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Short- and long-read metagenomics of urban and
rural South African gut microbiomes reveal a
transitional composition and undescribed taxa
Fiona B. Tamburini 1, Dylan Maghini1, Ovokeraye H. Oduaran 2, Ryan Brewster3, Michaella R. Hulley2,4,

Venesa Sahibdeen4, Shane A. Norris 5,6, Stephen Tollman 7,8, Kathleen Kahn 7,8, Ryan G. Wagner7,8,

Alisha N. Wade7, Floidy Wafawanaka7, F. Xavier Gómez-Olivé 7,8, Rhian Twine7, Zané Lombard4, H3Africa

AWI-Gen Collaborative Centre, Scott Hazelhurst 2,9,11✉ & Ami S. Bhatt 1,3,10,11✉

Human gut microbiome research focuses on populations living in high-income countries and

to a lesser extent, non-urban agriculturalist and hunter-gatherer societies. The scarcity of

research between these extremes limits our understanding of how the gut microbiota relates

to health and disease in the majority of the world’s population. Here, we evaluate gut

microbiome composition in transitioning South African populations using short- and long-

read sequencing. We analyze stool from adult females living in rural Bushbuckridge (n= 118)

or urban Soweto (n= 51) and find that these microbiomes are taxonomically intermediate

between those of individuals living in high-income countries and traditional communities. We

demonstrate that reference collections are incomplete for characterizing microbiomes of

individuals living outside high-income countries, yielding artificially low beta diversity mea-

surements, and generate complete genomes of undescribed taxa, including Treponema,

Lentisphaerae, and Succinatimonas. Our results suggest that the gut microbiome of South

Africans does not conform to a simple “western-nonwestern” axis and contains undescribed

microbial diversity.
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Comprehensive characterization of the full diversity of the
healthy human gut microbiota is essential to contextualize
studies of the microbiome related to diet, lifestyle, and

disease. To date, substantial resources have been invested in
describing the microbiome of individuals living in the global
industrialized “west” (United States, northern and western Eur-
ope; also sometimes referred to as the “Global North”), including
efforts by large consortia such as the Human Microbiome
Project1 and MetaHIT2. Though these projects have yielded
valuable descriptions of human gut microbial ecology, they survey
only a small portion of the world’s citizens at the extreme of
industrialized, urbanized lifestyle. It is unclear to what extent
these results are generalizable to nonwestern and non-
industrialized populations across the globe.

At the other extreme, a smaller number of studies have char-
acterized the gut microbiome composition of individuals practi-
cing traditional lifestyles3,4, including communities in Venezuela
and Malawi5, hunter-gatherer communities in Tanzania6–9, non-
industrialized populations in Tanzania and Botswana10, and
agriculturalists in Peru11 and remote Madagascar12. However,
these cohorts are not representative of how most of the world
lives either. Many of the world’s communities lead lifestyles
between the extremes of an urbanized, industrialized and rela-
tively high-income lifestyle and traditional subsistence practices.
It is a scientific and ethical imperative to include these diverse
populations in biomedical research, yet dismayingly many of
these intermediate groups are underrepresented in or absent from
the published microbiome literature.

This major gap in our knowledge of the human gut micro-
biome leaves the biomedical research community ill-poised to
relate microbiome composition to human health and disease
across the breadth of the world’s population. Worldwide, many
communities are currently undergoing a transition of diet and
lifestyle, characterized by increased access to processed foods,
diets rich in animal fats and simple carbohydrates, and more
sedentary lifestyles13. This has corresponded with an epidemio-
logical transition in which the burden of disease is shifting from
predominantly infectious diseases to an increasing incidence of
noncommunicable diseases (NCDs) like obesity and diabetes14.
The microbiome has been implicated in various NCDs15–17 and
may mediate the efficacy of medical interventions including
vaccines18,19, but we cannot evaluate the generalizability of these
findings without establishing baseline microbiome characteristics
of communities that practice diverse lifestyles and by extension,
harbor diverse microbiota. These understudied populations,
which are more representative of the majority of the world’s
population, offer a unique opportunity to examine the relation-
ship between lifestyle (including diet), disease, and gut micro-
biome composition, and to discover novel microbial genomic
content that may associate with or drive disease biology.

Some previous studies have probed the relationship between
lifestyle and microbiome composition in transitional
communities3,20–22. However, substantial gaps remain in our
description of the microbiome in these populations. In particular,
knowledge of the gut microbiota within the African continent is
sparse. Of the 64 studies surveying the gut microbiome of indi-
viduals living within Africa as of January 2021 (Supplementary
Data 1), only 25 of the 54 countries (46%) on the continent are
represented. Of these studies, 34 of 64 (53%) have focused entirely
on children or infants, whose disease risk profile and gut
microbiome composition can vary considerably from adults5,23.
Additionally, 52 of 64 (81%) of studies of the gut microbiome in
Africans employed 16S ribosomal RNA (rRNA) gene sequencing
or quantitative polymerase chain reaction (qPCR), techniques
which amplify only a small portion of the genome and therefore
lack genomic resolution to describe species or strains that may

share a 16S rRNA sequence but differ in gene content or genome
structure. To our knowledge, only nine published studies to date
have used shotgun metagenomics to describe the gut microbiome
of adults living in Africa. Eight of these studies described the
bacterial microbiome6,7,12,24–28, while one exclusively described
the viral metagenome29.

To address this major knowledge gap, we designed and per-
formed a research study applying short- and long-read DNA
sequencing to study the gut microbiomes of South African indi-
viduals for whom 16S rRNA gene sequence data has recently been
reported30. South Africa is a prime example of a country
undergoing rapid lifestyle and epidemiological transition. With
the exception of the HIV/AIDS epidemic in the mid-1990s to the
mid-2000s, over the past three decades South Africa has experi-
enced a steadily decreasing mortality rate from infectious disease
and an increase in NCD31,32. Concomitantly, increasingly
sedentary lifestyles and changes in dietary habits, including access
to calorie-dense processed foods, contribute to a higher pre-
valence of obesity in many regions of South Africa32, a trend
which disproportionately affects women33,34.

This study presents the largest shotgun metagenomic dataset of
African adults in the published literature to date. In this work, we
describe microbial community-scale similarities between urban
and rural communities in South Africa, as well as distinct hall-
mark taxa that distinguish each community. Additionally, we
place South African populations in context with microbiome data
from other populations from countries around the world,
revealing the transitional nature of gut microbiome composition
in the South African cohorts. We demonstrate that metagenomic
assembly of short reads yields previously undescribed strain and
species draft genomes. Finally, we apply Oxford Nanopore long-
read sequencing to samples from the rural cohort and generate
complete and near-complete genomes. These include genomes of
species that are exclusive to, or more prevalent in, traditional
populations, including Treponema and Prevotella species. As
long-read sequencing enables more uniform coverage of AT-rich
regions compared to short-read sequencing with transposase-
based library preparation, we also generate complete
metagenome-assembled AT-rich genomes from less well-
described gut microbes including species in the phylum Melai-
nabacteria, the class Mollicutes, and the genus Mycoplasma.

Taken together, the results herein offer a more detailed
description of gut microbiome composition in understudied
transitioning populations, and present complete and contiguous
reference genomes that will enable further studies of gut micro-
biota in nonwestern populations. Importantly, this study was
developed with an ethical commitment to engaging both rural
and urban community members to ensure that the research was
conducted equitably (additional details in Supplementary Infor-
mation). This work underscores the critical need to broaden the
scope of human gut microbiome research and include under-
studied, nonwestern populations to improve the relevance and
accuracy of microbiome discoveries to broader populations.

Results
Cohorts and sample collection. We enrolled 190 women aged
between 40 and 72, living in rural villages in the Bushbuckridge
Municipality (24.82°S, 31.26°E, n= 132) and urban Soweto,
Johannesburg (26.25°S, 27.85°E, n= 58) and collected a one-time
stool sample, as well as point of care blood glucose and blood
pressure measurements and a rapid HIV test. As HIV status and
exposure to antiretroviral medications can alter the microbiome
and potentially confound analyses, only samples from HIV-
negative individuals were analyzed further (n= 118 Bushbuck-
ridge, n= 51 Soweto). Participants spanned a range of body mass
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index (BMI) from healthy to overweight; the most common
comorbidity reported was hypertension, and many patients
reported taking anti-hypertensive medication (18 of 118 (15%) in
Bushbuckridge, 15 of 51 (29%) in Soweto) (Table 1 and Supple-
mentary Table 1). Additional medications are summarized in
Supplementary Table 1. We extracted DNA from each stool
sample and conducted 150 base pair (bp) paired-end sequencing
on the Illumina HiSeq 4000 platform. A median of 34.6 million
(M) raw reads were generated per sample (range 11.4–100M),
and a median of 14.9 M reads (range 4.2–33.3 M) resulted after
preprocessing including de-duplication, trimming, and human
read removal (Supplementary Data 2).

Gut microbial composition. We taxonomically classified
sequencing reads against a comprehensive custom reference
database containing all microbial genomes in RefSeq and Gen-
Bank at “scaffold” quality or better as of January 2020 (177,626
genomes total). Concordant with observations from 16S rRNA
gene sequencing of the same samples30, we find that Prevotella,
Bacteroides, and Faecalibacterium are the most abundant genera
in most individuals across both study sites (Fig. 1a and Supple-
mentary Fig. 1, Supplementary Data 3; species-level classifications
in Supplementary Data 4). Additionally, in many individuals we
observe taxa that are uncommon in western microbiomes,
including members of the VANISH (Volatile and/or Associated
Negatively with Industrialized Societies of Humans) taxa (families
Prevotellaceae, Succinovibrionaceae, and Spirochaetaceae) such as
Prevotella, Treponema, and Succinatimonas, which are higher in
relative abundance in communities practicing traditional lifestyles
compared to western industrialized populations8,35 (Fig. 1b and
Supplementary Data Files 3 and 4). The mean relative abundance
of each VANISH genus is higher in Bushbuckridge than Soweto,
though the difference is not statistically significant for Para-
prevotella or Sediminispirochaeta (Fig. 1b, two-sided Wilcoxon
rank-sum test). Within the Bushbuckridge cohort, we observe a
bimodal distribution of the genera Succinatimonas, Succinivibrio,
and Treponema (Supplementary Fig. 2a). While we do not
identify any clinical or demographic features that associate with
this distribution, we observe that VANISH taxa are weakly
positively correlated with one another in metagenomes from both
Bushbuckridge and Soweto (Supplementary Fig. 2b, c).

Intriguingly, we observe that an increased proportion of reads
aligned to the human genome during preprocessing in samples
from Soweto compared to Bushbuckridge (Supplementary Fig. 3,
two-sided Wilcoxon rank-sum test p= 1.66e−12). This could
potentially indicate higher inflammation and immune cell
content or sloughing of intestinal epithelial cells in the urban
Soweto cohort compared to rural Bushbuckridge.

Rural and urban microbiomes cluster distinctly in MDS. We
hypothesized that lifestyle differences of participants residing in
rural Bushbuckridge vs. urban Soweto might be associated with
demonstrable differences in gut microbiome composition.

Bushbuckridge and Soweto differ markedly in their population
density (53 and 6357 persons per km2 respectively as of the 2011
census) as well as in lifestyle variables including the prevalence of
flush toilets (6.8 vs. 91.6% of dwellings) and piped water (11.9 vs.
55% of dwellings) (additional site demographic information in
Supplementary Table 2)36. Soweto is highly urbanized and has
been so for several decades, while Bushbuckridge is classified as a
rural community, although it is undergoing rapid epidemiological
transition37,38. Bushbuckridge also has circular rural/urban
migrancy typified by some (mostly male) members of a rural
community working and living for extended periods in urban
areas, while keeping their permanent rural home39. Although our
participants all live in Bushbuckridge, this migrancy in the
community contributes to making the boundary between rural
and urban lifestyles more fluid. Comparing the two study
populations at the community level, we find that samples from
the two sites have distinct centroids (PERMANOVA p < 0.001,
R2= 0.037) but overlap (Fig. 2a), though we note that the dis-
persion of the Soweto samples is greater than that of the Bush-
buckridge samples (PERMDISP2 p < 0.001). Across the study
population we observe a gradient of Bacteroides and Prevotella
relative abundance (Supplementary Fig. 4). This may be the result
of differences in diet across the study population at both sites, as
Bacteroides has been proposed as a biomarker of westernized
lifestyles while Prevotella has been proposed as a biomarker of
nonwestern lifestyles5,40,41.

To determine if medication usage was associated with gut
microbiome composition, we included each participant’s self-
reported concomitant medications (summarized in Supplementary
Table 1) to re-visualize the microbiome composition of samples in
MDS by class of medication (Supplementary Fig. 5a, b). We find
that self-reported medication is not significantly correlated with
community composition in this cohort after multiple hypothesis
correction (PERMANOVA FDR q > 0.05, Supplementary Fig. 5c),
though two drug classes are nominally significant before control-
ling the false discovery rate: proton pump inhibitors (PPIs)
(p= 0.036) and anti-hyperglycemics (p= 0.041). We note that
both drug classes have previously been found to associate with
changes in gut microbiome composition42–44; as only two
participants self-report taking PPIs at the time of sampling,
additional data are required to evaluate whether PPIs associate
with microbiome composition in these South African populations.

Rural and urban microbiomes differ in Shannon diversity and
species composition. Gut microbiome alpha diversity of indivi-
duals living traditional lifestyles has been reported to be higher
than those living western lifestyles9,11,40. In keeping with this
general trend, we find that alpha diversity (Shannon) is sig-
nificantly higher in individuals living in rural Bushbuckridge vs.
urban Soweto (Fig. 2b; two-sided Wilcoxon rank-sum test,
p= 0.042). Using DESeq2 to identify microbial genera that are
differentially abundant across study sites, we find that genera
including Bacteroides, Bifidobacterium, and Streptococcus are

Table 1 Participant characteristics.

Measurement Bushbuckridge Soweto

Age 55.5 ± 7.8 (43–72) 54.1 ± 5.9 (43–64)
Body mass index (BMI)a 32.4 ± 8.0 (21.2–59.0) 36.0 ± 9.3 (20.4–58.6)
Systolic blood pressureb 137.0 ± 18.5 (103.5–186.5) 135 ± 22.5 (96.0–193.0)
Diastolic blood pressureb 84.0 ± 12.5 (52.5–119.0) 89.9 ± 14.4 (58.0–119.0)

aOne Bushbuckridge participant’s BMI measurement was excluded as the recorded value was too low to be physiologically possible and deemed to have been recorded in error. We could not validate the
correct BMI for this participant and thus have omitted them from the BMI summary statistics.
bA second participant from Bushbuckridge had missing blood pressure measurements and is not included in blood pressure summary statistics.
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Fig. 1 Taxonomic composition of South African study participant microbiota. Sequence data were taxonomically classified using Kraken 2 with a database
containing all genomes in RefSeq and GenBank of “scaffold” quality or better as of January 2020. a Top 20 genera by mean relative abundance for samples
from participants in Bushbuckridge and Soweto, sorted by decreasing Prevotella abundance. Prevotella, Bacteroides, and Faecalibacterium are the most
prevalent genera across both study sites. b Relative abundance of VANISH genera by study site, grouped by family (n= 118 Bushbuckridge, n= 51 Soweto).
A pseudocount of 1 read was added to each sample prior to relative abundance normalization in order to plot on a log scale, as the abundance of some
genera in some samples is zero. Relative abundance values of most VANISH genera are higher on average in participants from Bushbuckridge than Soweto
(two-sided Wilcoxon rank-sum test, significance values denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, (ns) not significant). Exact p
values from left to right: 3.91e−2, 3.28e−1, 1.60e−2, 4.55e−3, 6.64e−3, 1.93e−5, 9.20e−3, 7.29e−3, 6.93e−2, 6.87e−4, 1.64e−11, 7.66e−6, 1.02e−7.
Box plot lower and upper hinges correspond to the first and third quartiles, upper and lower whiskers represent the highest and lowest values within 1.5
times the interquartile range, and the horizontal line represents the median.
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more abundant in individuals living in Soweto (Fig. 2c and
Supplementary Data 5, species shown in Supplementary Fig. 6).
Interestingly, we find microbial genera enriched in gut micro-
biomes of individuals living in Bushbuckridge that are common
to both the environment and the gut, including Streptomyces and
Paenibacillus (Supplementary Data 5). Typically a soil-associated
organism, Streptomyces encode a variety of biosynthetic gene
clusters and can produce numerous immunomodulatory and
anti-inflammatory compounds such as rapamycin and tacroli-
mus, and it has been suggested that decreased exposure to
Streptomyces is associated with increased incidence of inflam-
matory disease and colon cancer in western populations45. In
addition, we find enrichment of genera in Bushbuckridge that
have been previously associated with nonwestern microbiomes
including Succinatimonas, a relatively poorly-described
bacterial genus with only one type species, and unclassified spe-
cies of the phylum Elusimicrobia, which has been detected in the
gut microbiome of rural Malagasy12. Additionally,
Bushbuckridge samples are enriched for Cyanobacteria as well as
Candidatus Melainabacter, a phylum closely related to Cyano-
bacteria that in limited studies has been described to inhabit the
human gut46,47.

In terms of the non-bacterial microbiome, we identify the
bacteriophage crAssphage and related crAss-like phages48, which
have recently been described as prevalent constituents of the gut
microbiome globally49, in 32 of 51 participants (63%) in Soweto
and 88 of 118 (75%) in Bushbuckridge (difference in prevalence
between cohorts not significant, Fisher’s exact test p= 0.14) using
650 sequencing reads or roughly 1X coverage of the 97 kilobase
(kb) genome as a threshold for binary categorization of crAss-like
phage presence or absence. Prototypical crAssphage has been
hypothesized to infect Bacteroides species and a crAss-like phage
has been demonstrated to infect Bacteroides intestinalis. Though
crAss-like phages do not differ between cohorts in terms of
prevalence (presence/absence), we observe that crAssphage clade
Delta from Guerin et al.48 is enriched in relative abundance in the
gut microbiome of individuals living in Bushbuckridge compared
to Soweto, supporting previous observations of geographic
patterns of crAssphage clades (Fig. 2c)49.

Our custom reference database of GenBank genomes paired
with the Kraken 2 classifier optimizes for sensitivity; thus, this
approach was selected as the initial tool for classification of the
sequencing data given the genomic novelty anticipated in this
cohort. We note that broadly similar microbiome profiles are
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(rarefied to 1.44M counts per sample to control for read depth and cumulative sum scaling normalized). Soweto samples have greater dispersion than
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results in Supplementary Data 5).
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obtained using MetaPhlAn3, a marker-gene based tool with high
specificity, as well as classifications obtained using Kraken 2 and a
publicly available build of the Genome Taxonomy Database
(GTDB) release 9550,51 (Supplementary Fig. 7a, b). Notably, we
observe higher Shannon diversity with the GTDB compared to
both MetaPhlAn3 and our custom database, likely due to the fact
that clades containing a large amount of genomic diversity (e.g.,
Escherichia coli) are split into separate clades in the GTDB
(Supplementary Fig. 7c).

Differences in functional potential of the gut microbiome
between populations. Recognizing that functional annotations
are likely biased toward well-studied organisms, we sought to
identify differentially abundant functions in the gut microbiome
of participants in Bushbuckridge and Soweto. We functionally
profiled unassembled metagenomic reads to detect antibiotic
resistance genes in these communities. Tetracycline resistance
genes (tetO, tetQ, tetW, tetX, tet32, tet40) are broadly prevalent in
both populations (Supplementary Fig. 8a) as is the CfxA6 beta-
lactamase. We find that Soweto and Bushbuckridge differ in the
distribution of relative abundance of 30 of 113 antibiotic resis-
tance genes (27%) with a model coefficient greater than 0.5
(Supplementary Fig. 8b). Several multidrug efflux pump com-
ponents and regulators (mdtB, mdtC, mdtF, mdtG, mdtL, mdtP,
CRP) are enriched in participants in Bushbuckridge, whereas
genes including SAT-4, which is a plasmid-encoded streptothricin
resistance determinant, and CblA-1, which encodes a class A beta-
lactamase, are enriched in Soweto participants (Supplementary
Fig. 8b).

We additionally annotated MetaCyc pathway abundance using
HUMAnN v352 (Supplementary Data 6). We find 68 MetaCyc
pathways that are differentially abundant between Soweto and
Bushbuckridge (q < 0.05) (Supplementary Fig. 9a). Some of these
pathways correspond clearly to observed taxonomic differences
between study sites, including enrichment of the Bifidobacterium
shunt, a pathway for degradation of hexose sugars into short
chain fatty acids53, in Soweto. Other differentially abundant
pathways include anaerobic degradation of 4-coumarate, a
phenylpropanoid compound produced by plants and by catabo-
lism of the amino acid tyrosine54. Additionally, the superpathway
of phenylethylamine degradation is enriched in Bushbuckridge.
Intriguingly, phenylethylamine is a central nervous system
stimulant in humans and increased abundance of phenylethyla-
mine has been observed in Crohn’s disease patients55. Finally,
the peptidoglycan biosynthesis V pathway, involved in microbial
resistance to beta-lactam antibiotics, is enriched in Soweto,
consistent with results from antibiotic resistome profiling.

In general, HUMAnN was only able to ascribe functions to
taxonomy for a few well-studied genera including Escherichia and
Klebsiella (Supplementary Fig. 9b). We hypothesize that this is
due to gaps in reference genome collections as well as
dissimilarity between strains of species that are common to
reference collections and metagenomic data from this cohort.

No strong signals of interaction between human DNA varia-
tion and microbiome content detected. All participants in this
study were recruited based on their participation in the first phase
of the Africa Wits-INDEPTH partnership for Genomic Studies
(AWI-Gen) study, which evaluated genomic and environmental
risk factors for cardiometabolic disease in sub-Saharan African
populations56. This study included human genome profiling of all
participants using the Human Heredity and Health in Africa
(H3Africa) single nucleotide polymorphism (SNP) array. While
we have a very small sample size to assess interaction between
human genetic variation and microbiome population, our study is

one of the relatively few to characterize both human and
microbiome DNA. Therefore, we performed association tests
between key microbiome genera abundance levels and human
SNPs. After correcting for multiple testing there were only a few
human genomic SNPs with borderline statistically significant
association with microbial genera abundance levels (Supple-
mentary Table 3). These SNPs occur in genomic regions with no
obvious connection to the gut microbiome (additional details in
Supplementary Information). Additionally, we observe that
microbiome samples do not cluster by self-reported ethnicity of
the participant (Supplementary Fig. 10).

South African gut microbiomes share taxa with western and
nonwestern populations yet harbor distinct features. To place
the microbiome composition of South African individuals in
global context with metagenomes from healthy adults living in
other parts of the world, we compared publicly available data
from five cohorts (Fig. 3a and Supplementary Table 4) com-
prising adult individuals living in the United States1, northern
Europe (Sweden)57, agriculturalists living in Burkina Faso28 and
rural Madagascar12, and the Hadza hunter-gatherers of
Tanzania7. We grouped these datasets by lifestyle into the general
categories of “nonwestern” (Tanzania, Madagascar, Burkina
Faso), “western” (USA, Sweden), and South African (Bushbuck-
ridge, Soweto). We note the caveat that these samples were col-
lected at different times using different approaches, and that there
is variation in DNA extraction, sequencing library preparation
and sequencing, all of which may contribute to variation between
studies. Recognizing this limitation, we observe that South Afri-
can samples cluster between western and nonwestern populations
in MDS (Fig. 3b) as expected, and that the first axis of MDS
correlates well with geography and lifestyle (Fig. 3c). The relative
abundance of Spirochaetaceae, Succinivibrionaceae, Bacter-
oidaceae, and Prevotellaceae are most strongly correlated with the
first axis of MDS (Spearman’s ρ >0.75): Bacteroidaceae decreases
with MDS 1 while Spirochaetaceae, Succinivibrionaceae, and
Prevotellaceae increase (Fig. 3b). We observe a corresponding
pattern of decreasing relative abundance of other VANISH taxa
across lifestyle and geography (Supplementary Fig. 11). These
observations suggest that the gut microbiome of South African
cohorts is to some extent “intermediate” in composition when
compared to cohorts at the extremes of western and nonwestern
lifestyle.

The two South African cohorts also have distinct differences
from both nonwestern and western populations, as evidenced by
displacement along the second axis of MDS (Fig. 3b, c). To
identify the taxa that drive this separation, we used DESeq2 to
identify microbial genera that differed significantly in the South
African cohort compared to both nonwestern and western
categories (with the same directionality of effect in each
comparison, e.g., enriched in South Africans compared to both
western and nonwestern groups) (Supplementary Fig. 12). We
observe that taxa including Lactobacillus, Lactococcus, and
Eggerthella are lower in relative abundance in South Africans
compared to both western and nonwestern groups. Conversely,
Klebsiella and unclassified Christensenellaceae are enriched in
South Africans.

Within-species diversity across cohorts. Having observed taxo-
nomic differences at the species level between South Africans and
other global populations, as well as between Soweto and Bush-
buckridge, we hypothesized that strains of some species may
differ between populations. We annotated the pangenome of the
top six most abundant species on average across our cohorts and
assessed whether pangenome content is significantly different
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Fig. 3 Community-level comparison of global microbiomes. Comparisons of South African microbiome data to microbiome sequence data from four
publicly available cohorts representing western (United States, Sweden) and nonwestern (Tanzania, Madagascar, Burkina Faso) populations. a Number of
participants per cohort. b Multidimensional scaling of pairwise Bray–Curtis distance between samples from six datasets of healthy adult shotgun
microbiome sequencing data. Western populations (Sweden, United States) cluster away from African populations practicing a traditional lifestyle
(Madagascar, Tanzania, Burkina Faso) while transitional South African microbiomes overlap with both western and nonwestern populations. Shown below
are scatterplots of relative abundance of the top four taxa most correlated with MDS 1 (Spearman’s rho, Spirochaetaceae −0.824, Succinivibrionaceae
−0.804, Bacteroidaceae 0.769, and Prevotellaceae −0.752) against multidimensional scaling axis 1 (MDS 1) on the x-axis. c Box plots of the first axis of
MDS (MDS 1) which correlates with geography and lifestyle, and the second axis of MDS (MDS 2), which shows a distinct separation of South Africans
from the other cohorts. d Shannon diversity across cohorts. Shannon diversity was calculated from data rarefied to the number of counts of the lowest
sample. For box plots in c and d, lower and upper hinges correspond to the first and third quartiles, upper and lower box plot whiskers represent the highest
and lowest values within 1.5 times the interquartile range, and the horizontal line represents the median. Participant sample size in a–d is as follows, with
one sample per participant: n= 22 Tanzania, n= 112 Madagascar, n= 90 Burkina Faso, n= 118 Bushbuckridge, n= 51 Soweto, n= 100 Sweden, n= 134
United States.
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between study sites (Supplementary Fig. 13). Interestingly, we
find that F. prausnitzii, B. vulgatus, and E. siraeum indeed differ
in pangenome content between Bushbuckridge and Soweto
(PERMANOVA FDR-adjusted q < 0.05). Prevotella copri strains
exhibit visible heterogeneity, but PERMANOVA is not significant
after false discovery rate correction.

Decreased sequence classifiability in nonwestern populations.
Given previous observations that gut microbiome alpha diversity
is higher in individuals practicing traditional lifestyles3,6,58 and
that immigration from Southeast Asia to the United States is
associated with a decrease in gut microbial alpha diversity13, we
hypothesized that alpha diversity would be higher in nonwestern
populations, including South Africans, compared to western
populations. We observe that Shannon diversity of the Tanzanian
hunter-gatherer cohort is uniformly higher than all other popu-
lations (Fig. 3d; q < 0.05 for all pairwise comparisons; FDR-
adjusted two-sided Wilcoxon rank-sum test) and that alpha
diversity is lower in individuals living in the United States com-
pared to all other cohorts (Fig. 3d; q < 1.2e−05 for all pairwise
comparisons; FDR-adjusted two-sided Wilcoxon rank-sum test).
Surprisingly, we observe comparable Shannon diversity between
Madagascar and Sweden (q > 0.05, two-sided Wilcoxon rank-sum
test). However, this could be an artifact of incomplete repre-
sentation of diverse microbes in existing reference collections.

Existing reference collections are known to be limited in their
ability to classify metagenomic sequences from nonwestern gut
microbiomes12,59, and we observe low sequence classifiability in
nonwestern populations (Fig. 4a). Therefore, we sought orthogo-
nal validation of our observation that South African microbiomes
represent a transitional state between traditional and western
microbiomes and employed a reference-independent method to
evaluate the nucleotide composition of sequence data from each
metagenome. We used the sourmash workflow60 to compare
nucleotide k-mer composition of metagenomic data and
performed ordination based on angular distance, which accounts
for k-mer abundance. Using a k-mer length of 31 (k-mer
similarity at k= 31 correlates with species-level similarity61), we
observe clustering reminiscent of the species ordination plot
shown in Fig. 3, further supporting the hypothesis that South
African microbiomes are transitional (Fig. 4b).

Previous studies have reported a pattern of higher alpha
diversity but lower beta diversity in nonwestern populations
compared to western populations9,62. Hypothesizing that alpha
and beta diversity may be underestimated for populations whose
gut microbes are not well-represented in reference collections, we
compared beta diversity (distributions of within-cohort pairwise
distances) calculated via species Bray–Curtis dissimilarity as well
as nucleotide k-mer angular distance (Fig. 4c–e). Of note, beta
diversity is highest in Soweto irrespective of distance measure,
except for in a species-level comparison to the United States
(Fig. 4c, FDR-adjusted Wilcoxon rank-sum test, q < 5e−6 for all
tests). Intriguingly, in some cases we observe that the relationship
of distributions of pairwise distance values changes depending on
whether species or nucleotide k-mers are considered. For
instance, considering only species content, Bushbuckridge has
less beta diversity than Sweden, but this pattern is reversed when
considering nucleotide k-mer content (Fig. 4d). Further, the same
observation is true for the relationship between Madagascar and
the United States (Fig. 4e) and Soweto and the United States.
Additionally, we compared species and nucleotide beta diversity
within each population using Jaccard distance, which is computed
based on shared and distinct features irrespective of abundance.
Considering nucleotide k-mers, all nonwestern populations have
greater beta diversity than each western population

(Supplementary Fig. 14), though this is not the case when species
annotations are considered. This indicates that gut microbiomes
in these nonwestern cohorts have a longer “tail” of lowly
abundant organisms that differ between individuals.

These observations are critically important to our under-
standing of beta diversity in the gut microbiome in western and
nonwestern communities. In summary, we find evidence to
challenge the existing dogma of an inverse relationship between
alpha and beta diversity, and note that in some cases this existing
generalization represents an artifact of limitations in reference
databases used for sequence classification.

Improving reference collections via metagenomic assembly.
Classification of metagenomic sequencing reads can be improved
by assembling sequencing data into metagenomic contigs and
grouping these contigs into draft genomes (binning), yielding
metagenome-assembled genomes (MAGs). Notably, MAGs
enable investigation of the genomes of uncultivatable organisms.
While MAGs can suffer from incompleteness and contamination
due to limitations of assembly and binning, software tools exist
for evaluating MAG quality63. The majority of publications to
date have focused on creating MAGs from short-read sequencing
data12,59,64, but generation of high-quality MAGs from long-read
data from stool samples has recently been reported65. To better
characterize the genomes present in our samples, we assembled
and binned shotgun sequencing reads from South African sam-
ples into MAGs. We generated 2419 MAGs (39 high-quality,
2038 medium-quality, and 342 low-quality)66 from 169 metage-
nomic samples (Supplementary Fig. 15a). Applying the criteria
for near-complete genomes proposed by Nayfach et al. (≥90%
completeness, ≤5% contamination, N50 ≥10 kb, average contig
length ≥5 kb, ≤500 contigs, ≥90% of contigs with ≥5X read
depth), 832 of these genomes (34%) are designated near-
complete. Filtering for completeness greater than 75% and con-
tamination less than 10% and de-replicating at 99% average
nucleotide identity (ANI) yielded a set of 1342 nonredundant
medium-quality or better representative strain genomes. This de-
replicated collection includes VANISH taxa genomes, including
94 Prevotella, 41 Prevotellamassilia, 39 Succinivibrio, and 10
Spirochaetota (4 Treponema_D, 6 UBA9732) (Fig. 5a and Sup-
plementary Data 7).

To assess this collection in the context of the known diversity
of MAGs, we compared our de-replicated MAG set to the Unified
Human Gastrointestinal Genome collection (UHGG)67. Of these
1342 representative strain genomes, 16 (1.2%) have <95% ANI to
any genome in the full UHGG (Supplementary Fig. 15b) and 15
of these are retained in the final species set when de-replicated at
95% ANI against UHGG species representatives (Supplementary
Data 7) (two genomes with less than 95% ANI to the UHGG
species representatives were within 95% ANI of each other and
thus only one was retained after dereplication). These 15 genomes
represent 7 GTDB phyla (Supplementary Fig. 15c) and 13 of 15
genomes (87%) are from Bushbuckridge participants.

An additional 38 of 1342 genomes (2.8%) share at least 95%
ANI compared to the UHGG species representatives, but are
assigned a higher genome quality score by dRep than the
corresponding UHGG representative (Supplementary Data 7,
genome scoring metrics in “Methods” and ref. 100). We note that
ANI is calculated on the basis of regions that align between
genomes, and therefore may systematically underestimate
genomic divergence in this genome collection.

Interestingly, many MAGs within this set represent organisms
that are uncommon in western microbiomes or not easily
culturable, including organisms from the genera Treponema and
Vibrio. As short-read MAGs are typically fragmented and exclude
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Fig. 4 Comparison of beta diversity between communities calculated by taxonomy vs. nucleotide k-mer composition. a Percentage of reads classifiable
at any taxonomic rank, by cohort, based on a reference database of all genomes “scaffold” quality or higher in RefSeq and GenBank as of January 2020.
Read classification is higher in western vs. nonwestern microbiomes (one-sided Wilcoxon rank-sum test between Soweto and Sweden, p= 2.56e−8), and
higher in Soweto relative to Bushbuckridge (one-sided Wilcoxon rank-sum test, p= 2.43e−4). b Comparison of microbiome sequence data using k-mer
sketches, a reference-free approach that allows comparison of nucleotide sequence composition. Briefly, a hash function generates signatures at varying
sequence lengths (k) and k-mer sketches can be compared between samples. Plot shows non-metric multidimensional scaling (NMDS) of angular distance
values between each pair of samples at k= 31 (approx. species-level)61. c–e Comparison of pairwise beta diversity within communities using Bray–Curtis
distance for species and angular distance for nucleotide k-mer sketches. c Species beta diversity is higher in Soweto vs. all populations (one-sided
Wilcoxon rank-sum test, FDR-adjusted q < 2.7e−16 for all tests) except for the United States, where beta diversity in Soweto is lower (one-sided Wilcoxon
rank-sum test, q= 4.05e−6). Nucleotide k-mer diversity is higher in Soweto vs. all populations (one-sided Wilcoxon rank-sum test, FDR-adjusted q < 2.2e
−16 for all tests). d Species beta diversity is higher in Sweden compared to Bushbuckridge, but nucleotide k-mer distance is higher in Bushbuckridge
(p < 2.22e−16 for both tests). e Species beta diversity is higher in the United States cohort compared to the Malagasy, but nucleotide k-mer distance is
higher in the Malagasy (p < 2.22e−16 species, p= 0.034 k-mer). For all box plots in a, c–e, lower and upper hinges correspond to the first and third
quartiles, upper and lower box plot whiskers represent the highest and lowest values within 1.5 times the interquartile range, and the horizontal line
represents the median. Significance values for two-sided Wilcoxon rank-sum tests denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
One sample per participant, sample size in a–e is: n= 22 Tanzania, n= 112 Madagascar, n= 90 Burkina Faso, n= 118 Bushbuckridge, n= 51 Soweto,
n= 100 Sweden, n= 134 United States.
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mobile genetic elements, we explored methods to create more
contiguous genomes, with a goal of trying to better understand
these understudied taxa. We performed long-read sequencing on
three samples from participants in Bushbuckridge with an Oxford
Nanopore MinION sequencer (Supplementary Table 5, taxo-
nomic composition of the three samples shown in Supplementary
Fig. 16). Samples were chosen for nanopore sequencing on the
basis of molecular weight distribution and total mass of DNA (see
“Methods”). One flow cell per sample generated an average of
19.71 Gbp of sequencing with a read N50 of 8275 bp after
basecalling. From our three samples, we generated 741 nanopore
MAGs (nMAGs), which yielded 35 nonredundant genomes when
filtered for completeness greater than 50% and contamination less
than 10%, and de-replicated at 99% ANI (Supplementary
Data 8, Fig. 5a, and Supplementary Fig. 17). Of these, 21 nMAGs
(60%) assembled in a single contig (Table 2). All of the de-

replicated nMAGs contain at least one full length 16S sequence,
and the contig N50 of 28 of the 35 nMAGs (80%) is greater than 1
Mbp.

We compared assembly statistics between all MAGs and
nMAGs, and find that while nMAGs are typically less complete
when evaluated by CheckM, the contiguity of nanopore medium-
and high-quality MAGs is an order of magnitude higher (mean
nMAG N50 of 260.5 kb compared to mean N50 of medium- and
high-quality MAGs of 15.1 kb) at comparable levels of average
coverage (Supplementary Figs. 17 and 18). We expect that
CheckM under-calculates the completeness of nMAGs due to the
homopolymer errors common in nanopore sequencing, which
result in frameshift errors when annotating genomes. Indeed, we
observe that nMAGs with comparable high assembly size and low
contamination to short-read MAGs are evaluated by CheckM as
having lower completeness (Supplementary Fig. 18).
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Contiguous genomes generated through nanopore sequencing.
When comparing the de-replicated medium- and high-quality
nMAGs with the corresponding short-read MAG for the same
organism, we find that nMAGs typically include many mobile
genetic elements and associated genes that are absent from the
short-read MAG, such as transposases, recombinases, phages, and
antibiotic resistance genes (Fig. 5c). Additionally, a number of the
nMAGs represent highly contiguous genomes for their clades. For
example, we assembled two single-contig, megabase-scale gen-
omes from the genus Treponema, a clade that contains various
commensal and pathogenic species (Fig. 5b). Notably, Treponema
is a genus within the Spirochaetes phylum, which contains
VANISH taxa and is often considered to be completely lost with
industrialization9,11. While some Treponema species are known
pathogens (T. pallidum), Treponema in non-industrialized com-
munities is thought to serve as a mutualistic fiber degrader in
response to different fiber-rich nonwestern diets9. The first of
these genomes is a single-contig Treponema succinifaciens gen-
ome, classified as Treponema_D succinifaciens by GTDB. The
type strain of T. succinifaciens, isolated from the swine gut68, is
the only genome of this species currently available in public
reference collections. Our T. succinifaciens genome is an initial
complete genome representative of this species from the gut of a
human. We assembled a second Treponema sp. (GTDB Trepo-
nema_D sp900541945; Supplementary Fig. 19), which contains a
candidate natural product biosynthetic gene cluster (aryl polyene
cluster) and shares 92.1% ANI with T. succinifaciens. Addition-
ally, we assembled a 5.08 Mbp genome for Lentisphaerae sp., an
organism that has been shown to be significantly enriched in
traditional populations69. This genome also contains an aryl
polyene biosynthetic gene cluster and multiple beta-lactamases,
and shares 94% 16S rRNA identity with Victivallis vadensis and is
classified as Victivallis sp900550905 by the GTDB, suggesting a
previously undescribed species or genus of the family Victi-
vallaceae and representing the second closed genome for the
phylum Lentisphaerae.

Other nMAGs represent organisms that are prevalent in
western individuals but challenging to assemble due to their

genome structure. Despite the prevalence of Bacteroides in
western microbiomes, only three closed B. vulgatus genomes
are available in RefSeq. We assembled a single-contig, 2.68 Mbp
Bacteroides vulgatus (GTDB Parabacteroides sp900549585) gen-
ome that is 65.0% complete and 2.7% contaminated and contains
at least 16 putative insertion sequences, which may contribute to
the lack of contiguous short-read assemblies for this species
(Fig. 5b). Similarly, we assembled a single-contig genome for
Catabacter sp., a species of the order Clostridiales (GTDB CAG-
475 sp900550915 of the Christensenellales order); the most
contiguous Catabacter genome in GenBank is in five scaffolded
contigs70. The putative Catabacter sp. shares 85% ANI with the
best match in GenBank, suggesting that it represents an
undescribed species within the Catabacter genus or an unde-
scribed genus, and it contains a sactipeptide biosynthetic gene
cluster. Additionally, we assembled a 3.29 Mbp genome for
Prevotella sp. (Fig. 5b, N50= 1.14 Mbp), a highly variable genus
that is prevalent in nonwestern microbiomes and associated with
a range of effects on host health71. Notably, the first closed
genomes of P. copri, a common species of Prevotella, were only
recently assembled with nanopore sequencing of metagenomic
samples; one from a human stool sample65 and the other from
cow rumen72. P. copri had previously evaded closed assembly
from short-read sequence data due to the dozens of repetitive
insertion sequences within its genome65. This Prevotella assembly
contains cephalosporin and beta-lactam resistance genes, as well
as an aryl polyene biosynthetic gene cluster.

Many long-read assembled genomes were evaluated to be of
low completeness despite having contig N50 values greater than 1
Mbp. Analysis shows that many of these genomes had sparse or
uneven short-read coverage, leading to gaps in short-read
polishing that would otherwise correct small frameshift errors.
To polish genomic regions that were not covered with short-
reads, we performed long-read polishing on assembled contigs
from each sample, and re-binned polished contigs. After long-
read polishing, four additional nonredundant MAGs meet the
criteria of greater than 50% completeness and less than 10%
contamination, and 2 of the 35 MAGs generated using short-read

Table 2 Nonredundant single-contig genomes assembled from nanopore sequencing.

Classification Size (Mb) Quality 16S rRNAs GC (%) GC Skew

Alistipes putredinis 1.91 Medium 2 53.1 0.96
Anaerotruncus sp. 2.04 Medium 2 43.71 0.94
Bacilli bacterium 1.46 Medium 1 26.19 0.93
Bacteroidales bacterium 2.79 High 4 49.82 0.92
Bacteroidales bacterium 1.7 Medium 1 56.6 0.7
Bacteroides vulgatus 2.68 Medium 3 42.71 0.84
Candidatus Melainabacteriaa 2 Medium 1 30.9 0.32
Catabacter sp.a 1.65 Medium 1 46.4 0.87
Clostridiales bacterium 1.53 Medium 1 47.28 0.94
Clostridiales bacterium 2.65 Medium 3 42.82 0.69
Clostridiales bacterium 1.61 Medium 1 46.9 0.94
Clostridium sp. 1.53 Medium 1 25.24 0.89
Clostridium sp. 1.3 Medium 1 46.87 0.8
Clostridium sp. 2.01 Medium 3 28.81 0.92
Clostridium sp. 1.14 Medium 1 29.09 0.7
Lentisphaeria bacteriumb 5.08 Medium 3 57.5 0.69
Porphyromonadaceae bacterium 2.97 Medium 5 47.43 0.76
Ruminococcaceae bacterium 2.27 High 3 51.43 0.91
Ruminococcaceae bacterium 1.78 Medium 3 58.25 0.63
Treponema sp. 2.06 Medium 3 41.55 0.93
Treponema succinifaciens 2.55 High 4 39.12 0.82
uncultured Ruminococcus 2.08 Medium 5 46.85 0.69

anMAGs gained by long-read polishing.
bnMAGs improved by long-read polishing.
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polishing improved in quality (Supplementary Data 8). Long-read
polishing improved the completeness of many organisms that are
not commonly described in the gut microbiota, due perhaps to
their low relative abundance in the average human gut, or to
biases in shotgun sequencing library preparation that limit their
detection. For example, we generated a 2 Mbp Melainabacteria
genome (GTDB species UMGS1477 sp900552205 of the family
Gastranaerophilaceae) (Fig. 5b). Melainabacteria is a non-
photosynthetic phylum closely related to Cyanobacteria that has
been previously described in the gut microbiome and is associated
with consuming a vegetarian diet47. Melainabacteria have proven
difficult to isolate and culture, and the only complete, single-
scaffold genome existing in RefSeq was assembled from shotgun
sequencing of a human fecal sample47.

Interestingly, our Melainabacteria genome has a GC content
of 30.9%, and along with assemblies of a Mycoplasma sp.
(GTDB CAG_460 sp000437315 of class Bacilli) (25.3% GC) and
Mollicutes sp. (GTDB Tener-01 sp001940985 of the class Bacilli)
(28.1% GC) (Supplementary Fig. 20), represent AT-rich
organisms that can be underrepresented in shotgun sequencing
data due to the inherent GC bias of transposon insertion and
amplification-based sequencing approaches73 (Supplementary
Figs. 21 and 22). Altogether, these three genomes increased in
completeness by an average of 28.5% with long-read polishing
to reach an overall average of 70.9% completeness. While these
genomes meet the accepted standards to be considered
medium-quality, it is possible that some or all of these highly
contiguous, megabase-scale assemblies are complete or near-
complete yet underestimated by CheckM, perhaps due to
incomplete polishing.

Altogether, we find that de novo assembly approaches are
capable of generating contiguous, high-quality assemblies for
diverse gut microbes, offering potential for investigation into the
previously unclassified genomic content in the microbiomes of
nonwestern communities. In particular, nanopore sequencing
produced contiguous genomes for organisms that are difficult to
assemble due to repeat structures (Prevotella sp., Bacteroides
vulgatus), as well as for organisms that are AT-rich (Mollicutes
sp., Melainabacteria sp.). We observe that long reads capture a
broader range of taxa both at the read and assembly levels when
compared to short reads, and that short- and long-read polishing
approaches yield medium-quality or greater draft genomes for
these organisms. This illustrates the increased visibility that de
novo assembly approaches lend to the study of the full array of
organisms in the gut microbiome.

Discussion
Together with Oduaran et al.30, we provide a description of gut
microbiome composition in Soweto and Bushbuckridge, South
Africa, and to our knowledge, the first effort utilizing shotgun and
nanopore sequencing in South Africa to describe the gut micro-
biome of adults. In doing so, we increase global representation in
microbiome research and provide a baseline for future studies of
disease association with the microbiome in South African
populations, and in other transitional populations.

We find that gut microbiome composition differs demon-
strably between the Bushbuckridge and Soweto cohorts, further
highlighting the importance of studying diverse communities
with differing lifestyle practices. Interestingly, even though gut
microbiomes of individuals in Bushbuckridge and Soweto share
many features, we do observe enrichment of hallmark taxa
associated with westernization in Soweto. These include Bacter-
oides and Bifidobacterium, which have been previously associated
with urban communities3, consistent with Soweto’s urban locale
in the Johannesburg metropolitan area.

We also observe enrichment in relative abundance of
crAssphage and crAss-like viruses in Soweto relative to Bush-
buckridge, with relatively high prevalence in both cohorts yet
lower abundance on average of crAssphage clades Alpha and
Delta compared to several other populations. This furthers recent
work which revealed that crAssphage is prevalent across many
cohorts globally49, but found relatively fewer crAssphage
sequences on the African continent, presumably due to paucity of
available shotgun metagenomic data. Just as shotgun metage-
nomic sequence data enables the study of viruses, it also enables
us to assess the relative abundance of human DNA or damaged
human cells in the stool. Surprisingly, we observe a high relative
abundance of human DNA in the raw sequencing data. We find a
statistically significantly higher relative abundance of human
DNA in samples from Soweto compared to those from Bush-
buckridge. Future research may help illuminate the potential
reason for this finding, which may include a higher proportion of
epithelium disruption by invasive bacteria or parasites in Soweto
vs. Bushbuckridge, and in South Africa in general, compared to
other geographic settings. Alternatively, this may also be attri-
butable to a higher baseline of intestinal inflammation and fecal
shedding of leukocytes. Without additional information, it is
difficult to speculate on the reason for this finding.

We find that individuals in Bushbuckridge are enriched in
VANISH taxa including Succinatimonas, which was recently
reported to associate with microbiomes from individuals practi-
cing traditional lifestyles12. Intriguingly, several VANISH taxa
(Succinatimonas, Succinivibrio, Treponema) are bimodally dis-
tributed in the Bushbuckridge cohort. We hypothesize that this
bimodality could be caused by differences in lifestyle and/or
environmental factors including diet, history of hospitalization or
exposure to medicines, physical properties of the household
dwelling, or differential treatment of drinking water across the
villages comprising Bushbuckridge. Additionally this pattern may
be explained by participation in migration to and from urban
centers (or sharing a household with a migratory worker). A
higher proportion of men in the community engage in this pat-
tern of rural-urban migration39, but it is possible that sharing a
household with a cyclical worker could influence gut microbiome
composition via horizontal transmission74.

Despite the fact that host genetics explain relatively little of the
variation in microbiome composition75, we do observe a small
number of taxa that associate with host genetics in this popula-
tion. Future work is required for replication and to determine
whether these organisms are interacting with the host and whe-
ther they are associated with host health.

Additionally, we demonstrate marked differences between
South African cohorts and other previously studied populations
living on the African continent and western countries. Broadly,
we find that South African microbiomes reflect the transitional
nature of their communities in that they overlap with western and
nonwestern populations. Tremendous human genetic diversity
exists within Africa76, and our work reveals that there is a great
deal of unexplored microbiome diversity as well. In fact, we find
that microbiome beta diversity within communities may be sys-
tematically underestimated by incomplete reference databases:
taxa that are unique to individuals in nonwestern populations are
not present in reference databases and therefore not included in
beta diversity calculations. Though it has been reported that
nonwestern and traditional populations tend to have higher alpha
diversity but lower beta diversity compared to western popula-
tions, we show that this pattern is not universally upheld when
reference-agnostic nucleotide comparisons are performed. By
extension, we speculate that previous claims that beta diversity
inversely correlates with alpha diversity may have been funda-
mentally limited by study design in some cases. Specifically, the
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disparity between comparing small, homogenous African popu-
lations with large, heterogenous western ones constitutes a sig-
nificant statistical confounder, potentially preventing a valid
assessment of beta diversity between groups. Furthermore, alpha
and beta diversity comparisons based on species-level taxonomic
assignment may be further confounded due to the presence of
polyphyletic clades in organisms like Prevotella copri26,77, which
are highly abundant in gut microbiomes of nonwestern indivi-
duals. Notably, we also demonstrate that the notion of a “western-
nonwestern” axis of microbiome variation is over-simplified: we
find taxa that are enriched in South Africans relative to both
western and hunter-gatherer/agriculturalist cohorts.

Advances in sequencing technology enhance our ability to more
thoroughly characterize microbiomes using culture-free approaches.
Through a combination of short- and long-read sequencing, we
successfully assembled contiguous, complete genomes for many
organisms that are underrepresented in reference databases, includ-
ing genomes that are commonly considered to be enriched in or
limited to populations with traditional lifestyles including members
of the VANISH taxa (e.g., Treponema sp., Treponema succinifaciens).
The phylum Spirochaetes, namely its constituent genus Treponema,
is considered to be a marker of traditional microbiomes and has not
been detected in high abundance in human microbiomes outside of
those communities11,69. Here, we identify Spirochaetes in the gut
microbiome of individuals in urban Soweto, demonstrating that this
taxon is not exclusive to traditional, rural populations, though we
observe that relative abundance is higher on average in traditional
populations. Generation of additional genomes of VANISH taxa and
incorporation of these genomes into reference databases will allow for
increased sensitivity to detect these organisms in metagenomic data.
Additionally, these genomes facilitate comparative genomics of
understudied gut microbes and allow for functional annotation of
potentially biologically relevant functional pathways. We note that
many of these genomes (e.g., Melainabacteria, Succinatimonas) are
enriched in the gut microbiota of Bushbuckridge participants relative
to Soweto, highlighting the impact of metagenomic assembly to
better resolve genomes present in rural populations.

In addition to investigating members of the VANISH taxa,
long-read sequencing enables the study of AT-rich genomes,
which are difficult to sequence using transposon-based library
construction approaches common in short-read studies. Thus,
using long-read sequencing, we produced genomes for organisms
that exist on the extremes of the GC content spectrum, such as
Mycoplasma sp., Mollicutes sp., and Melainabacteria sp. We find
that these organisms are sparsely covered by short-read sequen-
cing, illustrating the increased range of non-amplification-based
sequencing approaches, such as nanopore sequencing. Interest-
ingly, these assemblies are evaluated as only medium-quality by
CheckM despite having low measurements of contamination, as
well as genome lengths and gene counts comparable to reference
genomes from the same phylogenetic clade. We hypothesize that
sparse short-read coverage leads to incomplete polishing and
therefore retention of small frameshift errors, which are a known
limitation of nanopore sequencing78. Further evaluation of 16S or
long-read sequencing of traditional and western populations can
identify whether these organisms are specific to certain lifestyles,
or are more prevalent but poorly detected with shotgun
sequencing.

While we find that the gut microbiome composition of the two
South African cohorts described herein reflects their lifestyle
transition, we acknowledge that these cohorts are not necessarily
representative of all transitional communities in South Africa or
other parts of the world which differ in lifestyle, diet, and resource
access. Hence, further work remains to describe the gut micro-
biota in other understudied populations. This includes a detailed
characterization of parasites present in microbiome sequence

data, an analysis that we did not undertake in this study but
would be of great interest. These organisms have been detected in
the majority of household toilets in nearby KwaZulu-Natal
province79, and may interact with and influence microbiota
composition80.

Our study has several limitations. Although the publicly
available sequence data from other global cohorts were generated
with similar methodology to our study, it is possible that batch
effects exist between datasets generated in different laboratories
that may explain some percentage of the global variation we
observe. Additionally, while nanopore sequencing is able to
broaden our range of investigation, we illustrate that our ability to
produce well-polished genomes at GC content extremes is lim-
ited. This may affect our ability to accurately call gene lengths and
structures, although iterative long-read polishing improves our
confidence in these assemblies. Future investigation of these
communities using less biased, higher coverage short-read
approaches or more accurate long-read sequencing approaches,
such as PacBio circular consensus sequencing, may improve
assembly qualities. Additionally, long-read sequencing of samples
from a wider range of populations can identify whether the
genomes identified herein are limited to traditional and transi-
tional populations, or are more widespread. Further, future
improvements in error rate of long-read sequencing may obviate
the need for short-read polishing altogether.

Taken together, our results emphasize the importance of gen-
erating sequence data from diverse transitional populations to
contextualize studies of health and disease in these individuals. To
do so with maximum sensitivity and precision, reference genomes
must be generated to classify sequencing reads from these
metagenomes. Herein, we demonstrate the discrepancies in
microbiome sequence classifiability across global populations and
highlight the need for more comprehensive reference collections.
Recent efforts have made tremendous progress in improving the
ability to classify microbiome data through creating new genomes
via metagenomic assembly12,59,64, and here we demonstrate the
application of short- and long-read metagenomic assembly
techniques to create additional genome references. Our applica-
tion of long-read sequencing technology to samples from South
African individuals has demonstrated the ability to generate
highly contiguous MAGs and shows immense potential to expand
our reference collections and better describe microbiomes
throughout diverse populations globally. In the future, micro-
biome studies may use a combination of short- and long-read
sequencing to maximize information output, perhaps performing
targeted nanopore or other long-read sequencing of samples that
are likely to contain the most novelty on the basis of short-
read data.

The present study was conducted in close collaboration
between site staff and researchers in Bushbuckridge and Soweto
as well as microbiome experts both in South Africa and the
United States, and community member feedback was invited and
incorporated at multiple phases in the planning and execution of
the study (see Oduaran et al.30 and Supplemental Information for
additional detail). Tremendous research efforts have produced
detailed demographic and health characterization of individuals
living in both Bushbuckridge and Soweto32,56,81,82 and it is our
hope that microbiome data can be incorporated into this
knowledge framework in future studies to uncover disease bio-
markers or microbial associations with other health and lifestyle
outcomes. More broadly, we feel that this is an example of a
framework for conducting microbiome studies in an equitable
manner, and we envision a system in which future studies of
microbiome composition can be carried out to achieve detailed
characterization of microbiomes globally while maximizing ben-
efit to all participants and researchers involved.
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Methods
Cohort selection. Stool samples were collected from women aged 40–72 years in
Soweto, South Africa and Bushbuckridge Municipality, South Africa. Partici-
pants were recruited on the basis of participation in AWI-Gen56, a previous
study in which genotype and extensive health and lifestyle survey data were
collected. Human subjects research approval was obtained (Stanford IRB 43069,
University of the Witwatersrand Human Research Ethics Committee M160121,
Mpumalanga Provincial Health Research Committee MP_2017RP22_851) and
informed consent was obtained from participants for all samples collected.
Participants were not compensated for participation. Stool samples were col-
lected and preserved in OmniGene Gut OMR-200 collection kits (DNA Geno-
tek). Samples were frozen within 60 days of collection as per manufacturer’s
instructions, followed by long-term storage at −80 °C. As the enrollment criteria
for our study included previous participation in a larger human genomics
project56, we had access to self-reported ethnicity for each participant (BaPedi,
Ndebele, Sotho, Tsonga, Tswana, Venda, Xhosa, Zulu, Other, or Unknown).
Samples from participants who tested HIV-positive or who did not consent to an
HIV test were not analyzed.

Metagenomic sequencing of stool samples. DNA was extracted from stool
samples using the QIAamp PowerFecal DNA Kit (QIAGEN Cat. No. 12830)
according to the manufacturer’s instructions except for the lysis step, in which
samples were lysed using the TissueLyser LT (QIAGEN Cat. No. 85600) (30 s
oscillations/3 min at 30 Hz). DNA concentration of all DNA samples was measured
using Qubit Fluorometric Quantitation (DS DNA High-Sensitivity Kit, Thermo-
Fisher Cat. No. Q32851). DNA sequencing libraries were prepared using the
Nextera XT DNA Library Prep Kit (Illumina Cat. No. FC-131-1096). Final library
concentration was measured using Qubit Fluorometric Quantitation and library
size distributions were analyzed with the Bioanalyzer 2100 (Agilent G2939BA).
Libraries were multiplexed and 150 bp paired-end reads were generated on the
HiSeq 4000 platform (Illumina). Samples with greater than ~300 ng remaining
mass and a peak fragment length of greater than 19,000 bp (with minimal mass
under 4000 bp) as determined by a TapeStation 2200 (Agilent G2964AA) were
selected for nanopore sequencing. Nanopore sequencing libraries were prepared
using the 1D Genomic DNA by Ligation protocol (Oxford Nanopore Technologies
SQK-LSK109) following standard instructions. Each library was sequenced with a
full FLO-MIN106D R9 Version Rev D flow cell on a MinION sequencer for at
least 60 h.

Literature review. Literature review criteria based on Brewster et al.4 were
employed: PubMed, EMBASE, SCOPUS, and Web of Science were queried for
observational and interventional research involving the human gut microbiome
through January 2021. Terms including “gut microbiome” and “gut microbiota”
and names of each of the 54 African countries were included in the search. Primary
reports on the gut microbiome in African children and/or adults, utilizing either
16S rRNA or shotgun metagenomic sequencing and written in English, were
included. Abstracts, secondary reports, poster presentations, reviews or editorials,
and in vivo and in vitro studies were excluded. The list of relevant articles yielded
by this search strategy was manually reviewed.

Computational methods
Preprocessing and taxonomy profiling. Stool metagenomic sequencing reads were
trimmed using TrimGalore v0.6.583 with a minimum quality score of 30 for
trimming (–q 30) and minimum read length of 60 (–length 60). Trimmed reads
were deduplicated to remove PCR and optical duplicates using htstream Super-
Deduper v1.2.0 with default parameters. Reads aligning to the human genome
(hg19) were removed using BWA v0.7.17-r118884. Taxonomy profiles were created
with Kraken v2.0.9-beta with default parameters85 and (1) a comprehensive custom
reference database containing all bacterial and archaeal genomes in GenBank
assembled to “complete genome,” “chromosome,” or “scaffold” quality as of Jan-
uary 2020, and (2) the pre-built Struo50 GTDB release 95 database containing one
genome per species. Bracken v2.2.0 was then used to re-estimate abundance at each
taxonomic rank86. MetaPhlAn352 taxonomy profiles were also generated.

Additional data. Published data from additional adult populations were down-
loaded from the NCBI Sequence Read Archive or European Nucleotide Archive
(Supplementary Table 4) and preprocessed and taxonomically classified as
described above. The study by Backhed et al. sampled both mothers and infants:
only the maternal samples were retained in this study. For datasets containing
longitudinal samples from the same individual, one unique sample per individual
was chosen (the first sample from each individual was chosen from the United
States Human Microbiome Project cohort).

K-mer sketches. K-mer sketches were computed using sourmash v2.0.060. Low
abundance k-mers were trimmed using the “trim-low-abund.py” script from the
khmer package v3.0.087 with a k-mer abundance cutoff of 3 (-C 3) and trimming
coverage of 18 (-Z 18). Signatures were computed for each sample using the
command “sourmash compute” with a compression ratio of 1000 (–scaled 1000)

and k-mer lengths of 21, 31, and 51 (-k 21,31,51). Two signatures were computed
for each sample: one signature tracking k-mer abundance (–track-abundance flag)
for angular distance comparisons, and one without this flag for Jaccard distance
comparisons. Signatures at each length of k were compared using “sourmash
compare” with default parameters and the correct length of k specified with the
-k flag.

Functional annotation. Unassembled metagenomic reads were functionally profiled
using ShortBRED88 v0.9.3 with a pre-built antibiotic resistance database based on
the Comprehensive Antibiotic Resistance Database89. Features were pre-filtered for
>10% prevalence and statistical analysis was performed using MaAsLin v290 using
the compound Poisson linear model (CPLM) and total sum scaling normalization
with “site” as a fixed effect.

Pangenomes were calculated with PanPhlAn v3.152 using parameters for
increased sensitivity recommended by the authors of the tool: “–min_coverage
1–left_max 1.70–right_min 0.30”.

MetaCyc pathways were profiled with HUMAnN v3.0.052 with default
parameters, using the mpa_v30_CHOCOPhlAn_201901 database. Forward and
reverse reads were concatenated into one file per sample prior to processing.
Pathway abundances were normalized to copies per million and statistical analysis
was performed using MaAsLin v2 using the CPLM and total sum scaling
normalization with “site” as a fixed effect.

Genome assembly, binning, and evaluation. Short-read metagenomic data were
assembled with SPAdes v3.1591 and binned into draft genomes using a publicly
available workflow (https://github.com/bhattlab/bhattlab_workflows/blob/
master/binning/bin_das_tool_manysamp.snakefile, commit version bbe6511 as
of Apr 20, 2021). Briefly, short reads were aligned to assembled contigs with
BWA v0.7.1784 and contigs were subsequently binned into draft genomes with
MetaBAT v2.1592, CONCOCT v1.1.093, and MaxBin v2.2.794. Default para-
meters were used for each binner, with the following exceptions: For the jgi_-
summarize_bam_contig_depths step of MetaBAT, minimum contig length was
set at 1000 bp (–minContigLength 1000), minimum contig depth of coverage of
1 (–minContigDepth 1), and a minimum end-to-end percent identity of reads of
50 (–percentIdentity 50). Bins were aggregated and refined with DASTool
v1.1.195. Bins were evaluated for size, contiguity, completeness, and con-
tamination with QUAST v5.0.296, CheckM v1.0.1397, Prokka v1.14.698, Aragorn
v1.2.3899, and Barrnap v0.9 (https://github.com/tseemann/barrnap/). We refer-
red to published guidelines to designate genome quality66. Individual contigs
from all assemblies were assigned taxonomic classifications with Kraken
v2.0.966,85. To create de-replicated genome collections, genomes with com-
pleteness greater than 75% and contamination less than 10% (as evaluated by
CheckM) were de-replicated using dRep v3.2.0100 with ANI threshold to form
secondary clusters (-sa) at 0.99 (strain-level) or 0.95 (species-level). For com-
parison to UHGG species representatives, secondary ANI was set to 0.95. dRep
chooses the genome with the highest score as the cluster representative
according to the following formula: dRep score= A × Completeness− B ×
Contamination+ C × (Contamination × (Strain heterogeneity/100))+ D ×
log(N50)+ E × log(size)+ F × (centrality−secondary ani). A through F are
values which can be tuned by the user to change the relative importance of each
parameter in choosing representative genomes. Default parameters (A= 1,
B= 5, C= 1, D= 0.5, E= 0, F= 1) were used herein.

Long-read data were assembled with Lathe v165. Briefly, Lathe implements
basecalling with Guppy v2.3.5, assembly with Flye v2.4.2101, and short-read
polishing with Pilon v1.23102. Contigs greater than 1000 bp were subsequently
binned into draft genomes with MetaBAT v2.13 using minimum contig depth
coverage of 1, minimum end-to-end percent identity of reads of 50, and otherwise
using default parameters, then classified, and de-replicated as described above.
Additional long-read polishing was performed using four iterations of polishing
with Racon v1.4.10103 and long-read alignment using minimap2 v2.17-r941104,
followed by one round of polishing with Medaka v0.11.5 (https://github.com/
nanoporetech/medaka). Single-contig genomes were analyzed for GC skew using
SkewIT v1105. Genomes of interest were plotted with the DNAPlotter GUI
v18.1.0106.

Draft genomes were additionally classified with GTDBtk v1.4.1 (classify_wf)107

using release 95 reference data.
Direct comparisons between nMAGs and corresponding MAGs were

performed by de-replicating high- and medium-quality nMAGs with MAGs
assembled from the same sample. MAGs sharing at least 99% ANI with an nMAG
were aligned to the nMAG regions using nucmer v3.1 and uncovered regions of the
nMAG were annotated with prokka 1.14.6, VIBRANT v1.2.1108, and ResFams
v1.2109.

Phylogenetic trees for all de-replicated short- and long-read MAGs were
constructed with GTDBtk v1.4.1 and visualized with iTOL v6110. To construct
phylogenetic trees for taxa of interest, reference 16S rRNA sequences were
downloaded from the Ribosomal Database Project (Release 11, update 5,
September 30, 2016)111 and 16S rRNA sequences were identified from nanopore
genome assemblies using Barrnap v0.9 (https://github.com/tseemann/barrnap/).
Sequences were aligned with MUSCLE v3.8.1551112 with default parameters.
Maximum-likelihood phylogenetic trees were constructed from the alignments
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with FastTree v2.1.10112,113 with default settings (Jukes-Cantor+ CAT model).
Support values for branch splits were calculated using the Shimodaira-Hasegawa
test with 1000 resamples (default). Trees were visualized with FigTree v1.4.4
(http://tree.bio.ed.ac.uk/software/figtree/).

Statistical analysis and plotting. Statistical analyses were performed using R
v4.0.2114 with packages MASS v7.3-53115, stats v4.0.2114, ggsignif v0.6.0116, and
ggpubr v0.4.0117. Alpha and beta diversity were calculated using the vegan package
v2.6.0118. Two-sided Wilcoxon rank-sum tests were used to compare alpha and
beta diversity between cohorts. Count data were rarefied and normalized via
cumulative sum scaling and log2 transformation119 prior to MDS. Data separation
in MDS was assessed via PERMANOVA (permutation test with pseudo F ratios)
using the adonis function from the vegan package. Differential microbial features
between individuals living in Soweto and Bushbuckridge were identified from
unnormalized count data output from Kraken 2 classification and Bracken abun-
dance re-estimation (filtered for 20% prevalence and at least 500 sequencing
reads per sample) using DESeq2 with the formula “~site”120. Plots were generated
in R using the following packages: cowplot v1.0.0121, DESeq2 v1.28.0120, genefilter
v1.70.0122, ggplot2 v3.3.2123, ggpubr v0.4.0, ggrepel v0.8.2124, ggsignif v0.6.0, gtools
v3.8.2125, harrietr v0.2.3126, MASS v7.3-53, reshape2 v1.4.4127, tidyverse v1.3.0128,
and vegan v2.6.0.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All shotgun sequence data and metagenome-assembled genome sequences generated by
this study are deposited in the NCBI Sequence Read Archive under BioProject
PRJNA678454. Participant-level metadata (age, BMI, blood pressure measurements, and
concomitant medications) and human genetic data are deposited in the European
Genome-phenome Archive (EGA) under Study ID EGAS00001002482 and dataset ID
EGAD00001006581. The participant metadata are available under restricted access due
to ethics requirements for the parent AWI-Gen study; access can be obtained by request
from the Human Heredity and Health in Africa Data Access Committee (DBAC) at
https://catalog.h3africa.org/. Requests submitted before or during the third week of the
month will be reviewed at a DBAC meeting during the first two weeks of the subsequent
month, and the DBAC will notify requestors within a week of the meeting. Source data
for figures are available at GitHub and Zenodo (https://doi.org/10.5281/
zenodo.5715685). Reference data used in this study are available as follows: the
Comprehensive Antibiotic Resistance Database release 1.1.8 is available at https://
card.mcmaster.ca/. Unified Human Gastrointestinal Genome collection data are available
in the European Nucleotide Archive under study accession ERP116715. Genome
Taxonomy Database release 95 is available at https://data.gtdb.ecogenomic.org/releases/.

Code availability
R code for analysis and figure generation is available at GitHub and Zenodo (https://
doi.org/10.5281/zenodo.5715685)129. Data analysis workflows referenced in “Methods”
are available at https://github.com/bhattlab/bhattlab_workflows.
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