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Dynamic transcriptome and chromatin architecture
in granulosa cells during chicken folliculogenesis
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Qing Zhu1 & Mingzhou Li 1✉

Folliculogenesis is a complex biological process involving a central oocyte and its surrounding

somatic cells. Three-dimensional chromatin architecture is an important transcription reg-

ulator; however, little is known about its dynamics and role in transcriptional regulation of

granulosa cells during chicken folliculogenesis. We investigate the transcriptomic dynamics

of chicken granulosa cells over ten follicular stages and assess the chromatin architecture

dynamics and how it influences gene expression in granulosa cells at three key stages: the

prehierarchical small white follicles, the first largest preovulatory follicles, and the post-

ovulatory follicles. Our results demonstrate the consistency between the global reprogram-

ming of chromatin architecture and the transcriptomic divergence during folliculogenesis,

providing ample evidence for compartmentalization rearrangement, variable organization of

topologically associating domains, and rewiring of the long-range interaction between pro-

moter and enhancers. These results provide key insights into avian reproductive biology and

provide a foundational dataset for the future in-depth functional characterization of

granulosa cells.
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The ovary is a reproductive organ in vertebrates that consists
of follicles at several different developmental stages. As the
basic unit of reproduction, ovarian follicles are composed

of a central oocyte and the surrounding endocrine cells (the inner
layer is composed of granulosa cells (GCs) and the outer layer is
composed of thecal cells). During folliculogenesis, oocytes
undergo a complex regulatory process resulting from instructive
paracrine and junctional interactions with GCs1. This relation-
ship between oocytes and GCs allows for the exchange of reg-
ulatory signaling molecules that control oocyte meiosis, cell cycle
progression, tissue morphogenesis, and cytoskeletal remodeling,
all of which are important for folliculogenesis and oogenesis2,3.

The domestic chicken (Gallus gallus domesticus), which
includes broiler (meat-producing) and layer (egg-producing)
chickens, is of enormous agricultural significance and represents a
classic model to study folliculogenesis4. Ovarian follicles in
chickens develop in a continuous and hierarchical process5 that
depends on the activation of the hypothalamic-pituitary-gonadal
axis. When hens lay eggs, the functionally mature ovary contains
hundreds of prehierarchical follicles, including small and large
white follicles (SWFs and LWFs), small and large yellow follicles
(SYFs and LYFs), 5–6 growing preovulatory follicles (demarcated
by volume sequentially as F6 or F5, F4, F3, F2, and F1), and 2–4
postovulatory follicles (POFs) that are devoid of oocytes6. They
enter the preovulatory hierarchy from the cohort of pre-
hierarchical follicles daily (~6–8 mm in diameter), after which
they are typically destined for ovulation7. Postovulatory follicles
typically disappear within several days and do not form the
corpus luteum in chickens8,9. As such, this normally rapid
degradation is required for new hierarchical recruitment and
subsequent ovulation10.

Substantial research efforts have been made to characterize
developmental alterations in the morphology and transcriptional
regulation of GCs in birds, particularly during folliculogenesis,
where there is a focus on the activation of primordial follicles or
the selection of a dominant follicle11–13. In the eukaryotic cell
nucleus, genomic DNA is highly folded and spatially organized
into a hierarchy of 3D structures, including chromosome terri-
tories, compartments, topologically associating domains (TADs),
and long-range interactions14–17, which play important roles in
transcriptional regulation18. Nevertheless, a comprehensive char-
acterization of the developmental reprogramming of chromatin
architecture associated with transcriptional regulation throughout
follicle development has not yet been performed in birds.

In this study, we investigate the transcriptomic dynamics of
chicken GCs in ovarian follicles across ten key developmental
stages and generate high-resolution chromatin contact maps for
GCs across three major developmental stages using in situ high-
throughput chromatin conformation capture (Hi-C) sequencing.
These experimental settings allowed us to conduct an integrated
analysis of chromatin structure and transcriptomic characteriza-
tion of chicken GCs associated with various physiological func-
tions during folliculogenesis.

Results
Dynamic transcriptome in GCs during chicken folliculogen-
esis. We first depicted developmental changes in the tran-
scriptome of chicken GCs through ten key folliculogenesis stages
(four prehierarchical [SWF, LWF, SYF, and LYF], five pre-
ovulatory [F5, F4, F3, F2, and F1], and one postovulatory [POF])
(Fig. 1a). We then generated a total of 812.45 Gb high-quality
bulk RNA-seq data with six biological replicates for each stage
(~13.54 Gb sequences per sample) (Supplementary Data 1). A
total of 14,418 genes (85.92% of the annotated genes in the
genome) had evident expression (transcripts per million

[TPM] > 0.5 in at least three replicates for a given stage) during
the folliculogenesis, which typically had a developmental stage-
dependent pattern and is highly reproducible within biological
replicates (Spearman’s r > 0.80) (Supplementary Fig. 1a, b).

Only half (88 genes, or ~52.38%) of the most abundant genes
(the top 1%; 168 genes) for a given stage were shared throughout
ten stages (Supplementary Fig. 1c, Supplementary Data 2). These
most abundant genes were commonly involved in metabolic and
cell adhesion processes such as peptide biosynthetic process,
cytoplasmic translation, and adherens junction, and also
specifically involved in reproductive, signaling, and localization
processes such as female gamete generation for the SWF stage, the
regulation of intrinsic apoptotic signaling pathway for the SYF
and LYF stages, and glucocorticoid response for the F1 stage
(Supplementary Fig. 1d). These results highlight the differences in
biological functions occurring in GCs during stepwise folliculo-
genesis. Additionally, we performed pairwise differential expres-
sion analysis for the 10 developmental stages (Supplementary
Fig. 1e) and found that of the four prehierarchical stages, the
comparison between SWF and POF had the greatest number of
differentially expressed genes (DEGs). For preovulatory follicles,
gene expression in the F1 stage most differed from the POF stage.
As such, we used SWF, F1, and POF to represent the
transcriptional features at the prehierarchical, preovulatory, and
postovulatory stages, respectively.

We next investigated possible developmental scenarios for gene
expression throughout folliculogenesis and identified four main
patterns involving 3669 genes using the maSigPro-GLM
algorithm19(Fig. 1b, Supplementary Data 3). We found that a
total of 3172 genes (1632 and 1540 genes in clusters 1 and 2,
respectively) were typically upregulated during prehierarchical
stages and that genes in cluster 1 are specifically upregulated
during the SWF stage (Fig. 1b). Functional enrichment analysis
using Metascape suggested that these genes are primarily involved
in cell cycle and gametogenesis processes such as cell division,
gamete generation, and spindle localization (Fig. 1c). These likely
reflect the proliferation and development of GCs in the small
white follicles. In contrast, a total of 497 genes (171 and 326 genes
in clusters 3 and 4, respectively) were typically upregulated during
preovulatory stages. Of these, the genes in cluster 4 exhibited
higher expression levels at the postovulatory stage than other
stages (Fig. 1b). The genes in cluster 3 were primarily involved in
growth and development processes, indicating that the number of
GCs responding to follicular enlargement in the first large
preovulatory follicles rapidly increased. Genes in cluster 4 were
mainly related to autophagy and proteolysis and were associated
with the degeneration of ovarian follicles caused by the apoptosis
of GCs in POF (Fig. 1c). This indicates that dynamical gene
expression in a developmental stage-dependent manner is related
to functional divergences during folliculogenesis from the
prehierarchical to preovulatory and postovulatory stages.

To accurately depict transcriptomic changes in GCs during
folliculogenesis, we used a single-cell transcriptome (scRNA-seq)
approach to dissect the transcriptional differences among three
representative stages on a 10× Genomics system: the SWF, F1 and
POF stages. After quality filtering, the transcriptome profiles of
21,393 cells were available for cell-type characterization (6596,
5996, and 8801 cells for SWF, F1, and POF, respectively)
(Supplementary Data 1). To confirm the identity of these GCs, we
used publicly available transcriptome profiles of 22,561 cells
derived from chicken hearts20 as comparative controls. We
performed the uniform manifold approximation and projection
analysis and surveyed the expression patterns of the top 50 most
variable genes (Supplementary Fig. 2a, b). We then colored the
single cells according to the expression levels of five canonical
markers of GCs (CYP11A121, CHST822, FSHR22,23, TSPAN6, and
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DSP24) and five representative differentially expressed genes
(NOV, RLN3, EDN2, FGL2, and RGS16) by the GCs detected in
this study (Supplementary Fig. 2c, d). We found the vast majority
of collected cells (21,336 of 21,393, or 99.73%) possess
characteristics typical of GCs (clusters 0, 3, and 4) (Supplemen-
tary Fig. 2a, b). This ensures that the cell purity of the GCs was
maintained.

The unique expression profiles of GC genes across three stages
(Supplementary Fig. 2e) confirmed that over-representative
functions of stage-specifically expressed genes align with specific
physiological changes during folliculogenesis. Genes that were
specifically expressed in GCs at the SWF stage were primarily
involved in the cell division cycle, while the GCs reflected in
SWFs typically grow and are activated when external hormones

are stimulated. Genes exclusively expressed at the F1 stage were
mainly involved in the biosynthetic processes of glycolipid and
secretion regulation, and generally match the physiological
functions of F1 follicles. After ovulation, the GCs begin to regress
via apoptosis and inflammatory responses, producing genes
related to the above functions that were specifically expressed in
GCs at the POF stage (Supplementary Fig. 2f). We also identified
a subset of signature genes for GCs that exhibited expression
changes across the three stages (Supplementary Data 4). These
have potential as stage-specific GC markers. For example, the
anti-Müllerian hormone (AMH), a typical marker in human
GCs25, was preferentially expressed in GCs at SWFs in chickens
(Supplementary Fig. 2g). This highlights a significant difference in
folliculogenesis between mammals and birds.
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Fig. 1 The transcriptomic profiles of granulosa cells (GCs) during folliculogenesis. a Schematics of chicken ovarian follicle development at ten time
points during folliculogenesis. The number of follicles for each stage in the chicken ovary is indicated below the stage. GCs in the F1 follicle are indicated on
the plot. b Expression profiles of four temporal expression clusters revealed by k-means clustering. Left: Expression heatmap drawn using Z-score of TPM
values for each gene in the four clusters. Right: Temporal expression profiles of the four clusters. The red lines represent mean gene expression levels, and
the blue lines represent gene expression levels for each gene in the relative cluster during folliculogenesis. c The top ten significantly enriched Gene
Ontology-Biological Process (GO-BP) terms for genes in each cluster. Source data are provided as a Source Data file.
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Developmental changes in compartmentalization and local
accessibility for GCs. To elucidate the multiscale rewiring of
chromatin architecture and its influence on GCs gene expression
during folliculogenesis, we used in situ Hi-C to map chromatin
contacts for GCs across SWF, F1, and POF. We generated a total
of ~2.24 billion valid contacts (~373.77 million [M] contacts per
sample (Supplementary Tables 1 and 2) and reached a maximum
resolution of 5 kb by merging the intrachromosomal contacts of
the replicates at each stage) (Supplementary Fig. 3a, Supple-
mentary Tables 3 and 4). Most (~66.21%) contacts occurred
within chromosomes, exhibited high reproducibility among the
biological replicates (Supplementary Fig. 3b–e), and consisted of
the dominant (~64.97%) long-range interactions (≥20 kb) (Sup-
plementary Fig. 3f). All samples showed a strong decrease in
contact probability with an increase in the distance between loci
(Supplementary Fig. 3g).

Next, we calculated multivariate Von Neumann Entropy
(VNE)26 to measure the changes in 3D structural order during
folliculogenesis. We observed a significantly higher VNE in the
POF stage (0.86, P < 0.016, Wilcoxon rank-sum test) than in the
SWF (0.80) and F1 stages (0.79) (Fig. 2a). This is likely due to a
more disordered and relaxed chromatin architecture in the POF
stage (Fig. 2b), while the architecture is more stable and ordered
in mature GCs at the F1 stages, which aligns with the relaxed
genome architecture observed during senescence27.

At the sub-chromosome level, we explored various compart-
mental rearrangement scenarios during folliculogenesis and
observed correlations between primary transcription features
and the chromatin compartmental status. Replicates of each stage
shared similar A/B compartment patterns and ~49.62% of the
whole genome were Compartment A bins (Supplementary Fig. 4a,
b). Compartment A was positively correlated with Guanine-
Cytosine content (Spearman’s r > 0.30, P < 2.20 × 10–16) (Supple-
mentary Fig. 4c), and gene expression levels in Compartment A
were significantly higher than in Compartment B
(P < 2.20 × 10–16, Wilcoxon rank-sum test) (Supplementary
Fig. 4d). The spatial organization of the compartments con-
structed by miniMDS28 showed a negative correlation between
the PC1 value / gene expression and distance from the center of
the nucleus (i.e., nuclear radius) (Supplementary Fig. 4e). This is
consistent with the spatial location preferences of euchromatin

and heterochromatin29 and is similar to the structure found in
mammals30.

We identified substantial levels of compartmental switching in
GCs across three stages (~354.50Mb, or ~36.90% of the genome)
(Fig. 3a, b; Supplementary Fig. 5a, b). In these regions, most
switching was unidirectional (63.53%) (Fig. 3b, c): from A to B
(“AAB” and “ABB”, 130.80Mb) or from B to A (“BAA” and
“BBA”, 94.42Mb). The rest were transient switches, either “ABA”
or “BAB” (129.28Mb) (Fig. 3b, c). Although we observed dynamic
compartmentalization during folliculogenesis, these were accom-
panied by slight changes in gene expression, significant differences
in gene expression undergoing compartmental switching have
only been observed at the SWF and POF stages (Fig. 3d). This
result suggests the finitely contribution of the rearrangement of
compartmentalization on the alterations of gene expression
(measured as the mRNA abundances) during folliculogenesis,
which accordance with the observations during stem cell
differentiation31. The relatively weak correlation between changes
in compartmentalization and gene expression is most likely due to
the relatively steady-state mRNA abundances determined using
bulk RNA-seq, thus further analysis of the nascent transcription
(such as Bru-seq [bromouridine labeling and sequencing]
approach)32 is required to identify this regulatory mechanism.

Functional enrichment analysis demonstrated that genes
embedded in regions experience the A-to-B switching event and
were primarily involved in hormone activity and signaling
processes (Supplementary Fig. 5c). This includes AMH (regulat-
ing the preselection pool), MOS (maintaining the ordered
reproduction process), FGF2033, and FMNL234 (which is involved
in the regulation of cell growth) (Supplementary Fig. 5d, Fig. 3e).
Nonetheless, genes located in regions that were subject to B-to-A
switching events were primarily involved in stimulus-response,
developmental, and immune system processes (Supplementary
Fig. 5c). This includes NFATC135, which reflects the autophagy
activities that occur during follicle degeneration. Moreover, the
genes essential for follicle maturation, such as FABP636, STAR37

(which is related to sterol synthesis), and LHCGR38 (encoding
luteinizing hormone), were specifically located in the compart-
ment A region at the F1 stage (Supplementary Fig. 5d, Fig. 3e).

We further performed an ATAC-seq assay to measure the
differences in local accessibility during folliculogenesis
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(Supplementary Data 1, Supplementary Fig. 6a). As expected, we
found that the A compartments were enriched with more ATAC-
seq signals than B compartments (Supplementary Fig. 6b, c).
Therefore, the A compartments are more accessible. We observed
stage-specific peaks in the GCs at the SWF and F1 stages, which
are enriched in motifs corresponding to the transcription factors
(TFs) in the GATA family (Supplementary Fig. 6d). These are
essential for development, differentiation, and homeostasis39,40,
suggesting the importance of these TFs in SWF and F1 stages. In
contrast, POF-specific peaks in GCs are enriched in motifs
corresponding to TFs involved in cytotoxicity and apoptosis
induction41–43, including KLF5, PITX1, and OTX1 (Supplemen-
tary Fig. 6d). These results support the physiological course of
chicken folliculogenesis, provide evidence supporting that
chromatin state-mediated compartment activation is associated
with transcriptional regulation, and directly implicate multiple
loci that exhibited distinct compartmentalization and accessibility
during folliculogenesis.

Most TADs in GCs were highly stable during folliculogenesis.
At the submegabase scale, the local chromatin architecture can be
characterized by TAD. To investigate the conservation of TAD in
different cells, we downloaded chicken fibroblast and erythrocytes
Hi-C data (including immature and mature erythrocytes) and
performed comparative analysis. We used both the directionality
index (DI)44 and the insulation score (IS)45 methods to identify
TAD structures at 20 kb resolution. The TAD boundaries pro-
duced by the two algorithms were highly reproducible within GC
biological replicates (Spearman’s r (DI) > 0.94, Spearman’s r
(IS) > 0.97) (Fig. 4a, Supplementary Fig. 7a) and were divergent
from other cell types, particularly the immature and mature
erythrocytes (Supplementary Fig. 7b). As expected, TAD
boundaries were enriched for the TSS of protein-coding genes,
especially for housekeeping genes (Supplementary Fig. 7c). We
found that ~98.30% of TAD boundaries were invariant in GCs
during folliculogenesis (Fig. 4b). There were 1,996, 1,361, and
1,326 TAD boundaries identified in fibroblasts cells, immature
and mature erythrocytes, respectively; and 1,637 (82.01%), 760
(55.84%), and 752 (56.71%) of the boundaries were conserved
between GCs and them, respectively (Supplementary Fig. 7d, e).
A total of ~1,900–2,000 TADs were subsequently detected in
chicken GCs, with a median size of ~400 kb and occupying
~86.58% of the length of the genome (Fig. 4c, Supplementary
Fig. 7f). We found that TADs enriched by A compartments (A
TADs were defined as having over 70% TAD bins belonging to A
compartment) were generally smaller in size than TADs primarily
located in B compartments (B TADs) (Fig. 4d). This could be due
to local architecture accommodating more active gene regulation
by local interactions in gene-dense regions.

We observed a stronger TAD boundary insulation at the
F1 stage than that in SWF and POF, indicating increased spatial
segregation of local chromatin when the follicle reached maturity
(Fig. 4e, f, Supplementary Fig. 8). This was consistent with most
orderly chromatin spatial organization found in this stage (Fig. 2a,
b). A small portion (1.43–1.98%) of TAD boundaries were gained
or lost in a stage-specific manner during folliculogenesis (Fig. 4b,
Supplementary Fig. 9a, b). These stage-specific boundary genes
were primarily implicated in the developmental growth and
regulation of cellular response to stress processes (Supplementary
Fig. 9c). Analyzing gene expression at dynamic boundaries
demonstrated that a boundary gain was associated with
upregulated gene expression, while a boundary loss was
associated with downregulated gene expression (Supplementary
Fig. 9d). For example, ZEB2 regulates cell-cell adhesion and
rearrangements of cytoskeletal architecture by mediating

E-cadherin expression46, and when it gained a TAD boundary
its expression increased at the F1 stage (Fig. 4g). Overall, most
TADs identified in GCs were stable during folliculogenesis.

Fluctuating intra-TAD interactions associated with transcrip-
tion changes during folliculogenesis. Studies have demonstrated
that the genomic positioning of the TAD structure can remain
stable44,47, yet the frequency of interactions within TAD varies with
domain-wide changes during the differentiation and reprogram-
ming processes31,48. To assess the kinetics of intra-TAD interac-
tions during follicle development, we assessed 1831 consensus
TADs (cTADs, take up 87.40% of the genome with a median size of
~420 kb) across various stages and replicates (Fig. 4c) and calculated
the domain score (D-score, defined as the fraction of intra-TAD
contacts over the total intrachromosomal contacts49 and reflects
self-interactive tendencies within a domain) of cTADs for each
sample (Supplementary Fig. 10a). As previously reported49, the
cTADs with higher D-score values were preferentially accessible and
had higher levels of gene expression (Fig. 5a, b).

After analyzing the D-score changes between consecutive
stages, we found that a total of 174–342 cTADs
(~85.54–176.42Mb) exhibited significant alterations (P < 0.05,
Student’s t test) in intra-TAD interaction frequency during
folliculogenesis; 9.50% of cTADs changed between the SWF and
F1 stages and 18.68% of cTADs changed between the F1 and POF
stages (Supplementary Fig. 10b). Compared with unchanged
TADs, the TADs with decreasing D-scores had significantly
reduced gene expression levels, while TADs with increasing D-
scores showed slight but not statistically significant increases in
gene expression levels (Fig. 5c). Functional enrichment analysis
indicated that the D-score changes aligned with typical GC
biological functions during folliculogenesis (Supplementary
Fig. 10c). For example, CDH2 encodes a classical cadherin that
forms adherens junctions between oocytes and GCs50 had both a
higher level of gene expression and a greater D-score at the
F1 stage (Fig. 5d). These results suggest that folliculogenesis in
chickens is accompanied by intra-TAD changes in GCs.

Global rewiring of PEIs underpinning functional divergence in
GCs during folliculogenesis. The interactions between enhancers
and their target-gene promoters (PEIs) are an important part of
the gene regulatory process and could be causally related to
spatiotemporal expression. Therefore, we next compiled an
extensive genome-wide catalog of PEIs (median size of ~85 kb
that primarily existed in TADs [67.49%]) in GCs (Supplementary
Fig. 11a, b) for each stage at a 5 kb resolution (Supplementary
Table 4) using the PSYCHIC algorithm51. PEIs cannot be reliably
inferred from a genomic distance, therefore, we observed that
~53.82% of enhancers interacted with a more distant promoter
instead of those close by (Supplementary Fig. 11c). This spatial
proximity data highlights the complexity of PEIs52,53.

To demonstrate how extensive PEI rewiring contributes to
transcriptomic divergence in GCs during folliculogenesis, we used
a regulatory potential score (RPS) to measure the regulatory
effects of multiple enhancers for a given gene. As expected, genes
with larger RPS had higher levels of expression (Fig. 6a), which
confirmed the additive effects of enhancers can increase gene
expression (Supplementary Fig. 11d).

To further explore the role of enhancers in transcription
control, we measured the activities of the putative enhancers
involved in PEIs by analyzing the distribution of H3K27ac, which
is a typical histone marker of active enhancers (Supplementary
Fig. 11e). This allowed us to compare the differences in how
enhancers and promoters affect transcriptional activity54–56. Our
results demonstrated that ~20.04% PEI-associated genes
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contacted with super-enhancers (SEs, with broad H3K27ac
signal) exhibited higher RPS and had increased expression than
genes (~46.29%) contacted with regular enhancers (REs, with
moderately H3K27ac signal) or genes (~33.67%) contacted with
poised enhancers (PEs, depleted in H3K27ac signal) (Supple-
mentary Fig. 11f–h).

We next identified six representative developmental patterns
for 2659 genes that exhibited differential RPS between stages (|
log2FC| >1.5 and |Δ| > 3) and were accompanied by changes in
enhancer activity (Fig. 6b, c). The genes exhibited preferential
RPS values in a developmental stage-dependent manner (Fig. 6c,
Supplementary Fig. 11i), which involved a distinct functional
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category. This generally reflected differences in the physiological
features of follicles during folliculogenesis (Fig. 6d). Notably, 905
genes (666 and 239 genes in clusters 1 and 2, respectively)
experienced increases in RPS at the SWF stage, which primarily
involve developmental processes such as cell part morphogenesis.
This reflects the activation of primordial follicles to primary
follicles, which is accompanied by a change in GCs morphology
(i.e., from flat, elongated to cuboidal shape) at the SWF stage57. A
total of 1150 genes (224 and 926 genes in clusters 3 and 4,
respectively) showed increases in RPS during the F1 stage, which
primarily involve biological regulation and growth-related
processes such as the regulation of hormone levels. Additionally,
the RPSs of 604 genes (534 and 70 genes in clusters 5 and 6,
respectively) were the highest in the POF stage, which primarily
involve ubiquitin-dependent protein catabolic process, proteolysis
involved in cellular protein catabolic processes, and autophagy.

This aligns with the structural breakdown and functional
regression of GCs after ovulation in POF58.

Our results demonstrated that candidate loci can be analyzed
in future studies of folliculogenesis. Typically, CCNA159,
CDC2060, and CPEB161 (which are cell cycle regulators) and
BRDT62 and FBXO4363 (which are involved in cell meiosis)
showed more PEIs and contacted with SEs during the SWF stage,
though these interactions and active enhancers decreased in later
stages (Supplementary Fig. 12a–e). PPARG64 and SCAP65 (which
are related to lipid homeostasis) and FDX166 and SOCS267 (which
are associated with steroid hormone production) exhibited the
most PEIs and were regulated by SEs during the F1 stage (Fig. 6e,
Supplementary Fig. 12f–h). FOS68 and TIMP269 (which are
involved in the apoptotic process) interacted with SEs and
displayed more PEIs at the POF stage than during other stages
(Supplementary Fig. 12i, j). In addition, the convergent CTCF-
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CTCF loop embedded with FDX1 was only identified in the
F1 stage, which is consistent with the most PEIs detected in this
stage (Fig. 6e). This result indicates that CTCF sites are
preferentially located near promoters and/or enhancers to
constrain the PEIs (Supplementary Fig. 12k, l, Supplementary
Data 5).

Discussion
This study comprehensively analyzes Hi-C, RNA-seq, scRNA-
seq, ChIP-seq, and ATAC-seq across a defined time course of
chicken in vivo folliculogenesis. GO terms of stage-specific sig-
nature genes of GCs were identified by scRNA-seq and empha-
sized significant functional differences between the SWF, F1, and
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POF stages. These changes in gene expression, including AMH,
reflected the corresponding functional characteristics of follicle
development at different physiological stages and were consistent
with other RNA-seq studies during chicken
folliculogenesis11–13,70. The gradual establishment of the genome
structure from the SWF to F1 stage likely affects the functional
maturity of GCs, while the loose chromatin structure during the
POF stage could initiate the apoptosis–related pathway27.

Notably, we found that higher-order chromatin structures,
including compartmentalization, TAD boundaries, and intra-
TAD interactions, were dynamic during the stage transformation
of GCs and were associated with gene expression changes. At the
A/B compartment level, we observed moderate compartment
switches and subtle changes in gene expression, which corre-
sponded to the A/B switches around the development of the
prehierarchical to hierarchical and preovulatory to postovulatory
stages. These results suggest that dynamic chromatin compart-
mentalization and limited gene expression alteration (inferred
from mRNA levels) occurs during folliculogenesis, including
expression changes in key functional genes such as AMH71 and
LHCGR72. This finding agrees with the Hi-C study of stem cell
differentiation31 and indicates a relatively conserved mechanism
for gene regulation mediated by dynamic compartmentalization.

At the TAD level, the number of TAD boundaries we obtained
in chicken GCs (~2000) is comparable to those identified in
chicken fibroblasts (~2000) by the DI algorithm17. These obser-
vations differed from the chromatin architectures of chicken
erythrocytes (~1300), which display neither a typical TAD
structure nor long-range chromatin interactions. This suggests
the specificity of this cell type17, even though single-cell Hi-C
experiments have demonstrated that TAD is a genuine unit of
chromatin folding73. It has been reported that TADs largely
remain stable across tissues in many organisms44,74. Indeed, we
found that only a few TAD boundaries dynamically changed
during folliculogenesis. Although most TAD boundaries were
unchanged, we did observe a subset of TADs with dynamic
interaction frequencies during folliculogenesis and found that
these D-score changes were accompanied by dynamic gene
transcriptional activities. Our results support current findings that
the synergistic effect and boundary insulation of TADs could be
an important mechanism underlying regulation of gene expres-
sion and that TADs might limit the physical interactions of
transcriptional regulatory elements such as enhancers and pro-
moters to construct autonomous gene regulatory regions75.

At the PEI level, we identified long-range PEIs with ultra-deep
Hi-C contact maps to accurately investigate the gene transcrip-
tional regulation and cellular functions of GCs. Similar to the
findings in mammals53,76,77, enhancers can skip the proximal
promoters and interact with distal genes, highlighting the com-
plexity of the regulatory landscape in chickens. Stage-increased
enrichment of RPS demonstrated that the remodeling of PEIs in
GCs modulates gene transcription during folliculogenesis.

In conclusion, these results indicate that transcriptomic and
chromatin architectural changes in GCs during folliculogenesis
could facilitate the concomitant transcriptional activities and
provide a valuable resource that allows the in-depth functional
characterization of GCs. We primarily assessed GCs in this study.
Advances in sequencing technology at single-cell resolution imply
that further research is needed to explore the 3D genome archi-
tectural dynamics and how it influences gene expression in
oocytes throughout the reproductive cycle, as well as analyze
various epigenetic data to better understand regulatory mechan-
isms in follicle development.

Methods
Ethics statement. All animal protocols were approved by the Institutional Animal
Care and Use Committee of Sichuan Agricultural University (protocol number
B20171910). The methods were carried out in accordance with the approved
guidelines.

Animals and sample collection. Healthy Luhua hens at peak egg-laying age
(31 weeks of age) were euthanized via the intravenous injection of 2% pentobarbital
sodium (25 mg/kg of body weight). Follicular GCs layers of the whole reproductive
cycle, including prehierarchical follicles (small white follicle: SWF; large white
follicle: LWF; small yellow follicle: SYF; large yellow follicle: LYF), preovulatory
follicles (F5, F4, F3, F2, and F1), and postovulatory follicles (POFs), were collected
as described by Gilbert. et al.10. In detail, once the ovaries were harvested, the
ovarian follicles were carefully excised. The stalk of the excised follicle was held
with forceps so that the clear, avascular stigma was on top and a cut was made with
a scalpel approximately along the line of the stigma quickly. Immediately after it
was cut, the follicle was inverted over phosphate buffer solution (PBS) and the
follicles were shaken to remove the yolk. The follicles were gently shaken until a
transparent film appeared in the PBS, which is the GC layers. All separated GCs
samples were promptly frozen in liquid nitrogen and stored at −80 °C for sub-
sequent assays (i.e., bulk RNA-seq, scRNA-seq, in situ Hi-C, ATAC-seq, and ChIP-
seq).

Bulk RNA-seq. Total RNA was extracted from each sample using RNAiso Plus
reagent (TaKaRa, #9108) according to the manufacturer’s instructions. We esti-
mated the integrity and quality of the total RNA using a Bioanalyzer 2100 system
(Agilent Technologies, Palo Alto, CA, USA) and an RNA 6000 Nano kit. Sixty
poly-A RNA-seq libraries were constructed. They were then sequenced using the
BGISEQ DNBSEQ-T7 platform (BGI lnc., Shenzhen, China) with a paired-end
sequencing length of 150 bp (PE150) at Novogene Bioinformatics Technology Co.,
Ltd (Beijing, China).

Gene expression analyses. The high-quality reads were mapped to the chicken
reference genome (GRCg6a) using HISAT2 2.1.078, and the uniquely mapped reads
were assembled and quantified using StringTie v1.3.3 to assess gene expression
based on the TPM (Transcripts Per Million) values of each mRNA79. Spearman
correlations were calculated across the developmental stages. The DEGs were
identified using DEseq280 based on the read count data. The significant DEGs were
screened with a false discovery rate <0.05 and |log2fold change| > 1 as cutoffs.
MaSigPro (v 3.12)19 was used to identify genes with dynamic temporal expression
profiles.

Cell preparation of scRNA-seq. The separated GC layers were washed in ice-cold
RPMI1640 and dissociated using a multi-tissue dissociation kit 2 (Miltenyi, #130-
110-203) from Miltenyi Biotec, according to the manufacturer’s instructions.
DNase treatment was optional depending on the viscosity of the homogenate. Cell
count and viability were estimated using fluorescence Cell Analyzer (Countstar®

Fig. 6 Promoter-enhancer interactions (PEIs) rewired in chicken granulosa cells during folliculogenesis. a Genes with higher regulatory potential scores
(RPSs) show elevated expression levels. The genes are divided into six groups based on their RPS values (five quintiles of non-zero values and RPS equals
zero). b Significant differences observed in expression levels of the genes with increased, decreased, or stable RPS values between adjacent stages. P values
were calculated using two-sided Wilcoxon rank-sum test. c K-means clustering of the genes with RPS changes during folliculogenesis (k= 6). The
proportions of genes interacting with super-enhancers (SEs), regular enhancers (REs), and poised enhancers (PEs) are displayed on the right. d The most
enriched GO-BP terms for genes with high RPS at a specific stage. e PEI rewiring of a functional gene FDX1 (red) during folliculogenesis. Top: schematics of
PEIs and Hi-C contact heatmaps of the genomic region containing FDX1 (Chr.1: 180.47–181.09Mb). The light blue line indicates loop domains, while black
arrowheads indicate CTCF motif orientation at loop anchors. Middle: genome browser tracks of ATAC-seq signals, H3K27ac signals, and gene expression
levels. Bottom: gene structures in the region. The dashed line boxes indicate the chromosomal locations of the genes. For panels a and b, the internal line
indicates the median, the box limits indicate the upper and lower quartiles and the whiskers extend to 1.5 IQR from the quartiles. Source data are provided
as a Source Data file.
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Rigel S2) with AO/PI reagent after the erythrocytes were removed (Miltenyi, #130-
094-183), while the debris and dead cells were removed (Miltenyi, #130-109-398).
Finally, fresh cells were washed twice in the RPMI1640 solution and resuspended at
1 × 106 cells per ml in 1 × PBS and 0.04% bovine serum albuminate.

scRNA-seq library construction and sequencing. scRNA-seq libraries were
prepared according to the manufacturer’s instructions of Beijing SeekGene BioS-
ciences Co., Ltd (Beijing, China). Libraries were prepared using Chromium Next
GEM Single Cell 3ʹ Reagent Kits v3.1 (10× Genomics). The appropriate number of
cells were mixed with reverse transcription reagents and then loaded to the sample
well in a Chromium Next GEM Chip G. Gel Beads and Partitioning Oil were then
dispensed into corresponding wells, separately in a chip. We then performed
emulsion droplet generation reverse transcription at 53 °C for 45 min and inacti-
vated at 85 °C for 5 min. The cDNA was then purified from the broken droplet and
amplified in a PCR reaction. The amplified cDNA products were then cleaned,
fragmented, end-repaired, A-tailed, and ligated to the sequencing adapter. Finally,
the indexed PCR was performed to amplify the DNA representing 3ʹ polyA part of
expressing genes which also contained Cell Bar code and Unique Molecular Index.
The indexed sequencing libraries were cleaned with SPRI beads, quantified by
quantitative PCR (KAPA Biosystems KK4824), and sequenced on an Illumina
NovaSeq 6000 with PE150 read length.

scRNA-seq data processing and analysis. Raw sequencing data were processed
using Cell Ranger analysis pipeline (v2.1.1). Reads were aligned to the chicken
genome version GRCg6a. For downstream analysis, we used the Cell Ranger output
“filtered gene-barcode” count matrix, which contained the expression profile of
cells with a properly detected cellular barcode. To explore the purity and markers
of GCs, we used the available high-quality scRNA-seq data of chicken heart cells as
comparative controls20 for analysis. We further used the R package Seurat,
v2.2.01481 with the following parameters to filter high-quality cells and exclude
cells with extreme values indicating low complexity, duplets, or apoptotic cells: the
total number of expressed genes/cell was 1200 < nGenes < 5000; the total number of
UMIs/cell was nUMIs > 3000, and the percentage of UMIs mapped to mitochon-
drial genes to total genes was <0.2. Counts were normalized using Seurat (Function
NormalizeData) at default settings. For each cell, the UMI counts for each gene
were divided by the sum of the UMI counts for all genes for that cell. The results
were multiplied by a fixed factor (10,000) and loge-transformed. For paired-wise
differential expression analysis, Function FindAllMarkers from Seurat was per-
formed between the cells of a cluster and the rest of the cells in the dataset. The list
of DEGs per cluster was identified with false discovery rate <0.05 (Wilcoxon rank-
sum test) and |fold change| > 2. We used Function SplitDotPlotGG from Seurat to
generate the dot plot. For each cluster, the mean expression of all genes was
calculated and the fifty most variable gene means were selected using R function
rowVars (package genefilter 1.60.050).

In situ Hi-C. In situ Hi-C library preparation was performed according to pre-
viously described methods82 by Novogene Bioinformatics Technology Co., Ltd.
Briefly, the follicular GC layers from different stages were homogenized with liquid
nitrogen and then cross-linked with 4% formaldehyde for 30 min at room tem-
perature (25 °C). The fixation reaction was quenched using 0.25 mol/L glycine for
5 min at room temperature after which it was placed on ice for 15 min. The nuclei
of formaldehyde-fixed GCs were permeabilized, while the DNA was digested with
200 units of MboI (a 4-cutter restriction enzyme) for 1.5 h at 37 °C. The restriction
fragment overhangs were filled and labeled with biotinylated nucleotides and then
ligated in a small volume. Following cross-link reversal, the ligated DNA was
purified and sheared to a length of 300–500 bp, after which the point ligation
junctions were pulled down with streptavidin beads and prepped for the Illumina
sequencing platform. Each library was sequenced on a Illumina HiSeq X Ten
system with 150 bp paired-end sequencing read lengths.

Hi-C data processing. Hi-C datasets were analyzed using a custom Juicer pipeline
(v 1.5)83. Briefly, the high-quality Hi-C reads were mapped to the chicken genome
(GRCg6a) using BWA (v 0.7.15). Aligned read pairs were distributed to restriction
motif fragments. After filtering duplicates, low-quality alignment read pairs
(MAPQ < 30), and intrafragment read pairs, we obtained the valid Hi-C read pairs.
We then generated contact matrices at 20 kb and 5 kb resolution and normalized
the matrix using the KR algorithm and used HiCRep84, GenomeDISCO, and
QuASR-Rep85 to assess the reproducibility of the Hi-C data.

Identification of A/B compartments. We identified the A and B compartments
using a 20 kb resolution interaction matrix as previously described14. In detail,
principal component analysis was performed to generate the PC1 vectors of the
chromosomes from each sample, and the Spearman correlations between PC1 and
genomic characteristics (gene density and GC content) were calculated. Bins with a
positive Spearman’s r were defined as compartment A, while remaining bins were
defined as compartment B.

Chromatin 3D modeling. The 3D chromosome conformations were inferred for
each Hi-C map based on the normalized intra- (at 100 kb resolution) and inter-
chromosomal (at 1 Mb resolution) contact maps using an approximation of mul-
tidimensional scaling (MDS) method as implemented in miniMDS28 program.
After modeling, through Euclidean distance to measure the relative distance of each
chromosome (100 kb resolution) to nucleolus (start point).

Identification of topologically associated domains (TADs). TADs were iden-
tified with 20 kb resolution matrices using the DI44 and IS45. First, DI was calcu-
lated for 10 bins upstream and 10 bins downstream from the center of each bin, at
20 kb resolution. The hidden Markov model (HMM) was then used to predict the
DI states for the TAD border. Then, based on the TAD identified by DI, we used
the minimal IS (along the normalized insulation score vector) to further divide the
large TADs into small TADs. To determine the A/B status of a TAD, we counted
the frequency of the A/B bin membership (PC1) within the TAD and defined the
TAD as an A-TAD if more than 70% of the TAD belonged to the A compartment
and defined it as a B-TAD if not.

Analysis of TAD. Specific TAD boundaries for each stage were identified as
previously reported44. To compare the TAD boundaries of two stages, we first
merged the center positions of the TAD boundaries of the two stages and calcu-
lated the DI 10 bins upstream and 10 bins downstream (±200 kb) from the center
of each boundary. Spearman’s correlation coefficient was calculated from 20 ran-
domly selected bins between each adjacent stage for the random correlation, while
the randomization was repeated 1,000 times to obtain the random distribution of
Spearman correlation coefficients. A specific boundary is defined as a boundary
identified at only one stage that does not significantly differ from a random cor-
relation distribution. Genes near specific TAD boundaries (such as genes within the
boundary and flanking two bins) were affected by TAD location movement.

To quantify the interaction strength within TADs by domain score (D-score)49,
we analyzed the consensus TADs (cTADs) in GCs across different stages, which
were conserved in at least 50% of all developmental time points and replicates. We
then defined the D-score of a consensus TAD as the ratio of intra-TAD interactions
over all intrachromosomal interactions for the consensus TAD. To identify TADs
with differential interaction strengths between adjacent stages, we performed
Student’s t tests to compare D-scores, while TADs with a P value less than 0.05
were selected for further analysis.

Identification of promoter-enhancer interaction (PEI). To identify the PEIs of
each gene, we merged the Hi-C reads from the biological replicates of each stage
and generated 5 kb resolution contact matrices. The normalized contact matrix was
split into a smaller matrix (20 Mb × 20Mb) with 10Mb steps of overlapping length,
which were subsequently analyzed with PSYCHIC51 at default parameters to
identify overrepresented interactions with the promoter region. We reserved highly
confident PEIs with FDR values <0.01 and interaction distances ≥15 kb. To char-
acterize the additive effect of enhancers on gene regulation, we calculated the
regulatory potential score (RPS) for each gene, which is defined as follows: the sum
of all significant interaction intensities (log10(observed number of contacts−
expected number of contacts)). We defined differential RPS using the cutoff |
log2FC| > 1.5 and |ΔRPS| > 3. The genes with differential RPS values were clustered
by K-means.

Convergent CTCF-CTCF loops identification. We used the FIMO software
(v5.1.1)86 to identify CTCF motif loci and their orientations in the GRCg6a version
of the chicken genome based on consensus CTCF motif from the JASPAR CORE
2016 vertebrate database87. As expected, these CTCFs were enriched in TAD
boundaries and enhancer regions. We also separately identified loops in SWF, F1,
and POF at 5 kb resolution in the genomic distance range of 20 kb to 2 Mb using
the Fit-Hi-C Python package (v2.0.7) (q value < 0.05)88. To further obtain the
highly confident loops, we applied a hard cutoff to obtain the top 15,000 loops by
ranking the loop strengths. We finally obtained 6632, 7050, and 8023 convergent
CTCF-CTCF loops in SWF, F1, and POF, respectively. The genes in these loops
have 4067, 4926, and 2582 PEIs, respectively.

ATAC-seq. We used an improved ATAC-seq protocol compatible with cryopre-
served samples89,90. Cryopreserved samples were washed with 0.09% NaCl solution
and ground into powders in liquid nitrogen. A lysis buffer was added to the
powders and incubated on ice for 10 min on the rotation mixer. The cell sus-
pension was then filtered with a 40 μm cell strainer and washed with cold PBS
buffer three times to collect the cell nuclei. Approximate 50,000 nuclei were allo-
cated to perform tagmentation according to standard protocols89, while the Tn5
transposed DNA was purified by AMPure DNA magnetic beads. Next, an average
of 11 cycles of PCR was performed with transposed DNA, and amplified libraries
were run on an Agilent TapeStation 2200 (Agilent Technologies) using a D5000
DNA ScreenTape to assess their quality via visualizing nucleosomal laddering. The
final libraries were submitted for sequencing on the Illumina HiSeq X Ten platform
with 150 PE modes.
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ATAC-seq data analysis. Quality control of raw sequencing data was performed
using Cutadapt (v 1.9.1). Trimmed reads were aligned to the chicken genome
(GRCg6a) using Bowtie2 (v 2.2.6) with default settings91. Mitochondrial align-
ments were removed using removeChrom (https://github.com/jsh58/harvard), and
Picard (v 1.126) (http://broadinstitute.github.io/picard/) was used to remove PCR
duplicates and for insert size distribution analysis. Finally, broad peaks were called
using MACS2 with options “–nomodel –extsize 200 –shift –100”92. We also
checked the enrichment of ATAC peaks on transcription start site93 regions and
confirmed the correlation between ATAC peaks and A/B compartments. For stage-
specific peaks, we merged all called peaks from all samples to acquire the consensus
peak-set. We defined the enrichments as ATAC signal intensity (normalized read
count per base) subtracted by the background noise (normalized read count per
base). The R package DESeq2 was used to detect potential stage-specific peaks.
Peaks with |log2fold change| > 1 and FDR < 0.05 were considered significantly
different. Motif enrichment analysis was performed using MEME suite94 with
default settings. Motifs with P value < 0.01 were kept.

ChIP-seq. We performed ChIP-seq using an antibody against H3K27ac for two
replicates in each of the three stages (SWF, F1, and POF). GCs from the ovary were
washed twice in cold PBS buffer, cross-linked with 1% formaldehyde for 10 min at
room temperature, and then quenched by adding glycine (125 mmol/L final con-
centration). Afterward, the samples were lysed and chromatins were kept on ice.
Chromatins were sonicated to obtain soluble sheared chromatin (average DNA
length of 200–500 bp), after which 20 μL chromatin was saved at −20 °C for input
DNA and 100 μL chromatin was used for immunoprecipitation by Rabbit poly-
clonal anti-Histone H3K27ac (Abcam, #ab4729). A total of 5 μg of antibodies were
used in immunoprecipitation reactions at 4 °C overnight. The next day, 30 μL of
protein beads were added and the samples were further incubated for 3 h. The
beads were washed once with 20 mM Tris/HCL (pH 8.1), 50 mM NaCl, 2 mM
EDTA, 1% Triton X-100, 0.1% SDS; twice with 10 mM Tris/HCL (pH 8.1), 250 mM
LiCl, 1 mM EDTA, 1% NP-40, 1% deoxycholic acid; and twice with 1×TE buffer.
Bound material was then eluted from the beads in 300 μL of elution buffer
(100 mM NaHCO3, 1% SDS), treated with RNase A (final concentration 8 μg/mL)
for 6 h at 65 °C, and then treated with proteinase K (final concentration 345 μg/mL)
overnight at 45 °C. Immunoprecipitated DNA was used to construct sequencing
libraries according to the instructions provided by the I NEXTFLEX® ChIP-Seq
Library Prep Kit for Illumina® Sequencing (NOVA-5143, Bioo Scientific) and
sequenced on an Illumina HiSeq X Ten platform with 150 PE modes.

ChIP-seq data processing. Trimmomatic (v 0.38) was used to filter out low-
quality reads95. High-quality reads were mapped to the GRCg6a version of the
chicken reference genome by BWA (v 0.7.15), allowing up to two mismatches.
Samtools (v 1.3.1) was used to remove potential PCR duplicates, and the MACS2
algorithm (http://liulab.dfci.harvard.edu/MACS/) was used to call H3K27ac peaks
by default parameters (bandwidth, 300 bp; model fold, 5, 50; q value, 0.05). We
defined super-enhancers (SEs) using the standard ROSE algorithms. Briefly,
neighboring enhancer elements (within 12.5 kb) were defined based on H3K27ac
and ChIP-seq peaks were merged and ranked by H3K27ac signals to identify an
inflection point. Enhancers above the inflection point were defined as SE peaks, and
those below the inflection point were defined as regular-enhancer (RE) peaks.
Genomic regions contacting distal promoters but not overlapping with H3K27ac
peaks were defined as PEs.

Functional enrichment analysis. Functional enrichment analyses were performed
using Metascape (http://metascape.org)96 with default parameters. Chicken genes
were converted to human orthologs, and the target gene lists were uploaded as
inputs for enrichment. We chose humans (Homo sapiens) as the target species, and
enrichment analysis was performed against all genes in the genome as the back-
ground set, with the biological process (BP) of Gene Ontology (GO) as the func-
tional test set. Only GO terms with a P value < 0.01 and annotated to ≥3 genes were
considered significant.

Statistical analyses. All statistical analyses were performed by Student’s t test,
Wilcoxon rank-sum test or Mann-Whitney U test using R.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Hi-C data of granulosa cells (GCs) generated in this study have been deposited in the
GEO database under accession code “GSE167064”. The bulk RNA-seq, single-cell RNA-
seq, ATAC-seq, and ChIP-seq data generated in this study have been deposited in the
GEO database under accession code “GSE181756”. Chicken hearts single-cell RNA-seq
data was downloaded from GEO database under accession codes “GSE149457”. Chicken
embryonic fibroblasts, chicken immature and mature erythrocytes Hi-C data was
downloaded from GEO database under accession codes “GSE96037”. All other data
supporting the findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable

request. A reporting summary for this Article is available as a Supplementary
Information file. Source data are provided with this paper.

Code availability
Each use of software programs has been clearly indicated and information on the options
that were used is provided in the Methods. All software, codes, and scripts used for data
processing and analyses are available on GitHub through the following link, https://
github.com/JiamanZhang/Lab_GCs_paper_codes, or at https://doi.org/10.5281/
zenodo.5677410.
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