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One-step synthesis of sequence-controlled
multiblock polymers with up to 11 segments from
monomer mixture
Xiaochao Xia 1,2✉, Ryota Suzuki3, Tianle Gao3, Takuya Isono 2✉ & Toshifumi Satoh 2✉

Switchable polymerization holds considerable potential for the synthesis of highly sequence-

controlled multiblock. To date, this method has been limited to three-component systems,

which enables the straightforward synthesis of multiblock polymers with less than five blocks.

Herein, we report a self-switchable polymerization enabled by simple alkali metal carboxylate

catalysts that directly polymerize six-component mixtures into multiblock polymers con-

sisting of up to 11 blocks. Without an external trigger, the catalyst polymerization sponta-

neously connects five catalytic cycles in an orderly manner, involving four anhydride/epoxide

ring-opening copolymerizations and one L-lactide ring-opening polymerization, creating a

one-step synthetic pathway. Following this autotandem catalysis, reasonable combinations of

different catalytic cycles allow the direct preparation of diverse, sequence-controlled, mul-

tiblock copolymers even containing various hyperbranched architectures. This method shows

considerable promise in the synthesis of sequentially and architecturally complex polymers,

with high monomer sequence control that provides the potential for designing materials.

https://doi.org/10.1038/s41467-021-27830-3 OPEN

1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China. 2 Division of Applied Chemistry, Faculty of
Engineering, Hokkaido University, Sapporo 060-8628, Japan. 3 Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-
8628, Japan. ✉email: xiaxiaoc@cqut.edu.cn; isono.t@eng.hokudai.ac.jp; satoh@eng.hokudai.ac.jp

NATURE COMMUNICATIONS |          (2022) 13:163 | https://doi.org/10.1038/s41467-021-27830-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27830-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27830-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27830-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27830-3&domain=pdf
http://orcid.org/0000-0001-5764-0293
http://orcid.org/0000-0001-5764-0293
http://orcid.org/0000-0001-5764-0293
http://orcid.org/0000-0001-5764-0293
http://orcid.org/0000-0001-5764-0293
http://orcid.org/0000-0003-3746-2084
http://orcid.org/0000-0003-3746-2084
http://orcid.org/0000-0003-3746-2084
http://orcid.org/0000-0003-3746-2084
http://orcid.org/0000-0003-3746-2084
http://orcid.org/0000-0001-5449-9642
http://orcid.org/0000-0001-5449-9642
http://orcid.org/0000-0001-5449-9642
http://orcid.org/0000-0001-5449-9642
http://orcid.org/0000-0001-5449-9642
mailto:xiaxiaoc@cqut.edu.cn
mailto:isono.t@eng.hokudai.ac.jp
mailto:satoh@eng.hokudai.ac.jp
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Copolymers are long macromolecular chains composed of
at least two monomers of different chemical natures. High
monomer-sequence regulation enables effective control of

structure–property relations of copolymers so that precise
sequence-controlled polymers may be endowed with novel
properties or functions1–3. In this context, considerable efforts
have been made on the development of various synthetic meth-
ods, including “click” reactions4,5, sequential monomer
addition6–8, and solid-phase synthesis9–11. Although these stra-
tegies have made significant progress for the synthesis of
sequence-controlled block polymers, they are hampered by dis-
advantages, such as being extremely complex and time-consum-
ing, as well as iterative monomer attachment/deprotection. This
increases costs and often leads to poor yields, thereby making it
challenging to expand their application12–14.

“Switchable polymerization” has been exploited for the spon-
taneous, selective transformation of a monomer mixture into a
sequence-controlled block copolymer in one synthetic step,
thereby overcoming the disadvantages of conventional
procedures15–29. Such a catalytic system bridges two catalytic
cycles among ring-opening copolymerization (ROCOP) of
anhydrides or carbon dioxides/epoxides and ring-opening poly-
merization (ROP) of cyclic esters or epoxides (Fig. 1a)15–17.
Therefore, switchable polymerization shows unprecedented
advantages, including applicability to numerous commercially
available, industrially relevant monomers30–33, and enabling the
synthesis of diverse, functional, and sequence-controlled multi-
block polymers26,34,35. Switchable catalysis has been applied to
various metal-complex catalysts and organocatalysts, where the
initial anhydride or carbon dioxide/epoxide ROCOPs were fol-
lowed by the ROPs of cyclic esters, forming various block
polyesters15–17,25,27,36–39. Most of these prior studies were mainly
limited to di- or triblock copolymers, and one-step preparation of
longer block sequences was rarely performed. Recently, Williams
et al. developed a cocatalyst system (a Cr(III) salen complex,
[SalcyCrCl]; bis(triphenylphosphoranylidene)ammonium chlor-
ide, PPNCl) that exploited mechanistic switches between an
anhydride/epoxide ROCOP, epoxide ROP, and a lactone ROP,
resulting in the one-step synthesis of ABCBA-type pentablock
terpolymers26. Although this catalytic system has shown extra-
ordinary performance in the synthesis of well-controlled multi-
block polymers, it remains limited to a three-component system.

Previously, we explored alkali-metal carboxylate catalysts to
develop a self-switchable polymerization system for the copoly-
merization of epoxides, cyclic anhydrides, and cyclic esters. This
green, biocompatible, low-cost catalytic system spontaneously
combined epoxide/cyclic anhydride ROCOP and cyclic ester ROP
to produce various well-defined multiblock polyesters35. In this
study, the self-switchable polymerization is expanded from a
three- to a six-component system, wherein the catalyst sponta-
neously links five catalytic cycles, involving four ROCOPs of
anhydrides/epoxides and one ROP of cyclic esters. This results in
a one-step synthetic pathway for preparing multiblock polymers
consisting of up to 11 blocks (Fig. 1b). Conventional switchable
catalysis indicates a high kinetic favorability for anhydride/
epoxide ROCOP relative to lactide (LA) ROP, resulting in the
ROCOPs of anhydrides/epoxides occurring prior to the ROPs of
cyclic esters. In our catalytic system, the polymerization order is
manipulated by facile-controlling the differences in reactivities
between LA and cyclic anhydrides (Fig. 1b).

Results
Polymerization of two anhydrides and an epoxide. Initially,
ROCOP within a mixture of diglycolic anhydride (DGA) and 5-
norbornene-endo-2,3-dicarboxylic anhydride (NA) with ethyl

glycidyl ether (EGE) was performed using cesium pivalate (t-
BuCO2Cs) and 1,4-benzenedimethanol (BDM) as the catalyst and
bidirectional initiator, respectively, to evaluate the possibility of
sequential incorporation. The initial attempt led to a sequence-
defined, ABA-type, triblock copolymer rather than a random copo-
lymer. Initially, the ROCOP of DGA/EGE occurs, as shown by the
decrease in the 1H nuclear magnetic resonance (NMR) signals
representing DGA at 4.43 ppm (Supplementary Fig. 1, proton 3′) and
appearance of 1H NMR signals representing P(DGA-alt-EGE) at
5.29−5.20 (Supplementary Fig. 1, proton 5) and 4.27−4.22 ppm
(Supplementary Fig. 1, proton 3). Concurrently, the peak at
6.37−6.13 ppm (Supplementary Fig. 1, proton 12) does not appear,
and the signal at 6.30 ppm (Supplementary Fig. 1, proton 12′ of NA)
remains unchanged, indicating that NA is unreacted, without any
trace of P(NA-alt-EGE) formation. The ROCOP of NA/EGE com-
mences after DGA is completely consumed (3.7 h, % DGA Conv. >
99; % NA Conv.= 0), finally forming P(NA-alt-EGE)-b-P(DGA-alt-
EGE)-b-P(NA-alt-EGE) triblock copolymers (entry 1 in Table 1 and
Supplementary Figs. 1 and 2), and signals associated with both block
sequences were observed in 1H, 13C, and 2D NMR spectra (Sup-
plementary Figs. 3–5). The formation of triblock copolymers rather
than blends of P(NA-alt-EGE) and P(DGA-alt-EGE) is further
demonstrated using diffusion-ordered NMR spectroscopy (DOSY),
which shows only one diffusion coefficient (Supplementary Fig. 6).
Notably, no P(NA-alt-EGE) is inserted into the P(DGA-alt-EGE)
block, even though the former forms significantly faster than the
latter. Size-exclusion chromatography (SEC) reveals a monomodal
molecular weight distribution (Ð= 1.37, entry 1 in Table 1 and
Supplementary Fig. 7). Therefore, the polymerization system shows
an ideal chemoselectivity.

Mechanistic studies. In our previous study, the perfect alternat-
ing structure of copolymers from ROCOP has been confirmed by
using 1H NMR, 13C NMR, and MALDI-TOF MS characteriza-
tion. The reactivity difference among anhydride, epoxide, and
cyclic ester and a multiactivation mechanism in an alkali metal
carboxylate catalytic system has been illustrated in detail35.
Supported by these, a chemoselective mechanistic pathway for
terpolymerization from the mixture of DGA/NA/EGE is pro-
posed in Fig. 2. Because DGA is far more reactive than NA, as
shown by the 1H NMR spectra in Supplementary Fig. 8, the
activated DGA is more prone to nucleophilic attack from the
cesium pivalate-activated hydroxyl group relative to the activated
NA. The resulting carboxylate species from the ring opening of
DGA reacts with the cesium cation-activated EGE, forming a
copolymer with an accurately alternating chemical structure.
When the DGA is completely consumed, the termini of P(DGA-
alt-EGE) are occupied by hydroxyl groups, eventually inducing
the ROCOP of NA/EGE in a similar manner and forming a tri-
block copolymer. The nonterminal model yielded reactivity ratios
of rDGA = 827.46 ± 50.30 and rNA = 0.0036 ± 0.0006 (Supple-
mentary Fig. 9). On the basis of these reactivity ratios, we con-
cluded that the resultant polymers were most consistent with a
nearly perfect triblock copolymer. Due to k1 ≫ k4 which was
reported by Coates and Williams et al.22,35,40–42, the slow inser-
tion of epoxides is the rate-determining step for polyester for-
mation (Supplementary Fig. 10).

Combinations of various ROCOPs. Based on the initial findings,
a series of experiments were conducted to evaluate the reactivity
ratio of the anhydrides (Supplementary Figs. 8, 9, and 11–14),
and the reactivity trend determined as DGA≫ SA≫NA≫
DPMA (Supplementary Fig. 15). Hence, the length of sequence-
defined multiblock polymers can be simply and flexibly adjusted
by controlling the number of catalytic cycles in the self-switchable
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polymerization, thereby overcoming the limitations of di- or
triblock copolymers (Fig. 3). This is demonstrated by poly-
merization within a mixture of DGA/SA/NA/DPMA/BO with a
BDM initiator, which produces heptablock polymers via a one-
step procedure. Based on the evolution of the 1H NMR spectra
(Supplementary Fig. 16), the reaction progresses in four stages:
first, DGA is consumed with increasing reaction time and is
finally completely consumed, as shown by the disappearance of
the 1H NMR signals at 4.43 ppm representing DGA, while the
broad signals representing the P(DGA-alt-BO) block appear at
5.11−5.02 (proton 5, Supplementary Fig. 16) and 4.27−4.22 ppm

(proton 3, Supplementary Fig. 16). After complete consumption
of DGA, the 1H NMR signals at 3.01 ppm representing SA begin
to decrease, reaching at 2.69–2.58 ppm (proton 8, Supplementary
Fig. 16) representing P(SA-alt-BO). This indicates the com-
mencement of ROCOP of SA/BO, thereby forming the P(SA-alt-
BO) block. Upon almost 99% conversion of SA, the ROCOP of
NA/BO consumes NA, which is confirmed by the 1H NMR sig-
nals diminishing at 6.30 ppm representing NA and instead
occurring at 6.37−6.13 ppm (proton 14, Supplementary Fig. 16)
representing P(NA-alt-BO). After NA is completely consumed,
the distinct doublets at 6.08 and 6.00 ppm representing the
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Fig. 1 One-step synthesis of multiblock polymers from a monomer mixture. a Previous strategies are only applicable to three-component monomer
mixture. b The strategy presented in this paper provides multiblock polymers from six-component monomer mixture. L-LA L-lactide, DGA diglycolic
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PEG2000 polyethylene glycol (molecular weight= 2 kDa). Pink: anhydride. Red: carbon dioxide. Blue: epoxide. Green: cyclic ester.
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disappeared DPMA, are replaced by a broad signal at
6.12–5.96 ppm (protons 20 and 21, Supplementary Fig. 16) due to
the formation of the P(DPMA-alt-BO) block by the ROCOP of
DPMA/BO (Supplementary Figs. 16–19). This catalysis, involving
a five-component mixture, remains highly selective, almost
without the tapered region14,43,44, as clearly indicated by the plots
of monomer conversion as a function of time (Supplementary
Fig. 17). The SEC trace of the resulting polymer exhibits a well-
defined monomodal molecular weight distribution (Ð) and the
molecular weight increases continuously with monomer con-
sumption, accompanied by a narrow, unimodal distribution
(entry 2 in Table 1 and Supplementary Fig. 20), and DOSY
reveals only one diffusion coefficient (Supplementary Fig. 21),
further demonstrating a single heptablock polymer formation
rather than a blend8,45,46. Using this method, a well-defined
pentablock polymer is also successfully obtained by polymerizing
a mixture of DGA/SA/NA/EGE, which also displays a high level
of monomer-sequence control (entry 3 in Table 1, Supplementary
Tables 1 and 2, and Supplementary Figs. 22–27).

Polymerization of DPMA, EGE, and L-LA. To further increase
the diversity of multiblock polymers, the reactivities of DPMA
and L-LA were studied by incorporating L-LA into the system
through polymerization within a mixture of DPMA/EGE. Initi-
ally, we expected the polymerization to follow a conventional
pathway (Fig. 4a), wherein the initial anhydride/epoxide ROCOP
is followed by the ROP of L-LA, with propagation occurring from
the termini of the resultant alternating copolymer, finally forming
PLLA-b-P(DPMA-alt-EGE)-b-PLLA triblock copolymers21,28.
However, the evolution of the 1H NMR spectra reveals a unique
propagation pathway (Fig. 4b, entry 4 in Table 1, and Supple-
mentary Figs. 28 and 29). The ROP of L-LA occurs first, as shown
by the decrease in the 1H NMR signals at 5.08 ppm representing
L-LA and reaching at 5.27–5.09 ppm (proton 3, Supplementary
Fig. 28) representing PLLA. During this period, no broad peak is
observed at 6.12–5.96 ppm (protons 8 and 9, Supplementary
Fig. 28), and the signals at 6.08 and 6.00 ppm representing DPMA
remain unchanged, indicating that DPMA remains unreacted,
with no P(DPMA-alt-EGE) block formation. The ROCOP of
DPMA/EGE only commences after L-LA is completely consumed,
finally producing a P(DPMA-alt-EGE)-b-PLLA-b-P(DPMA-alt-
EGE) triblock copolymer (Supplementary Figs. 28–32). The
nonterminal model yielded reactivity ratios (Supplementary
Fig. 33, rL�LA = 831.91 ± 49.22 and rDPMA = 0.0069 ± 0.0002),
which confirmed that the perfect triblock copolymer should be
formed. The analysis of SEC showed that the resultant copolymer
shows ill-defined features, such as a broad monomodal Ð (1.51,
entry 4 in Table 1 and Supplementary Fig. 31). This is due to that
transesterification or back-biting reactions could occur during
polymerization for DPMA/L-LA/EGE system. ROCOP of DPMA/
BO provided a well-defined copolymer with monomodal mole-
cular weight distribution and a narrow Ð (1.16, entry 5 in Table 1
and Supplementary Figs. 34–36). The polymerization from the
mixture of DPMA/L-LA/BO was carried out at 80 °C, and the
resultant triblock polymer displayed the better controllability
(Ð= 1.35, entry 6 in Table 1 and Supplementary Figs. 37–39)
relative to DPMA/L-LA/EGE system. This result indicated that
side reactions such as transesterification or back-biting reactions
can be suppressed by lowering reaction temperature. The poly-
merization system displays an unprecedented propagation path-
way stemming from the far-higher reactivity of L-LA than that of
DPMA, with the very low reactivity of DPMA attributed to steric
hindrance. Therefore, the polymerization order can be freely
manipulated between anhydride/epoxide ROCOP and L-LA ROP
using differences in the reactivities of the monomers (Fig. 4).T

ab
le

1
T
he

se
lf
-s
w
it
ch
ab

le
po

ly
m
er
iz
at
io
ns

ca
ta
ly
ze
d
by

ce
si
um

pi
va

la
te

a .

en
tr
y

m
on

om
er
s

[a
nh

yd
ri
de

] 0
/[

L-
LA

] 0
/[
ep

ox
id
e]

0
/[
B
D
M
] 0
/[
ca
t.
] 0

T
em

p.
[°
C
]

T
im

e
(h
)

co
nv

.
b
[%

]
(a
nh

yd
ri
de

or
L-
LA

)
M

n
,t
h
.
c [
kD

a]
M

n
,N
M
R
.
b [
kD

a]
M

n
,S
E
C
d [
kD

a]
Ð

d

1
D
G
A
/N

A
/E

G
E

25
/2

5/
15
0
/2

/1
10
0

6
.5

D
G
A
>
9
9
,
N
A
=
9
2

5.
9

6
.8

5.
8

1.
37

2
D
G
A
/S

A
/N

A
/D

PM
A
/B

O
25

/2
5/

25
/1
2.
5/

25
0
/2

/1
10
0

73
D
G
A
>
9
9
,
SA

>
9
9
,N

A
>
9
9
,
D
PM

A
=
8
6

9
.2

9
.8

7.
5

1.
31

3
D
G
A
/S

A
/N

A
/E

G
E

25
/2

5/
25

/2
50

/2
/1

10
0

7
D
G
A
>
9
9
,
SA

>
9
9
,N

A
=
71

7.
7

7.
2

6
.9

1.
28

4
D
PM

A
/L
-L
A
/E

G
E

25
/5

0
/2

50
/2

/1
10
0

23
L-
LA

>
9
9
,
D
PM

A
=
8
0

6
.7

7.
2

2.
0

1.
51

5
D
PM

A
/B

O
25

/1
25

/2
/1

8
0

4
1

D
PM

A
>
9
9

3.
9

n.
d.

2.
1

1.
16

6
D
PM

A
/L
-L
A
/B

O
25

/5
0
/2

50
/2

/1
8
0

4
1

L-
LA

>
9
9
,
D
PM

A
=
4
5

5.
3

6
.4

4
.2

1.
35

7
D
G
A
/S

A
/N

A
/L
-L
A
/D

PM
A
/B

O
25

/2
5/

25
/7

5/
12
.5
/3

50
/2

/1
10
0

9
7

D
G
A
>
9
9
,
SA

>
9
9
,N

A
>
9
9
,
L-
LA

>
9
9
,
D
PM

A
=
8
6

14
.6

14
.9

6
.6

1.
51

8
D
G
A
/S

A
/N

A
/L
-L
A
/D

PM
A
/B

O
25

/2
5/

25
/7

5/
12
.5
/3

50
/2

/1
8
0

19
0

D
G
A
>
9
9
,
SA

>
9
9
,N

A
>
9
9
,
L-
LA

>
9
9
,
D
PM

A
=
76

14
.4

15
.4

8
.0

1.
4
1

9
D
G
A
/S

A
/L
-L
A
/D

PM
A
/B

O
25

/2
5/

75
/1
2.
5/

35
0
/2

/1
10
0

9
7

D
G
A
>
9
9
,
SA

>
9
9
,L
-L
A
>
9
9
,D

PM
A
=
4
1

10
.8

11
.1

6
.8

1.
23

e 1
0

D
G
A
/S

A
/N

A
/L
-L
A
/D

PM
A
/B

O
25

/2
5/

25
/7

5/
12
.5
/3

50
/2

/1
8
0

6
6

D
G
A
>
9
9
,
SA

>
9
9
,N

A
>
9
9
,
L-
LA

>
9
9
,
D
PM

A
=
9
1

16
.5

15
.5

7.
8
d ,
18
.7
f

1.
4
6

11
T
A
/N

A
/L
-L
A
/D

PM
A
/B

O
25

/2
5/

50
/1
2.
5/

35
0
/2

/1
8
0

24
T
A
>
9
9
,
N
A
>
9
9
,L
-L
A
>
9
9
,D

PM
A
=
54

.5
11
.9

12
.2

7.
7

1.
6
0

12
T
A
/N

A
/B

O
25

/2
5/

15
0
/2

/1
8
0

10
T
A
>
9
9
,
N
A
=
6
0
.5

6
.0

5.
8

4
.3

1.
6
1

13
T
A
/L
-L
A
/D

PM
A
/B

O
25

/5
0
/1
2.
5/

35
0
/2

/1
8
0

25
T
A
>
9
9
,
L-
LA

>
9
9
,
D
PM

A
=
50

8
.9

9
.3

5.
1

1.
71

a P
ol
ym

er
iz
at
io
n
co
nd

iti
on

s:
A
r
at
m
os
ph

er
e.

b D
et
er
m
in
ed

by
1 H

N
M
R
an
al
ys
is
of

th
e
ob

ta
in
ed

po
ly
m
er

in
C
D
C
l 3
.

c T
he

or
et
ic
al

M
n
va
lu
es
.

d D
et
er
m
in
ed

by
th
e
SE

C
an
al
ys
is
of

th
e
ob

ta
in
ed

po
ly
m
er

in
T
H
F
w
ith

a
PS

t
st
an
da
rd
.

e P
EG

20
0
0
is

us
ed

as
a
bi
di
re
ct
io
na
l
in
iti
at
or
.

f D
et
er
m
in
ed

by
SE

C
w
ith

m
ul
ti-
an
gl
e
lig
ht

sc
at
te
ri
ng

de
te
ct
or

(S
EC

-M
A
LS
).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27830-3

4 NATURE COMMUNICATIONS |          (2022) 13:163 | https://doi.org/10.1038/s41467-021-27830-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Combining these results with our previous work35, where the
ROCOP of NA/epoxide was kinetically preferred over L-LA ROP,
the reactivity trend is DGA≫ SA≫NA > L-LA≫DPMA. There-
fore, we used cesium pivalate as a catalyst to properly link five
catalytic cycles, involving four ROCOPs of anhydrides/epoxides
and one ROP of L-LA, to prepare sequence-defined multiblock
polymers consisting of up to nine blocks. The simultaneous
polymerization of four different anhydrides, BO, and L-LA was
monitored via the evolution of the 1H NMR spectrum (Fig. 5).
Initially, DGA/BO ROCOP forms a polyester (Supplementary
Fig. 40), followed by the serial incorporation of P(SA-alt-BO) and
P(NA-alt-BO) blocks generated by SA/BO ROCOP and NA/BO
ROCOP, respectively (Supplementary Figs. 41 and 42). After
28.7% conversion of NA, L-LA also commences reacting, leading
to a clearly tapered region (the molar mass fraction of tapered
region is 67.7%). This tapered region is reduced by lowering the
reaction temperature from 100 to 80 °C (Figs. 6a and 6b), due to

the increasing difference in the reactivities of L-LA and NA with
lowering temperature (Supplementary Figs. 43 and 44). Upon
99% conversion of L-LA (Supplementary Fig. 45), slow consump-
tion of DPMA by ROCOP of DPMA/BO occurs, finally
producing a multiblock polymer consisting of up to nine blocks.
The formation process of the multiblock polymer was also
confirmed by the evolution of the 13C NMR spectrum
(Supplementary Fig. 46). In particular, the 13C NMR signals
associated with carbonyl groups of DGA (carbon 1′), SA (carbon
7′), and NA (carbon 11′) disappeared one by one, while the 13C
NMR signals associated with carbonyl groups of P(DGA-alt-BO)
(carbon 1), P(SA-alt-BO) (carbon 7), and P(NA-alt-BO) (carbon
11) segments appeared in succession. After 43.9% conversion of
NA, the 13C NMR signals associated with carbonyl groups of L-
LA (carbon 18′) also commenced decreasing, accompanied by the
appearance of the 13C NMR signals associated with carbonyl
groups of the PLLA segment (carbon 18). During the process, the
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signals of carbonyl groups of DPMA (carbons 21′ and 34′)
remained unchanged. The proposed multiblock structure is
further demonstrated by the following. First, the 1H NMR and
13C NMR signals associated with the final multiblock structure
are clearly observed (Supplementary Figs. 47 and 48). Second, the
monomodal Ð is detected using SEC (Supplementary Fig. 49),
and the molecular weight increases continuously with monomer

consumption, accompanied by a narrow, unimodal distribution
(Ð). The Ð does not broaden until the complete consumption of
L-LA (Fig. 6c), and the increase of Ð value was observed during
the DPMA/epoxide ROCOP step. Due to the absence of new
carbonyl groups caused by transesterification side reactions
during the polymerization process (Supplementary Figs. 46 and
48), we can reasonably deduce that very slow consumption of
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DPMA by ROCOP of DPMA/epoxides leads to slow initiation,
which makes the Ð become broad. Third, only one diffusion
coefficient is observed in the DOSY of the final polymer (Fig. 6d).
Although a tapered region is formed in the multiblock polymer
due to the insufficient difference in the reactivities of NA and
L-LA, accurate sequence-defined multiblock polymers are easily
obtained by the rational design of the systems, such as DGA/SA/
L-LA/DPMA/BO or DGA/SA/NA/DPMA/BO (Supplementary
Figs. 50–54 and entry 9 in Table 1). To further increase the
diversity of the multiblock polymers, polyethylene glycol
(molecular weight Mn= 2 kDa, PEG2000) was used as a
bidirectional initiator for the polymerization of DGA/SA/NA/
L-LA/DPMA/BO. During the reaction, appropriate control is

maintained until complete insertion of L-LA. The Ð broadens
after full consumption of L-LA where the reason has been
analyzed in the DGA/SA/NA/L-LA/DPMA/BO with BDM-
initiator system, finally resulting in multiblock polymers consist-
ing of up to 11 blocks (entry 10 in Table 1, Supplementary
Tables 3 and 4, Supplementary Figs. 55–62).

One-step synthesis of a core–shell-type multiblock copolymer.
Having established a switchable polymerization system, we
investigated expanding this system to a functional anhydride,
such as trimellitic anhydride (TA). TA favors the synthesis of
core–shell-type multiblock copolymer because it has an
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additional carboxylic acid group that can act as a propagation site
for ROCOP35,47. Core–shell-type multiblock copolymer has
demonstrated several characteristics when compared with linear
polymer, including a large population of terminal functional
groups, lower melt viscosity, and better solubility48. Thus, it has
attracted more and more attention from the scientific and engi-
neering points of view. However, the synthesis of a core–shell-
type multiblock copolymer is still limited to multistep procedure.
To prepare diverse, hyperbranched architectures using the one-
step procedure, we examined the reactivity ratio of TA and NA,

and the results indicate that TA is substantially more reactive
than NA (Supplementary Figs. 63 and 64). Combined with the
obtained reactivity trend of the comonomers, the reactivity trend
is TA≫NA > L-LA≫DPMA. Thus, the polymerization system
of TA/NA/L-LA/DPMA/BO was prepared to synthesize a
core–shell-type multiblock copolymer with hyperbranched P(TA-
alt-BO) and P(NA-alt-BO)-b-PLLA-b-P(DPMA-alt-BO) as the
core and outer shells, respectively. The evolution of the complex
structure was successfully monitored using NMR spectroscopy.
As shown in Fig. 7, peaks at 8.64, 8.55, and 8.09 ppm representing
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TA clearly decrease (conversion of TA reaches 93.2% at 4 h),
while the three new peaks at 8.45−8.21, 8.21–8.00, and 7.79−7.52
ppm (protons 3, 4, and 5, Fig. 7) are observed, indicating for-
mation of a hyperbranched P(TA-alt-BO). Concurrently, NA
remains unreacted with no trace of P(NA-alt-BO) formation
because the peak at 6.37−6.13 ppm (proton 13, Fig. 7) is not
observed. The ROCOP of NA/BO commences upon 99% con-
version of TA at 5.5 h, as shown by the decrease in the peak at
6.30 ppm and the observation of a new peak at 6.37−6.13 ppm
(Supplementary Fig. 65). Upon 42.8% conversion of NA, the ROP
of L-LA commences. Upon 99% conversion of L-LA, gradual
consumption of DPMA by ROCOP of DPMA/BO occurs (Fig. 7
and Supplementary Figs. 65–69). The resultant polymer (degree
of branching of ~0.68, Supplementary Fig. 68) displays a broad
SEC trace and high dispersity (Đ= 1.60, Supplementary Fig. 70
and entry 11 in Table 1), which is likely owing to nonuniform
branching. The diffusion-ordered NMR spectrum reveals a single
diffusion coefficient for the observed signals, suggesting that only
one core–shell-type multiblock copolymer exists, not a blend
(Supplementary Fig. 71). Therefore, this catalytic system provides
an efficient, simple, one-step procedure instead of conventional
stepwise synthetic procedures for preparing core–shell-type

multiblock copolymers49–51. Furthermore, the structure of the
outer shell, particularly the number of segments, can be flexibly
regulated by rational design of the polymerization system (entries
12 and 13 in Table 1, Fig. 8, and Supplementary Figs. 72–79),
offering a simple method for creating various supramolecular
polymers.

In conclusion, a versatile, direct, one-step synthesis of a
sequence-controlled multiblock polyester of up to 11 blocks from
a six-component mixture was demonstrated. The alkali-metal
carboxylate catalyst spontaneously connected five catalytic cycles,
involving four cyclic anhydride/epoxide ROCOPs and an L-LA
ROP. Control over the monomer-incorporation sequence based
on reactivity ratio of these monomers (DGA≫ SA≫NA > L-
LA≫DPMA and TA≫NA > L-LA≫DPMA) rendered the
switchable polymerization similar to ideal examples in nature,
allowing the synthesis of different sequence-controlled multiblock
copolymers even containing various hyperbranched architectures
with the relative broad Ɖ (1.23−1.71). Although the obvious
tapered region was formed when combining L-LA and NA
because of their similar reactivity, nearly perfect multiblock
polymers can be obtained by rational combination of different
polymerization cycles. A notable advantage of this method was
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the ability to freely manipulate the polymerization order between
anhydride/epoxide ROCOP and L-LA ROP, creating a more
flexible polymerization pathway. Thus, the simple and sequence-
controlled polymerization yielded tailored functional materials
for high-value emerging applications, such as data storage,
anticounterfeiting technologies, microelectronics, and nanomedi-
cine. However, the essential factor that determined the reactivity
differences between these monomers is yet to be determined.
Ongoing studies are focusing on revealing this factor and
extending the applicability to a large library of structurally and
functionally diverse cyclic anhydrides, epoxides, and cyclic esters.

Methods
General: the self-switchable polymerization protocol. In an argon-filled glo-
vebox, the catalyst, initiator, and monomers were added to an oven-dried reaction
vessel with a magnetic stir. The reaction mixture was stirred under an argon
atmosphere in an oil bath. During polymerization, a crude aliquot was time-
regularly obtained from the system by a syringe in an argon flow and monitored by
1H NMR spectroscopy and SEC, at 30 °C using THF as the eluent and narrow
molar mass polystyrene calibrants, to determine monomer conversion and molar
mass. After the defined time, the polymerization was terminated by diluting the
reaction mixture with dichloromethane (CH2Cl2). The reaction mixture was pur-
ified by reprecipitation from a CH2Cl2 solution into cold methanol. The purified
polymers were dried under vacuum at room temperature for next analysis. A
representative procedure involved adding the mixture of cesium pivalate
(0.02 mmol, 1 equiv.), BDM (0.04 mmol, 2 equiv.), DGA (0.5 mmol, 25 equiv.), SA
(0.5 mmol, 25 equiv.), NA (0.5 mmol, 25 equiv.), L-LA (1.5 mmol, 75 equiv.),
DPMA (0.25 mmol, 12.5 equiv.), and BO (7 mmol, 350 equiv.).

Data availability
All data are available in the main text or supplementary materials. The data that support
the findings of this study are available from the corresponding authors on request.
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