our
results suggest that coupled engram reactivations across the
HPC→ THL→ CTX circuit underlie engram dynamics that
mediate systems consolidation.

Thalamocortical coupling underlies retrograde amnesia pro-
files. We then investigate to what extent memory recall relies on
HPC over time by examining retrograde amnesia patterns
induced by HPC ablation. Ablation of HPC in the testing phase
(Fig. 5a) leads to significant impairment in recent recall (Fig. 5b)
since after the HPC lesion recall relies exclusively on CTX. This
was expected given that recent recall originally relied on HPC
(Fig. 2c). However, remote recall is virtually not affected by HPC
ablation (Fig. 5b). Therefore, memory recall reliance on HPC is
time-dependent and the model exhibits a temporally-graded
retrograde amnesia curve4.

We next probe the effect of THL→ CTX synaptic coupling on
HPC reliance by varying the plasticity rate of these synapses.
Specifically, we explore how heterosynaptic plasticity strength
βTHL→CTX can increase or decrease coupling between THL and
CTX at the end of encoding and the resulting effect on memory
recall. First, we increase βTHL→CTX substantially (Fig. 5c–f) and
this severely impairs the ability of THL→ CTX synapses to
potentiate (see Methods). As a result, THL and CTX are only
weakly coupled at the end of the training phase (Fig. 5c, compare
to Supplementary Fig. 19a) and remain so despite subsequent
consolidation (Fig. 5d). Accordingly, remote recall with the intact
control network (Fig. 2a) is lost since the weak coupling of
THL→ CTX synapses prevents CTX engram maturation and
HPC engram cells still become silent (Fig. 5e). Naturally, HPC
ablation does not improve remote recall and it also prevents
recent memory retrieval (Fig. 5f). Thus, the network with weakly
coupled THL→ CTX synapses relies exclusively on HPC for
memory recall and displays a flat retrograde amnesia pattern4.

Subsequently, we reduce βTHL→CTX to effectively enable faster
synaptic potentiation (see Methods) and, consequently, increase
THL→ CTX synaptic coupling at the end of encoding (Fig. 5g,
compare to Supplementary Fig. 19a). Coupling between these
regions is reinforced with consolidation (Fig. 5h) and CTX recall
accuracy is therefore extremely high both immediately following
training and throughout consolidation (Fig. 5i). Ablating HPC
has a negligible effect on CTX recall and, hence, memories can be
recalled independently of HPC (Fig. 5j). This network config-
uration then exhibits an absent retrograde amnesia curve4. We
also examine the effect of ablating HPC either at the very
beginning of the consolidation phase or only after 12 hours of
consolidation and we observe the same relationship between
THL→ CTX synaptic coupling and the pattern of retrograde
amnesia exhibited by the network (Supplementary Fig. 26).
Altogether, our model predicts that the degree of THL→ CTX
synaptic coupling at the end of encoding is a major driver of the

ensuing CTX engram cell dynamics and the associated retrograde
amnesia profile induced by HPC ablation.

Discussion
Our model is able to reproduce key experimental findings asso-
ciated with systems consolidation. Specifically, it captures engram
cell maturation and de-maturation in CTX and HPC, respec-
tively, and the crucial role that HPC engram cells have in the
maturation of CTX engrams33. The model also reflects the causal
role of coupled oscillations across HPC, THL, and CTX in the
systems consolidation of episodic memory30 and connects it to
the associated engram dynamics observed in experiments33. We
have demonstrated that these experimental findings can be
reproduced in a computational model of the HPC→ THL→
CTX multisynaptic pathway with region-specific synaptic plasti-
city rates. Our results suggest that the timescale of synaptic
plasticity is precisely conducted across brain regions to enable
coordinated HPC–THL–CTX communication and that these
concerted subcortical–cortical interactions are vital for engram
dynamics behind systems consolidation of memory.

The timescales of the various forms of synaptic plasticity in our
model need to be coordinated to reproduce specific engram cell
state transitions taking place in parallel. The learning rate of the
triplet STDP is higher in subcortical regions (i.e., HPC and THL)
relative to CTX consistent with the view that subcortical synapses
tend to be more plastic than cortical ones. However, synaptic
consolidation is slower in HPC compared to THL and CTX in
line with the observation that HPC engram cells are less stable
and, hence, more prone to becoming silent. Interestingly, it has
been previously suggested that synaptic consolidation has an
active role in systems consolidation59. Transmitter-induced
plasticity rates are scaled linearly to the learning rate of each
individual region to prevent long-term depression (LTD) from
making the network silent while the timescales of heterosynaptic
plasticity are set to avoid excessive network activity while still
allowing long-term potentiation (LTP) to take place. This com-
bination of Hebbian (triplet STDP) and non-Hebbian (hetero-
synaptic and transmitter-induced) plasticity has been shown to
enable stable memory formation and recall in a single-region
spiking neural network model41 and here we build on those
results to show that coordinated synaptic plasticity timescales
across brain regions can extend the mnemonic functions sup-
ported by these forms of plasticity.

There are multiple circuits that can potentially be used by HPC
to support the maturation of CTX engram cells but we include the
HPC→ THL→CTX pathway in our model. As noted earlier, the
inclusion of THL is motivated by its afferent and efferent pro-
jections (i.e., HPC and CTX, respectively46,47,60) and the obser-
vation that in CFC this region is both responsible for ~20% of the
monosynaptic input to CTX engram cells33 and crucial for
remote recall48. Here, we assume that THL also has an essential
role in the remote recall of other types of episodic memories in a
similar way as it has been proposed that engram cell dynamics
observed in CFC are present in generic episodic memories5 — a
view that is consistent with numerous reports of memory
impairments in a wide range of tasks following lesions to
THL46,47. Furthermore, the increased THL activity around hip-
pocampal ripples coupled to spindles49 suggests that this region
may play a part in the essential role that spindles have in coupling
cortical, thalamic, and hippocampal oscillations in systems
consolidation30. Thus, the HPC→ THL→ CTX circuit seems to
be a prime candidate for having a crucial role in the maturation of
CTX engram cells and our modeling results support this view.
Nevertheless, we cannot exclude the possibility that alternative
intermediary regions may also be recruited by HPC to mediate
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Fig. 5 Thalamocortical coupling at the end of encoding underlies retrograde amnesia pattern. a Schematic of network model with ablation of HPC at testing
time. b Memory recall accuracy as a function of consolidation time with HPC ablation in the testing phase (as in a) of the protocol shown in Fig. 2b. Two-
sided Mann–Whitney U test between accuracy in THL and CTX at consolidation time=0 (p-value= 7.088721 × 10−3) and 24 h (p-value= 2.480842× 10−2).
c–f Simulation with weakly coupled THL→CTX. c Mean weight strength of THL→CTX synapses clustered according to engram cell preference at the end of
training. Two-sided Kolmogorov–Smirnov test between the distribution of THL→CTX weights among engram cells encoding the same stimulus (i.e., diagonal) and
that of THL→CTX weights among engram cells encoding different stimuli (i.e., off-diagonal): p-value= 1.659955 × 10−151. dMean weight strength of THL→CTX
synapses clustered according to engram cell preference after 24 h of consolidation. Two-sided Kolmogorov–Smirnov test between the distribution of THL→CTX
weights among engram cells encoding the same stimulus (i.e., diagonal) and that of THL→CTX weights among engram cells encoding different stimuli (i.e., off-
diagonal): p-value= 3.599719 × 10−10. e Memory recall accuracy as a function of consolidation time with the intact network in the protocol depicted in Fig. 2b.
Two-sided Mann–Whitney U test at consolidation time=0 (HPC vs. CTX p-value= 5.583617 × 10−3; HPC vs. THL p-value=0.920340; THL vs. CTX p-
value= 5.583617 × 10−3) and 24 h (HPC vs. CTX p-value=0.193816; HPC vs. THL p-value= 7.290358 × 10−3; THL vs. CTX p-value= 5.583617 × 10−3).
f Memory recall accuracy as a function of consolidation time with HPC ablation in the testing phase (as in a) of the protocol shown in Fig. 2b. Two-sided
Mann–Whitney U test at consolidation time=0 (THL vs. CTX p-value= 5.583617 × 10−3) and 24 h (THL vs. CTX p-value= 5.583617 × 10−3). g–j Simulation with
strongly coupled THL→CTX. g Mean weight strength of THL→CTX synapses clustered according to engram cell preference at the end of training. Two-sided
Kolmogorov-Smirnov test between the distribution of THL→CTX weights among engram cells encoding the same stimulus (i.e., diagonal) and that of THL→CTX
weights among engram cells encoding different stimuli (i.e., off-diagonal): p-value=0. h Mean weight strength of THL→CTX synapses clustered according to
engram cell preference after 24 h of consolidation. Two-sided Kolmogorov–Smirnov test between the distribution of THL→CTX weights among engram cells
encoding the same stimulus (i.e., diagonal) and that of THL→CTX weights among engram cells encoding different stimuli (i.e., off-diagonal): p-value=0.
i Memory recall accuracy as a function of consolidation time with the intact network in the protocol depicted in Fig. 2b. Two-sided Mann–Whitney U test at
consolidation time=0 (HPC vs. CTX p-value=0.920340; HPC vs. THL p-value=0.920340; THL vs. CTX p-value=0.920340) and 24 h (HPC vs. CTX p-
value= 1.066227 × 10−2; HPC vs. THL p-value= 7.290358 × 10−3; THL vs. CTX p-value=0.177809). jMemory recall accuracy as a function of consolidation time
with HPC ablation in the testing phase (as in a) of the protocol shown in Fig. 2b. Two-sided Mann–Whitney U test at consolidation time=0 (THL vs. CTX p-
value=0.920340) and 24 h (THL vs. CTX p-value=0.920340). *p-value < 0.05 (see Methods). b–j Color as in Fig. 2a. b, e–f, i, j n= 5 trials. Mean values and
90% confidence intervals shown.
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systems consolidation in CTX. In fact, three other brain regions
have monosynaptic projections to CTX engram cells to a similar
extent as THL in CFC: anterodorsal thalamus (ADT), medial
entorhinal cortex layer Va (MEC-Va), and BLA33. Note, however,
that (I) ADT is only essential for recent but not for remote CFC
memory recall48, (II) MEC-Va→ CTX is not required for neither
recent nor remote recall in CFC33, and (III) BLA→MEC sti-
mulation improved retention of the contextual but not foot shock
components of memory in CFC61. In addition, a multisynaptic
pathway involving the dorsoventral axis of HPC may also be used
by HPC engram cells to support engram dynamics in CTX given
that the dorsal HPC (dHPC) has a critical role in CFC62,63.
Hence, dHPC→ vHPC→CTX may be recruited by HPC
engrams but as noted earlier in CFC only ~5% of the total
monosynaptic input to CTX engram cells originates in vHPC33.
Further, although another possible circuit may involve dHPC and
retrosplenial cortex (RSC) (i.e., dHPC→ RSC→ CTX), RSC
projections only account for less than 10% of the monosynaptic
input to CTX engram cells in CFC33. Altogether, these findings
pose HPC→ THL→ CTX as a plausible minimal circuit for the
encoding, consolidation, and recall of episodic memory and our
simulation results support this viewpoint. Moreover, we assign
the roles of CTX, HPC, and THL to the three recurrent neural
networks (RNNs) in our model in an attempt to match engram
dynamics in each region to experimental reports. However, our
modeling results are effectively agnostic to the identity of each
RNN and, therefore, can be interpreted in the context of a generic
circuit that exhibits multiple, region-specific engram dynamics.

The mechanisms through which HPC engram cells support the
maturation of CTX engrams remain unknown but our modeling
results suggest that HPC engrams are essential for coupling
hippocampal, thalamic, and cortical engram reactivations and
thereby are crucial for CTX engram cell maturation. The causal
role of coupled HPC–THL–CTX oscillations in the systems
consolidation of episodic memories has been previously
demonstrated30,54 and our model predicts that HPC engram cells
have themselves a causal role in this coupling. Although engram
cells have been found in various thalamic nuclei53, the potential
role that thalamic engram cells have in systems consolidation is
not known either. Our simulations suggest that engram cells in
THL are also crucial for the maturation of CTX engram cells by
coupling engram reactivations across HPC, THL, and CTX.
Importantly, two lines of evidence support the view that engrams
are present in THL: (I) a large body of THL lesion studies that
showed post-lesion memory deficits in a diverse array of
tasks46,47,64; and (II) a recent experiment that found THL to be
one of the regions with a high probability of holding an engram in
a brain-wide mapping of CFC memory53. Furthermore, our
model predicts that THL engram cells are active in both recent
and remote recall in a similar way as BLA engram cells in CFC33.

Our model also aims to shed light on the dynamics of inhibitory
engram cells. “Inhibitory replicas” of learning-induced excitatory
connectivity patterns have been found58,65, but the behavior of
inhibitory engram cells has not been probed yet. Our model pre-
dicts that the dynamics of inhibitory engrams are region-specific:
CTX inhibitory engram cells are active in recent and remote recall
but become more selective to stimuli over time, THL inhibitory
engrams also maintain an active status after training but rather
become unspecific to stimuli, and HPC inhibitory engram cells
undergo de-maturation similarly to their excitatory counterparts.
Inhibitory engrams are formed in our model via the potentiation of
inhibitory synapses onto excitatory cells that display learning-
induced activity increase in line with other computational
models57,65. Furthermore, our results also predict coupled reacti-
vations of excitatory and inhibitory engram cells in HPC, THL, and
CTX. Previously, inhibitory neurons were shown to control the size

of excitatory engram cell ensembles66,67 and to mediate memory
discrimination68. Here, we suggest that interneurons also undergo
learning-induced changes akin to excitatory neurons (i.e., inhibitory
engrams). Moreover, blocking inhibitory neurons in HPC and CTX
disrupts systems consolidation in our simulations by preventing
coupled reactivations between these regions. This is consistent with
the crucial role of inhibitory neurons in coupling CTX spindles and
HPC ripples54. Our model also predicts that inhibitory input to
THL has a similar critical role in coupling engram reactivations
across subcortical and cortical regions. Importantly, local THL
inhibitory neurons are present in primates but not in lower species
such as rodents47. However, the thalamic reticular nucleus (TRN)
provides robust inhibitory input to THL across species via
GABAergic projections47,69. For those species that rely exclusively
on TRN for inhibitory control of network activity, TRN inhibitory
neurons may play an analogous role to that of local THL inter-
neurons in higher species given that (I) TRN was shown to have a
high probability of holding engram cells in a brain-wide mapping of
CFC in rodents53 and (II) TRN has an active role in the generation
of thalamocortical oscillatory rhythms69,70. Altogether, our results
suggest that inhibitory neurons in distributed brain regions have a
crucial role in the coordination of HPC–THL–CTX communication
mediated by engram reactivations.

We also investigate how recent and remote recall rely on HPC
by reproducing the different patterns of retrograde amnesia
induced by HPC damage: temporally-graded, flat, and absent4.
Our model predicts that the degree of THL→ CTX synaptic
coupling at the end of encoding is predictive of the subsequent
CTX engram cell dynamics (i.e., silent or active at recent and
remote recall) and the corresponding retrograde amnesia profile
caused by HPC lesions. Our model then also predicts that silent
CTX engram cells are the basis of retrograde amnesia induced by
HPC damage. This is consistent with protein synthesis inhibitor-
induced retrograde amnesia studies that showed that silent HPC
engram cells underlie this form of amnesia and that their afferent
synapses from upstream engram cells exhibit reduced potentia-
tion relative to active engram cells in healthy mice71,72. Fur-
thermore, the discovery of a rapidly-encoded engram in human
posterior parietal cortex73 suggests the existence of cortical
engram cells that are active in recent and remote recall as pre-
dicted by our model. Taken together, our modeling results predict
that distinct engram cell dynamics underlie specific patterns of
retrograde amnesia induced by HPC damage and, thus, provide a
mechanistic account to reconcile seemingly conflicting reports in
the HPC lesion literature4,5.

Our model makes several testable predictions. First, our results
predict that engram cells in THL are active in recent and remote
recall and are crucial for the maturation of engram cells in CTX.
This could be tested by labeling THL engram cells during
encoding and subsequently blocking their output in a manner
analogous to previous protocols33. Second, our model predicts
that engram cells in HPC and THL are essential for coupling
engram reactivations in HPC, THL, and CTX in consolidation
periods. Blocking separately HPC and THL engram cells after
training33 and measuring the degree of coupling of reactivations
in HPC–THL–CTX during sleep30 could test this prediction.
Third, our results suggest that inhibitory engram cells with
region-specific dynamics and coupled reactivations co-exist with
excitatory engrams in subcortical and cortical regions. Although
engram cell studies have focused on excitatory neurons due to
their increased IEG expression35,55,56 as discussed previously,
inhibitory neurons can also up-regulate IEGs (e.g., c-fos and Arc)
under strong stimulation35,74,75. Therefore, our predictions
regarding inhibitory engram cells could also be tested by mod-
ifying parameters of existing experiments33 to induce reliable IEG
expression in inhibitory neurons and, hence, enable labeling of
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inhibitory engram cells. Fourth, our model predicts that inhibitory
input to THL is critical for CTX engram maturation by coupling
engram reactivations in subcortical-cortical circuits. This prediction
could be tested by extending current engram cell protocols33 with
chemogenetic techniques already used to block interneurons in
HPC and CTX54 but applying them to inhibitory neurons pro-
jecting to THL. Fifth, our model suggests that the degree of synaptic
coupling in THL→CTX at the end of encoding is predictive of
CTX engram dynamics and the resulting pattern of retrograde
amnesia induced by HPC damage. These predictions could also be
tested by incorporating activity-dependent cell labeling—combined
with strategies for circuit-specific manipulations and in vivo cal-
cium imaging—to existing HPC lesion protocols. THL→CTX
synaptic coupling could potentially be either decreased by applying
protein synthesis inhibitors to CTX71,72 or increased by extending
total training time and/or stimulus exposure.

Despite capturing engram cell dynamics in HPC and CTX and
the coupling of engram reactivations in the HPC→ THL→ CTX
circuit, our model has several limitations. First, systems con-
solidation takes place over days, months, or even years after
memory acquisition5 but our simulations extend for only 24 h
after training. Although the synaptic plasticity rates in our model
could conceivably be reduced to match more realistic timescales
of systems consolidation, this would immensely increase the
computational cost of simulations and, consequently, it would be
impractical to simulate multi-region large-scale networks like
ours for long periods. Note, however, that our simulation results
are consistent with experimental evidence regarding engram
maturation and de-maturation with systems consolidation33

independent of the exact timing of engram cell state transitions.
Second, our model is not specifically designed to reproduce
hippocampal sharp-wave ripples, thalamic spindles, and cortical
slow oscillations as discussed previously. However, these LFP
oscillations have been thought to facilitate the coupling of engram
reactivations across regions in the brain50,51 and recent evidence
has supported this view76. Our model then reproduces coupled
engram reactivations and proposes neural mechanisms through
which they mediate systems consolidation of memory. Therefore,
coupled engram reactivations in our model serve the same pur-
ported functional role as coupled engram reactivations in the
brain orchestrated by LFP oscillations. Third, we do not attempt
to model a gradual shift in memory from episodic (i.e., specific
and detail-rich) to semantic (i.e., abstract and gist-like) over
systems consolidation. The extent of such change is still an open
question5 and is beyond the scope of the present study. Fourth,
we have assumed that STIM→ THL synapses only change over
developmental timescales that are much longer than those cap-
tured by our model and, hence, these synapses are static in our
simulations. We then use non-random stimuli in the three-region
model and initialize STIM→ THL synapses with circular recep-
tive fields in order to facilitate learning in THL (see Methods).
Although in theory the engram dynamics exhibited by our cur-
rent model could be reproduced by a network where STIM→
THL synapses are still static but random and the training and
testing stimuli are random, this would require a larger separation
of timescales between the subcortical and cortical regions in the
network such that at the end of training THL engrams are
accurate while CTX engram cells are still silent. Fifth, our model
does not include behavioral outputs but instead is limited to
stimulus imprinting. As a result, memory recall is determined on
the basis of reactivation of engram cells by partial cues and we do
not examine how artificial reactivation of engram cells could lead
to memory recall in the absence of stimulus cues. However, our
extended three-region model with RDT could be interpreted as a
model of stable behavioral output. In this configuration, artificial
reactivation of engram cells in any region should elicit the same

response in RDT as the presentation of corresponding partial
cues. Lastly, we do not explore the potential role of systems
consolidation in avoiding catastrophic forgetting of older mem-
ories when new ones are acquired as proposed by previous
theories11. Instead, our work focuses on gaining mechanistic
insights into experimentally-observed engram dynamics asso-
ciated with systems consolidation33.

In the long history of the field, many computational models and
theories of systems consolidation have been proposed4,5,9,11,36–40.
While early computational studies relied on networks with highly
abstract, simplified neuron models9,11,36,37, recent computational
models have become increasingly more complex to incorporate a
wider range of experimental findings: a three-stage Bayesian Con-
fidence Propagation Neural Network was used to bridge the gap
between working and long-term memory38, a spiking network was
developed to explore the role of anatomical properties of the cortex-
hippocampus loop in systems consolidation39, and a rate-coded
multi-layer network with a form of Hebbian learning was employed
to investigate the effect of preexisting knowledge on memory
consolidation40. Nevertheless, previous models have not addressed
recent findings regarding engram cells and their role in systems
consolidation. Our work, however, reproduces engram cell dynamics
in HPC and CTX in a computational model—specifically, a multi-
region spiking RNN with biologically-plausible synaptic plasticity. In
addition, our model reflects the role of coupled oscillations across
HPC, THL, and CTX in systems consolidation and connects it to
engram cell reactivations. Importantly, our findings also offer a
different perspective when examining previous theories of systems
consolidation. For example, multiple trace theory argues that a
number of representations of the same episodic memory co-exist in
the hippocampus and that each acts as an index to neocortical
regions encoding features associated with the memory18. In this
account, memory recall always requires the hippocampus since it
binds the different neocortical representations to form a cohesive
memory. Trace transformation theory built on multiple trace theory
to propose that feature-rich episodic memory always requires
engagement of the hippocampus but transformed, gist-like versions
of the same memory are developed in neocortical areas such that
memory recall may be possible without the hippocampus depending
on the conditions of memory retrieval20,28. In contrast to these
theories, our model suggests that memory recall reliance on the
hippocampus is related to the degree of thalamocortical synaptic
coupling. Thus, our findings motivate the inclusion of hippocampal-
thalamic-cortical interactions in existing theories of systems con-
solidation and suggest that this process encompasses a vast, complex
network of brain regions throughout the lifetime of a memory.

In conclusion, our model of systems consolidation exhibits
known region-specific engram cell dynamics and captures the active
role of both HPC engram cells and coupled HPC–THL–CTX
engram reactivations in this process. We also make several testable
predictions regarding HPC and THL engram cells, inhibitory
engram cells, inhibitory input to THL, and the relationship between
THL→CTX synaptic coupling and retrograde amnesia induced by
HPC lesions. Overall, our results suggest that coordinated com-
munication across subcortical-cortical circuits—enabled by coupled
engram reactivations—is essential for engram dynamics that ulti-
mately culminate in systems consolidation. Engram cell dynamics
in other brain regions, engram interactions in multi-task settings,
and the link between engram cells and neurodegenerative diseases
will each warrant future experimental and computational studies.

Methods
Neuron model. Our model makes use of leaky integrate-and-fire neurons with spike
frequency adaption. The membrane voltage Ui of neuron i evolves according to41

τm
dUi

dt
¼ ðU rest � UiÞ þ gexci ðtÞðUexc � UiÞ þ ggabai ðtÞ þ gai ðtÞ

� �
ðU inh � UiÞ ð1Þ
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where τm is the membrane time constant, Urest is the membrane resting potential,
Uexc is the excitatory reversal potential, and Uinh is the inhibitory reversal potential.

The evolution of the synaptic conductance terms gexci ðtÞ, ggabai ðtÞ, and gai ðtÞ is dis-
cussed in the next section.

A neuron i fires a spike when its membrane voltage exceeds a threshold ϑi. At
this point, its membrane voltage is set to U rest

i and its firing threshold is temporarily
increased to ϑspike. Without further spikes, the firing threshold decays to its resting
value ϑrest with time constant τthr following:

τthr
dϑi
dt

¼ ϑrest � ϑi ð2Þ

Synapse model. We adopted a conductance-based synaptic input model. The

dynamics of inhibitory synaptic input ggabai and spike-triggered adaption gai
follow41:

dggabai

dt
¼ � ggabai

τgaba
þ ∑

j2 inh
wijSjðtÞ ð3Þ

dgai
dt

¼ � gai
τa

þ ΔaSiðtÞ ð4Þ

where SjðtÞ ¼ ∑kδðt � tkj Þ is the presynaptic spike train and SiðtÞ ¼ ∑kδðt � tki Þ is
the postsynaptic spike train. In both cases, δ denotes the Dirac delta function and
tkxðk ¼ 1; 2; :::Þ are the firing times of neuron x. wij is the weight from neuron j to
neuron i. Δa is a fixed adaptation strength. τgaba is the GABA decay time constant
and τa is the adaptation time constant.

Excitatory synaptic input is determined by a combination of a fast AMPA-like
conductance gampa

i ðtÞ and a slow NMDA-like conductance gnmda
i ðtÞ

gexci ðtÞ ¼ αgampa
i ðtÞ þ ð1� αÞgnmda

i ðtÞ ð5Þ

dgampa
i

dt
¼ � gampa

i

τampa
þ ∑

j2exc
wij ujðtÞxjðtÞ|fflfflfflfflffl{zfflfflfflfflffl}

Short-TermPlasticity

SjðtÞ ð6Þ

τnmda dg
nmda
i

dt
¼ � gnmda

i þ gampa
i

ð7Þ

where α is a constant that determines the relative contribution of gampa
i ðtÞ and

gnmda
i ðtÞ while τampa and τnmda are their respective time constants. uj(t) and xj(t)
are variables that determine the state of short-term plasticity as described in the
following section.

Synaptic plasticity model. Our synaptic plasticity model was designed after
previous work that showed that a combination of Hebbian (i.e., triplet STDP) and
non-Hebbian (i.e., heterosynaptic and transmitter-induced) forms of plasticity can
yield stable memory formation and recall in a single-region spiking RNN41.

Short-term plasticity. The state variables uj(t) and xj(t) associated with short-term
plasticity evolve according to41

d
dt

xjðtÞ ¼
1� xjðtÞ

τd
� ujðtÞxjðtÞSjðtÞ ð8Þ

d
dt

ujðtÞ ¼
U � ujðtÞ

τf
þ U 1� ujðtÞ

� �
SjðtÞ ð9Þ

where τd and τf are the depression and facilitation time constants, respectively. The
parameter U is the initial release probability.

Long-term excitatory synaptic plasticity. Long-term excitatory synaptic plasticity
takes the form of combined triplet STDP42, heterosynaptic plasticity43, and
transmitter-induced plasticity44 with a synaptic weight wij from neuron j to neuron
i following41:

d
dt wijðtÞ ¼ ηexc Azþj ðtÞzslowi ðt � ϵÞSiðtÞ � BiðtÞz�i ðtÞSjðtÞ

� �
triplet ð10aÞ

� β wij � ~wijðtÞ
� �

z�i ðt � ϵÞ� �3
SiðtÞ heterosynaptic ð10bÞ

þ δSjðtÞ transmitter� induced ð10cÞ
where ηexc (excitatory learning rate), A (LTP rate), β (heterosynaptic plasticity
strength), and δ (transmitter-induced plasticity strength) are fixed parameters. ϵ is
an infinitesimal offset used to ensure that the current action potential is not
considered in the trace. State variables zxj=i denote either pre- or postsynaptic traces

and each has an independent temporal evolution with time constant τx given by

dzxj=i
dt

¼ �
zxj=i
τx

þ Sj=iðtÞ ð11Þ

The reference weights ~wijðtÞ also have their own independent synaptic consolida-
tion dynamics following the negative gradient of a double-well potential41

τcons
d
dt

~wijðtÞ ¼ wijðtÞ � ~wijðtÞ � P~wijðtÞ
wP

2
� ~wijðtÞ

� �
wP � ~wijðtÞ

� �
ð12Þ

where P and wP are fixed parameters and τcons is the synaptic consolidation time
constant. P controls the magnitude of the double-well potential. For wP= 0.5, an
upper stable fixed point is reached when wijðtÞ ¼ ~wijðtÞ while a lower stable fixed
point is set when ~wijðtÞ ¼ 0. If wijðtÞ> ~wijðtÞ by a small margin, then both stable
fixed points of ~wijðtÞ experience an increase. If wijðtÞ � ~wijðtÞ, then ~wijðtÞ only
retains a single fixed point with a high value. This synaptic consolidation model is
consistent with previous work77 and with synaptic tagging experiments that found
that the persistence of LTP depends on events occurring both during and prior to
its initial induction78. Furthermore, the model assumes that there are molecular
mechanisms in place such that synapses can retain a stable efficacy (i.e., weight)
despite intermittent fluctuations such as those associated with molecular
turnover79,80. Importantly, the LTD rate Bi(t) is subject to homeostatic regulation
and evolves according to:

BiðtÞ ¼
ACiðtÞ for CiðtÞ≤ 1:
A otherwise

	
ð13Þ

d
dt

CiðtÞ ¼ �CiðtÞ
τhom

þ zhti ðtÞ
� �2 ð14Þ

where τhom is a time constant and zhti ðtÞ is a synaptic trace that follows Eq. (11)
with its own time constant τht. Lastly, plastic excitatory weights are constrained to
lower and upper bounds wmin

exc and wmax
exc , respectively. However, excitatory weights

never reach their upper bound with the exception of some simulations with
blockage of neurons.

Inhibitory synaptic plasticity. Inhibitory synaptic plasticity follows a network
activity-based STDP rule41

d
dt

wijðtÞ ¼ ηinhGðtÞ ziðtÞ þ 1
� �

SjðtÞ þ zjðtÞSiðtÞ
h i

ð15Þ

GðtÞ ¼ HðtÞ � γ ð16Þ

d
dt

HðtÞ ¼ �HðtÞ
τH

þ ∑
i2exc

SiðtÞ ð17Þ

where ηinh is a constant inhibitory learning rate and zj/i denotes either pre- or
postsynpatic traces that follow Eq. (11) with a common time constant τiSTDP. G(t)
is a linear function of the difference between a hypothetical global secreted factor
H(t) and the target local network activity level γ. H(t) is itself a low-pass-filtered
version of the spikes fired by all excitatory neurons in the local network (i.e., either
HPC, THL, or CTX) with time constant τH. Note that inhibitory synaptic plasticity
primarily aims to control network activity. Finally, inhibitory weights are con-
strained to the interval between wmin

inh and wmax
inh but they never reach their upper

limit except in some simulations with blockage of neurons.

Network model. In each network configuration considered (i.e., Fig. 1a, Supple-
mentary Figs. 6a, 7a and 8a, and Fig. 2a), the model consists of a stimulus
population of Nstim= 4096 Poisson neurons (STIM) and two or three RNNs each
corresponding to a different brain region (i.e., HPC, CTX, or THL). Anatomical
evidence has motivated the use of RNNs to model these regions. First, the following
evidence supports an RNN model of HPC: recurrent excitatory synapses among
pyramidal cells in CA381 and to a less extent in CA182; feedforward projections
from dentate gyrus to CA3 and from CA3 to CA183; “back” projections from CA1
to CA3 and dentate gyrus84 and from CA3 to dentate gyrus85; and local recurrent
inhibitory synapses in CA381, CA184, and dentate gyrus86. Second, the presence of
recurrent excitatory and inhibitory synapses in CTX87 substantiates the use of an
RNN model of this region. Third, several features of thalamic connectivity motivate
the use of an RNN model of THL: thalamothalamic projections88, local recurrent
inhibitory synapses in THL present in primates47, and inhibitory projections from
the TRN to THL across species47,69. For a discussion of how TRN inhibitory input
to THL may play the role of local THL inhibitory neurons in lower species that lack
the latter, see Discussion. Furthermore, each region RNN is composed of Nexc=
4096 excitatory neurons and Ninh= 1024 inhibitory neurons that are recurrently
connected. Recurrent excitatory synapses onto excitatory neurons display short-
and long-term excitatory synaptic plasticity while excitatory synapses projecting
onto inhibitory neurons exhibit only short-term plasticity. Feedforward inter-
region synapses may display both short- and long-term plasticity or only short-
term plasticity depending on the network configuration and they project exclu-
sively from excitatory neurons in one region to excitatory cells in another area. In
the two-region networks (Fig. 1a, Supplementary Figs. 6a, 7a and 8a), all recurrent
and feedforward synapses are initialized at random following a uniform distribu-
tion. In the three-region network (Fig. 2a), STIM→HPC synapses are plastic while
STIM→ THL projections are static. This choice was motivated by I) the different
levels of engagement of HPC and THL in memory recall at recent versus remote
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time points, and II) our results in Fig. 1 that demonstrate that changes in feed-
forward synapses over the course of systems consolidation underlie changes in
engram cell state (i.e., silent-to-active or active-to-silent). Specifically, previous
experiments showed that while HPC engram cells switch from active to silent with
systems consolidation (i.e., de-maturation)33, THL has a high probability of
holding engram cells active at recent time points53 and is essential for recall at
remote time points48. This suggests that THL engram cells are active in both recent
and remote recall. Consequently, making STIM→HPC synapses plastic enables
the de-maturation of HPC engram cells while making STIM→ THL projections
static supports active THL engram cells in both recent and remote recall in a
manner consistent with previous experiments for both regions. As expected, static
STIM→ THL synapses lead to stable recall in THL throughout systems con-
solidation in our simulations (Fig. 2c). Moreover, STIM→HPC and STIM→ THL
synapses in the three-region network have randomly-centered circular receptive
fields (i.e., each excitatory neuron in HPC and THL receives projections from a
small circular area in STIM of radius Rhpc and Rthl, respectively, whose random
center location follows a uniform distribution). This configuration, combined with
the non-random spatial structure of the training and testing stimuli used for the
three-region network (i.e., horizontal bars depicted in Fig. 2a), facilitates learning in
THL when STIM→ THL synapses are static. The remaining feedforward as well as
all recurrent synapses in the three-region network are initially random following a
uniform distribution. In addition, inhibitory synapses onto inhibitory neurons are
static while inhibitory synapses projecting onto excitatory neurons display inhi-
bitory synaptic plasticity. Plasticity is constantly active for the entirety of all
simulations. Recurrent synapses are connected with probability ϵrec and are initi-
alized with specific weights (i.e., wEE, wEI, wII, and wIE). Feedforward synapses have
specific connection probabilities and initial weights (e.g., ϵhpc→ctx and whpc→ctx,
respectively, for Supplementary Fig. 6a). For a complete list of network parameters,
see Supplementary Table 1.

Simulation of two-region networks with HPC and CTX. Simulations with two-
region networks (i.e., Fig. 1a, Supplementary Figs. 6a, 7a and 8a) follow a defined
sequence: burn-in, training, consolidation, and testing. The initial brief burn-in
period of duration Tburn stabilizes activity in each RNN under STIM background
firing at rate νbg. Subsequently, four random stimuli (depicted in Fig. 1a) are
randomly presented to the network in the training phase of duration Ttraining with
equal probability and with inter-stimulus interval and stimulus presentation
duration drawn from exponential distributions with means T training

Off and T training
On ,

respectively. This is accomplished by maintaining the STIM background firing at
νbg but selectively increasing the firing rate of the STIM neurons that correspond to
a given stimulus to νstim for the duration of its presentation. Each stimulus
consists of a non-overlapping random subset of 25% of the STIM neurons. Post-
training, the network evolves spontaneously in the consolidation phase of duration
Tconsolidation in the absence of stimulus presentations with STIM sustaining back-
ground firing at νcons. It has been shown that reactivations of past experiences can
take place during awake periods in both CTX and HPC89,90 and, hence, awake
states may also be suitable for consolidation. However, our model aims to capture
recent findings that coupled oscillatory hippocampal–thalamic–cortical activity
during sleep is essential for systems consolidation30 and, hence, we set separate
periods for training and consolidation. After consolidation, the network advances
to the final testing phase of duration Ttesting. During testing, we present partial cues
(depicted in Fig. 1a) to the network by keeping STIM background firing at νbg and
increasing the firing rate of the cue neurons to νstim. Cue-off and cue-on periods
also follow exponential distributions with means T testing

Off and T testing
On , respectively.

Each cue consists of a random 50% of the original stimulus. In the two-region
networks, feedforward synapses have short- and long-term plasticity with the
exception of HPC→ CTX synapses in Supplementary Fig. 7a that only exhibit
short-term plasticity. When blocking the output of engram cells in a given region,
the inter-region efferent synapses of those cells are blocked but the recurrent
counterparts are not to avoid finite-size effects. This procedure effectively allows
for probing the effect of engram cells in downstream regions without changing the

local engram dynamics. Critically, we set ηexc=inhhpc > ηexc=inhctx and τconshpc > τconsctx . The
higher learning rate in HPC relative to CTX reflects the experimental observation
that engram cells in HPC are generated in an active state while those in CTX are
initially in a silent state33. On the other hand, the longer synaptic consolidation
timescale in HPC compared to CTX is intended to render newly-encoded engrams
in HPC less stable than those in CTX consistent with reported engram dynamics33:
engram cells in HPC switch from active to silent while those in CTX change from
silent to active. In Supplementary Fig. 6a, we set ηexchpc!ctx ¼ ηexcctx and
τconshpc!ctx ¼ τconsctx . In Supplementary Fig. 7a, HPC→ CTX synapses are fixed (i.e.,
only have short-term plasticity). For a complete list of parameters for simulations
of the two-region networks, see Supplementary Table 1.

Simulation of three-region network with HPC, THL, and CTX. Simulations with
the three-region network (Fig. 2a) follow the same sequence as those with two-
region networks (i.e., burn-in, training, consolidation, and testing). However, the
three-region network is trained with four horizontal bars (as opposed to random
stimuli) and is tested with partial cues consisting of the central 50% of the full bars
(full bars and cues depicted in Fig. 2a). Furthermore, STIM does not provide

background firing in the consolidation phase to reflect the gating of sensory pro-
cessing by spindles during sleep91–93. Instead, random background input at rate
νconsext is provided independently to HPC and CTX during consolidation via two

separate external populations of Nhpc
ext ¼ Nctx

ext ¼ 4096 Poisson neurons. This reflects
previous observations that THL activity is increased around hippocampal ripples
coupled to spindles but suppressed otherwise49 and that oscillations in HPC and
CTX can occur independently of each other54. Outside consolidation periods, the

external populations projecting to HPC and CTX remain silent (i.e., νbgext ¼ 0 Hz).
The procedure to block the output of engram cells in the three-region network is
the same as in the two-region configuration. When blocking the output of inhi-
bitory neurons, their efferent synapses onto both inhibitory and excitatory neurons
are blocked. In simulations with HPC ablation, HPC and all its afferent and
efferent synapses are removed from the network either for the entirety of the
testing phase (Fig. 5) or for part of the consolidation phase and the subsequent
testing phase (Supplementary Fig. 26). In the three-region network, feedforward
synapses exhibit short- and long-term plasticity with the exception of those from
STIM to THL (i.e., STIM→ THL synapses only have short-term plasticity) as we
assume that THL receptive fields have been learned during development and only
change over timescales longer than those captured in our simulations. We set

ηexchpc!thl ¼ ηexcthl ¼ ηexchpc and ηexcthl!ctx ¼ ηexcctx with ηexc=inhhpc > ηexc=inhctx . This is based on
the view that the rate of change of synaptic weights tends to be higher for sub-
cortical synapses compared to cortical ones. All plastic excitatory synapses share
the same τcons� except the ones from STIM to HPC for which τconsstim!hpc > τcons� . This
is in line with the results of our simulations of two-region networks (Fig. 1) which
showed that having a longer τconsstim!hpc leads to a post-training decrease in feed-
forward STIM weights to HPC and the resulting de-maturation of HPC engram
cells. For a complete list of parameters for simulations of the three-region network,
see Supplementary Table 1.

Labeling engram cells and computing recall metrics. Engram cells are labeled in
our model by computing the average stimulus-evoked firing rate of each neuron in
a given RNN (i.e., HPC, CTX, or THL). A neuron is said to be an engram cell
encoding a given stimulus if its average stimulus-evoked firing rate is above a
threshold ζthr= 10 Hz for the last Δteng= 300 s of the training phase and, hence, a
single neuron may become an engram cell encoding multiple stimuli. In addition,
an engram cell ensemble encoding a given stimulus is taken as activated upon
presentation of a partial cue if its population firing rate (i.e., average firing rate
computed over all engram cells in a given ensemble) is above the threshold
ζthr= 10 Hz during cue presentation. We then define recall true positive rate as
the number of instances when the corresponding engram cell ensemble was
activated following cue presentation divided by the total number of cue pre-
sentations in the testing phase. Inversely, upon presentation of a partial cue, false
positive rate is defined as the fraction of engram cell ensembles encoding stimuli
different than the one corresponding to the cue but that were nonetheless acti-
vated during cue presentation. This rate is then averaged across all cue pre-
sentations during the testing phase and this average is reported as recall false
positive rate. Successful recall is said to happen when only the corresponding
engram cell ensemble is activated by a partial cue (i.e., all other engram cell
ensembles must be inactive). We then define recall accuracy as the number of
successful recalls divided by the number of cue presentations in the testing phase.
We compute 90% confidence intervals for the mean of recall metrics using a non-
parametric bootstrap to provide a measure of uncertainty and to aid in the
visualization of these metrics.

Statistics. Memory recall metrics (i.e., accuracy, true positive rate, and
false positive rate) of two different regions in a given simulation are compared at
multiple time points using a Mann–Whitney U test. Percentages of activated
engram and non-engram cells are compared using either an unpaired t-test, a
Welch’s t-test, or a Mann–Whitney U test. When comparing percentages of
activated cells, an unpaired t-test is used when the data follow a normal dis-
tribution and have equal variances, a Welch’s t-test is used when the data follow
a normal distribution and have unequal variances, and a Mann–Whitney U test
is used when the data do not follow a normal distribution. Weight distributions
are compared using a Kolmogorov–Smirnov test. For each test, the null
hypothesis is rejected at the p-value < 0.05 level. Data met required assumptions
of statistical tests. Sample sizes were selected on the basis of previous
studies33,54,66. The coupling between the population activity of engram cells
encoding a given stimulus in one region and the population activity of engram
cells encoding the same or a different stimulus in another region is analyzed by
plotting the cross-correlogram of the pair of population activities. For each
cross-correlogram, we extract the lag that maximizes the correlation between the
engram activity in two different regions (i.e., lagmax). We then use lagmax to
characterize the timescale of coupling between the engram activity in the cor-
responding pair of regions.

Simulation and data analysis details. We use the forward Euler method to
update neuronal state variables with a time step Δ= 0.1 ms (except in the case of
reference weights ~w for which we use a longer time step Δlong= 1.2 s for efficiency
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reasons). Population activity is computed with a temporal resolution of 10 ms
without smoothing or convolution.

Code details. Code used to perform all simulations was written in C++ utilizing
the Auryn framework for spiking neural network simulation94. We conducted
several preliminary simulations and found that setting the number of Message
Passing Interface (MPI) ranks Nranks= 16 minimized the runtime of our simula-
tions with Auryn. Code used to analyze simulation results was written in Python 3
(version 3.8 or later) using the the following packages: numpy 1.20.1, pandas 1.2.2,
cython 0.29.22, scikit-learn 0.24.1, scipy 1.6.1, matplotlib 3.3.4, and seaborn 0.11.1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data necessary to reproduce the simulations reported in this study are available in a
public repository95.

Code availability
The code used to perform the simulations and data analyses described in this work is
available in a public repository95.
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