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Interplay between an ATP-binding cassette F
protein and the ribosome from Mycobacterium
tuberculosis
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EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome

entry into the translation elongation cycle. A detailed understanding of its mechanism of

action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we

present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium

tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation

complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the

crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that

MtbEttA binds the E-site of the Mtb 70SIC, remodeling the P-site tRNA and the ribosomal

intersubunit bridge B7a during the ribosomal ratcheting. In return, the rotation of the 30S

causes conformational changes in MtbEttA, forcing the two nucleotide-binding sites (NBSs)

to alternate to engage each ADPNP in the pre-hydrolysis states, followed by complete

engagements of both ADP-VO4 molecules in the ATP-hydrolysis transition states. In the

post-hydrolysis state, the conserved ATP-hydrolysis motifs of MtbEttA dissociate from both

ADP molecules, leaving two nucleotide-binding domains (NBDs) in an open conformation.

These structures reveal a dynamic interplay between MtbEttA and the Mtb ribosome, pro-

viding insights into the mechanism of translational regulation by EttA-like proteins.
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ATP-binding cassette F (ABC-F) proteins are wide-spread
among bacteria and eukaryotes, with dozens of distinct
groups1–3. Although belonging to the universal ABC

transporter superfamily, they are unlikely to function as trans-
porters due to the lack of transmembrane domains4,5. Instead, a
variety of ABC-F proteins are involved in different aspects of
protein synthesis. An early example is the eukaryotic Elongation
Factor 3 (eEF3), a member of ABC-F proteins, which has
potential roles in E-site tRNA release and ribosome recycling6,7.
Later, more ribosome-associated ABC-F proteins were discovered
in eukaryotes, many of which have been proposed to be involved
in response to stress, translation initiation, and ribosome
biogenesis8–11. In bacteria, the first structurally determined ABC-
F protein, EttA from Escherichia coli (referred to as EcoEttA), was
found to bind to the ribosome and “throttle” (or regulate) its
entry into the translation elongation cycle, depending on the
ATP/ADP ratio12,13. Interestingly, a subset of bacterial ABC-F
proteins has been identified to protect the ribosome against
clinical antibiotics and classified into different groups based on
the types of antibiotics they protect against14,15. In recent years,
direct protection of ribosome against antibiotics by these anti-
biotic resistance (ARE) ABC-F proteins has stepped into the
limelight, which is supported by biochemical and structural stu-
dies of various AREs, disfavoring the previous idea that they
function as efflux pumps16–18.

ABC-Fs are generally composed of two tandem nucleotide-
binding domains (NBDs) connected by a linker of ~60–100
amino acids2. In spite of various lengths in the linker region,
distinct features among ABC-F proteins include an extra
N-terminal domain, an “Arm” domain insertion within the first
NBD (NBD1), and a C-terminal extension1. Like other members
in the ABC superfamily, most ABC-F proteins are ATPases with
highly conserved ATP binding/hydrolysis motifs, albeit with
variations of the aromatic residue at the A-loop within NBD112.
The two NBDs interact with each other in a head-to-toe fashion,
sandwiching two ATP molecules19. Movement between the two
NBDs during ATP hydrolysis, referred to as a “clamping”
between the open and closed conformations, is proposed based
on available structures of different ABC-F proteins at different
nucleotide-bound states12,13,16,17,20.

Structural investigation into the mechanism of action of ABC-F
proteins has primarily been focused on AREs, such as MsrE
(resistance to macrolides, streptogramin B, ketolides) and VmlR
(resistance to virginiamycin M and lincomycin)16,17. The
mechanism of conferring antibiotic resistance by MsrE is pro-
posed as direct dispersions of each antibiotic from the ribosome,
due to steric clashes between the tip of the linker and each
antibiotic16. In addition, the bound MsrE can induce conforma-
tional changes in the acceptor stem of the P-site tRNA, potentially
destabilizing the bound antibiotics from the active sites of the
ribosome2. Notably, structural and mutational studies of VmlR
also provided evidence of an alternative mechanism for the dis-
sociation of antibiotics, in which VmlR caused conformational
changes around the peptidyl transferase center (PTC) in the 23S
ribosomal RNA (rRNA)17. Another focus was the characteriza-
tion of EcoEttA, which was not involved in conferring antibiotic
resistance, probably due to its shorter linker compared to AREs.
The only available structures of EttA-like ABC-F proteins are a
crystal structure of nucleotide-free EcoEttA alone and a low-
resolution cryo-EM structure of ATP-bound EcoEttA in complex
with the E. coli ribosome12,13. These studies show that EcoEttA
binds at the ribosome E-site and interacts with the initiator tRNA
to regulate the ribosome entry into the elongation cycle. However,
high-resolution structures of EttA-like proteins at different states
during ATP hydrolysis and their interactions with the ribosome
are needed to better understand the mechanism, such as the

cooperativity between the two NBDs and the interplay between
the EttA and the ribosome.

Rv2477c from Mycobacterium tuberculosis (Mtb) is an
EttA-like ABC-F protein21, which was previously mistaken as an
efflux pump22. Unlike EcoEttA, Mtb Rv2477c (termed as
MtbEttA from now on) is responsive to antibiotic treatments23

and essential for cell growth based on a study by saturating
transposon mutagenesis24 (https://mycobrowser.epfl.ch/genes/
Rv2477c). MtbEttA could be a drug target in Mtb, which causes
Tuberculosis. This disease leads to ~2 million deaths worldwide
annually25. In our in vitro translation assays (Supplementary
Fig. 1), we showed that, although MtbEttA was unable to protect
the ribosome from erythromycin, it increased the translation
activity of the ribosome at low erythromycin concentrations. In
order to better understand how MtbEttA enhances translation
activity of the ribosome, we performed structural analyses of the
Mtb ribosome-bound MtbEttA along the trajectory of ATP
hydrolysis. We determined high-resolution cryo-EM structures of
the ribosome-bound MtbEttA at the pre-hydrolysis (ADPNP)
and transition (ADP-VO4) states. Different degrees of ribosomal
intersubunit rotation are observed between the pre-hydrolysis
and the transition states. In the pre-hydrolysis state, we observed
an asymmetric engagement of conserved ATP-hydrolysis motifs
around the two nucleotide-binding sites (NBSs) in MtbEttA and
an increased flexibility around the PTC of theMtb ribosome, both
of which are correlated with the ribosomal intersubunit rotation.
We also solved a crystal structure of MtbEttA alone in the post-
hydrolysis (ADP) state with two MtbEttA forming a domain-
swapped dimer. The two NBDs, which form the two NBSs, are
apart from each other. They are in an “open” conformation,
therefore cannot tightly engage the nucleotides. These structures
reveal a dynamic interplay between the ribosome and MtbEttA
during the course of ATP hydrolysis and provide insights into the
mechanism of EttA-regulated translation.

Results
Cryo-EM structures ofMtb ribosome in complex with MtbEttA
at the pre-hydrolysis (ADPNP) and transition (ADP-VO4)
states. To obtain a stable complex between the Mtb ribosome and
MtbEttA, we assessed multiple conditions by adding mRNA, tRNA,
and different nucleotide analogs (Supplementary Fig. 2). Consistent
with previous studies17, a P-site tRNA and a non-hydrolyzable ATP
analog ADPNP were necessary to form a stable MtbEttA-ribosome
complex. In addition, we discovered that MtbEttA can still bind to
the 70S in the presence of ADP-VO4, an analog mimicking the
transition state of ATP hydrolysis. We then reconstituted an Mtb
70S initiation complex (70SIC containing the mRNA and initiator
tRNA fMet-tRNAfMet) bound to MtbEttA with ADPNP or ADP-
VO4 in vitro, respectively, for our structural studies.

For the Mtb 70SIC-bound MtbEttA in the pre-hydrolysis state,
single-particle cryo-EM 3D classification and refinement yielded
two distinct subpopulations, named Pre_R0 and Pre_R1, to the
resolutions of 2.97 and 3.23 Å, respectively (Supplementary Fig. 3).
In addition, other subpopulations, including the classic nonrotated
70S with P/P tRNA, fully rotated 70S with P/E tRNA, nonrotated
70S with P/P and E/E tRNAs, and 50S, were also resolved to 2.76,
2.8, 2.71, and 3.0 Å resolutions, respectively. The core region of the
70S with P/P and E/E tRNAs is at an even higher resolution,
which enabled us to identify several conserved RNA modifications
in the 23S and 16S rRNAs (Supplementary Fig. 4).

Similar to the pre-hydrolysis state, two distinct subpopulations
were revealed for the Mtb 70SIC-bound MtbEttA in the ATP-
hydrolysis transition state, namely Trans_R0 and Trans_R1, to
the resolutions of 2.79 and 3.1 Å, respectively (Supplementary
Fig. 5). The dataset also included subpopulations without
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MtbEttA bound, such as the 70S with P/P tRNA, with P/E tRNA,
with both P/P and E/E tRNAs and the 50S alone, which we did
not further process due to the similarity to the corresponding
subpopulations in the pre-hydrolysis state.

MtbEttA binds at the E site of the Mtb 70SIC and interacts with
several ribosomal proteins and RNAs, as well as the P-site tRNA.
The linker region, termed as the P-site tRNA interaction motif
(PtIM)12, extensively interacts with the P-site tRNA and the 23S
rRNA (Figs. 1a, b, 2b). The overall structural difference of the Mtb
ribosome among these states is the degree of intersubunit motion
between the 30S and the 50S, which can be measured after aligning
them based on the 23S rRNA. In the two pre-hydrolysis states, the
Pre_R0 30S has a subtle body rotation of ~0.2o and head swivel of
~0.8o relative to the classic nonrotated P/P-tRNA state, while the
Pre_R1 30S has a body rotation and head swivel of ~4.7o and ~4.1o,
respectively (Fig. 1c, 2nd and 3rd columns). In the transition states,
the Trans_R1 30S shows a body rotation of ~3.4o and head swivel
of ~1.7o. The Trans_R0 state shares similar motion as the
Pre_R0 state, with a body rotation of ~0.3o and head swivel of
~1.0o. Nevertheless, the rotational movement of the 30S in the
presence of MtbEttA both in the pre-hydrolysis and transition states
is modest compared to the fully rotated state as shown in the 70S
with P/E tRNA, which displays a body rotation and head swivel of
~10.4o and ~11.6o, respectively (Fig. 1c, 1st column). These results
indicate that binding of MtbEttA at the E site of the Mtb 70SIC
reduces the overall movement of the Mtb 30S relative to the 50S.

In the Pre_R0 and Trans_R0 states when the 30S has a small
movement, the tip of PtIM extends towards the PTC and shows

stable interactions with the P-site tRNA (Fig. 1b, 2nd and 5th
columns). Notably, PtIM and the P-site tRNA increase their
flexibility as the head of the 30S swivels more. Particularly, the tip
of PtIM and the CCA tail of the P-site tRNA display the largest
flexibility in the Pre_R1 state, as the cryo-EM densities in these
regions are weak (Fig. 1b, 3rd column). Even though the body
rotation in the Trans_R1 state is comparable to that in the
Pre_R1 state, only subtle variations of PtIM and tRNA are
detected, presumably due to the smaller head swivel in the 30S.
These observations demonstrate that the swiveling of the 30S
head domain correlates with the displacements of PtIM of
MtbEttA and the CCA tail of the P-site tRNA.

Interactions between MtbEttA and the Mtb ribosome. MtbEttA
has a conserved ABC-F architecture with two tandem NBDs, an
arm domain, PtIM, and a basic C-terminal tail (Fig. 2a). Using the
Pre_R0 state as an example, the arm domain of MtbEttA interacts
with the L1 stalk of the 50S (Fig. 2b). Surprisingly, contrary to the
low-resolution cryo-EM structure of EcoEttA bound to an E. coli
ribosome, the basic C-terminal tail of MtbEttA is inserted
between the L1 stalk of the Mtb ribosome and the NBD1 of the
MtbEttA (Fig. 2c). The C-terminal polypeptide backbone of
MtbEttA is clearly resolved (Supplementary Fig. 4c). When
bound to the ribosome, PtIM of MtbEttA is more extended than
the one in EcoEttA (Supplementary Fig. 6a). The first α-helix of
PtIM (PtIM α1), which connects to the NBD1, has extensive
interactions with Helix 68 of the 23S rRNA (Fig. 2d). Moreover,
the positively-charged tip of PtIM is stretched and inserted into
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Fig. 1 Cryo-EM structures of Mtb 70SIC in complex with MtbEttA in the pre-hydrolysis and transition states. a Cartoon representations of Mtb
ribosome in different states, labeled with the E, P, and A sites, as well as the 50S and domains (head and body) of the 30S. The first column shows the
transition of tRNA between the P/P (light green) and P/E (transparent medium blue) positions. The second and third columns show that MtbEttA (violet),
in the Pre_R0 and Pre_R1 states, respectively, binds at the E-site of Mtb 70SIC and interacts with the P-site tRNA. The fourth and fifth columns show the
corresponding 70SIC-MtbEttA complexes in the Trans_R1 and Trans_R0 states, respectively. Dashed outlines at the E and P sites (third column) show the
position of MtbEttA and the tRNA in the Pre_R0 state. The length of the black curved lines indicates the flexibility in these regions. b Cryo-EM maps
showing the density of tRNAs and MtbEttA with the 50S (light blue) and the 30S (light yellow) transparent in the background. PtIM and ATP analogs are
labeled. The color scheme follows panel (a). c Analysis of 30S rotations in the P/E-tRNA or MtbEttA-bound states, relative to the non-rotated P/P-tRNA
state. The head, body, platform, and spur of the 30S subunit are labeled. Rainbow-colored vectors represent the displacements between equivalent C4’ or
Cα atoms of the 30S subunits, with red and blue indicating large and small movements, respectively.
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the region surrounded by Helices 74, 75, 93 of the 23S rRNA and
the acceptor arm of the P-site tRNA (Fig. 2b, e). The electrostatic
potential of MtbEttA confirms that its positively charged surface
faces the negatively charged phosphate RNA backbone (Supple-
mentary Fig. 7). Notably, the sidechain of R280, at the tip of
PtIM, points towards the PTC in a fashion that is parallel with the
backbone of the CCA tail of the P-site tRNA (Fig. 2e). Interest-
ingly, this arginine residue is conserved among different EttA-like
proteins (Supplementary Fig. 8), suggesting a functional role in its
interaction with the neighboring RNA backbones. Interactions
between MtbEttA and the 30S involve a salt bridge between E526
of NBD2 and R112 of the uS7 protein, as well as electrostatic
interactions between the basic residues R316 and R346 of NBD2
and the RNA backbones of helices 41 and 42 in the 16S (Fig. 2f).
In summary, MtbEttA binds the Mtb 70SIC via a network of
charge-charge interactions with the ribosome and the P-site
tRNA; and these interactions are conserved in our structures of
MtbEttA in complex with the Mtb 70SIC, except for the tip of
PtIM in the Pre_R1 state when it becomes flexible.

Remodeling of the P-site tRNA and the ribosomal intersubunit
bridge B7a by MtbEttA as the 30S moves. The intersubunit
movement within the 70S is often accompanied by a shift of the

P-site tRNA. In addition, different ribosomal factors can result in
various intermediate positions of the P-site tRNA26–28. Previous
structures of ribosome in complex with MsrE and VmlR revealed
a novel P-site tRNA conformation, in which the acceptor stem
was displaced by the tip of PtIM and redirected from the PTC
toward the A site16,17. PtIM from MtbEttA is unlikely to cause
such a drastic displacement due to the shorter PtIM tip (Sup-
plementary Fig. 6b, c, f, g). Indeed, we find that the acceptor stem
of the P-site tRNA in the Pre_R0 and Trans_R0 states remains in
the same position as the classic P/P-tRNA state without the
MtbEttA. However, the elbow region of P-tRNA tilts ~6o toward
the E site, presumably due to the interactions with the bound
MtbEttA (Supplementary Fig. 6d). Furthermore, the elbow moves
~16o toward the E site in the Pre_R1 state, which is comparable to
that in ARE-ribosome complexes (Supplementary Fig. 6e).
Nevertheless, the CCA tail and acceptor stem remain at the P-site
but with increased flexibility.

Compared to the Pre_R0 state, the MtbEttA in the Pre_R1 state
shifts along the same direction as the 30S for ~6 Å (Fig. 3a, b).
Notably, the 50S protein bL31, which forms the ribosomal
intersubunit bridge 1b (B1b), along with protein uL5, moves ~2 Å
opposite to the direction of the 30S head swiveling (Fig. 3a, b). In
addition, the 5S rRNA and Helix 84 of the 23S rRNA show an
upward shift (Supplementary Fig. 9a). These movements around
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Fig. 2 Structure of MtbEttA and its interaction with theMtb 70SIC in the Pre_R0 state. a The structure and domain composition of MtbEttA. Nucleotide-
binding domains 1 (NBD1, residues 2-93 and 137-240) and 2 (NBD2, residues 308-545), arm domain (residues 94-136), P-tRNA interacting motif (PtIM,
residues 239-307), and the C-terminal basic tail (residues 550-557) are colored in thistle, light steel blue, medium purple, violet, and indigo, respectively.
Nucleotide-binding sites (NBS-I and NBS-II) are indicated by arrows. b The overall interactions between MtbEttA and surrounding RNAs and proteins. The
relative location of the peptidyl transferase center (PTC) is outlined by a dashed oval. Structural details of boxed regions are described in panels (c–f).
c The C-terminal tail is inserted between the L1 stalk and NBD1. d PtIM α1 is in close contact with Helix 68 of 23S rRNA. e The tip of PtIM reaches towards
the PTC, and interacts with the CCA tail of the P-site tRNA, Helices 74, 75, and 93 of the 23S rRNA. f Interactions between MtbEttA and the 30S. A salt
bridge is observed between E526 (MtbEttA) and R112 (uS7). Basic residues in MtbEttA (R316 and R346) point towards helices 41 and 42 of the 16S rRNA.
Several rRNA nucleotides are labeled to show the regions of interactions.
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the central protuberance (CP) in the Pre_R1 state result in a split
at the interface between the two ribosomal subunits (Fig. 3b;
Supplementary Movie 1). Although this is also observed in the
fully-rotated 70S with the P/E tRNA, the CP does not move to the
same extent as in the Pre_R1 state (Supplementary Fig. 9b). Such
a movement of the CP is likely due to both the occupancy of
MtbEttA at the E-site and the rotation of the 30S. In the
transition states when the 30S head barely swivels, bL31 and uL5
do not show major movements (Supplementary Fig. 9c). In
addition, in the Pre_R1 state, we observe the 23S rRNA Helix 89
and protein uL16 around the PTC becomes more flexible
(Supplementary Fig. 10). Molecular dynamics simulation has
suggested that, during the tRNA translocation from A/T to A/A
sites, displacement of Helix 89 of the 23S rRNA is necessary to
avoid steric clashes with the elbow of the tRNA29. Therefore,
increased flexibility of Helix 89 around the PTC, observed in the
Pre_R1 state, may prime the ribosome to accommodate the A-site
tRNA. However, whether MtbEttA interacts with the 70SIC
before or after the binding of the EF-Tu-aa-tRNA needs to be
investigated.

Furthermore, the intersubunit bridge B7a between the 50S and
the platform region of the 30S is rearranged in the Pre_R1 state
(Fig. 3d). Particularly in the Pre_R0 state, there is a base stacking
between nucleotides A693 from the 16S rRNA and A2082 from
the 23S rRNA. However, in the Pre_R1 state, movements of the
30S and PtIM α1 cause a separation of A693 from A2080,
allowing nucleotide A2081 of the 23S rRNA to flip and insert
between them to form new base stackings. These newly formed

base stackings in the Pre_R1 state were not observed in any other
ribosomal structures and may contribute to the stability of the
specific intermediate 30S rotation in the Pre_R1 state (Supple-
mentary Fig. 11).

Structural variations of ribosome-bound MtbEttA in the pre-
hydrolysis and transition states. The ATPase activity is essential
for the function of ABC-F proteins12,18. Moreover, the ribosome
significantly increases the ATP hydrolysis activity of EcoEttA
in vitro12. With these high-resolution cryo-EM structures at pre-
hydrolysis and transition states, we can quantify such structural
variations of MtbEttA along the reaction trajectory of the ATP
hydrolysis in the presence of the ribosome.

Conserved motifs of ABC ATPases are present in MtbEttA at
both NBSs. These motifs include the Walker A, Walker B, H-
switch, Q-loop, A-loop, and signature motifs (Supplementary
Fig. 12a). When complexed with the ribosome at both the pre-
hydrolysis and transition states, MtbEttA is in a “closed”
conformation, in which the nucleotides along with the corre-
sponding Mg2+ ions are clearly visualized and engaged by the
conserved ATP-binding motifs of the two NBSs (Supplementary
Fig. 12b).

MtbEttA exhibits significant structural variations in different
nucleotide states when bound to the Mtb ribosome. The most
prominent conformational difference is observed between the
Pre_R0 and Pre_R1 states (Fig. 4a). Compared to the Pre_R0 state,
the tip region of PtIM in the Pre_R1 state shows a more relaxed
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Fig. 3 Remodeling of theMtb 70SIC upon binding MtbEttA in the Pre_R1 state. aModels of the 70SIC-MtbEttA complex in the Pre_R0 (transparent) and
Pre_R1 (solid color) states are superimposed based on the 23S rRNA. 50S, 30S, and tRNA for the Pre_R0 state are shaded in the background. MtbEttA,
bL31, and uL5 are shown as models. b A zoom-in view at the split interface. Directions of movements for MtbEttA, 30S, bL31, and uL5 are indicated by
black arrows. c Rearranged 50S-30S interface in the Pre_R1 state. Direction and position of the view are indicated by the eye cartoon and a dashed vertical
line in (a). d A close-up view of the rearranged base stacking in the Pre_R1 state is shown, with arrows indicating movements of corresponding nucleotides
from the Pre_R0 state (transparent).
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conformation (Fig. 4b), with Cα distances of corresponding
residues at a range of 5–10 Å, while it shows limited changes in
the ATP-hydrolysis transition states (Supplementary Fig. 13).
PtIM α1 also deforms into a bent α-helix (Fig. 4d), which shifts
the H-switch loop at NBS-I (labeled green in Fig. 4c), dissociating
it from the bound nucleotide (stick models in Fig. 4c).
Furthermore, NBD2 of the Pre_R1 state moves ~5o more toward
NBD1 (Fig. 4e), closing NBS-II to engage the Q-loop onto the
nucleotide (Fig. 4f).

Asymmetric engagements of ADPNPs in the pre-hydrolysis
states. The conformational changes in MtbEttA in the pre-
hydrolysis states have led to asymmetric ADPNP engagements by
the conserved ATP-binding motifs of the two NBSs (Supple-
mentary Movie 2). In the Pre_R0 state when the 30S has little
rotation, one ADPNP is fully enclosed by the conserved motifs at
NBS-I, while the Q-loop at NBS-II is flexible and away from the
other ADPNP (Fig. 5a, b). Subsequently in the Pre_R1 state, the
residues H15 in the A-loop and H214 in the H-switch at NBS-I
move outward for 2.5 and 3.5 Å, respectively (Fig. 5c). On the
other hand, the residue Q391 in the Q-loop at NBS-II flipped
inward for a distance of 4.7 Å to interact with ADPNP (Fig. 5d).
By contrast in the ATP-hydrolysis transition states, all the con-
served motifs in both NBSs are engaged with ADP-VO4

(Fig. 5e–h).

The crystal structure of ribosome-free MtbEttA at the post-
hydrolysis (ADP) state. Speculations were made by others that
the two NBDs of ABC-F proteins could undergo conformational
changes after ATP hydrolysis, as discovered in the ABC

superfamily30. However, the lack of structure of ABC-F proteins
at post-hydrolysis state has limited our understanding of the
potential conformational changes. Based on our result, MtbEttA
in the ADP state did not form a stable complex with the ribosome
(Supplementary Fig. 2). Therefore, we co-crystalized MtbEttA
with ADP and determined its X-ray crystal structure at 2.9 Å
resolution (Supplementary Table 1). In the crystal, the asym-
metric unit of MtbEttA-ADP consists of a domain-swapped
dimer, similar to that in the crystal structure of nucleotide-free
EcoEttA (Supplementary Fig. 15a). Apparently, the conforma-
tions of both NBSs in the nucleotide-free EcoEttA are not com-
patible for stable nucleotide binding, as Pro16 and Tyr333 in the
A-loop of NBS1 and NBS2, respectively, are either too far from or
collide with the adenine ring of a potential nucleotide (Supple-
mentary Fig. 15b, c). On the contrary, the corresponding residues,
His15 and Tyr331, in the ADP-bound MtbEttA stack with the
adenine ring of ADP, with the density of the ADP and magne-
sium ions clearly resolved in the crystal structure (Supplementary
Fig. 15d, e). Notably, in solution, the population distribution of
oligomeric states for EcoEttA and MtbEttA are different. For
example, at a protein concentration of ~10 µM, EcoEttA has
almost half of the population staying in the monomeric form12,
while MtbEttA is dominantly in the dimeric form (Supplemen-
tary Fig. 14a). Furthermore, the dimerization of the MtbEttA is
significant in solution regardless of protein concentrations
(Supplementary Fig. 16) or bound nucleotides (Fig. 6a).

In the crystal structure of the post-hydrolysis state of MtbEttA,
one ADP molecule and a Mg2+ ion are clearly resolved in each of
the four NBSs in the domain-swapped dimer (Fig. 6b). Only
subtle conformational differences are observed between the two
halves in the crystal asymmetric unit (Supplementary Fig. 14b). In
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order to understand the conformational change of MtbEttA at the
post-hydrolysis state compared to the previous step of the ATP-
hydrolysis (transition state), we focused on half of the domain-
swapped dimer composed of the NBD1 from protomer A, and
NBD2 from protomer B, which was analyzed in the same fashion
for the crystal structure of the nucleotide-free EcoEttA12.

To measure the conformational difference, we align the two
structures of MtbEttA in the post-hydrolysis (ADP) state and the
Trans_R0 state based on the NBD1. We observe a ~40o rotation
of NBD2 away from NBD1 in the post-hydrolysis state (Fig. 6c,
d), allowing the formation of two new salt bridges (E199/R499
and R216/E482, inset of Fig. 6d) between NBD1 and NBD2.
These two salt bridges are absent in the Trans_R0 state (inset of
Fig. 6c). Such an opening of the two NBDs is accompanied by the
separation of the signature motif, Q-loop and H-switch, from the
ADP, which shows a classic configuration in the ABC superfamily
after ATP hydrolysis (Fig. 6e, f). In order to evaluate the effects of
such a large domain movement of MtbEttA at the post-hydrolysis
state, we superimposed the structure of the two NBDs of MtbEttA
in the ADP state to the 70SIC-MtbEttA complex in the
Trans_R0 state based on NBD1 (Supplementary Fig. 17;
Supplementary Movie 3). Clear steric clashes are observed
between the NBD2 and arm domain with uS7 and uL1,
respectively. This may explain why the ADP-state MtbEttA
cannot form a stable complex with the Mtb 70SIC and has to
dissociate from the ribosome after ATP hydrolysis.

Discussion
Using cryo-EM and X-ray crystallography, we have determined
the structures of MtbEttA and its interaction with the Mtb
ribosome in the course of ATP hydrolysis. Based on our results,
we propose a general model for the mechanism of action of
MtbEttA (Fig. 7): In the solution, MtbEttA stays at an equilibrium
between monomers and dimers, with a major population as
homo-dimers. In the dimeric form, MtbEttA is inactive since the
dimer is too big to fit into the binding site in the Mtb ribosome.
The ratio between the dimer and the monomer, in vitro, does not
seem to be affected by protein concentrations (Supplementary
Fig. 16) or nucleotide binding (Fig. 6a), but rather by high salt
(e.g., NaCl) concentrations (Supplementary Fig. 14a), consistent
with the fact that the dimer is stabilized by electrostatic interac-
tions (Supplementary Fig. 14c). In Mtb cells, the physiological
concentration of NaCl is ~250 mM31, under which most of the
MtbEttA will still exist as dimers. Upon dissociation of the two
monomers, the two NBDs would undergo a large domain rear-
rangement to form a compact conformation—as the retention
volume, on a size exclusion column for the monomeric MtbEttA,
suggests it is in a globular form. The large population of the
inactive dimers may serve as a reservoir of MtbEttA, which will
dissociate into monomers to interact with the Mtb ribosomes.
Such a hypothesis for the dimer/monomer switch needs to be
tested. It is possible that the presence of the Mtb ribosome
binding the monomeric MtbEttA drives the dimer/monomer
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equilibrium towards the monomers. Admittedly, we cannot rule
out that, in vivo, there exists a potential factor to regulate the
oligomeric states of MtbEttA, which is yet to be discovered.

In the pre-hydrolysis state, the back-and-forth rotation of the
Mtb 30S subunit is correlated with the alternating coupling and
decoupling of ADPNP in the two NBSs. In the Pre_R0 state, in
which the 30S is close to a classic nonrotated conformation, one
ADPNP at the NBS-I is fully engaged by all the ATP-binding
motifs of MtbEttA, while the other ADPNP at the NBS-II is
disconnected from the Q-loop. As the 30S rotates to the
Pre_R1 state, the ADPNP at the NBS-II is now fully engaged, but
the ADPNP at the NBS-I is disconnected from the H-switch and
the A-loop. The conformational changes of the H-switch and the
A-loop at NBS-I are likely mediated by the bending of PtIM α1,
which serves as a cantilever to transmit the effect of 30S rotation
(Figs. 3c and 4d). In the pre-hydrolysis states, the rotation of the
Mtb 30S facilitates the conformational changes of MtbEttA to
fully engage the nucleotides in the two NBSs in a staggered way.
By contrast in the transition states, nucleotides are always fully
engaged by conserved ATP-hydrolysis motifs at both NBSs,
presumably due to a smaller head swiveling of the 30S, which
exerts less impact on the bound MtbEttA. On the other hand,
ADP-VO4 may stabilize the interaction between NBD1 and
NBD2 within MtbEttA, locking MtbEttA in a compact mono-
meric form with both NBSs engaged onto the nucleotides, which

is consistent with an increased monomer population revealed in
the size exclusion chromatography (Fig. 5a).

MtbEttA occupies the E-site on the Mtb 70SIC in both the pre-
hydrolysis and transition states, reducing the movement of the
30S and stabilizing the tRNA in the P/P position, which functions
similarly to the bacterial EF-P32 and eukaryotic eIF5A33. Such a
stabilization is favorable for the incorporation of the A-site tRNA,
a rate-limiting step in peptide bond formation34. The role of the
EttA-like proteins to facilitate the first peptide bond during
translation initiation was previously proposed by a single-
molecule fluorescence resonance energy transfer (smFRET)
experiment on EcoEttA13, and further visualized in our high-
resolution cryo-EM structures of the MtbEttA in complex with
the Mtb 70SIC. When the A-site tRNA binds the ribosome, the
elbow and 3′-CCA tail of the tRNA navigate through a “corridor”
to transit from the A/T to the A/A position29, which requires the
movement of Helix 89 of the 23S rRNA. Our structures show the
movement of Helix 89 in the presence of MtbEttA in the
Pre_R1 state, which may further increase the rates for a successful
accommodation of the A-site tRNA. Moreover, the impact of
MtbEttA in sampling different conformations of the 30S to
facilitate translation is consistent with the notion that rotations of
the 30S facilitate the A-site tRNA accommodation35.

It is likely that the presence of the third phosphate in the ATP
molecule allows the engagement of the signature motif, at least
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transiently, which causes a conformational change of the
MtbEttA, allowing it to exist in a more compact form (or closed
state) to fit into the E site of theMtb 70SIC. EttA-like proteins are
very weak ATPases and cannot efficiently hydrolyze ATP in the
absence of ribosomes12,21. However once absorbed into the E-site
of the ribosome, the rotations of the 30S subunit facilitates the
further engagement of the ATP-hydrolysis loops in the NBSs,
fostering a more closed EttA to hydrolyze ATP.

Additionally, our results provide a structural explanation for
the function of EttA-like proteins to throttle the translation
depending on the ATP/ADP concentration ratio. At a higher
ADP concentration, the ADP molecules may exchange with the
bound ATP molecules in the MtbEttA. This may be possible,
particularly in the pre-hydrolysis states where one of the two
NBSs is not fully engaged onto the nucleotides. Future studies by
single molecular experiments are necessary to elucidate the
kinetics of the exchange between ATP and ADP at different
ratios. While EcoEttA is not essential for E. coli12, MtbEttA is
essential for the growth and survival ofMtb. Besides its role in the
translational regulation, we cannot rule out the possibility that

MtbEttA may be involved in another essential pathway. Never-
theless, due to the essentiality of MtbEttA, our high-resolution
cryo-EM and crystal structures may provide frameworks for
designing drugs to target this protein.

Methods
Protein expression and purification. The full-length sequence of MtbEttA was
cloned into a modified pET28(a) vector with an N-terminal His6-SUMO tag. We
then overexpressed full-length MtbEttA in Rosetta™ 2(DE3) cells and purified it
using Ni-NTA affinity chromatography. The SUMO tag was cleaved by SUMO
protease and washed off from the Ni-NTA column, leaving MtbEttA bound with
one extra serine at the N terminus. Further purification was performed by gel
filtration chromatography through a Superdex 200 (16/60 GL) column (GE
Healthcare) to separate the dimer from the monomer populations.

Mtb cells MC2 700036 were grown in 7H9 medium supplemented with 10%
oleic albumin dextrose catalase (BD), 0.5% glycerol, 0.05% Tween-80, and 50 μg/ml
pantothenic acid at 37 °C until an OD 600 of 1.0. The following procedures were
performed at 4 °C. Mtb ribosomes were purified according to modified protocols37.
After the cells were lysed in buffer (20 mM Tris-HCl [pH 7.5], 100 mM NH4Cl,
10 mM MgCl2, 0.5 mM EDTA, 6 mM 2-mercaptoethanol), it was clarified by
centrifugation at 30,000 × g for 1 h. The supernatant was pelleted in sucrose
cushion buffer (20 mM HEPES [pH 7.5], 1.1 M sucrose, 10 mM MgCl2, 0.5 M KCl,
and 0.5 mM EDTA) at 125,000 × g in a Beckman Type 45Ti rotor for 20 h. The
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pellet was resuspended in the buffer containing 20 mM Tris-HCl (pH 7.5), 1.5 M
(NH4)2SO4, 0.4 M KCl, and 10 mM MgCl2). The suspension was then applied to a
hydrophobic interaction column (Toyopearl Butyl-650S) and eluted with a reverse
ionic strength gradient from 1.5M to 0M (NH4)2SO4 in the buffer containing
20 mM Tris-HCl (pH 7.5), 0.4 M KCl, and 10 mM MgCl2. The eluted ribosome
peak was changed to re-association buffer (5 mM HEPES-NaOH [pH 7.5], 10 mM
NH4Cl, 50 mM KCl, 10 mM MgCl2, and 6 mM 2-mercaptoethanol) and
concentrated before loading on top of a 10–40% linear sucrose gradient centrifuged
in a Beckman SW28 rotor at 48,400 × g for 19 h. The 70S fraction was concentrated
to about A260= 300 after removal of the sucrose.

fMet-tRNAfMet and mRNA preparation. E. coli tRNAfMet was expressed from an
over-expression clone made in the pKK223-3 plasmid and was purified from E. coli
cells upon IPTG-induction of the tac promoter38. The level of over-expression in
the total tRNA was determined to be 40% by a label-free aminoacylation assay39. E.
coli tRNAfMet was purified by hybridization to a biotin-conjugated complementary
oligonucleotide bound to a streptavidin-coated resin. The tRNA was eluted from
the resin by heat and re-annealed at 37 oC. Formylation of the tRNA (100 µM) was
carried out during the aminoacylation reaction by including methionyl–tRNA
formyltransferase (10 µM) with the methyl donor 10-formyltetrahydrofolate
(0.85 mM; derived from folinic acid at neutral pH) in the presence of E. coli
methionyl-tRNA synthetase (2.5 µM), Met (0.12 mM), and ATP (2 mM)40.

In-vitro translation assay. The assay used to measure in-vitro ribosome activity
relied on the production of Nanoluciferase in an Mtb-based cell-free system. Mtb
S30 cell-free extract was prepared from Mtb MC27000, and equilibrated in S30
buffer (10 mM tris-acetate pH 8.2, 14 mM magnesium acetate, 60 mM potassium
acetate, 1 mM DTT)41. 10 μL of S30 extract (containing 200 nM ribosome) was
mixed with 5 μL 10X salt buffer (2 M potassium glutamate, 0.8 M ammonium
acetate, and 0.16M magnesium acetate), 1 mM each of the 20 amino acids and
33 mM phosphoenolpyruvate to a final volume of 41 μL. We then added the ery-
thromycin of various concentrations (2 μL) to the 41 μL mixture, and after the
incubation for 10 min at RT, the reaction was supplemented with MtbEttA,
Nanoluciferase mRNA (200 ng), and 5 μL master mix (286 mM HEPES-KOH,
pH7.5, 6 mM ATP, 4.3 mM GTP, 333 μM folinic acid, 853 μg/mL tRNA). The final
volume was 50 μL in each well of the 384-well plate. The reaction proceeded for
40 min at 37° at which time the reaction was terminated by the addition of 80 μM
Chloramphenicol. The luminescent signal was detected by the addition of 20 μL of
the nano-luciferase substrate Furimazine (Promega). Nanoluciferase mRNA was
prepared from an in-vitro transcription assay42.

Cryo-EM sample preparation and data collection. The Mtb 70SIC in complex
with MtbEttA at the pre-hydrolysis state was prepared with 0.2 μM 70S, 0.2 μM
modified Z4C mRNA (AGAAAGGAGGUAAAACAUGUUCAAAA)42, 0.8 μM
fMet-tRNAfMet, 33 μM MtbEttA, and 2 mM ADPNP. Firstly, the 70SIC containing
fMet-tRNAfMet and the mRNA was formed in buffer A (50 mM HEPES pH 7.5,
50 mM KCl, 10 mM NH4Cl, 5 mM MgCl2, 6 mM β-mercaptoethanol) at 37 °C for
30 min, and then supplied with fMet-tRNAfMet for another 30 min at 37 °C. In
parallel, MtbEttA was mixed with ADPNP at 37 °C for 1 h. The final complex was
formed by combining the two mixtures together and bringing the Mg2+ con-
centration to 10 mM, incubated at 37 °C for 1 h, and then kept on ice until use. The
Mtb 70SIC with MtbEttA at transition state was prepared in the similar fashion,
except that 4 mM ADP and 4 mM Na3VO4 were used instead of ADPNP. Cryo-EM
specimens were then prepared by applying 3 µL of a freshly reconstituted complex
to a glow-discharged Quantifoil 2/1 200-mesh Holey Carbon Grid coated with
2 nm continuous carbon, and vitrified using a Vitrobot Mark III (Thermo Fisher
Scientific) at 22 °C with 100% relative humidity.

Cryo-EM images of the 70SIC-MtbEttA-ADPNP complex were recorded under
a Titan Krios microscope (Thermo Fisher Scientific) operated at 300 kV. Data were
collected using EPU on a K2 Summit direct detection camera (Gatan) in the
electron counting mode with a pixel size of 1.06 Å. Beam shift was enabled to
encompass 5 exposures per hole. The beam intensity was adjusted to a dose rate of
5 e− per pixel per second on the camera. A 30-frame movie stack was recorded for
each exposure with 0.2 s per frame for a total exposure time of 6 s. A post-column
energy filter was used with a slit width of 20 eV.

Similarly, 70SIC-MtbEttA-ADP-VO4 images were recorded under another
Titan Krios microscope operated at 300 kV. Data were collected using EPU on a K2
Summit direct detection camera (Gatan) in the electron counting mode with a pixel
size of 1.063 Å. Beam shift was enabled to encompass 4 exposures per hole. The
beam intensity was adjusted to a dose rate of 6.5 e− per pixel per second on the
camera. A 30-frame movie stack was recorded for each exposure with 0.2 s per
frame for a total exposure time of 6 s. A post-column energy filter was used with a
slit width of 20 eV.

Image preprocessing. Drift correction of collected movie stacks was done using
MotionCor243. The defocus value of each aligned micrograph was determined
using Gctf44. Micrographs with visible contamination and poor power spectrum
were discarded. Automatic particle picking was done by gautomatch (Zhang

software, MRC Laboratory of Molecular Biology). 3D reconstruction was done by
following the pipeline of Relion345.

Data processing for the 70SIC-MtbEttA-ADPNP sample was achieved as
follows (Supplementary Fig. 3): In total, 1,175,176 particles were selected from
8,949 micrographs and binned by 8 before subjecting to 2D classifications in Relion
to remove bad particles. After 2D classifications, 1,016,405 particles were selected
and binned by 4. The initial 3D refinement step was performed with all clean
particles to get a consensus map. 3D classification using the consensus map as
initial model and with the “skip_align” option was used to classify different
subpopulations in the dataset. Two out of eight classes were found with the density
for MtbEttA. A total of 196,100 particles were selected after an additional cleaning
step, using focused 3D classification without alignment around MtbEttA and the
P-site tRNA. Further 3D classification of these particles with the “skip_align”
option and 30S mask yielded 3 subpopulations, including the Pre_R0 state with
126,715 particles and the Pre_R1 state with 34,158 particles. We continued to refine
the Pre_R0 and Pre_R1 states with unbinned data, to the resolutions of 2.97 and
3.23 Å, respectively. Different subpopulations including 70S-P/PtRNA, 70S-P/
EtRNA, 70S-P/PtRNA-E/EtRNA and 50S were also refined to resolutions of 2.76,
2.8, 2.71, and 3.0 Å, respectively.

Similar to the procedure above, 70SIC-MtbEttA-ADP-VO4 data were processed
accordingly (Supplementary Fig. 5): After 2D classifications, 742,504 particles from
8,666 micrographs were selected, and the 3D classification without alignment was
performed using a consensus map obtained from an initial 3D refinement step.
Two out of six classes were found with clear MtbEttA density. A total of 125,420
particles were selected after an additional cleaning step, using focused 3D
classification without alignment around MtbEttA or the P-site tRNA. Further 3D
classification of these particles with the “skip_align” option and 30S mask yielded
3 subpopulations, including the Trans_R0 state with 86,692 particles and the
Trans_R1 state with 32,731 particles. We continued to refine the Trans_R0 and
Trans_R1 states with unbinned data, to the resolutions of 2.79 and 3.1 Å,
respectively.

Resolution estimation and post processing. The overall resolution of all these
reconstructed maps was assessed using the gold-standard criterion of Fourier shell
correlation46, with a cutoff at 0.143, between two half-maps from two independent
half-sets of data. Local resolutions were estimated using Resmap47. Post processing
was done using LocalDeblur48.

Crystallization, data collection, and structure determination of MtbEttA-ADP.
Purified full-length MtbEttA was concentrated to ~46 mg/ml. Prior to crystal-
lization, the final concentration of 4 mM ADP and 4mM MgCl2 were mixed with
the protein for 1 h at room temperature. Crystals were observed at multiple con-
ditions at 16 oC with initial screening against ~600 conditions, using the sitting-
drop vapor diffusion set by a Mosquito Crystal liquid handler (TTP Labtech Inc).
The diffraction quality of crystals was checked at the in-house X-ray source.
Further optimization was performed with the hanging drop vapor diffusion
method, yielding the best crystal at the condition of 0.1 M MES pH 6.7, 0.2 M
MgCl2, 10% v/v PEG 4000.

Diffraction data were collected at the Advance Photon Source, Argonne
National Laboratory in Chicago. Crystals diffracted to ~2.5 Å, with deterioration in
the later frames. Diffraction data were scaled and truncated to 2.9 Å using
imosfilm49. Molecular replacement was performed with AutoMR50 in the PHENIX
package51, using two NBDs models of MtbEttA predicted from SWISS-MODEL52

based on the crystal structure of EcoEttA (PDB 4FIN [https://www.rcsb.org/
structure/4fin]). The model was iteratively refined and manually built with
PHENIX and ISOLDE53, respectively.

Modeling and visualization. To build the atomic model for 70SIC-MtbEttA-
ADPNP and 70SIC-MtbEttA-ADP-VO4 complexes, we first fit our previous Mtb
70S ribosome structure (PDB 5V93 [https://www.rcsb.org/structure/5v93]) and
MtbEttA monomer structure obtained from SWISS-MODEL into the high-
resolution cryo-EM map as rigid body using University of California San Francisco
(UCSF) Chimera54. Model refinement was performed by real-space refinement in
PHENIX. RNA geometry optimization was done by ERRASER55. Manual model
building was done with COOT56 to inspect and improve local fitting. The iterative
process of refinement and the manual building was conducted to achieve the best
model. The same model building procedure was also done for 70S-P/PtRNA, 70S-
P/EtRNA, and 70S-P/PtRNA-E/EtRNA complexes. All of the figures and movies
were made using UCSF Chimera and ChimeraX57.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. The cryo-EM maps and models of Mtb 70SIC with MtbEttA at
Pre_R0, Pre_R1, Trans_R0, Trans_R1 states and Mtb 70S with P/P tRNA, P/E tRNA, P/
P, and E/E tRNAs are deposited in the EMData Bank with accession codes EMD-23961,
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EMD-23962, EMD-23969, EMD-23972, EMD-23974, EMD-23975, and EMD-23976, and
in the Protein Data Bank with accession codes 7MSC, 7MSH, 7MSM, 7MSZ, 7MT2,
7MT3 and 7MT7, respectively. The cryo-EM map ofMtb 50S is deposited in the EMData
Bank with accession ID EMD-23981. The model of ADP-bound MtbEttA is deposited in
the Protein Data Bank with accession ID 7MU0. The previous structures of the Mtb 70S
ribosome and EcoEttA, which facilitated our modeling, can be accessed from the Protein
Data Bank with accession 5V93 [] and 4FIN [], respectively. Source data are provided
with this paper.
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