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Multiphase flow detection with photonic crystals
and deep learning
Lang Feng 1✉, Stefan Natu1,3, Victoria Som de Cerff Edmonds2 & John J. Valenza 1✉

Multiphase flows are ubiquitous in industrial settings. It is often necessary to characterize

these fluid mixtures in support of process optimization. Unfortunately, existing commercial

technologies often fail to provide frequent, accurate, and cost-efficient data necessary to

enable process optimization. Here we show a new physics-based concept and testing with lab

and field prototypes leveraging photonic crystals for real-time characterization of multiphase

flows. In particular, low power (~1 mW) microwave transmission through photonic crystals

filled with fluid mixtures may be interrogated by deep learning analysis techniques to provide

a fast and accurate characterization of phase fraction and flow morphology. Moreover when

these flow characteristics are known, the flow rate is accurately inferred from the differential

pressure necessary for the flow to pass through the photonic crystal. This insight provides a

basis to develop a unique class of inexpensive, accurate, and convenient techniques to

characterize multiphase flows.
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Photonic crystals1–8 (PC) consist of perfect spatial arrays of
dielectric property contrast that act to govern the trans-
mission of light or electromagnetic radiation, and these

structures permit specific modes of wave propagation. Thus, a
frequency space band structure arises that consists of stop bands
that outline forbidden modes. As a result of this behavior, PCs are
amenable to a plethora of environmental sensing applications
that relate changes in the photonic band structure to variations
in system specific quantities, like concentration or species
detection9–13.

Multiphase flow measurements (MPFM) consist of a collection
of technologies to infer flow characteristics such as, phase
fractions14–18, flow rates19–22, and flow morphology. Conven-
tional techniques to determine these flow characteristics are
cumbersome to implement, prone to fouling and error, and
require regular calibration15. This includes microwave-based
phase fraction measurements which either do not sample the
entire flow cross-section, or require a support structure or an
alternative low-frequency RF band to allow for energy trans-
mission through fluid mixtures with a high water cut15.

In this work we investigate the utility of exploiting microwave
transmission through PCs for characterizing phase fraction, flow
rates, and flow morphology. Unlike previous PC sensing appli-
cations which concern subtle changes to the spatially uniform
dielectric contrast, our approach focuses on the effects of sig-
nificantly varying the PC dielectric contrast through global phase
substitution. In other words, we seek to determine whether or not
it is possible to infer flow characteristics from the spatial dis-
tribution of dielectric contrast in a PC filled with the fluid mixture
of interest. One means to accomplish this would be to invert
microwave transmission data for the spatiotemporal dielectric
constant in the structure; However, this approach requires sig-
nificant computational and financial investment, and ultimately
precludes real-time characterization of flow characteristics.
Therefore, we also investigate the viability of using Deep learning
physics-based data analytics23 to interrogate microwave trans-
mission data in support of rapid, easy to deploy, and relatively
inexpensive MPFM.

Results
Microwave transmission measurement of photonic crystal fil-
led with fluids. We start with a laboratory-scale measurement of
microwave transmission through a photonic crystal. The experi-
mental setup is similar to that previously described in the
literature3,5,7,8. As shown in Fig. 1a, a two-dimensional cylindrical
photonic crystal (PC) is mounted on top of a rotational stage
between two microwave ridged horn antennas with the central
axis of the fins aligned. One antenna irradiates the PC with
microwave energy in the TE mode, while the other antenna
receives the transmitted TE mode microwaves. Both antennas are
connected to a network analyzer (see Methods for more details).
As illustrated in Fig. 1b, the PC used in the experiments is made
of a cylindrical polyethylene block with a diameter of 20 cm and a
height of 15 cm. It contains a square lattice of 1.5 cm diameter
holes with a lattice constant of a= 2.0 cm. The holes are
machined to a depth of 14 cm, leaving a 1 cm thick solid bottom
that allows us to fill the holes with liquid. An example of a liquid
filled PC is shown in Fig. 1c.

When the microwave energy is imparted on the air-filled
(Fig. 1b) PC it is met with a periodic array of binary dielectric
contrast. Therefore, photonic band structure governs the
transmission of microwave energy over the frequency range
1 GHz to 13.5 GHz employed in our experiments. For an
infinitely large PC like that described above, with relative
dielectric permittivities of 2.3 and 1.0 for polyethylene and air,

respectively, the ideal photonic band structure can be determined
by solving Maxwell’s equation1. The first four eigenmodes are
shown in Fig. 1d, where the frequency is normalized by the
characteristic frequency (f c ¼ c=a where c is the speed of light)
for the lattice. In the plot, Γ, X, and M indicate the wave vectors
that correspond to the symmetry points in the first Brilloun
zone24. As previously reported5,7, we present the angle and
frequency-dependent microwave transmission data as a color
contour plot like that shown in Fig. 1e (see Methods for more
details). Stop bands, corresponding to low transmission, are
indicated by green-to-blue color. The contour plot is a direct
measurement of the photonic band structure between the X and
M symmetry points (Fig. 1d)5,7. It is worth noting, that the band
structure shown in (Fig. 1d, e) is essentially the fingerprint of the
crystal and thus it may be exploited to calibrate the system
response. The structure of the contour plot (Fig. 1f) changes
drastically when the holes of the PC are randomly filled with
water (blue) or oil (yellow) as indicated in Fig. 1c. The variation
in angle and frequency-dependent microwave transmission
observed between Fig. 1e, f is due to the different spatial
distribution of complex-valued dielectric constants when oil or
water is randomly substituted for air. This phase substitution
introduces two randomly distributed dielectric contrasts which
results in additional scattering and attenuation on top of the
conventional photonic physics. While the information in Fig. 1f
seems chaotic relative to that shown in Fig. 1e, it is necessarily
true that the spatial distribution of complex-valued dielectric
constant is encoded in this image. While it is time consuming
and computationally expensive to invert this image for the phase
distribution in the PC, we investigate the use of a supervised
machine learning analysis to predict the phase fractions (oil/
water) and macroscopic distribution in the PC. This work is
intended to provide a basis for a real-time inference of the
phase fraction and flow morphology of multiphase flows.
The remainder of the article is organized in the following
manner: we start with static laboratory and numerical experi-
ments, then we establish a machine learning protocol to
accurately predict phase fraction, flow morphology, and assess
the feasibility of field-test prototype PC. Finally, we test the
robustness of the collective approach in dynamic experiments at
a pilot-scale flow loop.

Experiments and simulations on multiphase systems. The
accuracy of supervised machine learning data analytics depends
almost entirely on providing a training dataset that is repre-
sentative of the relevant spectrum of realizations encountered in
practice. Similarly the resolution of the data analytics prediction
is dependent on the sampling frequency over the relevant spec-
trum of parameter space. In the context of the contour plots
discussed previously (Fig. 1e, f), while they represent a con-
siderable amount of information (200 frequencies × 45 angles), it
is necessary to obtain a large number of these images corre-
sponding to the full spectrum of oil/water phase fractions con-
strained by the relevant flow morphologies25–27 in order to
accurately infer these flow characteristics with a machine learning
model. To test the viability of this approach, we performed
100 static experiments in the lab, by completely filling individual
holes with a synthetic polyalphaolefin (PAO) oil, where the
fraction of filled holes spanned 0% to 100% with a step size of
10% (e.g., 10%, 20%, 30%, etc.). For each experiment a set of holes
were selected using a random number generator in Matlab and
then filled with oil. The configurations of colored pixels in Fig. 2a
provide examples of filling configuration in the PC block, for
filling fractions of 0, 40, 70, and 100% oil (green pixels) while the
remaining holes are filled with air (red pixels). The patterns
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Fig. 1 Concept of utilizing photonic crystal to detect multiphase materials. a Lab-scale experimental configuration with the transmitting and receiving
antenna on opposite sides of the photonic crystal (PC). Both antennas are connected to a network analyzer (see methods). The PC is placed on top of a
plastic rod that is connected to a rotational stage. b An illustration of the photonic crystal with multitude of holes arranged in a square lattice configuration;
In this case the holes are filled with air. Here a is the lattice constant. c An illustration of the same photonic crystal structure with a proportion of the holes
filled with water (blue) and the remaining holes filled with oil (yellow). d Computed photonic band structure of the square lattice (first four eigenmodes are
shown, sequentially as red, green, yellow and blue curves). Here k is the wave vector and a is the lattice constant. The symmetry points in the first Brillouin
zone are shown on the x-axis, (Γ, X, and M) and the y-axis is the frequency f normalized by the characteristic frequency fc. e, f Color contour plots of the
microwave transmission measurements through the structures shown in b and c, respectively. The x-axis is incident angle, with zero defined as the X
symmetry point in d or equivalently vertical direction of b. Increasing incident angles indicates rotating in clock-wise direction. The y-axis is microwave
frequency. The color in e and f corresponds to the microwave transmission coefficient as indicated in the accompanying scale bar.
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Fig. 2 Experimental and simulation contour plots at different oil/gas fractions. a Examples of the random configurations of oil-filled holes in the photonic
crystal block, with filling fractions (left to right): 0%, 40%, 70% to 100%. The remaining holes are filled with air. Green pixels represent oil-filled holes and
red pixels represent air-filled holes. b Color contour plots from microwave transmission measurement on photonic crystal with oil-filling pattern
corresponding to the configurations in a. The contour plots are shown for the range of incident angle 0–180° (x-axis) with a step size of 1°, and there are
201 discrete measurement frequencies along the y-axis from 1.0 to 13.5 GHz. The microwave transmission coefficient color scale is the same as that shown
in Fig. 1. c Color contour plots from the forward model COMSOL simulation of microwave transmission on photonic crystal with oil-filling pattern
corresponding to the configurations in a. The contour plots are shown for the range of incident angle 0–180° on the x-axis with a step size of 2°, and there
are 33 discrete measurement frequencies along the y-axis over the range 1.0–13.5 GHz. The microwave transmission coefficient color scale is the same as
that shown in Fig. 1.
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corresponding to 40% and 70% filling fractions exhibit the ran-
dom nature of the oil-filled holes. For each filling fraction other
than 0% and 100%, the experiments are performed several times
to test different realizations of oil-filled holes at a single filling
fraction.

Figure 2b shows four examples of the measured microwave
transmission for the oil-filling configurations shown immediately
above in Fig. 2a. The contour plots contain 180 equally spaced
angles in the range of 0–180 degrees, and 200 equally spaced
frequencies in the range 1.0–13.5 GHz. Although the contour plot
for 0% oil filling has a well-defined symmetry due to the near-
perfect photonic band structure (e.g., as compared to Fig. 1d X-
M), additional data across a broader range of angles could be
useful for inferring additional information on material properties,
or the spatial phase distributions in the PC as in Fig. 2b
(additional experimental data from 0 to 360 degrees can be found
in Supplementary Figs. 2, 3 and 4). The nearly isotropic high
transmission contour plot at 100% oil fraction is due to a very low
dielectric contrast between the polyethylene PC structure (εr ~2.3)
and the PAO oil-filled holes (εr~2.1). To complement the lab
experiments, we performed finite element COMSOL 2D simula-
tion (see Methods for more details) to generate simulated
microwave transmission contour plots for all the oil-filling
configurations tested experimentally. Four examples of the
simulated color contour plots are shown in Fig. 2c for the same
oil-filling configurations considered heretofore. The numerical
results are generally consistent with the transmission measure-
ments, exhibiting only minor discrepancies associated with the
finite length of PC structure due to the fact that we had to
estimate the beam aperture, and the frequency-dependent
transfer function of the antennas. The physical experiments are
time consuming and it is prohibitively expensive to parallelize our
lab effort (Fig. 2b). On the other hand it is common practice to
parallelize numerical experiments consisting of running forward
models on a multi-core computing cluster (see Methods for more
details). Therefore, the good agreement between the experimental
and simulated data enables us to drastically increase the number
of datasets available to train the machine learning algorithm. This
includes accounting for additional complications encountered in
flowing liquid systems such as the potential for filling the holes in
the PC with mixtures of the liquid components.

Predictions of phase fractions with deep neural network. Next
we assess the capability of an open-source machine learning algo-
rithm to analyze the microwave transmission measurements (e.g., as
shown in Fig. 2), from lab experimental data to simulated data. Prior
to settling on this data analytics approach, we considered various
statistical methods28,29, effective medium theory30, and physics-
based computational inversion as potential means to analyze our
microwave transmission measurements. These approaches faced
many challenges which precluded our ability to predict the flow
characteristics with requisite accuracy. We quantify the accuracy of
the data analytics model prediction using prediction accuracy and
R2. In this context, prediction accuracy is the ratio of the number of
exactly correct predictions to the total number of data points, and R2

is 1 minus the ratio of variability in the difference between the
model predictions and the data, and the variability in the data (see
Methods for more detail on prediction accuracy and R2 score). With
these statistics we assessed the accuracy of several linear machine
learning algorithms, such as random forests and support vector
machine. Like the conventional analytical techniques these analyses
failed to yield the accuracy (e.g., a prediction accuracy of over 98%
or a R2 score over 0.95) required to render these techniques com-
petitive with current technology. Next we turned to Feed Forward

Neural Network to train, classify and perform blind tests of 100
experimental measurements consisting of varying the fraction of oil-
filled holes in the PC in the range 0–100%. The spectra collected for
360 transmission angles equally spaced over the range 0-360° were
randomly split into a set of 80/20 non-overlapping training and
blind test data, respectively. Each training dataset consists of the
transmission coefficient spectra for one or more incident angles. In
the example shown in Fig. 3a, one set of training input data includes
a single transmission coefficient spectrum at a specific incident angle
of an experimental polar intensity plot. The training dataset along
with data labels (fractions of oil) are fed into a supervised Machine
Learning classifier through Feed Forward Neural Network to build a
training model (see Methods for more details). The accuracy of the
training model is then tested on the blind test data. The 2D prob-
ability histogram (similar to Confusion Matrix; see Methods) in
Fig. 3a shows the prediction accuracy for all the test data predicted
with the trained neural network model. The overall prediction
accuracy is 99.5%. Also it is particularly significant that after training
the neural network model, the phase fraction prediction takes mil-
liseconds, thus this approach enables real-time predictions for
industrial applications. (See Methods)

While the deep neural network provides fast and accurate
predictions on the fly, it is also desirable to preserve the prediction
accuracy while reducing the information (e.g., the number of angles
and frequencies) utilized in practice. Reducing the number of
incident angles and measured frequencies significantly reduces the
cost and complexity of implementing this technique in an industrial
setting. As previously mentioned, it is prohibitively cumbersome to
produce a representative dataset (e.g., due to the requisite number
of experiments) that permits us to test the sensitivity of this
technology as we pare down the information utilized in the model.

Given the good agreement between the numerical datasets and
our experimental measurements shown in Fig. 2c, we can
generate a massive dataset consisting of simulated results on
the entire spectrum of relevant realizations of phase distributions
in order to test the sensitivity of our technology when we
withhold information. We generated 1400 numerical datasets
characterized by unique randomly distributed oil-filling config-
urations with filling fractions ranging from 0 to 100% with a step
size of 1.3% (76 holes in total with a one-hole increment for oil-
filling fraction). As with the experimental measurements, the
forward model is run for several different oil-filling configura-
tions characterized by a single oil-filling fraction. In addition to a
random distribution of oil, we also simulated results from 1400
additional configurations that are considered as simplified flow
morphologies such as “stratified” or density separated (as the one
shown in Fig. 3b on the right). The stratified flow morphology is
only possible when the fluid conduit is horizontal and the
Reynolds number corresponding to the bulk flow velocity is low.
Under these circumstances, when phases do not have equivalent
density they separate due to the difference in gravitational
potential. In contrast, the random oil-filled configurations (Fig. 2a
and Fig. 3b-left) are representative of a “dispersed” flow which is
experienced when the bulk flow rate is high and different phases
are thoroughly mixed due to the accompanying turbulence. Using
a protocol similar to that employed to generate Fig. 3a, we make a
binary prediction with the simulated datasets to infer the flow
morphology (e.g., “dispersed” or “stratified”) with an accuracy
beyond 99%. In addition, as shown in Fig. 3c, we can predict the
phase fraction of oils in the system at an overall prediction
accuracy of 68% with 8 uniformly selected frequencies between 1
and 13.5 GHz, and 91 angles from 0 to 180 agrees (interval of 2
degrees). In this case the prediction accuracy is modest due to the
small step size of 1.3%, and the fact that a prediction is only
considered accurate if the predicted and true class are equivalent.
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In contrast the R2 is 0.990 for the data shown in Fig. 3c, which
more accurately quantifies the small variability in the model
prediction exhibited by the fact that the gray-scale pixels are
largely confined to the unity line nearest neighbors. (See more
detail in Methods)

A key metric for enabling this technology for simple and robust
field application is whether the prediction accuracy or R2 remains
acceptable while reducing the amount of information utilized in
the analysis. From an ease of implementation standpoint it would
be particularly useful to reduce the number of incident angles
utilized in the measurement. To address this, we performed a
sensitivity study with the numerical dataset to reduce the number
of incident angles utilized in all aspects of the data analytics
model including training the deep neural network and data
validation. The overall prediction R2 score as a function of the
number of incident angles utilized while analyzing the data is
shown in Fig. 3d utilizing the same eight frequencies as that used
to generate Fig. 3c. The numbers of incident angles range from 2
to 91, and the specific angles are selected uniformly from 0 to 180
degrees. Remarkably, we can still achieve a 97.6% prediction R2

accuracy for oil phase fractions when we only consider the data
from two incident angles (0 and 90°).

Pilot-scale photonic crystal “Flow Conditioner” for sensing
dynamic phase fractions. The results of the multitude of
COMSOL simulated transmission data and data analytics in
Fig. 3b-d provide confidence that it is possible to accurately
predict phase fraction and flow morphology with a very small
proportion of the available measurement angles and frequencies.
Unlike the static lab experiments, the fluid is flowing in most
industrial applications. Therefore, we devised a field pilot

experiment at a two-phase flow loop to test the measurement
accuracy using a small proportion of angles and frequencies. In
addition, we can test for effects associated with the liquid flowing
through the PC during the transmission measurement. As it is
constituted, the PC is very similar to a traditional “flow
conditioner”31,32 which typically imparts drag on the fluids that
pass through in order to transition turbulent flows to the laminar
regime. The additional drag necessitates that the fluid pressure
drop between the inlet and the outlet of the PC. Therefore with
the addition of a differential pressure measurement across the PC
we can test the ability to also infer the flow rate during these
experiments.

The PC used in field test is made of PEEK (Polyether ether
ketone) surrounded by four pairs of transmitting and receiving
antennas (e.g., four measurement angles). A cross-section view
of the integrated device is shown in Fig. 4a (see Methods and
Supplementary Fig. 5 for more details). The PC has a diameter
of about 89 mm and a height of about 100 mm, where the
diameter is selected so the PC fits in the flow loop pipe (inner
diameter of about 102 mm). The holes that make up the square
lattice have a diameter of about 5.0 mm with a lattice spacing of
6.67 mm. This square array has a characteristic frequency of
f c ¼ 45 GHz. PEEK has a relative permittivity of εr~2.9. The PC
is enclosed by a cylindrical wall of PEEK with 3.2 cm thickness
to ensure structural integrity under the maximum flow loop
pressure of 100 psi. The network analyzer, antennas and
multiplexers used in the field testing (see Methods) enabled
us to measure at a higher operational frequency range,
4–26 GHz, to explore the relevant signal from the photonic
physics for the structure (e.g., Fig. 1d). As shown in Fig. 4a, the
transmission measurements are acquired at four different
angles: 0, 45, 90, and 145 degrees.
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Fig. 3 Machine learning predictions with lab-scale data. a 2D probability histogram (also known as Confusion Matrix) showing the prediction accuracy for
blind test data with the trained neural network model using data collected in the lab-scale experiments (e.g., Fig. 2b). The overall prediction accuracy is
99.5%. The gray-scale color bar indicates the probability of prediction along the y-axis given for each true phase fraction (step size 0.1). b Examples of a
random oil-filling configuration (left) compared to a mostly stratified configuration (right) when 40% of the holes in the photonic crystal are filled with oil.
c 2D probability histogram showing the prediction accuracy for blind test data with the trained neural network model using simulated transmission data
(e.g., Fig. 2c). The overall prediction accuracy is 68% using 8 uniformly distributed frequencies while the R2 score is 0.990. The gray-scale color bar
indicates the probability of prediction along the y-axis for each true phase fraction (step size 1.3%). d Overall prediction R2 scores utilizing data from the
number of incident angles indicated in the x-axis utilizing the machine learning training and testing procedures described in the text. The numbers of
incident angles range from 2 to 91, where the angles are uniformly distributed over the range 0–180°.
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The field test consists of a series of experiments to understand
the effects of flowing a mixture of water and oil through the
photonic crystal “flow conditioner”. We use IsoparVTM for oil
(see Methods) and the tap water supplied at the ExxonMobil
Houston Friendswood test facility. We acquired a large amount of
data during the field test while the oil fraction was increased from
0 to 64% with a 4% step size. At each oil fraction we modified the
flow rate to achieve three distinct flow regimes, stratified, churn,
and dispersed. Each dataset includes microwave transmission
measurements from four incident angles paired with a cross-
section phase map from a research grade wire-mesh sensor (see
Methods) and a digital image from a side-glass camera. This data
were collected for a total of 2 h at each oil fraction corresponding
to roughly 40 min. of data per flow regime. Examples of data from
the wire-mesh sensor and the side-glass camera are shown in
Fig. 4b for an oil fraction of 44% for all three flow regimes. The
wire-mesh data and digital images are primarily used to confirm
the consistency of flow regime and fluid distribution over the
continuous 2 h testing period for each oil fraction. At 0% oil
fraction (100% water fraction), 500 datasets were acquired. For
any specific fraction of oil from 4 to 64%, 1500 datasets were
acquired consisting of 500 datasets each measured for the three
flow regimes.

In this highly dynamic and fluctuating environment with large
datasets (24,500 datasets) from four incident angles across all
measurements, the Feed Forward Neural Network employed to
interrogate the lab data (e.g., Fig. 3a) converges very slowly and
does not yield a prediction of sufficient accuracy (R2 score less than
0.95). In this case, it is more appropriate to use a Convolutional
Neural Network fed with the complete transmission coefficient

spectra from all measured angles as one set of training input data,
instead of just one angle as tested in Fig. 3a and c. Unlike the
complete color contour plots in Fig. 2c, here we only have four
measurements angles limited by the antenna placement, but their
locations around the perimeter of the PC provide symmetry
information connected to the liquid distribution in the holes.

Similar to what was done in Fig. 2a for data tailoring, all the
datasets are randomly split into two groups with the proportions
80:20 of non-overlapping training and test examples, respec-
tively. For example, for a specific oil fraction and flow regime,
there are 500 datasets with 400 sets randomly chosen as training
input data and the remaining 100 used for testing. All training
input data along with their labels (oil fraction and the specific
flow regime) are then fed into a supervised 2-Dimensional
Convolutional Neural Network (CNN) classifier to build a
training model. The accuracy of the CNN model is then tested
on the remaining 20% proportion of the test data. The 2D
probability histograms in Fig. 4c and d show the prediction
accuracy for flow regimes and phase fractions. The true flow
regimes are verified by the wire-mesh sensor data and the side-
glass camera imaging while the true fluid phase fractions are
controlled and verified by sampling liquid in the loop. The
overall prediction accuracy for flow regimes (Fig. 4c) is over
99%, and within one of the flow regimes—“Churn” flow, the
overall prediction accuracy for oil fraction is 96% with a R2 score
of 0.998. Due to the churning and turbulent fluid dynamics
along with some phase separation (Fig. 4b), “Churn” flow is the
most difficult flow regime to characterize while the other two
flow regimes, Stratified and Dispersed yield exemplary oil
fraction prediction accuracy greater than 99%. It is worth noting

Flow Regimes
Stratified Churn Dispersed

St
ra

tif
ie

d
C

hu
rn

D
is

pe
rs

ed

Pr
ed

ic
te

d 
Fl

ow
 R

eg
im

es

Volume Fractions of Oil(%)Pr
ed

ic
te

d 
Vo

lu
m

e 
Fr

ac
tio

ns
 o

f O
il(

%
)

0 16 32 48 64

0
16

32
48

64

4 8 16 32 64 128
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Numbers of Frequencies

Stratified
Churn
Dispersed

a b c

d e

Wire Mesh Sensor Side-Glass Camera

St
ra

tif
ie

d
C

hu
rn

D
is

pe
rs

ed

Fig. 4 Pilot-scale experiments and the machine learning predictions on fluid phase fractions and flow regimes. a Cross-section view of the pilot-scale
integrated device with photonic crystal surrounded by four pairs of ridged horn antennas. b Example of the various forms of field-test data collected at 44%
oil fraction: (left column) wire-mesh sensor and (right column) digital images from side-glass camera. This data are primarily used to confirm the flow
regimes which is one of the data labels utilized in the machine learning algorithm. With respect to the wire-mesh data map, green pixels indicate oil and
blue pixel indicate water. Top: dispersed flow regime achieved at an average flow rate of about 250 GPM (gallons per minute), Middle: churn flow regime
achieved at an average flow rate of about 110 GPM; Bottom: stratified flow regime achieved at an average flow rate of about 60 GPM. c The 2D probability
histogram of predicted flow regimes (stratified, churn, or dispersed) tested with Convolutional Neural Net and data from the field test. The gray-scale color
that indicates the probability of prediction is the same as that shown in Fig. 3a. d The 2D probability histogram of predicted oil fraction in the churn flow
regime tested with Convolutional Neural Net and data from the field test. The grey-scale color that indicates the probability of prediction is the same as
that shown in Fig. 3a. e Oil fraction prediction accuracies of the CNN model utilizing data from the number of frequencies indicated on the x-axis for the
three flow regimes tested in the field. Red, yellow, and blue data points correspond to stratified, churn, and dispersed flow regimes, respectively.
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that utilizing our configuration which includes a multiplexer, it
takes less than 1 s to acquire a complete dataset with all angles
and frequencies. Moreover, once the CNN model is trained
offline it takes less than 10 milliseconds to predict the flow
morphology and phase fraction. Therefore, this technology is
certainly suitable for in-line real-time measurements.

In order to identify the limitations of this technology, in Fig. 4e
we assess the predictive power of our method when the number of
measurement frequencies is reduced while both training and
testing the CNN model. The reduced number of frequencies
are uniformly selected from the 128 discrete frequencies utilized to
generate Fig. 4c and d. With a well-defined symmetry and
homogenization, the prediction accuracies for stratified and
dispersed flow regimes stay relatively high while the accuracy
dropped to about 87% for “Churn” flow when 8 measurement
frequencies were used. It is encouraging that, R2 scores are all over
0.99 for all tests shown in Fig. 4e. This demonstrates the potential
for robust prediction of phase fractions and flow regimes even with
a limited amount of data consisting of 4 angles and 8 frequencies.

Flow rate measurement with photonic crystal “Flow Condi-
tioner” and differential pressure sensor. In addition to a robust
prediction of phase fraction and flow regime, we can exploit the
hydrodynamic drag intrinsic to the photonic crystal in order to
infer the flow rate by measuring the pressure drop across the
structure. A longitudinal view of an exemplary integrated device
is illustrated in Fig. 5a. A differential pressure measurement
device is attached to two ports, one on the upstream and one on
the downstream, side of the PC (see Methods). Similar to con-
ventional Venturi meter theory19, the volumetric flow rate
through the PC structure is given by the following equation:
Q ¼ A

ffiffiffiffiffiffi

ΔP
p

. Here Q is the volumetric flow rate and ΔP is the
pressure drop across the PC structure. As for this specific rate-to-
pressure coefficient A, for a conventional Venturi meter with a
single orifice in non-turbulent single-phase flow at low-Reynolds
number, A is a known function of density of the fluid as well as
several parameters associated with the shape and geometries of
the Venturi meter such as the beta ratio, throat area and the
discharge factor19. However, for a multiphase flow that may
exhibit laminar or turbulent regimes, A is a complicated function
of phase fractions, flow regimes, density and viscosity of the

individual phases, and the geometry/shape of the structure. While
the density and viscosity of the individual phases may be deter-
mined through sampling, phase fractions and flow regimes of
typical multiphase flows are highly dynamic. As a result, con-
ventional flow rate technologies like, the Venturi meter, cannot
reliably relate the differential pressure measurement to a flow rate
measurement without one or more other devices to determine
phase fractions and flow regimes18–20,22,33–35. Other flow meters,
like the Coriolis meter, are susceptible to errors due to the pro-
pensity to entrain gas in the U-shaped tubes21.

In contrast, the PC does not suffer from these complications.
We have an integrated piece of PC structure with electromagnetic
and differential pressure measurements. The PC has a simple
geometry consisting of bulk dielectric materials with an array of
straight holes to minimize the potential for trapping phases. In
addition, as shown in the field testing (Fig. 4), the technology
provides highly accurate phase fraction and flow regime
measurements that are necessary to determine A. Figure 5b
demonstrates that given Q and ΔP, A ¼ Q=

ffiffiffiffiffiffi

ΔP
p

, the rate-to-
pressure coefficient, is a statistically unique value for the PC over
the range of conditions tested in the field. Therefore, the
determination of A can be integrated into the machine learning
model for the oil fractions (water cut from 36 to 100% with a step
size of 4%) and flow regimes we tested. In contrast, if the flow
regime is unknown but the water cut is known, (e.g., 36% water
cut), there is roughly a 50% variation in A (3 vertical points at
36% water cut in Fig. 5b) over the range of flow regimes tested;
Alternatively, if the flow regime is known (e.g., dispersed flow
regime), there is roughly 20% variation in determining the value
of A (across the yellow data points in Fig. 5b). This demonstrates
that PC technology yields significant improvement in measure-
ment accuracy when both phase fraction (water cut in this case)
and flow regime are determined from the microwave transmis-
sion measurement. For example after our CNN model predicts a
48% water cut and churn flow from a dataset, the variation in A
has a small error bar on the order of 1% and we note a similar
amount of error is applicable to the entire parameter space shown
in Fig. 5b. With the knowledge of both phase fraction and flow
regimes provided through our single integrated system, the pre-
determined A value can be combined with a simple differential
pressure measurements to predict volumetric flow rate with an
error bar of less than 2% overall.

30 40 50 60 70 80 90 100

100

150

(
)

Stratified Flow 
Churn Flow
Dispersed Flow

Water cut (percent)

a b
Differential Pressure Measurement

Flow

Fig. 5 Pilot-scale experiments for flow rate measurements. a A longitudinal cross-section of this our integrated measurement device. The photonic crystal
is in the center and the differential pressure gauge access the flow through two ports on either side of the photonic crystal. The blue arrow indicates the
direction of the flow. b The rate-to-pressure coefficient, A ¼ Q=

ffiffiffiffiffiffiffi

4P
p

, determined from the measured flow rate and pressure drop as a function of phase
fractions (water cut in this case) for the three flow regimes tested in the field. Here Q is the volumetric flow rate with the unit of gallons per minute (GPM)
and ΔP is the pressure drop across the PC structure with the unit of PSI. (Top) Yellow data points correspond to dispersed flow, (Middle) blue data points
correspond to churn flow, and (Bottom) red data points correspond to stratified flow. The error bars represent one standard deviation of uncertainty for all
data measured at the specific water cut and flow regimes.
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Discussion
This work demonstrates that photonic crystals enable the char-
acterization of multiphase flows by supporting the transmission
of low energy (~1 mW) microwaves. In particular, the orientation
specific transmission coefficient is sensitive to the spatial phase
distribution in the crystal through the spatially varying contrast in
dielectric constant36. These broadband measurements sample the
entire pipe cross-section and are effectively coupled with Deep
learning physics-based data analytics to infer phase fractions, and
flow morphology in real time with better accuracy than existing
commercial technologies. Moreover, we demonstrate that this
approach is robust under the conditions and limitations imposed
in an industrial setting. In particular we show that the mea-
surement is applicable to dynamic flows, and the accuracy is not
eroded by a significant reduction in data. In addition, when the
phase fraction and flow rates are known we also demonstrate that
the flow rate is accurately determined from the differential
pressure necessary for the flow to pass through the photonic
crystal. These finding should serve to significantly limit the cost
associated with establishing these techniques in practice. For
instance, we show that it is only necessary to sample 4 angles, and
8 microwave frequencies in order to achieve flow characterization
of sufficient accuracy.

Moreover, unlike other intrusive sensing systems, our sensors
and sensitive electronics are not in direct contact with the test
fluid. Therefore, these components are not susceptible to corro-
sion and fouling. Alternatively, if the PC is eroded or fouled, we
could simply replace the inexpensive PC “flow conditioner”. To
test for corrosion or fouling, inject a slug of standard dielectric,
then compare the associated measurement to an initial contour
plot such as that shown in Fig. 1e or the leftmost panel of Fig. 2b.
In addition, our PC based system can work across a wide range of
water-cuts and potentially detect three-phase flow with a single
set of measurements, without the limitations, such as specific fluid
conditions, composition, and operational modes required by
other intrusive methods15,37–40.

For field implementation, the pilot system (as shown in Sup-
plementary Fig. 5, Fig. 4a and Fig. 5a) could be installed on a
flowline. In some cases the process conditions (pressure, tem-
perature, and chemical resistance ratings) may warrant the use of
a modified system that requires flow diversion or enclosing the
PC in a steel casing. In the latter scenario more compact or 2D
RF/microwave antennas41 could be placed between the PC and
the steel casing with microwave feedthroughs to transmit the
microwave energy. Moreover the requisite microwave frequencies
are similar to that of common Wi-Fi and 5 G standards, which
means the hardware to generate/receive the microwaves is readily
available. We anticipate that antenna designs may be improved by
exploiting recent advances in electromagnetic metamaterials and
metasurfaces42–45. Our technology could also be utilized to infer
the composition of 3-phase flows due to the distinct dielectric
properties of water, oil, and gas. It is certainly possible that the PC
pattern and dielectric properties could be optimized for specific
applications. Therefore, this work provides the basis for deriving
novel and easy-to-deploy flow characterization techniques in
support of process optimization.

Methods
Lab-scale equipment. In lab-scale experiments, we used a network analyzer
(Agilent N5230A) to transmit electromagnetic waves in the microwave band
(1–13.5 GHz) through the transmitting antenna at 1 mW power, and use the
receiving antenna to measure the transmission through the structure. Both
antennas are double ridge horns (Model 3115 from ETS-Lindgren). The poly-
ethylene PC structure sits on top of a straight plastic rod made of PEEK (Polyether
ether ketone) that is attached to a rotational stage (Zaber X-RST120AK). The PEEK
rod is 60 cm in length and 2.5 cm in diameter and it is used to minimize

electromagnetic interference between the stage motor and the microwave mea-
surement hardware.

Microwave transmission measurements. To generate the contour plots as shown
in Fig. 1 and Fig. 2, we measure the transmission coefficient spectra (in decibles-
milliwatt or dBm) as a function of frequency of incident waves at a specific angle/
configuration (an example at zero incident angle is shown as Supplementary
Fig. 1). By rotating the PC with the rotational stage, we can obtain a series of
transmission coefficient spectra at any incident angle over the 360° range. The
corresponding results can be represented as a color contour plot as shown in Fig. 1,
Fig. 2, and Supplementary Fig. 2. In these plots the x-axis is the incident angle and
the y-axis is the microwave frequency. The color in the contour plot represents the
transmission coefficient at the specific frequency and incident angle. In general, red
indicates higher transmission coefficient and blue indicates lower transmission
coefficient. The color scale is shown on the right side of Fig. 1f. The transmission
coefficient spectra contain a total of 201 frequencies between 1 and 13.5 GHz in
Fig. 2b and Fig. 3a. Whereas, the plots in Fig. 2b and Fig. 3b, c, and d, consist of 33
frequencies over the same frequency band. The transmission coefficient spectra
shown in Fig. 4 contain 401 frequencies from 4 to 26 GHz.

COMSOL simulations. RF module in COMSOL is used to generate simulated
microwave transmission contour plots for a total of over 1400 oil-filling config-
urations used in Fig. 2 and Fig. 3. The numerical experiments are parallelized by
running 64 different oil-air configurations at the same time using 64 nodes on our
research computing cluster. Each compute node here has 16 cores and our com-
puting cluster has 504 compute nodes in total. The numerical experiments are
performed in two-dimension with estimated microwave beam aperture, but
otherwise utilize the same physical parameters as used in the lab experiments
described in the main text (PC cross-section geometry and dielectric constants of
all materials).

Field testing. We used a different network analyzer (Agilent N5230A) to generate
and analyze electromagnetic waves transmitted through the PC in the frequency
band (4 GHz to 26 GHz). All 8 antennas are double ridged horns (Model 3116 C
from ETS-Lindgren) connected to the network analyzer through two National
Instrument RF multiplexers (Model 2597). Each multiplexer provides a connection
between the source or receiver channel of the network analyzer and 4 of the
antennas corresponding to the source or receiver antenna at each measurement
angle. A complete measurement consists of iterating the collection of the trans-
mission spectra over the 4 static measurement angles over a period of about 800
milliseconds (10-millisecond measurement time with network analyzer and 200
milliseconds to iterate multiplexer between the measurement angles). The inte-
grated photonic crystal is made of PEEK (Polyether ether ketone) with relative
permittivity of about εr~2.9, a diameter of about 89 mm and a height of about
100 mm. The holes of the PC have a diameter of about 5.0 mm with a lattice
constant of 6.67 mm. IsoparVTM is manufactured by ExxonMobil and purchased
through BrennTag. The differential pressure is measured through an OMEGA
differential pressure transducer with model number 0305R732A11 and the pressure
range from 0 to 250 inches of water pressure. The pressure measurement ports are
located at a distance of about 20 cm from either face of the photonic crystal to
provide for a stable pressure measurement. The research grade wire-mesh sensor is
a customized probe purchased from HDZR Innovation consisting of a uniform 12
by 12 square grid (wire diameter of 0.3 mm) across a circular area with diameter of
89 mm (square grid window size of 6.85 mm by 6.85 mm), and we used the
capacitive mode electronics (Model CAP200) during the two-phase water/oil field
test. The wire-mesh sensor is placed 10 cm upstream of the PC (a distance of about
300 times the wire diameter), so it has minimal impact to the overall flow regime
and phase fractions entering the PC37,39,46–49. As a result, the flow morphology and
phase distribution inferred from this measurement is indicative of that entering the
PC. An engineering drawing for this field prototype is shown in Supplementary
Fig. 5. The side-glass camera is placed at the upstream side of this prototype. As a
result, the camera is not affected by the disturbance of the wire-mesh sensor and
more importantly the PC “flow conditioner”31,32,48,50, and its measurement (digital
photos) should be indicative of what’s entering the wire-mesh sensor and the PC.
The total volume fraction of gas in the flow loop is consistently below 2% during
fluid filling or replacement, and pressurization up to 80 psi. So the impact of gas on
the pilot test measurements is very small.

Machine learning algorithms and associated statistics. Feed Forward Neural
Networks are used to create Fig. 3. For predictions on experimental datasets
(Fig. 3a), two dense layers are used with 80 and 40 hidden nodes with ‘tanh’
(hyperbolic tangent) as the activation function and Adam optimizer (learning rate
is 0.005). For predictions on simulation datasets (Fig. 3c and d), two hidden-layers
are used, each with 100 hidden nodes, with ‘tanh’ as the activation function and
Adam optimizer. A Convolutional Neural Network (CNN) is used in Fig. 4, with
two convolutional layers and a dense layer. The two convolutional layers have 64
and 32 feature maps, both with kernel size of 3 and stride of 2. The dense layer is
used with 128 hidden nodes, exponential linear unit as the activation function and
Adam optimizer (learning rate 0.00002).
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For the training and testing with the field-test data, due to the lower signal to
noise ratio at the higher microwave frequencies (our electronics are the
predominant source of noise), we focused on the lower band of 128 frequencies
over the total 401 frequencies in the range 4–26 GHz. We did not notice a
significant difference when analyzing the data with 128 or 401 frequencies. The
CNN model used in Fig. 4d with all training data in churn flow regime (6800
datasets, each dataset contain information from all angles and 128 frequencies) is
trained in about 45 min with a single core of i5-8365U on a laptop. With a trained
CNN model, the prediction of flow morphology and phase fraction with acquired
dataset takes less than 10 milliseconds.

The 2D probability histograms used in Fig. 3 and Fig. 4 are very similar to a
Confusion Matrix used in data science, with the exception that the probability of
prediction is shown as pixel darkness instead of a counting number from the
predicted result. The probability is normalized along each y-axis pixel to ensure
that for each true oil fraction, the probabilities of predicted oil fractions sum to one.

The prediction accuracy is the probability of the predicted class being exactly
the same as the true class, among all blind test data across all classes.
Mathematically the prediction accuracy is the ratio of Ncorrect test and Nall test , where
Nall test is the number of all blind test data and Ncorrect test is the number of test data
that are exactly predicted with the neural network model. Given this definition, it is
clear the prediction accuracy does not account for the variance of incorrect
predictions. Therefore, the prediction accuracy is a fairly harsh test of the accuracy
of a model. The prediction accuracy is only applicable to discrete datasets. We note
the prediction accuracy in the manuscript because it is regularly utilized in the data
analytics community

In contrast, the R2 ¼ 1� E=Y statistic quantifies the relative accuracy of a
model through the ratio of the variability in the difference between the model and
the data, or the residuals, E, and the variability in the data, Y51. When R2 ¼ 1,
E ¼ 0, and the model accounts for all of the observed variability in the data. When
considering experimental data, measurement error in the form of random electrical
noise or errors associated with liquid measurement techniques ensure E>0 and
R2<1. With a small number of classes (large step size for phase fraction) such as in
Figs. 3a, 4d, and 4e, the R2 score and prediction accuracy are similar (all over 0.99)
because the random error is smaller than the step size. We are only able to test a
larger number of classes (small step size for phase fraction) numerically. In this
case there are no measurement errors, and the statistics are a true test of the ability
of the model to account for the variation in the true class. As shown in Fig. 3c, the
R2 ¼ 0:990 score accurately quantifies the variability of the model prediction which
is predominantly limited to the light gray ± 1 px (1.3%) adjacent to the 1-1 line. As
a result of the increase in variability of the model prediction the prediction
accuracy is significantly less than R2. However, the high R2 value indicates the high
accuracy (~1%) of the model across the range of true phase fractions.

Uncertainty is a key metric to compare our technology to those that are already
commercially available, and it can be estimated with the above mentioned statistics
along with our data. To comply with ISO3170, uncertainty is defined as a
percentage range with 95% confidence of prediction (approximately twice the
standard deviation). For Fig. 4d with dynamic churn flow, each bin/pixel represents
4% of phase fraction with a prediction accuracy or confidence of 96% and as a
result we can estimate that the uncertainty for this case is about ±2% (similar to the
size of the bin). Similarly, we can estimate that the uncertainty is about 1.3% for the
simulation data in Fig. 3c.
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