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Aluminum-copper alloy anode materials for
high-energy aqueous aluminum batteries
Qing Ran 1,3, Hang Shi 1,3, Huan Meng1,3, Shu-Pei Zeng1, Wu-Bin Wan 1, Wei Zhang 1, Zi Wen 1,

Xing-You Lang 1,2✉ & Qing Jiang 1✉

Aqueous aluminum batteries are promising post-lithium battery technologies for large-scale

energy storage applications because of the raw materials abundance, low costs, safety and

high theoretical capacity. However, their development is hindered by the unsatisfactory

electrochemical behaviour of the Al metal electrode due to the presence of an oxide layer and

hydrogen side reaction. To circumvent these issues, we report aluminum-copper alloy lamellar

heterostructures as anode active materials. These alloys improve the Al-ion electrochemical

reversibility (e.g., achieving dendrite-free Al deposition during stripping/plating cycles) by

using periodic galvanic couplings of alternating anodic α-aluminum and cathodic intermetallic

Al2Cu nanometric lamellas. In symmetric cell configuration with a low oxygen concentration

(i.e., 0.13 mg L−1) aqueous electrolyte solution, the lamella-nanostructured eutectic Al82Cu18
alloy electrode allows Al stripping/plating for 2000 h with an overpotential lower than

±53mV. When the Al82Cu18 anode is tested in combination with an AlxMnO2 cathode

material, the aqueous full cell delivers specific energy of ~670Wh kg−1 at 100mA g−1 and an

initial discharge capacity of ~400mAh g−1 at 500mA g−1 with a capacity retention of 83%

after 400 cycles.
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Safe and reliable large-scale energy storage technologies are
indispensable for many emerging applications including
electric vehicles and grid integration of intermittent renewable

energy sources1,2. Although lithium-ion batteries (LIBs) dominate
the present energy-storage landscape, they are far from meeting the
needs of large-scale energy storage due to their inherent issues such
as high cost and scarcity of lithium resources, as well as safety
problems associated with highly toxic and flammable organic
electrolytes2–4. This dilemma has led to the recent boom in the
development of alternative battery technologies2,5, especially aqu-
eous rechargeable batteries that use monovalent (Na+6, K+ 7) or
multivalent (Mg2+8,9, Al3+10–13, Ca2+15, Zn2+16–20) cations as
charge carriers in low-cost and safe water-based electrolytes21,22.
Among these post-lithium energy storage devices, aqueous
rechargeable aluminum-metal batteries (AR-AMBs) hold great
promise as safe power sources for transportation and viable solu-
tions for grid-level energy storage because of metallic aluminum (Al)
offering high volumetric/gravimetric capacities (8056mAh cm−3

and 2981mAh g−1) by a three-electron redox reaction10,13,21,23–26,
in addition to its low cost and high Earth abundance10,21. Despite
various cathode materials including titanium oxides27,28, bismuth
oxides29, vanadium oxides30, aluminum manganese oxides12,15,22,31,
and Prussian blue analogues32,33 have been explored for reversible
Al3+ storage/delivery in aqueous electrolytes via intercalation or
conversion reaction mechanisms10,13,22, these AR-AMBs generally
exhibit low Coulombic efficiency and inadequate cycling stability,
even in water-in-salt aluminum trifluoromethanesulfonate
(Al(OTF)3) electrolytes10–12,22–25. Their poor rechargeability pri-
marily results from irreversibility of Al anode due to inherent for-
mation of the insulating and passivating aluminum oxide (alumina)
layer that substantially limits Al3+ transportation for subsequent Al
stripping/plating10,11,22–25,34. While increasing potentials to drive
ion transport through such alumina layer, there concomitantly take
place hydrogen evolution reaction and corrosion reaction to con-
tinuously deplete aqueous electrolyte and Al anode10,11,23,24. Despite
the native oxide layer could be moderated by alloying of Al and
small amount of other elements14,23,24 or by constructing artificial
solid electrolyte interphases11,35, these ineluctable side reactions
essentially impede widespread implementation of aqueous
aluminum-metal batteries as a rechargeable energy-storage tech-
nology for practical use. Therefore, it is highly desirable to explore
feasible strategies to improve Al reversibility of Al-based anode
materials for high-performance AR-AMBs.

Here we demonstrate that eutectic engineering of Al-based alloy
anodes improves their Al reversibility in aqueous electrolyte, based
on eutectic Al82Cu18 (at%) alloy (E-Al82Cu18) with a lamellar
nanostructure consisting of alternating α-Al and intermetallic
Al2Cu nanolamellas. Such nanostructure enlists the E-Al82Cu18
electrode to have periodically localized galvanic couples of anodic α-
Al and cathodic Al2Cu by making use of their distinct corrosion
potentials (−1.65V and −1.2 V versus H+/H2)36,37. Therein, the
more-noble Al2Cu lamellas serve as electron transfer pathway to
facilitate Al stripping from the constituent less-noble Al lamellas
and work as nanopatterns to guide subsequent dendrite-free Al
plating, enabling improved Al reversibility at low potentials espe-
cially in an aqueous Al(OTF)3 electrolyte with a low oxygen con-
centration of 0.13mg L−1, which significantly inhibits hydrogen
evolution reaction and further formation of the passivating oxide
layer. As a result, the E-Al82Cu18 electrodes exhibit improved Al
stripping/plating behaviors, with the overpotential of as low as
~53mV and the Coulombic efficiency of ~100%, for more than
2000 h. When assembled with AlxMnO2 cathode, the E-Al82Cu18
electrodes render full cells to achieve high specific energy of
~670Wh kg−1 or energy density of 815Wh L−1 at 100mA g−1

(based on the loading mass of AlxMnO2 or the volume of cathode),
and retain 83% capacity after 400 cycles. The facile and scalable

metallurgical technology of eutectic engineering opens a way to
develop high-performance alloy anodes for next-generation aqu-
eous rechargeable metal batteries.

Results
Physicochemical characterizations of the Al-Cu alloys. Al metal
is one of the most attractive anode materials in post-lithium batteries
in view of its numerous merits, such as low cost and high Earth
abundance, as well as high charge density and gravimetric/volu-
metric capacities, compared with Na, K, and Zn (Fig. 1a and Sup-
plementary Table 1)10,21,24,25. To tackle its inherent irreversibility
issue due to the oxide layer, here we design periodically aligned
metallic/intermetallic Al/Al2Cu galvanic couples in E-Al82Cu18 alloy
to improve the Al stripping/plating in AR-AMBs, distinguishing
from eutectic Zn-Sn alloy to minimize active materials pulverization
and subsequent loss of electrical contact in LIBs38, and eutectic Zn-
Al alloy to address dendrite issue of Zn metal anode in aqueous
rechargeable zinc-ion batteries39. With the assumption that all Al
atoms can take part in the electrochemical stripping/plating, the
theoretical volumetric and gravimetric capacities of the E-Al82Cu18
alloy are estimated to reach 7498mAh cm−3 and 1965mAh g−1.

The E-Al82Cu18 alloy is prepared by arc-melting pure Al
(99.994%) and Cu (99.996%) metals with a eutectic composition
of 82:18 (at%), followed by a water cycle-assisted furnace cooling for
the formation of immiscible α-Al and Al2Cu eutectoid via an
eutectic solidification reaction (Fig. 1b, c)40,41. X-ray diffraction
(XRD) characterization demonstrates the spontaneously separated
α-Al and Al2Cu phases in the as-prepared E-Al82Cu18 alloy (Fig. 1d),
with two sets of characteristic XRD patterns corresponding to the
(111), (200), (220), and (311) planes of face-centered cubic (fcc) Al
metal (JCPDS 04-0787) and the (110), (200), (211), (112), (202),
(222), (420), (402) planes of body-centered tetragonal (bct) Al2Cu
intermetallic compound (JCPDS 25-0012), respectively. The optical
micrograph of E-Al82Cu18 alloy sheets reveals that the eutectic
solidification produces an ordered lamellar nanostructure of
alternating α-Al and intermetallic Al2Cu lamellas with thicknesses
of ~150 nm and ~270 nm (Fig. 1e and Supplementary Fig. 1), i.e.,
the lamellar spacing of ~420 nm. This microstructure is also
illustrated by scanning electron microscope (SEM) backscattered
electron image and its corresponding energy dispersive spectroscopy
(EDS) elemental mapping of Al and Cu. As shown in Fig. 1f, both Al
and Cu atoms periodically distribute in the E-Al82Cu18 alloy,
depending on the presence of alternating Al and Al2Cu nanola-
mellas. Figure 1g shows a high-resolution transmission electron
microscope (HRTEM) image of Al/Al2Cu interfacial region, viewed
along their <111> and <10�2> zone axis. In view of the phase
separation triggered by eutectic reaction40,41, there present distinctly
isolated monometallic Al and intermetallic Al2Cu regions, which are
identified by their fast Fourier transform (FFT) patterns of fcc and
bct crystallographic structures (Fig. 1h, i). Owing to the high
oxophilicity of Al10,11,22–25,34,35, it is reasonable to observe thin
amorphous oxide shell with a thickness of ~4 nm on the constituent
α-Al lamellas of the E-Al82Cu18 alloy (Fig. 1j, k). Nevertheless, X-ray
photoelectron spectroscopy (XPS) measurements indicate that in
addition to the chemical state of Al3+ due to the formation of Al2O3

layer, the Al and Cu components at the surface layer of E-Al82Cu18
alloy are primarily in the metallic states because of the conductive
Al2Cu lamellas (Supplementary Fig. 2a, b), which not only facilitate
electron transfer through the amorphous Al2O3 surface layer but
pair with their neighboring Al lamellas to form localized Al/Al2Cu
galvanic couples in charge/discharge processes36,37,42.

Electrochemical characterizations of the Al–Cu alloys. To
investigate the influence of passivating oxide layer on the Al strip-
ping/plating behaviors of Al-based electrodes, electrochemical
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measurements are carried out in symmetric cell configuration using
2M Al(OTF)3 aqueous electrolytes with various oxygen con-
centrations (CO2), which are adjusted by purging O2 or N2 for dif-
ferent time (Supplementary Table 2). Figure 2a shows a
representative voltage profile of symmetric E-Al82Cu18 cell during
the Al stripping/plating at the current density of 0.5mA cm−2,
compared with those of symmetric Al2Cu and Al ones, in the O2-
purged Al(OTF)3 aqueous electrolyte with CO2= 13.6mg L−1. The
E-Al82Cu18 symmetric cell exhibits relative flat and symmetric vol-
tage plateaus at Al stripping/plating steps despite the hysteresis
voltage gradually increasing to ~180mV from the initial 150mV
probably due to the continual formation of passivating oxide in such
high-oxygen-concentration electrolyte (Supplementary Fig. 3a). This
is in sharp contrast with the monometallic Al symmetric cell, of
which the unstable overpotential runs up to as high as ~2000–3000
mV due to side reactions such as hydrogen evolution reaction and
Al oxidation reaction (Fig. 2a and Supplementary Fig. 3b)11,14.
While for the Al2Cu symmetric cell, it takes initial high overpotential

of ~400mV to strip Al from thermodynamically stable intermetallic
Al2Cu phase. As the stripped Al fully takes part in the subsequent
stripping/plating cycles, the overpotential gradually decreases to
~195mV (Fig. 2a and Supplementary Fig. 3c), which is comparable
to the value of E-Al82Cu18 symmetric cell because of the formation
of additional Al/Al2Cu galvanic couples36,37,42.

While in the Al(OTF)3 aqueous electrolyte with a low oxygen
concentration, these Al-based electrodes have their surface
oxidation to be alleviated for improved Al stripping/plating
(Supplementary Fig. 3a–c). As shown in Supplementary Fig. 3d,
the overpotentials of these Al-based symmetric cells evidently
decrease as the CO2 is reduced to 0.13 mg L−1. Figure 2b compares
the initial voltage profiles of E-Al82Cu18, Al2Cu, and Al symmetric
cells during the Al stripping/plating at 0.5 mA cm−2, in the N2-
purged Al(OTF)3 aqueous electrolyte with CO2= 0.13 mg L−1. As
a consequence of notably suppressing the production of additional
oxide, the E-Al82Cu18 symmetric cell has the stable voltage
plateaus of as low as ~53mV, only one sixth of the initial
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Fig. 1 Merits of Al metal anode and microstructure characterizations of eutectic Al-Cu alloys. a Comparisons of electrochemical properties, cost, and
abundance for Al, Zn, K, Na, and Li. b Schematic illustrating the procedure to prepare lamella-nanostructured E-Al82Cu18 alloy composed of alternating α-Al
(gray) and intermetallic Al2Cu (dark yellow) lamellas. c Photograph of as-prepared E-Al82Cu18 alloy sheets with dimensions of ~13 cm × ~1.5 cm × ~400 μm.
Scale bar, 1 cm. d XRD patterns of E-Al82Cu18 (pink line), intermetallic Al2Cu (blue line) and monometallic Al (green line) electrode foils. The line patterns
show reference cards 04–0787 and 25–0012 for face-centered cubic Al (yellow lines) and body-centered tetragonal Al2Cu (blue lines) according to JCPDS,
respectively. e Representative optical micrograph of lamella-nanostructured E-Al82Cu18 alloy with an interlamellar spacing of ~420 nm. Scale bar, 5 μm.
f SEM backscattered electron image of E-Al82Cu18 with different contrasts corresponding to α-Al and intermetallic Al2Cu lamellas, as well as the
corresponding EDS elemental mapping of Cu (in green) and Al (in red). Scale bar, 1 μm. g HRTEM image of E-Al82Cu18 at Al2Cu/Al interfacial region. Scale
bar, 2 nm. h, i FFT patterns of selected red and pink boxes in intermetallic Al2Cu (h) and metallic Al (i) phases. j HRTEM image of Al/Al2O3 interfacial
region. Scale bar, 2 nm. k FFT patterns of the selected area in amorphous Al2O3 layer in j.
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overpotentials (~300mV) that are taken to strip Al from the
intermetallic Al2Cu matrix for subsequent Al stripping/plating
cycling in the Al2Cu symmetric cells. The less polarization of
E-Al82Cu18 cell is probably due to the lamellar nanostructure of
E-Al82Cu18 electrode, in which the constituent metallic α-Al
and intermetallic Al2Cu lamellas play distinct roles in the Al
stripping/plating cycles. By virtue of their different corrosion
potentials36,37,42, the less-noble α-Al thermodynamically prefers to
work as the electroactive material to supply Al3+ charge carriers,
and the more-noble Al2Cu pairs with the constituent α-Al to form
localized galvanic couples to trigger the Al stripping and serves as
2D nanopattern to guide the subsequent Al plating. No matter in
which electrolyte with the CO2 from 13.6 to 0.13 mg L−1, the
lamellar nanostructure improves the Al stripping/plating beha-
viors of E-Al82Cu18 (Supplementary Fig. 3a), compared with the
monometallic Al that as a hostless electrode undergoes an
increasing polarization process due to uncontrollable Al strip-
ping/plating and unavoidable hydrogen evolution and Al oxida-
tion reactions (Supplementary Fig. 3b)11,23. Their different Al
stripping/plating behaviors are further investigated by using cyclic
voltammetry (CV) in the N2-purged Al(OTF)3 aqueous electrolyte
with CO2= 0.13 mg L−1, where the E-Al82Cu18, Al2Cu, and Al
materials are used as the working and counter electrodes and the
Al wire as the reference electrode in a three-electrode cell

configuration. As shown in Supplementary Fig. 4, the E-Al82Cu18
electrode exhibits improved symmetric Al stripping/plating
behaviors, with an onset potential of as low as 0 V versus Al/
Al3+ and an improved current density compared to the other Al-
based electrodes. This is in sharp contrast to the intermetallic
Al2Cu with strong Cu–Al covalent bonds and the monometallic Al
with native oxide layer, which have their onset potentials of Al
stripping to reach ~96 and ~172mV, respectively, along the low
current densities. The Al/Al2Cu galvanic couple enhanced Al
stripping/plating kinetics is also demonstrated by electrochemical
impedance spectroscopy (EIS) measurements of symmetric
E-Al82Cu18, Al2Cu, and Al cells (Supplementary Fig. 5a–c).
Figure 2c, d show the representative Nyquist plots, comparing
the EIS spectra of all Al-based symmetric cells in the O2- and N2-
purged Al(OTF)3 aqueous electrolytes with CO2= 13.6 and
0.13 mg L−1, respectively. Therein, the E-Al82Cu18 symmetric
cells display characteristic semicircles in the high- and middle-
frequency range and inclined lines at the low frequencies, in
contrast to those of the Al2Cu and Al ones with much larger
diameters of semicircles. At high frequencies, the intersection
point on the real axis represents the intrinsic resistance of both
electrolyte and electrode (RI). In the middle-frequency range, the
diameter of the semicircle corresponds to the parallel connection
of the charge transfer resistance (RCT) of Al stripping/plating and
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the constant phase element (CPE). The slope of the inclined line at
low frequencies is the Warburg resistance (Zw). Based on these
general descriptors in the equivalent circuit (Supplementary
Fig. 5d), the EIS spectra are analyzed using the complex nonlinear
least-squares fitting method. Supplementary Fig. 6a, b compare
the RI and RCT values of all Al-based electrodes in the Al(OTF)3
aqueous electrolytes with different CO2, where the E-Al82Cu18
always has the lowest RI and RCT values. At CO2= 0.13 mg L−1,
the RI of E-Al82Cu18 electrode is as low as ~3Ω because there
forms an ultrathin oxide layer to facilitate the Al stripping/plating.
Triggered by the periodical Al/Al2Cu galvanic couples, the
E-Al82Cu18 electrode has the RCT of ~160Ω, more than twenty-
fold lower than that of the monometallic Al with a thicker
passivating oxide layer (~3880Ω) (Supplementary Table 3).

To identify the specific roles of α-Al and Al2Cu nanolamellas in
the E-Al82Cu18 electrodes, ex-situ SEM-EDS elemental mapping
characterization is conducted after deep Al stripping and plating at
1mA cm−2 for 10 h in the Al(OTF)3 aqueous electrolyte with
CO2= 0.13mg L−1 (Fig. 3a). As shown in a typical SEM back-
scattered electron image of the Al-stripped E-Al82Cu18 electrode (left
inset of Fig. 3a), the constituent α-Al lamellas as electroactive
materials selectively dissolve during the Al stripping process while the
intermetallic Al2Cu ones are left to form a lamella-nanostructured 2D
pattern. This is also illustrated by its corresponding SEM-EDS
elemental mapping of Al and Cu (left insets of Fig. 3a), wherein the
Al atoms distribute along the Cu-rich Al2Cu lamellas. During the
subsequent Al electroplating process, the Al is incorporated into the
stripped E-Al82Cu18 along the in-situ formed structural bidimentional
Al2Cu nanopatterns. As shown in the SEM-EDS elemental mapping
images of Al-stripped and -plated E-Al82Cu18 (right insets of Fig. 3a),
the electrodeposited Al atoms uniformly distribute in the channels
sandwiched between the Al2Cu lamellas, the same as the pristine
E-Al82Cu18 (Fig. 1e). According to the voltage profiles of Al stripping/
plating processes, the energy efficiency (EE) is evaluated to be ~99.4%
in terms of the equation EE ¼ R

IV strippingðtÞdt=
R
IVplatingðtÞdt,

indicating the high Al reversibility of E-Al82Cu18 electrode. Here I is
the current density, Vstripping(t) and Vplating(t) are the stripping and
plating voltages at the time (t).

Owing to the lamella-nanostructured Al2Cu pattern that enhances
the Al stripping/plating kinetics of the constituent α-Al lamellas, the
symmetric E-Al82Cu18 cell exhibits a better rate performance in the
aqueous Al(OTF)3 electrolyte with CO2 = 0.13mg L−1. As shown in
Fig. 3b, the E-Al82Cu18 symmetric cell has a steadily increasing
hysteresis of ~31, ~56, and ~103mV when the current density is
increased from 0.5 to 1.0, 1.5, and 2.5mA cm−2. These hysteresis
voltages are much lower than the values of the symmetric cells based
on intermetallic Al2Cu (~51, ~95, and ~192mV) and monometallic
Al (~1750, ~2990, and ~4530mV) electrodes. Figure 3c compares
the Al stripping/plating cycling stabilities of all Al-based symmetric
cells. Obviously, the voltage profile of E-Al82Cu18 symmetric cell
does not display evident fluctuation in the long-term cycling at
0.5mA cm−2 for more than 2000 h, except for the slight reduction
in overpotential from initial ~53mV to final ~37mV probably due
to the formation of less and less oxide (right inset of Fig. 3c) and the
negligible hydrogen evolution (Supplementary Fig. 7a). This is in
contrast with those of Al2Cu and Al symmetric cells with much
larger voltage hysteresis and fluctuation at 180 h and 26 h,
respectively (Fig. 3c). When extending the cycling time, there take
place severe side reactions of hydrogen evolution and Al oxidation
along with the Al stripping/plating processes, especially in the
monometallic Al symmetric cell (left inset of Fig. 3c and
Supplementary Fig. 7b). The hydrogen generation is identified by
in-situ gas chromatography (Supplementary Fig. 7c). The hydrogen
production increases the pH value of electrolytes to facilitate the
oxidation of Al metal and thus aggravate side reactions11,43, which

leads to cell case damage and electrolyte leak (Supplementary Fig. 8).
As attested by the more intensive Raman bands and the change of
chemical states of Al in XPS spectra (Supplementary Figs. 9 and 10),
there indeed produces additional Al2O3 on the monometallic Al
electrode after 40 stripping/plating cycles. While in the E-Al82Cu18
symmetric cell, the surface oxide of E-Al82Cu18 electrode is probably
below the detection limit for the Raman spectroscopy measurements
(Supplementary Figs. 11 and 12), which enables highly reversible Al
stripping/plating at low overpotential. Furthermore, there does not
observe any bubbles on the E-Al82Cu18 electrodes during the Al
stripping/plating processes (Supplementary Fig. 7b). The improved
cycling stability of E-Al82Cu18 electrode is also justified by the
unconspicuous change of EIS spectra during the Al stripping/plating
processes (Fig. 3d). Relative to the initial values of RI and RCT, they
only increase by ~2 and ~20Ω after 120 cycles, respectively, much
lower than those of intermetallic Al2Cu electrodes (~8 and ~290Ω)
(Fig. 3e and Supplementary Table 4). While the monometallic Al
symmetric cell has its RI and RCT values to increase to ~36 and
~8855Ω only after 12 cycles (Fig. 3f and Supplementary Table 4). By
virtue of the high reversibility of Al stripping/plating, the E-Al82Cu18
electrode still keeps the initial lamella nanostructure even after more
than 1000 cycles (2000 h) (Supplementary Fig. 13a), in stark contrast
to the Al2Cu and Al electrodes that are performed for only 125 and
20 cycles of Al stripping/plating, respectively. As shown in
Supplementary Fig. 13b, c, there appear a large number of cracks
on Al2Cu and Al electrodes. All these electrochemical and structural
features verify the effective Al stripping/plating behaviors of
E-Al82Cu18 electrode because of its lamellar nanostructure of
alternating intermetallic Al2Cu and α-Al lamellas.

Electrochemical energy storage performances of Al-ion full
cells. To develop E-Al82Cu18-based AR-AMB full cells for prac-
tical use, a cathodic material of Al3+ pre-intercalated manganese
oxide (AlxMnO2·nH2O) is prepared by a modified hydrothermal
method. Supplementary Figure 14a, b show low-magnification
SEM and TEM images of as-prepared AlxMnO2·nH2O, displaying
a hierarchical nanostructure consisting of nanosheets with
thickness of ~10 nm. The HRTEM image of AlxMnO2·nH2O
nanosheets illustrates the nature of layered crystalline structure
(inset of Supplementary Fig. 14b). According to the spectral
features of the Mn–O vibrations44,45, the characteristic Raman
bands at 506, 573, and 641 cm−1 unveil a birnessite-type structure
(Supplementary Fig. 14c)46. This is further confirmed by the
obvious diffraction peaks in the XRD patterns of AlxMnO2·nH2O
at 2θ= 10.9°, 25.2°, 36.7°, 65.9°, which correspond to the 001,
002, 110, and 020 reflections of birnessite (JCPDS 43–1456)
(Supplementary Fig. 14d). The diffraction peaks deviating from
their corresponding line patterns indicates the pre-intercalation
of hydrated Al3+ cation. In terms of the 001 diffraction peak
position, the interlayer spacing of AlxMnO2·nH2O nanosheets is
evaluated to be 0.811 nm, in agreement with the observation in
the HRTEM image (inset of Supplementary Fig. 14b). The XPS
survey spectrum attests to the presence of Al, Mn, and O atoms in
the as-prepared AlxMnO2·nH2O nanosheets (Supplementary
Fig. 15a), where the x value is evaluated to be ~0.12 according to
inductively coupled plasma optical emission spectroscopy (ICP-
OES) analysis (Supplementary Table 5). In high-resolution Al 2p
XPS spectrum (Supplementary Fig. 15b), the characteristic peak
at the binding energy of 75.0 eV is attributed to the pre-
intercalated Al3+ cations that are engaged into the MnO6 sheets
to adjust the chemical states of Mn3+ and Mn4+ (Supplementary
Fig. 15c)12,15. O 1s XPS analysis demonstrates that there mainly
exist three oxygen-containing species, i.e., the O2

− in MnO6

lattice, the OH− and the H2O, to correspond to the peaks at the
binding energies of 529.8, 530.9, and 533.0 eV (Supplementary

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28238-3 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:576 | https://doi.org/10.1038/s41467-022-28238-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Fig. 15d)7,47. Therein, the latter is assigned to both crystal water
and constitution water, which are identified by thermogravimetric
analysis (TGA) at the temperature below 510 °C. As shown by the
TGA profile (Supplementary Fig. 15e), the weight loss below
120 °C is attributed to the removal of the crystal water48. When
increasing temperature from 120 °C to 510 °C, the corresponding
weight loss is ascribed to the constitutional water due to the
formation of hydrated Al3+ with a high enthalpy49.

Figure 4a shows representative cyclic voltammetry (CV) curves
of full AR-AMB cells that are assembled with the E-Al82Cu18 alloy
or monometallic Al anode and the AlxMnO2·nH2O cathode, i.e.,
E-Al82Cu18 | |AlxMnO2 or Al | |AlxMnO2, in 2M Al(OTF)3 aqu-
eous electrolyte with CO2 = 0.13mg L−1. Though both
E-Al82Cu18 | |AlxMnO2 and Al | |AlxMnO2 AR-AMB cells have

the same cathode material of AlxMnO2·nH2O nanosheets, they
exhibit distinct voltammetric behaviors due to their different
anodes, i.e., the lamella-nanostructured E-Al82Cu18 and the
monometallic Al, indicating the significance of Al-based anodes
in determining electrochemical performance of full AR-AMB cells.
By virtue of the improved Al stripping/plating properties of
E-Al82Cu18 enabling a fast reaction kinetics of Al3+ intercalation/
deintercalation in the AlxMnO2·nH2O, the E-Al82Cu18 | |AlxMnO2

cell shows enhanced current density and positively shifted voltages
of anodic/cathodic peaks relative to the Al | |AlxMnO2. At the scan
rate of 0.1 mV s−1, the anodic and cathodic peaks of E-Al82Cu18 | |
AlxMnO2 can reach ~1.647 and ~1.491 V, respectively, with the
voltage difference of ~156mV. Whereas the voltage difference of
anodic and cathodic peaks increases to ~673mV when increasing
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the scan rate to 3 mV s−1 (Supplementary Fig. 16a), it is still much
smaller than that of Al | |AlxMnO2 cell at the scan rate of
0.2 mV s−1 (~863mV) (Supplementary Fig. 16b). These observa-
tions indicate the improved rate capability of E-Al82Cu18 | |
AlxMnO2 cell. As shown in Supplementary Fig. 16c, the
E-Al82Cu18 | |AlxMnO2 cell can achieve a specific capacity of as
high as ~478mAh g−1 (based on the loading mass of AlxMnO2 in
the cathode) at 0.1 mV s−1 and retains ~249mAh g−1 at 3 mV s−1

(i.e., the discharge time of 467 s), even comparable to that of Al | |
AlxMnO2 cell (262mAh g−1) at 0.2 mV s−1 (7000 s).

Figure 4b and Supplementary Fig. 17a, b show the representa-
tive voltage profiles for the galvanostatic charge and discharge of
E-Al82Cu18 | |AlxMnO2 and Al | |AlxMnO2 AR-AMB cells, with
the voltage plateaus being consistent with their corresponding
redox peaks in the CV curves due to the intercalation/de-
intercalation of Al3+ via AlxMnO2·nH2O+ 3(y-x)e− + (y-x)Al3+

↔ AlyMnO2·nH2O (Fig. 4a and Supplementary Fig. 16a, b)12,
which is demonstrated by XPS analysis of AlxMnO2 cathode after
the discharge and charge (Supplementary Figs. 18 and 19). As
shown in Supplementary Fig. 18a, b for the Mn 2p and Al 2p of
the discharged AlyMnO2, the intercalation of Al3+ leads to the y
value of as high as 0.56, accompanied by the change of chemical
state of Mn from Mn3+ and Mn4+ to Mn2+. As for the charged
AlxMnO2, the content of Al decreases to x= ~11 due to the de-
intercalation of Al3+, where the chemical state of Mn changes to
Mn3+ and Mn4+ from Mn2+ (Supplementary Fig. 19a, b). In the
charge or discharge state, the F and S contents are detected to be
constant probably due to the physical adsorption of OTF ligands
on the surface of AlxMnO2 (Supplementary Figs. 18d, e and 19d,
e). Evidently, the use of E-Al82Cu18 alloy anode enlists the
E-Al82Cu18 | |AlxMnO2 cell to exhibit a higher discharge plateau

and smaller voltage polarization, giving rise to a dramatically
improved energy efficiency. As manifested by the charge/
discharge voltage difference (ΔE) at the specific current of
100 mA g−1 (~0.2 C)50, the ΔE decreases to 0.17 V of
E-Al82Cu18 | |AlxMnO2 from 0.52 V of Al | |AlxMnO2. Further-
more, the discharge capacity of E-Al82Cu18 | |AlxMnO2 reaches as
high as ~480 mAh g−1, ~1.5-fold of the Al | |AlxMnO2

(~328 mAh g−1). Even as the rate increases to 10 C (i.e.,
5000 mA g−1), it still stores/delivers the capacities of ~194/
~190 mAh g−1 in 6 min (Fig. 4c), with a high Coulombic
efficiency of ~98% (Supplementary Fig. 20). In comparison, the
charge/discharge capacities of Al | |AlxMnO2 decrease to ~42/
~33 mAh g−1 (Fig. 4c), with a lower Coulombic efficiency of
~78% (Supplementary Fig. 20). As a result, the E-Al82Cu18 | |
AlxMnO2 achieves the highest specific energy of ~672Wh kg−1

(energy density of 815Wh L−1 based on the volume of cathode)
at 100 mA g−1 and retains ~212Wh kg−1 at 5000 mA g−1

(Supplementary Fig. 21)51, comparable to representative LIBs
(Supplementary Table 6). These electrochemical energy storage
properties of E-Al82Cu18 | |AlxMnO2 cell are due to the improved
Al stripping/plating kinetics of the lamella-nanostructured E-
Al82Cu18. As demonstrated in EIS analysis (Fig. 4d and
Supplementary Fig. 22a, b), the E-Al82Cu18 | |AlxMnO2 cell has
its RI and RCT values to be ~18Ω and ~1836Ω smaller than those
of Al | |AlxMnO2 (Supplementary Fig. 22c, d and Supplementary
Table 7). Supplementary Figure 23 shows the self-discharge
behavior of E-Al82Cu18 | |AlxMnO2 cell. Similar to the Al | |
AlxMnO2, the Al82Cu18 | |AlxMnO2 has an evident voltage drop in
the initial 10 h. Owing to the sluggish intercalation kinetics of
Al3+ in the AlxMnO2, the E-Al82Cu18 | |AlxMnO2 displays a
voltage plateau in the subsequent 190 h, with a low self-discharge
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rate of ~0.57 mV h−1. Moreover, the E-Al82Cu18 | |AlxMnO2 cell
also exhibits an improved cycling stability when performed by the
galvanostatic charge/discharge at 500 mA g−1 in the voltage
window between 0.5 and 1.8 V (Supplementary Fig. 24). As
shown in Fig. 4e, it retains ~83% of the initial capacity after 400
cycles, along with the Coulombic efficiency of ~99% (Supple-
mentary Fig. 25). In sharp comparison, the Al | |AlxMnO2 cell
undergoes fast capacity degradation as well as low Coulombic
efficiency in tens of cycles probably due to the poor reversibility
of monometallic Al (Fig. 4e and Supplementary Fig. 25). Along
with the cell-level capacity of 66.7 mAh g−1 and specific energy of
90.2Wh kg−1, which are evaluated according to the methodology
of practical assessment for aluminum battery technologies25, our
full E-Al82Cu18 | |AlxMnO2 cell outperforms state-of-the-art
aluminum batteries (Supplementary Table 8).

Discussion
In conclusion, we have demonstrated eutectic engineering as an
effective strategy to develop highly reversible Al-based alloy anodes,
typically lamella-nanostructured E-Al82Cu18, for high-performance
aqueous rechargeable Al-ion batteries. Triggered by in-situ eutectic
solidification reaction, the E-Al82Cu18 has an ordered lamellar
nanostructure composed of alternating monometallic α-Al and
intermetallic Al2Cu nanolamellas, which pair with each other to
form periodically localized galvanic couples of Al/Al2Cu. By making
use of their different corrosion potentials, the less-noble α-Al
lamellas work as electroactive materials to supply Al3+ charge car-
riers while the more-noble Al2Cu lamellas serve as 2D nanopatterns
to guide highly reversible Al stripping and plating at low over-
potentials, particularly in N2-purged aqueous Al(OTF)3 electrolyte
with ultralow oxygen concentration of 0.13mg L−1. As a con-
sequence, the E-Al82Cu18 electrodes exhibit exceptionally Al strip-
ping/plating stability for more than 2000 h, along with low
overpotentials and high energy efficiency. These outstanding elec-
trochemical properties enlist full cells of E-Al82Cu18 | |AlxMnO2 to
deliver specific energy of as high as ~670Wh kg−1 or energy density
of 815Wh L−1 (based on the mass or volume of AlxMnO2 cathode)
and retain 80% capacity for more than 400 cycles.

Methods
Preparation of eutectic Al-Cu alloy anodes and AlxMnO2 nanosheet cathode.
The lamella-nanostructured eutectic Al82Cu18 alloy (E-Al82Cu18) ingots were firstly
produced by arc melting pure Al (99.994%, Sinopharm Chemical Reagent Co. Ltd)
and Cu (99.996%, Sinopharm Chemical Reagent Co. Ltd) metals in an argon
atmosphere. During the furnace cooling assisted by circulating water, there takes place
a eutectic solidification reaction to form a lamellar nanostructure. The as-prepared E-
Al82Cu18 was cut into ~400-μm-thick sheets along the perpendicular direction of
lamellar structure using a diamond wire saw cutting machine (STX-202A), followed
by a 7000-mesh sandpaper polishing procedure for further microstructural char-
acterizations and electrochemical measurements. The length and width of Al82Cu18
alloy are 20mm and 10mm, respectively. The Al2Cu intermetallic compound sheets
with a thickness of ~400 μm were prepared by the same procedure. In comparison,
the commercial Al foils were polished with a 7000-mesh sandpaper to remove surface
oxide for use as Al electrode. The Al3+ preintercalated manganese oxide (AlxM-
nO2·nH2O) nanosheets were synthesized by a modified hydrothermal method. In a
Teflon-lined steel, autoclave contains a mixture of 20mM KMnO4, 20mM NH4Cl,
and 5mM Al(NO3)3, the hydrothermal synthesis was performed at 150 °C for 24 h,
with a magnetically stirring at a speed of 250 rpm. After washing in ultrapure water,
the as-prepared AlxMnO2·nH2O nanosheets were mixed with super-P acetylene black
as the conducting agent and poly (vinylidene difluoride) as the binder in a weight
ratio of 70 : 20 : 10 and then pasted on stainless steel foil (~20 μm thick, Bary Metallic
Co., Ltd) with the loading mass of 1.0mg cm−2 for the use of cathode materials.

Physicochemical characterizations. The electronic microstructures of E-Al82Cu18
and Al2Cu alloy sheets were characterized by a field-emission scanning electron
microscope equipped with an X-ray energy-dispersive spectroscopy (JEOL, JSM-
6700F, 8 kV) and a field-emission transmission electron microscope (JEOL, JEM-
2100F, 200 kV). The metallographic microstructure of E-Al82Cu18 alloy was observed
on a confocal laser scanning microscope (OLS3000, Olympus) after a chemical etching
in a Keller solution. X-ray diffraction measurements of all specimens were performed
on a D/max2500pc diffractometer with a Cu Kα radiation. Raman spectra were

measured on a micro-Raman spectrometer (Renishaw) at the laser power of 0.5mW,
in which the laser with a wavelength of 532 nm was equipped. X-ray photoelectron
spectroscopy analysis was conducted on a Thermo ECSALAB 250 with an Al anode.
Charging effects were compensated by shifting binding energies based on the
adventitious C 1s peak (284.8 eV). O2 concentrations and Cu/Al ion concentrations in
electrolytes were analyzed by portable DO meter (az8403) and inductively coupled
plasma optical emission spectrometer (ICP-OES, Thermo electron), respectively.

Electrochemical characterizations. Symmetric coin-type cells of E-Al82Cu18,
Al2Cu, and Al were assembled with their two identical electrodes separated by glass
fiber membranes (GFMs) with a pore diameter of 1.2 μm and thickness of 260 μm,
in 0.25 mL 2M Al(OTF)3 aqueous solutions with O2 concentrations from 0.13 to
13.6mg L−1, at 25 ± 0.5 °C. Therein, the O2 concentrations in the electrolytes were
adjusted by purging N2 for 2, 0.5, and 0 h, and O2 for 1 and 2 h, respectively.
Electrochemical impendence spectroscopy (EIS) measurements were conducted on
as-assembled symmetric cells of E-Al82Cu18, Al2Cu, and Al over a frequency range
from 100 kHz to 10 mHz (71 points) in quasi-stationary potential at the amplitude
of the sinusoidal voltage of 10mV. The electrochemical Al stripping/plating
behaviors were measured in as-assembled E-Al82Cu18, Al2Cu, and Al symmetric
cells at various specific currents. To illustrate their electrochemical stabilities, Al
stripping/plating and EIS measurements were performed on the same symmetric
cells during their long-term Al stripping/plating cycles. Fresh full aqueous Al-ion
coin cells were constructed with the E-Al82Cu18 or Al sheet as the anode, the
stainless-steel foil supported AlxMnO2·nH2O as the cathode, the GFM as the
separator, the 0.25 mL 2M Al(OTF)3 aqueous solution containing 0.2M Mn(OTF)2
and O2 concentration of 0.13 mg L−1 as the aqueous electrolyte, for measurements
of CV, galvanostatic charge/discharge curves, EIS, durability, and self-discharge,
respectively, at 25 ± 0.5 °C. All these electrochemical energy-storage tests were in an
open environment, not in a climatic/environmental chamber. CV measurements
were conducted on an electrochemical analyzer (Ivium Technology) in the voltage
range of 0.5 and 1.9 V at scan rates from 0.1 to 3mV s−1. Galvanostatic charge/
discharge curves were collected at different specific currents to demonstrate their
rate performance. EIS measurements were performed in the frequency ranges from
100 kHz to 10mHz (71 points) in quasi-stationary potential at the amplitude of the
sinusoidal voltage of 10mV. The durability performance of full cells were evaluated
by performing charge/discharge cycles at 500mA g−1 (1 C). Self-discharge mea-
surements were carried out by charging Al82Cu18 | |AlxMnO2 and Al | |AlxMnO2 full
cells to 1.8 V, followed by open-circuit potential self-discharging for 200 h.

Statistics and reproducibility. Experiments were reproducible.
Figure 1e, the experiments were performed twice with similar results.
Figure 1f, the experiments were performed twice with similar results.
Figure 1g, the experiments were performed twice with similar results.
Figure 1j, the experiments were performed twice with similar results.
Figure 3a, the experiments were performed twice with similar results.
Supplementary Figure 13a–c, the experiments were performed twice with

similar results.
Supplementary Figure 14a, b, the experiments were performed twice with

similar results.

Data availability
All data supporting this study and its findings within the article and its Supplementary
Information are available from the corresponding authors upon reasonable request.
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