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Binding events through the mutual synchronization
of spintronic nano-neurons
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The brain naturally binds events from different sources in unique concepts. It is hypothesized
that this process occurs through the transient mutual synchronization of neurons located in
different regions of the brain when the stimulus is presented. This mechanism of 'binding
through synchronization’ can be directly implemented in neural networks composed of
coupled oscillators. To do so, the oscillators must be able to mutually synchronize for the
range of inputs corresponding to a single class, and otherwise remain desynchronized. Here
we show that the outstanding ability of spintronic nano-oscillators to mutually synchronize
and the possibility to precisely control the occurrence of mutual synchronization by tuning
the oscillator frequencies over wide ranges allows pattern recognition. We demonstrate
experimentally on a simple task that three spintronic nano-oscillators can bind consecutive
events and thus recognize and distinguish temporal sequences. This work is a step forward in
the construction of neural networks that exploit the non-linear dynamic properties of their
components to perform brain-inspired computations.
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pintronic oscillators are nanoscale devices realized with

magnetic tunnel junctions which have the potential to be

integrated by hundreds of millions in electronic chips!. The
microwave voltages that they produce have varying amplitude
and frequency in response to direct current inputs. Their non-
linear dynamical properties are rich and tunable, and can be
leveraged to imitate different features of biological neurons,
which makes them particularly promising for neuromorphic
computing?®. The transient dynamics of a single spintronic
nano-oscillator has been used to implement reservoir computing,
achieving state-of-the-art results on a simple spoken digit
recognition task”8. Four spintronic nano-oscillators have been
trained to classify spoken vowels by phase-locking their oscilla-
tions to the strong input signals produced by external microwave
sources’.

It is now essential to demonstrate that the mutual synchroni-
zation of spintronic nano-oscillators can be exploited for com-
puting. Larger hardware networks of oscillators can be built if the
oscillators directly influence each other and synchronize through
the weak signals that they emit, without the need for high power-
consumption amplification stages. The latter is possible with
spin-torque nano-oscillators due to their outstanding synchro-
nization ranges, enhanced by factors of typically ten compared to
Kuramoto model-like phase oscillators due to the coupling
between their amplitude and phase!®-16, In addition, more
complex tasks can be achieved by exploiting the rich interactions
that emerge in assemblies of mutually coupled oscillators rather
than using phase-locking to external signals!”.

A primary source of inspiration to move in this direction is
neuroscience, which shows that in the brain, vast groups of
neurons mutually synchronize in response to external or internal
stimuli, giving rise to strong oscillatory signals!8-20. This process
is often hypothesized to enable spatiotemporal integration of
stimuli, a mechanism called ‘binding through synchrony2!.
Neuroscience-inspired algorithms show that it can be used for
pattern recognition in oscillatory neural networks if mutual
synchronization can be controlled and tuned to achieve the
desired task20-22,

In this work, we show that spintronic nano-oscillators can
recognize temporal patterns through their mutual synchroniza-
tion by binding together consecutive events in time. We imple-
ment a hardware neural network based on these principles with
three spintronic nano-oscillators. We demonstrate that it recog-
nizes sequences of spikes from a neuroscience-inspired database
with a success rate of 94%, approaching the success rate of 96%
achieved by identical and noiseless oscillators. We show that these
high recognition rates stem from the possibility to precisely
control the mutual synchronization of spintronic nano-oscillators
by varying their frequency over large direct current input ranges.

Results

Our experiment exploits the coupling that occurs naturally when
hardware spintronic nano-oscillators are electrically connected to
synchronize them with each other!?. The set-up is shown in
Fig. la (details on samples and set-up are given in the “Methods”
section). An important feature of these nano-oscillators is that
their frequency can be individually and easily controlled by
varying the direct current through each oscillator. When their
frequencies are well separated, the three oscillators emit micro-
wave signals independently, and the spectrum analyzer at the
output of the set-up displays three peaks (Fig. 1b and Supple-
mentary Fig. 1). The propagation of these microwave emissions in
the line creates a coupling between the connected oscillators.
When the frequencies of the oscillators are brought closer toge-
ther, within the mutual locking range—here of 5 MHz—they

synchronize, which results in the single peak of Fig. 1c. Its power
is significantly higher than the sum of the individual emitted
powers of the three disconnected oscillators measured with the
same bias conditions (Supplementary Figs. 2, 3). This distinctive
feature is due to the phase coherence between oscillators char-
acteristic of the synchronized state (see “Methods”)1412.

We leverage this mutual synchronization phenomenon to
recognize temporal sequences with a hardware neural network of
three spintronic oscillators. We consider a fictitious task (the
construction of the dataset is described in “Methods”), in which a
mouse is presented with four different categories of cheese
(Fig. 1d). Each kind of cheese generates different neuron activities
in the mouse brain. The temporal sequences to be classified are
composed of three spikes, each recorded from three different
neurons of the fictitious mouse brain. Figure le, f illustrates
sequences of spikes when the mouse is in the presence of Che-
shire and Cheddar cheese. By convention, the time of the first
spike is taken as zero and the times of spikes for neurons 2 and 3
are shown in Fig. 1g for the whole database. The different colors
correspond to different categories of cheese. Ten different sam-
ples of cheese per category are presented to the mouse, giving rise
to the variability within each category. The goal of the task is to
infer which type of cheese is presented to the mouse by analyzing
the recorded sequence of spikes.

For this purpose, we use a mechanism initially proposed by
Hopfield et al. to bind temporal features through neural
synchronization?!. A network is composed of as many neurons as
there are spikes in the input sequence, and is trained to recognize
a single category of input. Our dataset features three spikes,
therefore we use three spintronic oscillators tuned to recognize a
given kind of cheese, e.g. Cheddar. Each spike triggers a current
ramp in the associated neuron. Figure 1h is a schematic illus-
trating the behavior of the network activated by a spike sequence
that it has not been designed to recognize, e.g. Cheshire cheese. In
that case, the ramps do not intersect at any time. On the contrary,
when the oscillator network is activated with the spike sequence
for Cheddar cheese that it has been designed to recognize, the
different ramps intersect at a specific time, as illustrated in Fig. 1i.
The neurons therefore transiently mutually synchronize and give
rise to a large output signal, as in Fig. 1c signaling that they have
bonded the events together and identified the sequence as
meaningful.

In this framework, training the network means finding para-
meters for the ramps leading to mutual synchronization of the
three oscillators for all the points of the database corresponding
to the Cheddar category, even if the corresponding spike times
are scattered in time. The detailed training procedure is described
in “Methods”, and we present it succinctly here. We start by
picking random values for the slopes of the ramps. For choosing
the initial values of the currents flowing through each oscillator,
we use inputs corresponding to the center of the ‘Cheddar’ data
points cloud, pinpointed with an orange cross in Fig. 1g. We
convert the arbitrary units of Fig. 1g to seconds: the ramps of
current in oscillator 2 and oscillator 3 are therefore triggered with
delays of 412's and 308 s, respectively, for this calibration point.
We then choose the oscillator initial frequencies so that the
application of this sequence of spikes eventually leads to a set of
currents Igynen = (6.8 mA, 6.2 mA, 6.0 mA) for which the oscil-
lators synchronize (see “Methods”). We then present the actual
data points of Fig. 1g to the oscillators network. When the
experiment behaves as expected (i.e., reaches synchronization
when a ‘Cheddar’ data point is presented, or does not reach
synchronization when another cheese point is presented), nothing
is done. On the other hand, if the experiment does not behave as
expected, the ramp slopes are corrected following the simple
automatic procedure described in “Methods”, and the initial
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Fig. 1 Binding temporal sequences through synchrony. a Schematic of the experimental set-up with three spin-torque nano-oscillators electrically
connected and coupled through the microwave currents they emit. b, ¢ Microwave output emitted by the network of three coupled oscillators when they
are not (b) and when they are (¢) synchronized. d Schematic of the fictitious mouse to which four different categories of cheese are presented. Each
category generates different activities in the three neurons of the mouse brain. e, f Sequence example of neuron spikes in the mouse brain in the presence
of a piece of Cheshire (e) and Cheddar (f), respectively. g Inputs applied to the network, represented as the time of spikes for neurons 2 and 3. The spike of
neuron 1is set as the origin of the sequence and taken as zero. Each color corresponds to a different cheese category, and each data point corresponds to a
different piece of cheese. h, i Ramps of current generated in the network upon application of the input spike sequences described in (e) and (f),
corresponding to the presentation to the mouse of a piece of Cheshire and Cheddar, respectively, when the network is trained to recognize Cheddar.
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Fig. 2 Three hardware spintronic nano-oscillators recognize Cheddar. Response of the oscillator network trained to recognize Cheddar to spikes
sequences generated in the mouse brain when a piece of Cheddar (a, b) or a different cheese (c-e) is presented. The spike sequences generate ramps of
currents (top) which translate into variations of the oscillators frequencies (middle) and the network total emitted power (bottom). If a piece of Cheddar is
presented (a, b), the ramps of current and their associated variations of frequencies lead to transient mutual synchronization of the three oscillators. This
translates into an enhancement of the network total emitted power above the threshold shown in red dotted line (a, b, bottom) meaning recognition. If a
different cheese is presented (c-e), the ramps of current do not give rise to the mutual synchronization of the three oscillators, and the total emitted power
remains well below the threshold (c-e, bottom), meaning that the network distinguishes that the cheese presented is not Cheddar.

currents are recomputed so that the center of the ‘Cheddar’ data
points cloud still leads to synchronization.

At the end of the learning procedure, the initial current conditions
reach (Ips® Iosa®s Ioses®) = (4.9 mA, 7.51 mA, 5.15mA) and the
slopes of the ramps of current (dlys/dt, dlgse/dt, dlgses/dt) =
(2.5uA/s, —3.75uA/s, 1.875uA/s). These values are then main-
tained, and the experiment can be used to recognize new data points.

Figure 2a shows the measured oscillator responses to the
sequence ‘Cheddar 1’ = (400, 294 s), which is the first entry in
the class ‘Cheddar’. The corresponding trained ramps of currents
are triggered at t; =0, t, =400s, and t; =294 s in oscillator 1, 2,
and 3, respectively. The three large dots in the top panel of Fig. 2
highlight the set of currents Ly, that we have used to calibrate
the network, at which the oscillators synchronize. As can be seen
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in Fig. 2a, after ~760 s, the direct currents flowing through the
oscillators reach values approaching Isnen. At this point, the
frequencies of all three oscillators become near-identical (Fig. 2a-
middle), and the total emitted power peaks at P, = 0.743 uW.
To know if the oscillators have recognized the category Cheddar,
we need to assess if they have transiently synchronized or not. For
this purpose, we can compare P,,,,.(I) to the sum of the powers of
the three independent oscillators for the same current conditions
Punsync(I), equal to 0.43 uW at this particular point. Here Py is
much larger than Py, which shows that the oscillators have
mutually synchronized and successfully recognized that the piece
of cheese belongs to the Cheddar category.

The value of Ppgync varies strongly with the currents I applied
to the oscillators which makes it difficult to use it as a general
criterion to detect synchronization for all sets of currents in the
experiment. In the following, we consider that the network
recognizes the input pattern if the total emitted power reaches a
fixed threshold value of 0.608 uW, independent of the current
values (dotted red line in the bottom panel of Fig. 2) and if the
frequencies of the three oscillators at that point are all equal (see
“Methods”). Figure 2b shows the network response to another
input from the Cheddar class. For this sequence ‘Cheddar2’ =
(3925, 3155), the triggered ramps of current never reach Igynch,
but they get close to this value around ¢ = 744 s, where a mutual
synchronization event is observed, with the emission of a single
peak accompanied with a large increase of the emitted power
above the threshold. This input is therefore correctly classified as
belonging to the category ‘Cheddar’. This example illustrates well
the interest of using mutual synchronization to categorize spread
data: synchronization occurs when oscillators frequencies are
close, but they do not need to be exactly identical (as in Sup-
plementary Fig. 1).

In contrast, Fig. 2c—e shows the network response to inputs of
the other cheese categories, which characteristic time sequences
never lead to sets of currents close to Iyych. In consequence, the
three oscillators do not synchronize, and the power emitted by
the network remains well below the recognition threshold. In
these three cases (Fig. 2c—e) the network interprets correctly that
the applied input does not correspond to the class ‘Cheddar’.

Table 1 shows the overall classification performances of the
network. As can be seen in the first row, the network classifies
correctly 9 out of 10 inputs corresponding to the class ‘Cheddar’.
Moreover, when inputs from other categories (‘Cheshire’, ‘Brie’,
and ‘Stilton’) are applied to the system, the network correctly
interprets that the input is not a piece of ‘Cheddar’. The overall
success rate for this category is 97.5%.

The same three oscillators can also be trained to recognize the
other categories of cheese. For this, we modify the initial condi-
tions of the network (the initial currents flowing through each
oscillator I and the slopes of the ramps of current triggered

Table 1 Recognition rates.

Cheese to Presented cheese (10 data points) Recognition rate
be detected
Cheddar Stilton Brie Cheshire
Number of recognitions (out of 10)
Cheddar 9 0 0 0 97.5%
Stilton 0 8 0 0 95%
Brie 0 3 10 0 92.5%
Cheshire 0 0 0 7 92.5%

Number of recognitions out of 10 presented samples of each cheese, when the network is trained
to classify Cheddar, Brie, Cheshire, and Stilton, respectively. The column “Recognition rate” refers
to the percentage of times that the network responds correctly, either because it detects that the
input belongs to the category it was trained to recognize or because it interprets correctly that the
inputs correspond to another cheese category.

when an input is applied, dI,;/dt) so that the oscillator currents
reach Igynen only when the desired category of input is applied to
the system, following the same procedure as in the ‘Cheddar’
example (see “Methods”). Using these new calibration para-
meters, we repeat the recognition experiment by applying the
same dataset as previously. The results are shown in Table 1: the
network recognition rate for ‘Stilton’, ‘Brie’, and ‘Cheshire’ is,
respectively, 95%, 92.5%, and 92.5%. Overall, the network
responds correctly to 94% of the inputs. By comparison, a per-
ceptron trained on the same database achieves a recognition rate
of 93.3% (see “Methods”). Supplementary Fig. 4 compares the
performance of a simulated network of three identical, noiseless
oscillators to the perceptron for increased spike jitter in the
database. Interestingly, the ideal oscillator network does better
than the perceptron on moderate jitter values. For higher jitter
values (standard deviation of the jitter of 50 time units and
higher), the perceptron outperforms the oscillator network. This
result, promising for applications, therefore also leaves room for
improvement by optimizing the learning algorithm.

Discussion

The excellent performance of this simple network comes from the
match between the requirements of the algorithm and the phy-
sical properties of spintronic nano-oscillators. Here the inputs are
sequences of events that are largely spread in time and need to be
bonded to constitute a single concept. The algorithm does this
task in two steps. First, it converts the spread timing of events in
the sequence to close-by neuron frequencies by ramping the
values of frequencies over wide ranges. The high-frequency tun-
ability of spintronic nano-oscillators'? provides a straightforward
hardware implementation of this property. Second, the algorithm
leverages neuron synchronization to bind these neighboring fre-
quencies into a single concept, here, a cheese category. This
synchronization range must be large enough to ensure that events
are bonded even if different sequences encoding the same cate-
gory of cheese are scattered in time. The large synchronization
bandwidths accessible to spintronic nano-oscillators!? reduce the
precision requirements on the frequency, and therefore on the
direct current steps, needed to achieve ramp convergence.

Complementary  metal-oxide semiconductor (CMOS)
technology-based voltage-controlled oscillators such as ring
oscillators can also exhibit such characteristics, but large-area
capacitors are needed to control their synchronization?®. The
total silicon area occupied by a single oscillator is larger than
3 x 3 um? 24, whereas spin-torque nano-oscillators can be scaled
below 100 x 100 nm?. Using small-area oscillators is imperative,
as moving beyond toy tasks will require scaling up the system.
Our simple network processes inputs composed of three events,
but more complex inputs will be based on a larger number of
events and will require more oscillators (see “Methods”).

The original paper of Hopfield uses 40 neurons for recognizing
the first ten spoken digits?!. It has been shown recently that such
large numbers of spintronic nano-oscillators can mutually syn-
chronize, by driving them with spin-Hall torques and coupling
them strongly through ferromagnetic exchange!2. Their indivi-
dual frequencies can be controlled by tuning the current or
magnetic properties in the nano-constriction region?®. To con-
firm this possibility and evaluate the scalability of our approach to
larger scale networks, we simulated a network of N =90 coupled
spin-torque nano-oscillators, and we compare its performance
classifying real biological data with the one of a perceptron of the
same size. These results are described in Supplementary Note 1,
Supplementary Fig. 5, and Supplementary Table 5. Interestingly,
the oscillators network performs better than the perceptron on
this task.
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Important for scaling to even larger dimensions, the algorithm
is very tolerant to device variability: as long as the oscillators
synchronize over large bandwidths, current ramps can be found
for every input through training?!. Recognition is achieved at the
timescale of tens of seconds or minutes in our proof of concept,
but can potentially be sped up to a few tens of nanoseconds, as
spintronic nano-oscillators can be tuned and synchronized within
these timescales?>2’. Finally, when the oscillators synchronize,
they generate an additional direct voltage through an effect called
spin-diode, that can be detected and then processed with simple
and energy-efficient CMOS circuits, as described in the Methods
section of ref. °. This work therefore constitutes a milestone
towards the implementation of large-scale oscillatory neural
networks using the physical properties of spintronic nano-
oscillators to compute.

Methods

Samples. Magnetic tunnel junctions (MTJs) with a structure of buffer/PtMn(15)/
Co71Fe9(2.5)/Ru(0.9)/CogoFez0B2o(1.6)/CozoFes0(0.8)/MgO(1)/FegoB2o(6)/
MgO(1)/Ta(8)/Ru(7) (thicknesses in nm) were deposited by ultrahigh-vacuum
(UHV) magnetron sputtering. After annealing at 360 °C for 1 h, the resistance-area
product was RA = 3.6 Q um?. Circular-shaped MTJs with a diameter of about
375 nm were patterned using Ar ion etching and e-beam lithography. The resis-
tance of the devices is close to 40 (), and the magneto-resistance ratio is about
100% at room temperature. For the dimensions used here, the FeB layer presents a
magnetic vortex as the ground state. In the vortex core (a small region of about
12 nm diameter at remanence for our materials), the magnetization spirals out of
plane. Under direct current injection and the action of the spin-transfer torques,
the core of the vortex steadily gyrates around the center of the dot with a frequency
in the range of 150 to 450 MHz for the oscillators we used here.

Experimental set-up. Figure 1a shows a schematic of the experimental set-up with
three electrically coupled vortex nano-oscillators. A magnetic field of

poH = 400 mT is applied perpendicularly to the oscillator layers to tilt the mag-
netization of the polarizer out-of-plane so that the spin-transfer torque acting on
the vortex can compensate for the damping torque and induce self-sustained
oscillations?8. A direct current is injected into each oscillator to induce vortex
dynamics, which leads to periodic oscillations of the magneto-resistance, giving rise
to an oscillating voltage at the same frequency than the vortex core dynamics. The
three oscillators are electrically connected by millimeter-long wires. In this con-
figuration, the microwave current generated by each oscillator propagates in the
electrical microwave circuit, influencing the dynamic and, in particular, the fre-
quency of the other oscillators through the microwave spin-torques it creates. The
oscillators are therefore electrically coupled through the microwave currents they
emit, and too far away to be coupled through the magnetic dipolar fields that they
radiate. Three direct currents (Ipcy, Ipca, Incs) are supplied to the circuit by three
different sources. The actual current flowing through each spin-torque oscillator is
given by Isro1 = Inci, Istoz = Incz + Incr and Istos = Incs + Incz + Incis
respectively, where Isro; corresponds to the current flowing through the ith
oscillator. Therefore, the current flowing through each oscillator can be tuned
independently by controlling the three applied direct currents (Ipci, Ipca, Incs) at
the same time. Thus, we can control the frequency of each oscillator independently.
This approach is scalable to several hundreds of oscillators, as shown in ref. 2%, The
microwave signal emitted by the coupled system is recorded by a spectrum ana-
lyzer. Color maps showing the evolution of frequency and microwave power
emitted by each individual oscillator as a function of current and field are displayed
in Supplementary Fig. 1.

Synchronization detection. When spin-torque oscillators mutually synchronize
their non-linear magnetization dynamics reaches a new state characterized by the
oscillators phases being locked to each other. This stabilizes their oscillations fre-
quencies and reduces the main sources of noise in the magnetization dynamics: the
amplitude noise and the phase noise, the latter being particularly disruptive for the
oscillations coherence. In consequence, the signature of mutual synchronization
state is an emission spectrum which shows a drastic increase of the spectral
coherence. This is characterized by an emitted power which is above the sum of the
powers emitted by the individual oscillators when they are not coupled!2-25:30,

Supplementary Fig. 2 shows the emitted spectra of the three oscillators under
the same conditions of applied current as in Fig. 1c but when they are not
connected to each other. As can be seen, the frequencies are close to each other, but
they are not equal. This result illustrates well the interest of using mutual
synchronization to categorize spread data: oscillators frequencies do not need to be
exactly identical to observe mutual synchronization, as soon as they are closer than
the locking range.

Supplementary Fig. 3 shows the oscillators network emitted power (black dots)
during the experiment shown in Fig. 2a. The total emitted power reaches a

maximum value of Py, (I) = 0.743 uW. This value is significantly higher than the
sum of the individual emitted powers of the three oscillators (dash red line), which
is around Pypeync(I) = 0.43 WW at its maxima in this particular experiment.

The value of Pyyeync varies strongly with the currents I applied to the oscillators.
If the current slopes in all oscillators are chosen positive, the value of Pyngync
increases with time. A synchronization event happening at the beginning of the
ramp (at low time and low applied currents) may emit similar power than the array
of unsynchronized oscillators at the end of the ramps (at large currents). This
would require defining a time-dependent power threshold to detect
synchronization.

By choosing different signs for the current slopes in the oscillators this situation
can be avoided and we can use a constant power threshold for synchronization
detection. We consider recognition when the total emitted power overcomes a
threshold value of 0.608 uW and the oscillators have the same frequency at that
point. The threshold value has been chosen to minimize misclassification errors,
considering the emitted power of the independent oscillators at all possible applied
currents within the experimental range.

Construction of the cheese dataset. The artificial dataset shown in Fig. 1g was
constructed based on the dataset of formants of spoken vowels, available publicly as
Supplementary Data in ref. ?, rescaled by hand to reach delay values in the scale of
our experimental set-up. The delay t, is equal to 4.8 x 10°/f,, and t; = 2.4 x 10°/f;,
where f; and f, are the two first formants of the vowels. The delay t; is always equal
to zero. The different “cheeses” correspond to different vowels, and in each case, we
use the first ten samples of the dataset. “Cheshire” corresponds to /iy/, “Brie” to /er/,
“Stilton” to /uw/, and “Cheddar” to /aw/.

Trained initial conditions to classify each category of cheese/calibration
parameters. The network of oscillators can learn to classify new data. Here,
training means finding the parameters of the ramps of current (i.e., initial currents
flowing through each oscillator and slopes of the ramps triggered when an input is
applied) that lead to mutual synchronization (recognition) when a particular class
of input is applied. To do so, we first identified conditions of current at which the
three oscillators mutually synchronize: Igyncp, = (6.8 mA, 6.2 mA, 6.0 mA).

The first values of the three slopes of the current ramps are then chosen
randomly, between values 2.5 and 4 pA/s. The initial values of the currents flowing
through each oscillator are then calculated, using delays corresponding to the
center of the cloud of each category in Fig. 1g: the initial currents are chosen such
as if a data point corresponding exactly to the center of the cloud of the trained
category is applied, the oscillator currents reach exactly Igynch.

Then, the following empirical training process is used to optimize the values of
the slopes of the current ramps. Data points corresponding to different cheese are
presented to the system. For each data point, if the system provides a correct
response (mutual synchronization if the right cheese was presented, no
synchronization if the wrong cheese was presented), no change to the parameters is
done. Conversely, if the system was expected to reach mutual synchronization and
did not, the value of the maximum slope (in absolute value) is reduced by an
hyperparameter A. If the system was not expected to reach mutual synchronization
and still synchronized, the minimum slope (in absolute value) is increased by the
hyperparameter A. After each update of the slopes of the current ramps, the initial
currents are recomputed using the same method as initially: they are chosen so that
if a data point corresponding exactly to the center of the cloud of a category is
applied, the oscillator currents reach exactly Isyncn.

In our experiments, to simplify the training, we kept the ramp of oscillator 1
fixed for all categories and varied only the ramps of oscillators 2 and 3.
Supplementary Table 1 shows the trained calibration parameters used for each
input that the network is trained to classify.

Simulations with ideal oscillators. The pattern recognition scheme of the
experiment was simulated with a network of three identical noiseless oscillators,
using the database of Fig. 1g. The only parameter that differs from one simulated
oscillator i from the other one is its applied direct current I;. The simulated
oscillators correspond to vortex-based spin-torque oscillators as in the experiment.
Their dynamics follows the differential Thiele equation model:

dX; WX, I, 17

dX, ) e
G i com BI(x. 1. [Vf =0 1
) at X, R ) W

i T Dy(X;)

i1 % com

X\ . . . - .
here, X1:< ! ) is the vortex core position, G; is the gyrovector, D, is the damping,
i
F™T is the spin-transfer force, and I is

W, is the potential energy of the vortex,
a common microwave current. This model reproduces well micromagnetic
simulations!3. It also successfully describes experimental results with spin-torque
nano-oscillators and can easily be generalized to non-linear auto-oscillators as van
der Pol oscillators®. The parameters used for the Thiele equation in the simulation
are expressed in Supplementary Table 2.

A fourth-order Runge-Kutta scheme is used to solve simultaneously the three
coupled differential Thiele equations corresponding to the three coupled
oscillators. The integration time step was set to 0.01 ns. Simulations are achieved at
T=0K (no thermal noise). As in the experiment, the simulated oscillators are
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electrically coupled through the sum of their individual microwave alternative

current emissions. The expression of this common current I, is described as
follows®:

1 3
Ig)m =73 (izllARiIiyi> 2)
Zy+ Zl R;
=

here AR; is the mean resistance variation caused by the vortex core gyrotropic
motion, I; is the direct current flowing through the i-th oscillator, R; is its mean
electrical resistance, Z, = 50 Q is the load impedance and 1 = 2.

The main variables extracted from the simulations are the three steady-state
frequency (f1, f2, f3) of the three oscillators obtained at a given set of direct
currents (I1, 12, I3). As in the experiment, a given direct current set (I1, 12, I3)
corresponds to a step of the current ramp of the network. In order to extract (f1, 2,
f3) from the simulations, first the instantaneous frequency of each oscillator is
determined through the simulated cartesian trajectory and velocity of the vortex
core over 5 ps. Then, the steady-state frequency is computed by evaluating the
temporal average of the instantaneous frequency over only the last 60% of the
simulated time trace corresponding to 3 ps. Due to the electrical coupling, these
steady-state frequencies differ from those obtained in the individual uncoupled
case. Depending on the direct current received by each oscillator, their frequencies
are pulled and can eventually merge leading to a mutual synchronization. As in
experiments, a recognition event corresponds to a mutual synchronization of all
the three oscillators to a common frequency. In order to systematically detect this
type of events in simulations, we analyze the frequency difference between the three
oscillators as follows:

(@) If [f1 —f2|<fy and|f2 — f3|<f, then the three oscillators are mutually
synchronized

(b) Otherwise, the three oscillators are considered to be not synchronized all
together.

Here fy, is a threshold value set to 0.1 MHz. Following criteria (a) and (b), if the
three oscillators remain mutually synchronized for at least three consecutive direct
current ramp steps corresponding to at least 13 ps, then the simulated network is
considered to be in a recognition state. The initial value I° and slope value dI/dt of
the direct current ramps in simulations are calibrated following the method
described in the section “Trained initial conditions to classify each category of
cheese/Calibration parameters”. Supplementary Table 3 shows the trained
calibration parameters used for each input that the network is trained to classify.
Following the same procedure used in experiments, the simulated recognition
performances are evaluated for each class of cheese using the associated initial
conditions (Supplementary Table 3). The recognition rates obtained through this
procedure are shown in Supplementary Table 4. Overall, the network responds
correctly to 96% of the inputs.

We have then investigated through simulations how robust is the oscillator
network to increased spike jitter and compared it to the performance of a
perceptron trained on the same data.

We have generated three new databases that keep the same asymmetry as the
initial database but a larger jitter in each category. To generate these three new
datasets, we use the initial data points that do not have jitter (2, t3) (see Fig. 1g).
For each of these points, we construct 10 new points (t2’, t3’) for which the
coordinates were randomly chosen with a normal distribution that is centered at
the initial point (t2, t3) and has a fixed standard deviation. To increase the jitter, we
increased the standard deviation of the normal distribution used to construct (t2/,
t3’) points. More precisely, we choose three different values of standard deviation
(10, 50, and 100), which give rise to the three new databases represented in
Supplementary Fig. 4a. The data we used to train and evaluate the performance of
the simulated oscillator network consists of two-dimensional vectors
x_input = (t2/, t3’). Similarly, the data we used to train and evaluate the
performance of the perceptron model consists of two-dimensional vectors
x_input = (t2/400, t3'/400), in which each coordinate of the databases has been
normalized by 400. Panel b of Supplementary Fig. 4 shows simulations of the
oscillator network performance compared to a perceptron. Both networks are
trained on the initial database (standard deviation of 0 in panel b) and tested on the
new databases.

The perceptron consists of two input neurons and one output neuron, with
two weights and one bias, i.e., three learnable parameters, as in the oscillators
network. As in the experiments, a batch size of one is used (i.e., samples are
presented one by one). We have performed learning on the four binary tasks “this
cheese”/“not this cheese” for each type of cheese. The perceptron does not have
hidden layers, and the neuron activation function at the output layer is a sigmoid
function. If the output is equal to or larger than 0.5, the perceptron outputs “this
cheese”, while if it is smaller than 0.5 the perceptron outputs “not this cheese”.
We performed backpropagation (by stochastic gradient descent) over the negative
binary log-likelihood (or binary cross-entropy) for training the network. Initial
weights and biases were initialized randomly from a uniform distribution
bounded between —1 and 1. To ensure convergence we used a learning rate of 0.1
during 100 iterations. As expected, the recognition performance drops with
increased spike time jitter.

Data availability
The datasets analyzed during this study are available as Supplementary Data in ref. ? (see
Methods). Experimental data are available from the authors under reasonable request.

Code availability
The codes and simulation files that support the plots and data analysis within this paper
are available from the authors on reasonable request.
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