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Coding strategy for surface luminance switches in
the primary visual cortex of the awake monkey
Yi Yang 1, Tian Wang2, Yang Li1, Weifeng Dai1, Guanzhong Yang1, Chuanliang Han1, Yujie Wu1 &

Dajun Xing 1✉

Both surface luminance and edge contrast of an object are essential features for object

identification. However, cortical processing of surface luminance remains unclear. In this

study, we aim to understand how the primary visual cortex (V1) processes surface luminance

information across its different layers. We report that edge-driven responses are stronger

than surface-driven responses in V1 input layers, but luminance information is coded more

accurately by surface responses. In V1 output layers, the advantage of edge over surface

responses increased eight times and luminance information was coded more accurately at

edges. Further analysis of neural dynamics shows that such substantial changes for neural

responses and luminance coding are mainly due to non-local cortical inhibition in V1’s output

layers. Our results suggest that non-local cortical inhibition modulates the responses elicited

by the surfaces and edges of objects, and that switching the coding strategy in V1 promotes

efficient coding for luminance.
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Both surface luminance (the intensity of light reflected from
an object’s surface) and edge contrast (the changes in
luminance that occur at edges) provide essential informa-

tion to define an object’s identity. It has been shown that the lack
of either component reduces the efficiency of the visual system to
recognize an object1,2. The neuronal recognition of object lumi-
nance in the visual cortex has been studied for decades3–8.
However, the cortical processing of the response to surface
luminance in the primary visual cortex (V1) is still under debate.

According to the textbooks, the neural response to surface
luminance is largely weakened by a center-surround antagonist
receptive field structure of neurons at the pre-cortical stage;9 and
V1 neurons are assumed to respond highly to edge contrast and
react poorly to spatially uniform/low-spatial frequency visual
input10–12. But several studies have demonstrated that a subset of
neurons in V1 can reliably respond to surface luminance (surface
response)8,13–17. There are two different hypotheses about the
generation of surface response in V1: filling-in and feedforward
hypotheses. According to the filling-in hypothesis, surfaces are
perceived through a neuronal mechanism that requires filling-in
signals originating from responses to edge contrast. According to
this view, V1 neurons with receptive fields (RF) on an object’s
surface are mainly activated through horizontal connections by
distant neurons whose RFs are on the object edge18–20. The
feedforward hypothesis is that surface responses are independent
of the contrast edge and directly driven by diffuse light through
feedforward input14,16,17,21,22.

The above two hypotheses emphasize different neural circuits
in V1. The feedforward hypothesis mainly relies on feedforward
connections, while the filling-in hypothesis depends on long-
range horizontal or feedback connections from higher-level brain
areas. V1 is known to have six layers with different response
characteristics23–25 and connection structures26. The input layer
(layer 4 C) only has local recurrent connections and feedforward
projections from the lateral geniculate nucleus (LGN)27–29.
The output layers (layer 2/3 and layer 4B) have rich horizontal
and feedback connections30–33. Therefore, if surface responses are
generated in a way consistent with the filling-in hypothesis,
we expect them to emerge in layer 2/3; on the other hand, if
the feedforward hypothesis is correct, surface responses should be
seen across all V1 layers.

In order to understand how the visual cortex processes edges
and surfaces, it is important to investigate the transformation of
the neuronal signals from the input to the output layers of the
cortex. However, up to now, there has been a little physiological
study of this topic. We recorded neural activity simultaneously in
all layers of alert monkey V1 activated by squares of uniform
luminance. We found that V1 surface responses and edge
responses were distinct neural signals: both were modulated by
cortical nonlocal inhibition. Furthermore, cortical inhibition
switched the luminance coding strategy in V1. Luminance
information was carried mainly by surface responses in the V1
input but then was encoded mainly in edge responses at the
output of V1.

Results
The experiments utilized multi-electrode recordings in awake,
behaving monkeys. Five macaque monkeys were trained for a
fixation task. During each trial, a serial of black and white squares
was presented, one by one, randomly at different locations
around receptive fields (RFs) of the recorded sites (Fig. 1a). The
size of all squares in this study was 4 by 4°, which is 5–8 times
larger than the classical RF size of V1 neurons (average
0.65 ± 0.16° diameter; mean ± SD) recorded at the eccentricities of
1–5° in the present study, and fully covered the extraclassical

receptive fields of the neurons (Supplementary Fig. 1). Each
square was presented for 300 ms, similar to our standard fixation
duration in daily life34. Stimulus presentation was followed by a
screen presented at mean luminance (blank) for 300 ms (Fig. 1a).
With a linear array (U-probe, 24 channels, 100 μm between
adjacent channels), we recorded spiking activity and the Local
Field Potential (LFP) simultaneously throughout the depth of V1
(Fig. 1b). For each probe placement (recording session), we
assigned relative cortical depth for each of the probe’s 24 channels
based on current source density (CSD) analysis35,36 of visually
evoked LFP and the latency of stimulus-driven multiunit activity
(MUA) (Fig. 1b, c). The boundaries between layers were defined
by the signatures of MUA and CSD patterns and previous ana-
tomical studies (see Method for details)25.

Neural presentations for edge and surface are different in V1.
To understand the neural representation of a square stimulus in
V1, we estimated a recorded site’s responses to different parts of
the square as a function of time, R(x,y,t) (Fig. 1c, d for a white
square as the visual stimulus). Variables x and y are spatial
locations of a square’s different parts relative to its center. The
variable t is the time after stimulus onset (see details in the
Method section). R(x,y,t) at each time point (Fig. 1d) tells us
how a recorded site responds to different parts of a square. For
instance, the response to the square’s edge, Redge(t), is R(x,y,t)
with |x |= 2 or |y |= 2 (blue circles in Fig. 1c illustrate condi-
tions with |x |= 2); the response to the surface, Rsurface(t), is
R(x,y,t) with |x | ≤ 0.5 or |y | ≤ 0.5 (red circles in Fig. 1c illustrate
conditions with |x |= 0)). The temporal dynamics of the two-
dimensional response patterns, R(x,y,t), across V1 layers
demonstrate that, shortly after stimulus onset, a square-like
activity pattern first appeared in layer 4 C and layer 6. Such
activity patterns gradually showed up in layer 4B, layer 2/3, and
layer 5 (Fig. 1d; see Supplementary Fig. 2 for a black square as
the visual stimulus).

We observed a clear difference in the pattern of square-evoked
responses in the input layer (layer 4 C) from that observed in the
output layers (layer 2/3). While neural activation in the input
layer was comparable for surface and edge (left panel in Fig. 1c
for Raverage(x,y) of layer 4 C), the response pattern in output layers
looked different. The visual-evoked activity was much larger at
edge regions and there was a hole in the activity map at the center
of the square (right panel in Fig. 1c for Raverage(x,y) of layer 2/3).
The spatial pattern in the output layers was different from our
perception of a solid surface. Responses to the edge were activated
across all cortical depths, but responses to the surface were
activated only in the input layer and substantially decreased in the
output layers (Fig. 1e). Sites with significant responses to the
uniform surface in L2/3 (50%, based on signal to noise ratio > 3;
see Methods) were much less than in L4C (82%). To capture the
difference between edge response and surface response across V1
layers, we calculated the ratio between surface and edge response
(S/E ratio) in MUA, i.e., spike activity (Fig. 1f). The S/E ratio in
L4C is significantly higher than that in L2/3 (0.35 for L4C, 0.12
for L2/3, p < 0.01).

Interestingly, there was a large diversity of V1 responses to
surface luminance. Some neurons showed transient response to
surface luminance, while some neurons showed a late increment
of surface response (red circle in Fig. 1c). Intuitively, this
phenomenon might appear to be the result of neuronal filling-in
in V1, but we found that this is not the case.

‘Filling-in’ of surface response starts in the V1 input layer. The
delayed increment in surface response has been considered a
filling-in signal induced by the neural response to the edge
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contrast. According to the hypothesis of neuronal filling-in,
facilitation of the S/E ratio should be observed in the V1 output
layer but not the input layer where horizontal and feedback
connections were scarce. To quantify the increment precisely, we
used the S/E ratio as the indicator for neural filling-in for the
square surface. To our surprise, compared to the S/E ratio at early
times (40–100 ms), we observed an increment of the S/E ratio at
the late time (120–180 ms) after stimulus onset in both input and
output layers (Fig. 2). Furthermore, the change in S/E ratio

seemed consistent between output layers and input layers: a probe
placement with increased S/E ratio over time in layer 3 also
tended to have an increased S/E ratio in layer 4Cb (Fig. 2a, b).

To test whether the filling-in at the output layer is inherited
from that at the input layer, we quantified the filling-in strength
as the change of S/E ratio through time (120–180 ms versus
40–100 ms after stimulus onset) and compared data simulta-
neously recorded from input layers and output layers (Fig. 2c, d).
The filling-in strength was positively correlated between layers

Fig. 1 Cortical presentation of surface and edge in V1 layers. a Stimulus paradigm. During a trial in the fixation task, 4 × 4° black and white squares were
presented, one by one, at random locations on a gray screen. Each black or white square was presented for 300ms and followed by 300ms blank
condition. The squares had either negative contrast or positive contrast (90%) relative to the background luminance. The black plus and blue circle
represent the fixation point location and a recorded site’s receptive field (RF). b Laminar recording and assignment. Left panel: The linear array (U-Probe,
Plexon, 24 channels, interchannel spacing 100 μm) was positioned vertically through the full depth of V1. Middle and right panel: Laminar pattern of MUA
and CSD averaged overall probe placements. Horizontal black dashed lines indicate the laminar boundaries in V1. c Dynamic of neural responses to
different positions of a white square in layer 2/3 (the left panel) and layer 4 C (the right panel). response curves were plotted every 16ms, from 28ms to
156ms after stimulus onset. Blue points represent the responses to the square edge. Red points represent the responses to the center of the square.
Dashed lines indicate the responses to a blank stimulus. Lower panels: Spatial response patterns in layer 2/3 and layer 4 C averaged over time. d The plot
consists of 7*17 square-like response patterns as in c (averaged between 40 probe placements). Each one of these patterns represents a snapshot of
normalized population-averaged responses (MUA) to different positions of a white square at a particular time interval (columns: with an 8ms time
window) and at different cortical layers (rows: layers 2, 3, 4B, 4Ca, 4Cb, 5, and 6, respectively). Responses were normalized with peak response of each
layer and was coded by color. e Laminar pattern of the neuronal response to stimulus edge (left) and surface (right). f Solid curve and shading represent
mean ± s.e.m. of S/E ratio (ratio of surface response to edge response) smoothed by a window at 0.08 units at each cortical depth, n= 630. Source data
are provided as a Source Data file.
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4Cb and layer 3 (r= 0.62, p < 0.01), and there was no significant
difference between input layers and output layers (Fig. 2e and
Supplementary Fig. 3). The correlation was also significant among
all pairs of V1 layers (Fig. 2f).

Late increased S/E ratios can be caused by a decrease/adaptation
of edge responses or increase/persistence of surface responses.
To understand the main cause for the change of the S/E ratio, we
also correlated the strength of filling-in to the sustain index (SI)
(see the definition for sustain index in Method) for both surface

responses and edge responses. We found that filling-in strength
was highly correlated with the dynamics of surface response in all
layers (Supplementary Fig. 4). The further facilitation of surface
response led to an increased S/E ratio in both input layers and
output layers. Consistent with the change of S/E ratio, the
sustainability of surface response also was correlated among V1
layers (Fig. 2g, h).

Taken together, the appearance of filling-in-like surface
responses in the V1 input layer and the significant correlation
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of filling-in between the input layer and output layer indicated
that the sustained surface response in V1 output layer is likely
inherited from that at the input layer, rather than being induced
by the edge response through horizontal connections in the
output layer.

Surface luminance is coded differently in V1 input and output
layers. A critical question is how surface luminance information
is coded in neuronal responses at different times and in different
layers. This question cannot be answered with the average neural
response; we had to analyze the ability of the neural population to
interpret the square luminance. Referring to previous studies of
decoding7,37,38, we trained a linear decoder to predict the sti-
mulus’s luminance by a weighted summation of population MUA
response cumulated in the whole trial (Fig. 3a; see details in
Methods). The data were aggregated from different probe pla-
cements and were normalized with the maximum response of
each site. After training the decoder, we obtained the distributions

of predicted luminances for the three conditions (white, black,
and gray/background luminance equal to 1, −1, and 0, respec-
tively). Then we evaluated the decoder’s performance for lumi-
nance discrimination with the rank order of predicted luminance.
(Fig. 3b, see Methods for details). As expected, the decoder’s
performance increased with the number of sites included in both
input and output layers (Fig. 3c).

Next, to understand precisely how the two types of neuronal
responses carry surface luminance in different layers, we trained
decoders based on responses to stimulus edge or surface
separately. We binned the neuronal response at a resolution of
50 ms and estimated the decoder performance over time. The
performance of the decoders increased from chance level after
stimulus appearance and remained relatively stable over the time
of the trial (Fig. 4a).

The accuracy for coding luminance is not always consistent
with the neural response strength. Although the surface response
is weaker than the edge response in the input layer, the surface

Fig. 2 Dynamics of surface responses across V1 layers and their relationship. a Ratio between surface response and edge response (S/E) at 40–100ms
and at 120–180ms after stimulus onset in different layers, averaged across sites from the 18 probe placements with increased S/E in output layer 3 or 4B.
S/E ratios are presented as mean ± s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001, one-sided paired t-test, n= 29, 32, 20, 34, 27, 41, 42 sites in layers from L2 to
L6, respectively. b Two examples of dynamic MUA responses to square surface (red lines) and edge (blue lines) at output and input layer are
simultaneously recorded in the same probe placement. The first example (mid-column) shows that the S/E ratio in both input and output layer increased
over time in a probe placement. The other example shows that the S/E ratio in both input and output layer (right column) decreased over time in another
probe placement. The early response period and the late response period were marked as solid lines in each plot. Dark lines in insets represent the
dynamics of the S/E ratio from 40–200ms. c, d Scatter plot for S/E ratio at the early time versus late time for all recorded sites at the output layer and the
input layer. Red dots in figure c and d is calculated from data shown in panel b. e Correlation of filling-in strength between sites at L4Cb (x-axis) and sites at
L3 (y-axis) simultaneously recorded from the same probe placement. n= 32 pairs, Pearson’s r= 0.616, p= 0.0002. f Pearson’s correlation of filling-in
strength among simultaneously recorded sites at different V1 layers. p < 0.05 except the one marked with n.s. for p= 0.091. g Correlation of surface
response sustainability between sites at L4Cb (x values) and sites at L3 (y values) simultaneously recorded from the same probe placement. n= 32 pairs,
Pearson’s r= 0.557, p= 0.0009. h Pearson’s correlation of surface response sustainability among simultaneously recorded sites at different V1 layers. All
p-values are <0.05. Source data are provided as a Source Data file.

Fig. 3 Schema of the population luminance decoding model. a MUA dynamic response to square edge and surface in V1. Upper: Spike rasters of two
recorded sites from L4C evoked by square surface and square edge. From top to bottom: responses to white square, responses to black square, and
responses to gray background. Lower: Mean dynamic response (shadings represent ±s.e.m.) in L4C to the surface and edge of black square (black), to
those of white square (white), and to the gray background (green). The yellow area indicates the period for signal used in following decoding processing.
b The decoder for square luminances. Left: a linear decoder to predict the stimulus’s luminance with a weighted summation of population MUA response.
Upper right: the distribution of predicted luminances for white, gray, and black. Lower right: the accuracy of the decoder is measured by bootstrap method.
Colored points (black, green and white) are randomly sampled from the three distributions shown in upper right panel, and red shadows marks wrong
predicted samples. c Decoding accuracy for luminances in L4C (dashed line) and L2/3 (solid line) increased with the number of sites included. Error bars
represent ±s.e.m. The mean and s.e.m of the decoding accuracy at a given number of sites (x values) was calculated based on decoding accuracies of 100
neural populations. Each of the neural population consists of sites at the given number (x values) randomly sampled from all sites in L2/3 or L4C. Source
data are provided as a Source Data file.
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response has better accuracy for coding luminance information.
However, in the output layers, the best readout of surface
luminance goes to the edge response (see Fig. 4b for averaged
decoder’s accuracy during the period from 80 to 250 ms). The
laminar difference of coding strategies for luminance information
by surface and edge responses remains unchanged for decoders
with different numbers of sites included (Fig. 4c). There was an
asymmetry in coding accuracy for a black surface versus a white
surface. In the input layer, both surface and edge responses
recognize black better than white. However, in the V1 output
layer, only the surface response shows a large black dominance
for luminance recognition (Fig. 4d).

Given that there is a variety of filling-in strengths for the neural
population (Fig. 2c), another critical question is whether or not
sites with the more sustained surface response (with stronger
filling-in strength) carry more luminance information than other
sites (that is, do they have a larger weight in the decoder)?
Separating surface response as a low-sustained set and a high-
sustained set, we found that the population with high sustain-
ability performed similarly to the low-sustained population
(Fig. 4e; accuracy is 73.28 versus 73.34 on average in L2/3,
p= 0.87). Consistently, we found that there was no significant
correlation between the decoding contribution of a site and the
sustainability of its surface response in the V1 output layer (Fig.

4f). Thus, continuous reaction to the object surface did
not enhance the population recognition of the surface
luminance in V1.

The above decoding analysis is conditioned upon the
assumption that V1 downstream neural populations treat inputs
driven by surface and edges differently and V1 populations
downstream can tell whether their inputs are from stimulus
surface or edges. To confirm this idea, we also built a decoder that
treated surface response the same as edge response, and found
that luminance reading accuracy was significantly reduced
(Supplementary Fig. 5). This suggests that V1 has distinct surface
and edge responses that contain different visual information; and
in order to readout luminance information correctly from neural
activity, a downstream area needs to distinguish responses driven
by surface and edge. To demonstrate that this is feasible, we
further built a ‘multiplexed’ decoder to identify stimulus locations
as well as stimulus luminances (Supplementary Fig. 6). We found
that a V1 population contains information for both location and
luminance information for a stimulus. Interestingly, the reading
of location information is significantly earlier than that of
luminance information, which suggests that the downstream area
might prioritise the reading of location information to guide the
reading of luminance4,39 (see details in supplementary method
and Supplementary Fig. 6).

Fig. 4 Decoding accuracy for square luminances by responses to edge or surface in V1. a Temproal development of decoding accuracy for luminance
(shadings represent ±s.e.m.) based on surface responses (red lines) or edge responses (blue lines) of neural populations (n= 100) in L4C or L2/3. Each
population include 32 sites randomly sampled from all sites in L4C or L2/3. The accuracy during the sustained response time (80–250ms, between two
dashed vertical lines) were averaged for the following comparison (b–e). b Performance of luminance decoders using surface responses (red bars) and
edge responses (blue bars) in L4C and L2/3. The number of sites for each decoder was kept constant at 32. ***p < 0.001, two-sided paired t-test (between
surface and edge) and independent t-test (between L4C and L2/3). Bars represent mean accuracy across populations (±s.e.m.), with individual data
(n= 100) superimposed. The definitions for bars in d and e are the same as that for b. c Accuracy differences for decoding luminances between surface
response and edge response in L4C and L2/3 are consistent regardless of the number of sites included in the decoder. Error bars represent s.e.m. across
100 populations. d Decoding performance for luminance recognition of white (white bars) or black (black bars) by surface responses (left) or edge
responses (right) at input or output layers. ***p < 0.001, two-sided paired t-test, n= 100 populations. e Decoding performance of surface data with high
sustainability (filled bars) or low sustainability (open bars). ***p < 0.001, two-sided independent t-test, n= 100 populations. f The correlation between
sustainability of surface response (x-axis) and decoding weight (y-axis). The relationship between decoding weights and sustain index of response were
shown in the subplots with light dots (left) for white conditions and in the subplots with dark dots (right) for black conditions. The upper panels show data
from the input layer, and the lower panels show data from the output layer. Pearson correlation coefficient (r) were calculated from the sites with decoding
weight not equal to 0 (n= 35 for L4C; n= 41 for L2/3). Source data are provided as a Source Data file.
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Results in this section revealed that, in V1 output layers, the
coding for luminance information starts switching to edge
responses from surface responses. The decrement of coding
accuracy for luminance information by surface response is
generally true, regardless of whether or not the surface response
has a late increment. Our next goal was to find out the neural
mechanism that leads to the decreased surface response (Fig. 1f,
g) and the switch of coding strategies for luminance from the V1
input layer to the output layer (Fig. 4b).

Responses to edge and surface are both suppressed by the
surface in V1 output layers. To understand the underlying
neural mechanisms of surface and edge processing, we dissected
the excitation and inhibition components around the operation
point from the neuronal activity using reverse correlation (see
details in Methods). The method linearized the neuronal activity
associated with surface and edge stimulus25,40. The reverse cor-
relation experiment was similar to the flashed experiment with
two different settings: (1) each square was presented only for
20 ms; (2) to measure the interaction between surface luminance
and edge response in V1, we also added stimuli with edge com-
ponents only (a 4 × 4° square frame).

Similar to the results from the flashed experiment, in the
reverse correlation experiment, the response to the square surface
was relatively strong in the input layers and decreased in the
output layers (Fig. 5a). Neurons responding to the square surface
showed strong negative responses following the initial positive
responses (Fig. 5b, c). The suppression index (defined as the ratio
of the negative component to the sum of the negative and positive
components) in the output layer was notably larger than that in
the input layer (Fig. 5d). As a control, neurons responding to the
center of the frame did not have any significant response (Fig. 5a).
This finding suggests that the weaker surface response in L2/3
were due to cortical inhibition.

Next, we compared the responses to edges with (square edge)
or without (frame edge) a surface. We observed different
interlaminar transmission for neural responses to the square
edge and frame edge (compare Fig. 5a upper and lower). The
response evoked by the square edge was significantly weaker than
that produced by the frame edge in the output layer (Fig. 5e, f;
p < 0.01, two-sided paired t-test), but responses evoked by the two
types of edges were not significantly different in the input layer
(Fig. 5f; p= 0.8, two-sided paired t-test). That result indicates a
suppressive effect on the square edge (Fig. 5e). We measured the
intensity of suppression on the edge response with an index
defined as the difference between the response strength of the
frame edge and the response strength of the square edge.
Suppression of edge response showed a similar laminar profile as
the inhibition of the surface response (Fig. 5f). Furthermore, from
the input layer to the output layer, increased surface suppression
was significantly correlated with the increased edge suppression
(Fig. 5g, r= 0.54, p < 0.01). This result suggests that a general
cortical inhibition might play an essential role in modulating
surface and edge response.

Cortical inhibition evoked by the surface is nonlocal and
luminance-dependent. To test the hypothesis that a common
cortical inhibition might modulate the laminar transmission of
both edge and surface responses at the V1 output layer, we
compared two computational models for their predictions of
dynamic responses. Model A (the upper panel in Fig. 6a) gen-
erates neural responses in the V1 output layer only by pooling
excitation from the V1 input layer. Model B (the lower panel in
Fig. 6a) integrates excitations from the input layer and gets
modulated by intralaminar inhibition. In both models, the

integration of excitation from the input layer was modeled as a
spatial-temporal convolution of neural responses in the input
layer. We assumed that the linear filter is spatial-temporal
separable. The spatial feature was modeled as Gaussian kernel,
and the temporal feature was modeled as a log-transformed
gaussian kernel (see Methods for details). We further assumed
that the gain of the linear filter depends on stimulus positions
(surface vs. edge of a stimulus). For model B, intralaminar inhi-
bition was modeled in a way similar to excitatory processes. We
optimized model parameters by minimizing the MSE between
predicted and real response dynamics of V1 output layer (see
Methods for details of the two models).

As we expected, model A with excitation alone did not predict
response in the output layer (Fig. 6b; mean goodness of fit is 0.4
for square and 0.4 square edge). Model B (mean goodness of fit is
0.78 for square surface and 0.75 for square edge) was much better
than model A for predicting dynamic responses in the output
layer, especially for responses to square surface and edge (Fig. 6b,
c). The intralaminar inhibition induced in model B also generated
comparable suppressions on surface response and edge response
as observed in data (Fig. 6d, e).

We found that cortical inhibition had a nonlocal effect. The
spatial spread, estimated with the sigma of the gaussian function,
of the cortical inhibition was about two times larger than the
spread of pooling excitation, on average (Fig. 6g). We further
estimated the fitting performance of the model as a function of
the range of inhibition (Fig. 6h). When the range of cortical
inhibition was about 0.6–0.8 degree in sigma, the predicted V1
response was significantly closer to the real data. These results
suggest that the neural mechanism for surface and edge response
in V1 output layers is an interaction of local feedforward
excitation and nonlocal inhibition.

Our results also suggest an asymmetry of black and white in
nonlocal inhibition (Fig. 6f). The inhibitory strength (I/E ratio,
defined as the ratio between inhibition and pooling excitation in
Fig. 6f) for white stimuli (I/E ratio: 1.1 ± 0.13) was significantly
larger (p < 0.01, two-sided paired t-test) than for black stimuli
(I/E ratio: 0.74 ± 0.06). The spatial spread of the cortical
inhibition elicited by a white surface also is wider (0.80 ± 0.06
for white surface and 0.53 ± 0.05 for black surface, p= 0.016, two-
sided paired t-test Fig. 6f). The distinct strength and spatial scale
of cortical inhibition may explain enhanced black dominance of
surface response compared with edge response (Supplementary
Fig. 7).

Cortical mechanisms for processing luminance information of
object surface. Finally, we examined how the dissected cortical
excitation and inhibition influence the change of coding strategies
for surface luminance from the V1 input layer to the output
layers. We applied model B for fitting the trial averaged dynamic
responses to a square surface and edge presented for 300 ms
(dataset shown in Figs. 1, 2) in the V1 output layer. Model B
could well reconstruct responses in 300 ms flashed square
experiment (goodness of fit is 0.78 on average). The model cap-
tured the altered latency and sustainability of neuronal response
in the output layer compared to the input layer (Supplementary
Figs. 8, 9). Next, we generated single-trial responses based on
model parameters and noise estimated from each recorded site at
the output layer (see details in Methods); and evaluated the
coding ability for luminance information in model B (similar to
what we did for experimental data shown in Fig. 4).

To separate the respective effects of pooling excitation and
inhibition, we generated two groups of data sets: one simulated
with pooling excitation alone, another simulated with the
combined excitation and inhibition (Fig. 7a, the 2nd and 3rd
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panel). We found that these two cortical processes play different
roles in signal transmission and can redistribute surface
luminance information in V1 (Fig. 7b). The pooling of excited
inputs improves the luminance recognition ability based on edge
response (Fig. 7b, accuracy is 68 versus 87 on average, p < 0.01).
Inversely, the following intralaminar inhibition reduced the
luminance recognition ability based on surface response (Fig. 7b,
accuracy is 86 versus 70 on average, p < 0.01). In summary, a
center-surround antagonistic structure constructed by local
excitation and nonlocal inhibition makes the edge response
dominate in surface luminance interpretation.

Discussion
Our study provides a complete picture of dynamic laminar pro-
cessing for surface luminance and edge contrast in macaque V1.
The distinct laminar patterns of surface response and edge
response enable us to reveal neural mechanisms for laminar

processing of object surfaces in V1. We found that a local feed-
forward mechanism from the input layer and a nonlocal inhibi-
tory mechanism in the output layer interacted to modify V1’s
representation of surface luminance. As summarized in Fig. 7c,
feedforward excitation drives both surface and edge responses
and mainly enhances the coding accuracy of edge response for
luminance information. Cortical inhibition suppresses both edge
and surface responses and functionally redistributes luminance
information from the input layer to the output layer in V1. We
conclude that these two cortical processes, taken together, inte-
grate surface luminance information into the edge response
and result in the edge-based efficient coding of surface
luminance in V1.

Previous studies offered different hypotheses for the generation
of the response to surface luminance in V1. The filling-in
hypothesis was supported by findings of slow latencies for surface
responses, late increments of surface responses18,20, and late

Fig. 5 Responses to surface and edge are both suppressed by surface luminance. a Measuring the laminar pattern of dynamic responses to squares and
frames. During a trial of fixation tasks, 4 × 4° squares or frames were rapidly and randomly presented around the recorded sites’ receptive field on a
uniform gray screen. All stimuli were represented for 20ms, one by one, at random locations. The laminar pattern shows MUA response to white square
(left) and white frame (right) in different V1 layers, averaged between 11 probe placements. b Laminar pattern of MUA response to the square surface.
c Dynamic MUA response to the square surface. The surface response has typical early positive (shaded red) and late negative part (shaded blue). The
excitatory component is defined as positive response strength, and the inhibited component is defined as negative response strength. d Laminar
distribution of surface suppression. Surface suppression is defined as inhibited component divided by the sum of inhibited component and excitatory
component. Error bars show s.e.m. across sites. n= 14, 23, 11, 20, 20, 19, 22 sites in cortical layers from L2 to L6, respectively. e Laminar pattern of MUA
responses to the frame edge (left), square edge (middle), and responses difference between square edge and frame edge (right). f Laminar distribution of
edge suppression. Edge suppression is defined as frame edge response subtract from square edge response then divided by frame edge response. Error
bars show s.e.m. across sites. n= 14, 23, 11, 20, 20, 19, 22 sites in cortical layers from L2 to L6, respectively. g Correlation between surface suppression
change and edge suppression change at the output layer. n= 37 pairs, Pearson’s r= 0.54, p= 0.0005. Source data are provided as a Source Data file.
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perception-related surface responses13 in V1. Alternatively, the
feedforward hypothesis was supported by findings of independent
luminance response in V18,16 and the significant responses to
low-spatial frequency luminance without edge contrast22. In the
present work, we found a diversity of V1 responses to surface
luminance. Some neurons, located in both the input and output
layers of V1, responded significantly to a uniform surface earlier
than to an edge. But other neurons had a delayed surface
response, more frequently in the output layer. These phenomena,
seen in the past as conflicts, can be well explained by unified
neural mechanisms.

V1 neurons show changes of sensitivities to surface luminance
across layers, and neurons in the input layer strongly respond to
surface luminance. Based on the lack of horizontal connections in
the input layer, response to the surface is likely driven by feed-
forward excitation from the pre-cortex. Studies have reported that
pre-cortical neurons have imbalanced integrated sensitivity of
center excitation and surround suppression41,42, as well as black/
white asymmetry;43 and they can respond well to uniform
luminance and offer sustained driving force to V1 input
layers8,44,45. The late increased surface response, thought to be a
filled-in signal induced from object edge18, is observed in both

input and output layers here. Observations in the present work
indicate that the sustained surface response in V1 is mainly
inherited from feedforward input, and not induced by edge
responses as a product of filling-in. The robust reaction to surface
luminance in the V1 input layer is suppressed due to cortical
inhibition. Inhibition received at the beginning of the response
can delay the response latency and could make the later
enhancement appear more pronounced. The combination of
feedforward input and cortical inhibition can cause the laminar
difference of surface response sensitivity and the diverse, dynamic
characteristic of surface response.

One of our main findings is that nonlocal cortical inhibition
modulates both surface and edge response in the V1 output layer.
Such cortical inhibition is mainly induced by the object surface
but not by the edge (Fig. 6). Our measurements are consistent
with previous findings on the suppressive effect of transient
luminance change in V112,46,47. One remaining question is what
circuitry generates the cortical inhibition evoked by surface
luminance. Intracellular recording in the primary visual cortex of
awake tree shrew found that a transient change of luminance
increases the inhibitory conductance of layer 2/3 neurons without
a change in the excitatory conductance12. Consistent with the

Fig. 6 Cortical mechanism achieving processing of object surface and edge. a Illustration of two possible models for the generation of surface responses
in the output layer. Model A (upper panel), neuronal responses in the output layer are generated by pooling excitatory projections from the V1 input layer.
Model B (lower panel), neuronal responses in the output layer are generated by combining the excitations and nonlocal inhibitions in the output layer.
b Performance comparison for explaining the neuronal response in the output layer between model A (x-axis) and model B (y-axis). n= 45 sites from
output layers 2, 3 and 4B (same for c–h). c Performance improvement from model A to model B. ***p < 0.001; n.s.: p= 0.471, two-sided paired t-test. Bars
(in c–g) present mean of corresponding values across sites (±s.e.m.), with individual data superimposed (n= 45). d, e Predicted surface suppression
(d) and edge suppression (e) from the two models. ***p < 0.001; n.s.: p= 0.2806 (in d) and p= 0.0973 (in e); two-sided paired t-test. f Nonlocal inhibition
strengths for edge (open bars) and surface responses (filled bars) to black (black bars) and white square (white bars). Surface response to a white surface
has the strongest inhibition. ***p < 0.001; n.s.: p= 0.9412; two-sided paired t-test. g Spatial extension for pooled excitation (red bars) and nonlocal
inhibition (blue bars) for the black and white signal. ***p < 0.001, two-sided paired t-test. h Model performance with constraints for different spatial ranges
of inhibition. Error bars show s.e.m. across sites. Source data are provided as a Source Data file.
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morphologic evidence that inhibitory neurons in layer 4 of V1
can supply feedforward inhibition to layer 2/3 neurons48, the
work of Tucker and Fitzpatrick (2006)12 suggests that luminance-
evoked inhibition is triggered by feedforward inhibitory projec-
tions. The significant correlation between neural activity in the
input layer and the cortical inhibition in layer 2/3 (r= 0.52,

p < 0.01) suggest that feedforward inhibition is a possible source.
However, this significant interlaminar correlation also supports
the scenario in our model that V1 input layer directly drives
excitation and indirectly drives inhibition through nonlocal
integration in output layers. Our study suggests that the spatial
range of cortical inhibition is much larger than the V1 receptive
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field size and the spatial scale of feedforward projections49. More
importantly, the inhibition scale is comparable to the extra-
classical receptive field size of V1 neurons50, suggesting that long-
range horizontal and feedback mechanisms in V1 output layers
might engage in the integration of edge and surface signals51–53.
The inhibition in our present model is generated by pooling a
range of neural activity in cortical space without distinguishing
edge responses or surface responses. A further study on inhibition
as a function of square sizes is worth doing in order to differ-
entiate the inhibitory modulations from stimulus surface
and edges.

Consistent with previous studies47,54, we also found that cor-
tical inhibition elicited by a white surface is not only stronger
than that elicited by a black surface but also has a wider spatial
range. The greater inhibition driven by a white surface is con-
sistent with the enhanced black dominance of surface responses
in the V1 output layers. This suggests that, besides pre-cortical
mechanisms43,55,56, cortical inhibition might also contribute to
V1 black dominance17,40,47,57. However, our current study was
neither designed nor equipped to explore the cognitive con-
sequences of luminance-dependent inhibition or black/white
asymmetry. Further study of complex stimuli with different
shapes58 and luminance would be worth doing.

Consistent with the textbooks, we confirmed the idea that edge
responses carry information about surface luminance. What is
astonishing is that the advantage of edge-based luminance
encoding emerges in V1 output layers. Although the center-
surround receptive field structure of neurons at the pre-cortical
stage—retina and LGN—can enhance the strength advantage of
the edge response, it is not enough to cause the domination of
edge response in the expression of surface luminance. Here, we
found that luminance information is redistributed from surface
response to edge response within V1 cortex. A considerable
number of studies on the primary visual cortex of human8,59–62,
cat63,64, and monkey7,13,65–67 reported that there are retinotopic
signals in response to the perception of surface luminance. How
surface luminance perception is computed from the cortical
population response is still unclear. There are several theoretical
hypotheses6,68,69, but they lack direct neuronal evidence. Using a
decoding approach, we demonstrated the contributions of surface
and edge response in surface luminance coding: luminance
information was mainly coded by surface responses in the input
layer but was better coded by edge responses in V1 output layers.
Also, we found that the influence of surface response on lumi-
nance recognition did not increase with time (Fig. 4a), indicating
that functional ‘filling-in’ in V1 is not used to represent surface
luminance.

Our results suggested that cortical inhibition causes the
redistribution of luminance information to the neurons in layers
2/3 that respond to edges. Nonlocal inhibition and feedforward
excitation construct a center-surround antagonistic structure.
This structure reduces the redundant luminance information
retinotopically carried by the surface response and integrates the
information into the edge response. The center-surround antag-
onism illustrated in our work is consistent with the optimal

decoder modeled in the V1 superficial layers by Chen, Geisler
et al.70. The advantage of their proposed decoder is that it
removes the spatial correlation of group responses. Since the data
used in our decoder were not recorded simultaneously, they were
not spatially correlated. Therefore, we could not estimate the
improvement of luminance coding efficiency by the nonlocal
inhibition alone. More work should be done by simultaneously
recording neuronal responses across a large spatial scale to
answer the question.

What effect do surface responses have on perception or cog-
nition? Our study shows that surface responses are not well
correlated to edge responses (Supplementary Fig. 4), and lumi-
nance information carried by responses to surface and edge are
not the same (Supplementary Fig. 5). These results support the
idea that the surface responses provide a distinct driving force
and visual information to downstream neurons for visual
cognition58,71. Recent V4 studies58,71 have shown that edge and
interior surface information are indeed maintained in parallel
until the midlevel visual representation. Our study focused on the
neural representation of surface luminance for simple objects
(squares with uniform luminance); however, surface luminance
for complex objects58 and other information (such as textures and
colors) about objects’ surfaces71 were not included in the study.
How do surface and edge information combine/interact for object
recognition in complex scenes needs further research4. The faster
reading of location information relative to luminance information
in our study (Supplementary Fig. 6) indicates that object shape
might be used as the initial cue in object detection39, even though
the surface response might be faster than the edge response
(Supplementary Fig. 9).

Previous literature considered the facilitation of surface
response as a filling-in signal following edge responses. In the
present work, we observed the filling-in signal in both input and
output layers and suggested that it doesn’t propagate from the
edges. Then we have to ask, how does the ‘filling-in’ like reaction
pattern take place? It may trace back to LGN. Plenty of evidence
from different species showed rebound (or late increment) in
LGN response72–75. Research on mice using the silencing method
confirmed that the later rebound in V1 response was initiated in
LGN but not caused by feedback from higher visual areas to V174.
Considering this work, we thought the rebound response
observed here might be driven by afferent signals from LGN. The
generation of a rebound signal in LGN was thought to rely on
characteristics of relay cells in LGN76. Since 40% of the total
synapses in LGN are contributed by corticothalamic projection
from V1 layer 677, the thalamocortical loop may also contribute
to the generation of the rebound response in LGN.

Do cortical connections further facilitate surface responses in
the output layers? Recurrent networks across different layers in
V1 may amplify feedforward signals through neural oscillation
there78. We noticed that there was a strong correlation between
surface response enhancement in layer 3 and layer 5. However,
our present model without this possible recurrent facilitation can
already predict surface response in layers 2 and 3. Furthermore,
our data and model results indicated that the main cortical effect

Fig. 7 The cortical mechanisms for switching coding strategy of surface luminance. a Population-averaged dynamic response (shading for ±s.e.m.) to
surface (upper row) and edge (lower row) of black and white squares in L4C (first column), in model A for L2/3 (second column), in model B for L2/3
(third column), and in L2/3 (fourth column). b Decoding performance for surface luminance under the 4 conditions in a. The number of sites for each
decoder was kept constant at 32. ***p < 0.001, two-sided paired t-test. Bars show mean accuracy across populations (±s.e.m., n= 50), with individual data
superimposed. c Schematic illustration for changes of neuronal responses and coding strategy for luminance information. Neurons in L2/3 integrate pooled
projection, illustrated by red arrows, from L4C in a small cortical range and are modulated by inhibition, shown by blue arrows, in a more comprehensive
cortical range. The surface luminance information was illustrated by purple color in the ‘luminance information’ column. Source data are provided as a
Source Data file.
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on surface processing was the initial inhibition shortly after sti-
mulus onset, as mentioned above, and its later facilitation was not
as significant as that in the edge response. Therefore, we specu-
lated that instead of the surface response, edge response in the
output layer received functionally significant cortical facilitation.

Methods
Preparation and behavior task. All experimental procedures were conducted in
compliance with the National Institutes of Health Guide for the care and use of
laboratory animals and were approved by the Institutional Animal Care and Use
Committee of Beijing Normal University. Five male adult rhesus monkeys were
used in this research. Monkeys were implanted with a titanium head post and a
recording chamber placed over the primary visual cortex under general anesthesia
surgery as described previously. The animals were trained to fixate within a win-
dow of 2 degree centered on a 0.1 degree fixation point (FP) displayed in the center
of the screen. We recorded eye movements using an infrared tracking system
(ISCAN). A trial began when a monkey began fixation. A trial began with the FP
flashed on the gray background, and the monkeys started the trial when they keep
fixating on the FP. After 200 ms of fixation, the stimulus was displayed for around
3–4 s, followed by a blank interval of 300 ms. After FP disappeared, the animal
received a drop of water as a reward. A trial was aborted if the animals fail to
maintain fixation during stimulus presentation.

Electrophysiological recording. We used a linear electrode array (U-probe,
Plexon; 24 recording channels spaced 100 um apart, each 15 um in diameter) to
record neuronal activity simultaneously from different cortical depths of the pri-
mary visual cortex. The linear array was inserted into the cortex on each day of
experiments under the control of a microelectrode drive (NAN Instruments), and
its depth was adjusted to extend through all V1 layers. Electrical signals from
electrodes were amplified and digitized with a multichannel recording system
(Blackrock Microsystems). The local field potential is defined as the low-pass-
filtered (300 Hz) signal, and multiunit activity (MUA) is detected by applying a
voltage threshold with a signal-to-noise ratio of 5.5 on the high-pass-filtered
(1000 Hz) signal.

Visual stimulation. Visual stimuli were presented on a 22-inch CRT monitor
(Dell, P1230, 1200 × 900 pixels, mean luminance 45.8 cd/m2, 100 Hz refresh rate;
the display color look-up table was calibrated to be linearized.). The viewing dis-
tance for monkeys was 114 cm. Four types of stimuli were used.

Sparse noise and random orientation presentations were used to measure the
basic features of recorded neurons and align laminar positions. RF location and
orientation selectivity were captured with sparse noise and random orientation
described previously25. Briefly, for RF mapping, we obtained a two-dimensional
map of each channel with sparse noise and fitted averaged response of each map
with a two-dimensional Gaussian function to estimate the center position and
radius of each RF (σ of Gaussian function). RFs of neurons in this research were
located within 5° of the fovea. For orientation selectivity measuring, we got
orientation tuning curves with grating patterns (4° in diameter) of different
orientations randomly flashed on the center of RFs. Then we fitted tuning curves
with the von Mises function (Khatri and Mardia, 1977) and used the fitted tuning
curves (spaced from −90° to 90°, at 1° interval) to estimate the ratio of orthogonal
responses and preferred responses (O/P ratio).

Black and white squares presented for 300 milliseconds were used to measuring
neural response to stimulus edge and surface and for the decoding analyses. Black
and white squares sized 4 × 4° (at least six times larger than the RF of layer 4Cα for
most probe placements) were presented against a gray background (luminance
45.8 cd/m2) for 300–500 ms and followed by 500 ms ‘blank’ (defined as uniform
frames with the same luminance as the gray background). The luminance of the
white and black squares was adjusted to generate the same contrast magnitude
relative to the gray background (0.9). The distance of the square center relative to
the RF center was randomly chosen from 0 to 4°. The spatial range of all squares
allowed us to measure neural responses on the square edge, square center, and
outside the square. There were 6–10 prepared square images shown on each trial
based on trial length (Fig. 1a). Each trial displayed one segment until all segments
were used. There were at least 50 repetitions of each square image.

Black and white squares or frames presented for 20 milliseconds were used to
measure the detailed dynamics of edge and surface response and signal
transmission model prediction. Square or frame images sized 4 × 4° were presented
one by one against the gray background for 20 ms of duration. Images of black and
white squares are the same as the above-described ones in the sustainedly presented
experiment. Images of black and white frames have the same size of squares; the
frame edge’s width is 0.2 degree. All of the square images, frame images, and blanks
(10% of all stimuli) were randomly chosen and consisted of a sequence. Again,
there were at least 50 repetitions of each stimulus.

Laminar alignment. The detailed method of laminar alignment is described in the
previous literature25. Briefly, we align the relative depth of each placement based on
signatures of current source density (CSD)35,36 pattern (calculated from LFP) and

MUA pattern driven by visual stimuli mentioned above. The signatures contain the
depth of the earliest current sink in CSDs, the depth of polarity inversion in CSDs,
and the shallowest depth of the channel exhibiting visually-driven spiking
responses. These signatures are similar between responses driven by different sti-
muli we used in this research and are reliable in defining boundaries between
layers. Segregation of layers also refers to previous anatomic studies on the
changing of orientation tuning and RF locations25.

Surface and edge response. Given the original MUA response for a square
stimulus is a four dimension matrix: R(x,y,l,τ), x and y represents the square
center’s spatial location relative to the RF center, l represent the luminance of the
square, τ= 0 represent the onset time of the stimulus. We defined a site’s absolute
response to the square edge as follows:

Ar edgev l; τð Þ ¼ ∑
1:7< xj j<2:3

∑
yj j<0:5

Rðx; y; l; τÞ ð1Þ

Aredgeh l; τð Þ ¼ ∑
xj j<0:5

∑
1:7< yj j<2:3

Rðx; y; l; τÞ ð2Þ

Ar_edgev defined MUA response to vertical edges of the square, and Ar_edgeh
defined MUA response to horizontal edges of the square. We chose the one with
the larger response amplitude from Ar_edgev and Ar_edgeh to represent edge
response. We described a site’s absolute response to the square surface as:

Ar surface l; τð Þ ¼ ∑
xj j<0:5

∑
yj j<0:5

Rðx; y; l; τÞ ð3Þ
We then defined normalized edge response and surface response, respectively,

as follows:

Redgeðl; τÞ ¼
Ar edge l; τð Þ

maxð ½Ar edge l; :ð Þ ; Ar surfaceðl; :Þ�Þ ð4Þ

Rsurfaceðl; τÞ ¼
Ar surface l; τð Þ

maxð ½Ar edge l; :ð Þ ; Ar surfaceðl; :Þ�Þ ð5Þ

The relative response strength R_edge and R_surface have values from 0 to 1,
which let us compare the surface and edge, black and white response across
different layers regardless of each site’s absolute responses.

We used the signal/noise ratio (SNR) of the MUA response to determine
whether or not a recording site had a reliable response to a square surface or edge.
We defined SNR as follows:

SNR edge ¼ varðRedgeð signal timeÞ Þ
varðRedgeð blank timeÞ Þ ð6Þ

SNR surface ¼ varðRsurfaceð signal timeÞ Þ
varðRsurfaceð blank timeÞ Þ ð7Þ

Where signal_time is 0–300 ms after the stimulus onset and blank_time is 0–50 ms
before the stimulus onset. And we defined a site with SNR larger than 3 to have a
reliable response to the stimulus. Response sustainability is represented by the
sustain index (SI). SI is determined as a ratio of the integrated response during
120–200 ms after stimulus onset to the integrated response during 40–200 ms after
stimulus onset. SI close to 1 indicates a later increase/sustain for the response, and
SI close to 0 indicates a strong decrease/adaptation for the response.

Surface luminance decoding. We made a linear regression between the popula-
tion response and the corresponding stimulus’s luminance to get the weight matrix
of the decoder. The population response matrix is defined as X, X= (X1, …, XN)T,
where Xi is a m (m is total number of trials) by 1 vector of the MUA response of
neuron i averaged in a chosen time bin, and N is the number of neurons in the
population. We aggregated all the data together for the decoding operation. We
trained the linear regression model to fit population response to the square
luminance:

L ¼ XWþ w0 ð8Þ
where L is a #trials by 1 vector of square luminances, W is an N by 1 vector of
weights, and w0 is a #trials by 1 vector of scalar affine terms. The weight matrix (W
and w0) of the decoder were optimized to minimize the mean square error (MSE)
between the estimated luminance and the actual luminance, by fminunc function
in Matlab.

J ¼ 1
m

∑
m

i¼1
ðYi � LÞ2 þ λ

m
Wj j ð9Þ

Here, we used an L1 regularization term to minimize the obtained weights and
prevent overfitting. We randomly separated the dataset into a training set (60%), a
validation set (15%) and a test set (25%). The regularization parameter (lambda)
was chosen as the one that gave the lowest MSE in the cross-validation test among
20 lambda values equally spaced (logarithmically) between 0.001 and 40 (Supple-
mentary Fig. 10). The main results shown in this paper are based on the reg-
ularization parameter at 0.7 for all sites.
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The decoder’s accuracy for luminance discrimination was calculated with
ranking performance for predicted luminances. We randomly sampled a predicted
luminance value from each of the three stimulus conditions (black, white and gray)
and ranked the three values. The smallest value was marked as black, the middle
ones as gray, and the largest ones as white. If the ranking order of the sample set is
consistent with the true order of stimulus luminances, the result of the luminance
decoding of the sample set is correct, otherwise, it is wrong. We repeated this
procedure 1000 times with a bootstrap method and calculated decoding accuracy as
the ratio of correctly ordered sample sets out of the total number of sample sets.
The performance of cross-validation under optimal regularization parameter is up
to 86% accuracy on average. We also trained a decoder with nonlinear processing
after linear regression (linear-nonlinear (LN) decoder), and found no increase in
the decoder performance (Supplementary Fig. 11), so we only report the result
using the linear decoder.

To test the performance of the optimal decoder as a function of time, we binned
the neuronal response at a resolution of 50 ms and estimated the decoder
performance over time. We simultaneously trained the decoder separately on each
50 ms time bin, or uniformly using response cumulated in the whole trial, and
found no significant difference in temporal performance between these two
methods. The chosen time bin for training in Fig. 4 is selected at the period of
40–250 ms after stimulus onset and tested on MUA response averaged in serial
50 ms time bin from −50 to 250 ms relative to stimulus onset.

Location decoding. We built a logistic regression model to decode each stimulus’s
location (edge or surface), with the same population responses for the luminance
decoder (see Supplementary information). The population response matrix is X,
the same as the matrix used in luminance decoding. The units in the X are either all
edge response or all surface response. The logistic regression model to fit popu-
lation response to the square location is as follows:

P location is edgejX� � ¼ 1
1þ eXWþw0

ð10Þ

Here, W is an N by 1 vector of weights. When p ≥ 0.5 the population are predicted
to be driven by stimulus edge, when p < 0.5 the population are predicted to be
driven by stimulus surface. We trained the decoder by optimizing the weight
matrix (W) to minimize the loss function (Eq. 11).

J ¼ � 1
m

∑
m

i¼1
ðYiln Pð Þ þ ð1� YiÞlnð1� PÞÞ

� �
þ λ

2m
Wj j ð11Þ

Here, Y is an M by 1 vector representing the location of the stimulus, with 1 being
edge and 0 being surface. We used an L1 regularization term to minimize the
obtained weights and prevent overfitting. We randomly separated the dataset into a
training set (60%), a validation set (15%) and a test set (25%). The regularization
parameter (λ) was chosen as the one that gave the lowest MSE in a cross-validation
test among 20 lambda values equally spaced (logarithmically) between 0.001 and
40. We used the fminunc function in Matlab to train the decoder. The results
shown in this paper (Supplementary Fig. 6) are based on the regularization
parameter at 0.1 for all sites.

Model fitting and evaluation. We designed signal transmission models to
simulate cortical processing for surface and edge response at the V1 output layer.
We build models to fit response time courses of the output layer with data of the
input layer and parameterized signal transmission procedure. One model is based
on feedforward projections from the input layer (Fig. 6a, the upper panel). The
predicted surface or edge response at the output layer is as follow:

Routputlayer i; τð Þ ¼ E i; τð Þ ð12Þ
The dynamic neural response depends on excitation input, E(i,τ), i is the location
of the RF center of the neuron. The excitatory inputs are driven by feedforward
input,

E i; :ð Þ ¼ Efeedforward i; :ð Þ � KernelE;i ´w
E
i ð13Þ

Efeedforward i; τð Þ ¼ ∑
end

j¼1
Rinputlayer j; τ

� �
´ exp

� j�ið Þ2
2´ σ2

� � !

ð14Þ

Here the feedforward excitation is a weighted summation of MUA in layer 4Ca and
layer 4Cb, Rinputlayer ¼ RL4Cα ´ ai þ RL4Cβ ´ bi . The pooling rule of feedforward
excitation is simulated as a gaussian function centered at the location i, the sigma of
gaussian function predicted the pooling range. Parameter w is the gain of signal,
which can be different between surface and edge signal. Kernels in the function
indicated a signal transfer function, defined as:

Kernelk;i ¼ exp

� log tð Þ�delayk;ið Þ2
2 ´ sigma2

k;i

� �

ð15Þ

The k represents the connection types contain E, I (E refer to excitation, I refer to
inhibition, model A only has type E).

The other model is an interactive signal processing model (Fig. 6a, the lower
panel). This model added inhibitory connections in the output layer. In this model,

the excitatory feedforward inputs are combined with intralaminar inhibitory
modulation:

Routputlayer i; τð Þ ¼ E i; τð Þ � Iði; τÞ ð16Þ

I i; :ð Þ ¼ Iintralaminar i; :ð Þ � KernelI;i ´w
I
i ð17Þ

The strength of horizontal modulation is simulated as a gaussian function centered
at location i; the sigma of gaussian function predicted the range of horizontal
influence.

Iintralaminar i; τð Þ ¼ ∑
end

j¼1
Rinputlayer j; τ

� �
´ exp

� j�ið Þ2
2´ σ2

� � !

ð18Þ

The goodness of fit is evaluated as:

goodness of fit ¼ 1� 2 �∑T
τ¼1 Rdata τð Þ � Rfit τð Þ� �2

T � var Rdata

� �þ var Rfit

� �� �

 !

� T � 1
T � pn

ð19Þ

pn is the number of free parameters. We optimized model parameters to minimize
the mean square error (MSE) between the estimated response time course and the
actual response time course of the output layer, with fmincon functions written in
matlab.

Simulation. We first estimate the parameters in Eqs. (10–14) with 300 ms flashed
square data and simulated two groups of data associated with different cortical
processing with the obtained parameters and neuronal responses in the input
layer. One simulation includes only feedforward excitation, and another consists of
both feedforward and intralaminar inhibition. Then we added trial-by-trial noise
on the simulated data sets to get population response consisting of numerous
single trials. The noise we added is a Gaussian-distributed random variable that is
independent across trials and with a standard deviation consistent with that of the
real data.

Statistics. To test the statistical significance of the difference between two groups
of data we performed two-sample paired t-tests (e.g., S/E ratio between two periods
of time, fitting goodness of two models) and unpaired t-tests (e.g., compare
luminance decoding accuracy between different layers). To test whether filling-in
indexes in multiple layers were significantly different, we performed one-way
ANOVA for the multiple comparisons (see Supplementary Fig. 3). In order to
confirm that the difference in decoding accuracy was stable, we used a bootstrap
method during data training. We randomly selected N sites from all sites for
decoding training, and repeated such operation several times. The multiple results
are then subjected to paired or unpaired t-tests. To test the correlation between two
groups of data we performed Pearson correlation. All error bars and measures of
dispersion represent mean ± s.e.m unless indicated otherwise. All statistical tests
are paired two-sided t-tests, except where noted.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data for Figs. 1–7 and Supplementary Figures are provided as a source data file.
The dataset underlying the results described in our manuscript can be found in https://
github.com/aileenyangyi/surface-luminance-coding-in-V1. Source data are provided
with this paper.

Code availability
Custom MATLAB functions and scripts used to produce the results presented in this
study are publicly available via GitHub: https://github.com/aileenyangyi/surface-
luminance-coding-in-V1.
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