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Association of mutation signature effectuating
processes with mutation hotspots in driver genes
and non-coding regions
John K. L. Wong 1✉, Christian Aichmüller1, Markus Schulze2, Mario Hlevnjak2, Shaymaa Elgaafary 3,4,

Peter Lichter1,4 & Marc Zapatka 1✉

Cancer driving mutations are difficult to identify especially in the non-coding part of the

genome. Here, we present sigDriver, an algorithm dedicated to call driver mutations. Using

3813 whole-genome sequenced tumors from International Cancer Genome Consortium, The

Cancer Genome Atlas Program, and a childhood pan-cancer cohort, we employ mutational

signatures based on single-base substitution in the context of tri- and penta-nucleotide motifs

for hotspot discovery. Knowledge-based annotations on mutational hotspots reveal enrich-

ment in coding regions and regulatory elements for 6 mutational signatures, including

APOBEC and somatic hypermutation signatures. APOBEC activity is associated with 32

hotspots of which 11 are known and 11 are putative regulatory drivers. Somatic single

nucleotide variants clusters detected at hypermutation-associated hotspots are distinct from

translocation or gene amplifications. Patients carrying APOBEC induced PIK3CA driver

mutations show lower occurrence of signature SBS39. In summary, sigDriver uncovers

mutational processes associated with known and putative tumor drivers and hotspots par-

ticularly in the non-coding regions of the genome.
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International Pan-Cancer genome consortia such as the Inter-
national Cancer Genome Consortium (ICGC)1, The Cancer
Genome Atlas (TCGA)2, and the Pan-cancer analysis of

childhood cancers3 open up the opportunity for large scale data-
mining in the non-coding region of the human genome, as
demonstrated by recent efforts within The Pan-cancer Analysis of
Whole Genomes (PCAWG) initiative4. As cancer driving muta-
tions are under positive selection during tumorigenesis, signals of
positive selection are exploited for the discovery of drivers. The
analysis of pan-cancer datasets revealed non-coding cancer dri-
vers of lower frequency5 and advanced our understanding of
mutational signatures6. The large number of passenger mutations
found especially in whole-genome sequencing data of cancer
samples complicate the effort to identify drivers7. So far sophis-
ticated algorithms were designed to model the background
mutation rate (BMR), an indicator for assessment of positive
selection and for discriminating drivers from passengers8–11. The
diversity of non-coding elements further complicates the esti-
mation of BMR. Specialized models on distinct non-coding ele-
ments were designed recently to overcome the problem10.
Meanwhile, some mutational signatures showed dependencies on
driver mutations12, a phenomenon rarely considered by methods
for driver discovery.

Mutational processes leave large footprints on cancer genomes,
which are assessed on the basis of the frequency of nucleotide
context of substitutions. Mutational signatures are defined by the
proportion of mutations falling into mutation classes predefined
by their nucleotide context13. They have been characterized in
human case-control studies14 and were validated in cell line
models15. The number of somatic mutations found in whole
genomes empowered the detection of multiple mutational pro-
cesses active in cancerogenesis16. Mutational signatures provide
links to such processes manifested in the tumor genome during
tumor development or treatment17.

Trinucleotide context information was used to define single-
base substitution (SBS) mutational signatures18. The increasing
number of reported trinucleotide mutational signatures poses
challenges to consistent signature assignment12 as different
methods provide divergent results19. Also more context infor-
mation like DNA strand information or penta-nucleotide context
might allow to differentiate further signatures. Our here pre-
sented driver identification approach is incorporating additional
signatures using only N’s in NxSxN penta-nucleotide context
information regardless of the nucleotide ‘x’s, where S is the
position of the mutated base, x are the omitted neighboring bases,
and N are two bases apart from the mutated single nucleotide
used together with the S position in the analysis. This approach
reduced the penta-nucleotide context information complexity
from 1536 classes (6x4x4x4x4) to 96 classes (6x4x4) while
enlarging the footprint of the motif and thereby covering addi-
tional mutational processes with a wider motif dependency. We
here show that including those additional mutational signatures
leads to identification of further putative tumor drivers.

Recent driver discovery algorithms consider the local nucleo-
tide context to improve performance20. Some have taken the
approach of manually curating candidate drivers tied to known
mutational processes5. Alternatively, features related to hairpin
structures were suggested for APOBEC mutagenesis to distin-
guish between drivers and passenger mutations21.

Here we present a driver discovery method associating sSNV
(somatic single nucleotide variant) hotspots with mutational
signatures. The method aims at identification of candidates by
driver dependencies of mutational signatures and enriched targets
of mutational processes (see Fig. 1a for an overview). Using
published and additionally derived sSNV signatures, we detected
associated hotspots down to the single-base resolution. By

applying streamlined knowledge-based and annotation-based
filters on mutation hotspots, putative driver mutations were
distinguished from passenger mutations. The Roadmap Epige-
nomics Consortium22 provided essential references for the
annotation of non-coding regulatory elements. So far, several
attempts were made to link driver mutations to specific muta-
tional signatures23,24. The here presented general approach is
applicable to all SNV mutational signature sets and could reduce
the need of manual curation when considering putative drivers
involved in mutational processes5. We use enrichment of reg-
ulatory or coding elements per mutational signature and the
recurrence per hotspot as an indicator for positive selection, in
contrast to commonly used BMR models adjusted for local
mutational processes. We define a mutational process to be driver
associated if we find an event significantly enriched in known
drivers and in coding/regulatory regions with more than three
events overlapping with COSMIC cancer census genes. We
demonstrate that specific mutational processes are linked to
higher rates of driver mutations. In addition, we reveal potential
non-coding drivers, and suggest possible causes of some hitherto
uncharacterized signatures. In this work, we present sigDriver a
tool developed to identify mutational processes associated with
known and putative tumor drivers and hotspots particularly in
the non-coding regions of the genome to predict coding and non-
coding driver mutations.

Results
A total of 3813 human tumors and matching germlines from
three whole-genome sequencing cohorts were used as discovery
data set, including 2,772 from ICGC1, 801 from TCGA2, and 240
from a pan-pediatric cancers cohort3, of which 2,702 are part of
PCAWG6. These data set yielded 52,382,573 somatic SNVs
(sSNVs) and 154 substitutional mutation signatures from three
sets of signature definitions (50 COSMIC SBS trinucleotide sig-
natures, 61 penta-nucleotide signatures, 43 NxSxN-extended
signatures). For driver discovery, sigDriver scans the target gen-
ome by half-overlapping windows of 2 kilobases (kb). Within
each 2 kb region, signature-associated hotspots were resolved
down to single-base resolution. Each hotspot was regressed to
search for signature-associated regions. Mutational load was
controlled to avoid spurious association. Differential expression
analysis and annotation of epigenetic and genomic elements were
applied to each hotspot in order to evaluate their cancer driver
potential. Interestingly, distinct mutational processes contributed
to substitutions preferentially in coding regions or regulatory
DNA elements (Supplementary Data 2), showed enrichment of
events on known drivers of which more than three events overlap
with Cancer Gene Census genes25. This type of mutational pro-
cess is considered as driver-associated mutational process
whereas the corresponding mutational signature is referred as
driver-associated mutational signature. In addition, by comparing
all signature-associated hotspots in regulatory regions with those
that are not, we found a significant higher number of differential
expression features in regulatory regions (p < 0.020, chi-square
test, Supplementary Data 3). A signature-associated hotspot was
classified as putative driver if it was significantly associated with a
driver-associated mutational process and, in addition, meet at
least one of the following criteria: (1) is located in a regulatory
element (enhancers, promoters), (2) is located in a coding region,
(3) affects gene expression (including transcript distribution), or
(4) is highly recurrent (point mutations present in at least 10
cases per mutational signature tested) (Fig. 1b).

Overview of hotspot mutations associated with various muta-
tional processes. We identified six signatures that are associated
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with driver mutations based on hotspots enrichment tests
(Supplementary Data 4), including APOBEC-driven mutagen-
esis (SBS2, SBS13), spontaneous deamination (SBS1), somatic
hypermutation (SBS9, SBS84) and an uncharacterized signature
(SBS39). For details on other mutational signatures, refer to
Supplementary Note 4. Of 84 hotspots originating from these
mutational processes, 70 are putative drivers and 40 are known
drivers (Supplementary Data 5, literature references in

Supplementary Data 6). Top putative drivers per mutational
signature were summarized in Fig. 2. Our tool identified only
functional hotspots in the coding region, consisting of non-
synonymous or nonsense sSNVs. Coding drivers were deli-
neated by H3F3A and PTEN hotspots from spontaneous dea-
mination (Fig. S1) and by two distinct hotspots on PIK3CA
resulting from APOBEC activity and signature SBS39, respec-
tively. Additionally, all 19 of our unique coding hotspots
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2ENCODE ChIPSeq tracks, hypergeometric test was performed to evaluate significance
3Curated from 18 studies, hypergeometric test was performed to evaluate significance, see 
Supplementary Data 4
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Fig. 1 Association analysis reveals hotspots associated with mutational signatures. a A flow chart on driver discovery using hotspot-signature
association on the basis of 3813 whole-genome sequenced tumors and replication using 258 whole-genome sequenced breast tumors. b Associated
hotspots per mutational signature were annotated by coding regions, regulatory elements (enhancers and transcription start sites, TSS), transcription
factor binding sites, known cancer drivers and gene expression changes. Enrichment tests were performed on coding elements and regulatory elements
together by permutation. Hotspots enrichment on transcription factor binding sites and known drivers were performed by two-sided hypergeometric tests.
Signature-set wise correction of p values was performed by false discovery rate (Benjamini-Hochberg, Supplementary Data 4). The significance level
indicated by *** and ** are q < 0.001 and q < 0.01 respectively. Source data are provided as a Source Data file.
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(6 from NxSxN-extended signatures) were also reported by
PCAWG investigations of coding drivers5 (Supplementary
Data 12, 13), demonstrating the underlying specificity of our
driver discovery method. Our approach is, however, universal
to identify coding and non-coding driver candidates over the
entire genome.

While all coding hotspots from driver-associated mutational
processes (SBS1, SBS2/SBS13, SBS39, SBS9/SBS84) are known,
non-coding hotspots are largely undescribed (23 of 49, Supple-
mentary Data 5). Identified TERT promoter mutations are known
and associated with the spontaneous deamination signature

(SBS1, adj. p value < 4.5 × 10−8, Supplementary Fig. 1). APOBEC
mutagenesis (SBS2, SBS13), somatic hypermutation (SBS9,
SBS84) and spontaneous deamination (SBS1) play an active role
in driver mutagenesis, particularly in the non-coding region.
APOBEC activity is accountable for multiple known non-coding
driver mutations affecting PLEKHS1, TBC1D12, LEPROTL1, and
ADGRG626–28, along with so far undescribed drivers identified
by sigDriver nearby: MAPKAPK2, RAD51B, ADAMTS2, and
NTRK2. Somatic hypermutation signatures (SBS9, SBS84) are
associated with a small subset of activation-induced cytidine
deaminase (AID) targeted regulatory hotspots.
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TERT 4 1.5x10-13 ↑ 98 48 48 17 6 20 2 5 4 3 10 23
H3F3A 5 7.6x10-8 37 15 15
EGFR - 13 4.5x10-4 - 10 7 7
ADGRG6 2 7.1x10-42 ↓ 45 61 61 3 2 2 4 3 5 +
PLEKHS1 8 8.8x10-34 ↓ 49 22 22 6 2 4 2 5 +
LEPROTL1 1 9.0x10-29 - 17 17 17 4 3 2 1
PIK3CA - 3 4.5x10-19 - 14 14 4 2 7 4 14 0 7 1 5 5 11 -
KLHL21 18 4.7x10-2 - 8 13 13 2 1
TBC1D12 1 9.8x10-23 - 16 9 9 3 2 2 2 2 +
RAD51B 19 5.7x10-14 ↑ 19 9 9 3 1
FCGR3B 2.1x10-11 ↓ 10 9 9 6 1
ANKRD53 1.4x10-10 ↑ 9 9 9 3 2 1
MAPKAPK2 6.4x10-22 - 12 5 5 3 1 4 +
ADAMTS2 2.0x10-22 - 12 5 4 5 2 2 1
NTRK2 - 7.5x10-16 - 17 5 2 5 1 2 +
ZNF143 1 1.7x10-6 - 9 4 4 2 3 1
ALDOA 1 2.1x10-10 - 10 3 3 2 1
CTNNB1 - 1 5.4x10-3 - 40 4 4 1 2
IGHJ5 17 2.7x10-20 - 278188 88
IGKJ5 1.7x10-13 ↑ 241653 53
BCL6 19 1.8x10-4 - 332 47 47
IGLL5 17 6.0x10-8 - 133 44 44
BCL7A 19 3.8x10-2 - 74 30 30
BTG2 18 2.5x10-3 - 103 27 27
CIITA 19 1.6x10-3 ↑ 65 27 27
PAX5 17 3.7x10-3 73 24 24
CD83 5.1x10-3 ↑ 31 21 21
PIM1 18 1.2x10-3 ↑ 39 20 20
RHOH 19 7.6x10-21 - 26 17 17
TCL1A 19 2.9x10-7 - 42 17 17
IGKV4-1 7.1x10-11 ↑ 68 12 12
1: Deamination APOBEC activity SBS39 Somatic hypermutation

2: exonic (stopgain  / 
non-synonymous ) intronic upstream Intergenic 5” UTR

Enhancer Promoter
3: Refer to Supplementary Data 6;  
4: +, Replicated; -, Replication failed; ,Test unavailable

Fig. 2 A summary of putative driver hotspots from COSMIC SBS mutational signatures V3. Hotspots from six driver-associated mutational signatures
were included, signatures are classified into 4 categories: Deamination (SBS1), APOBEC (SBS2/SBS13), somatic hypermutation (SBS9, SBS84), and
signature SBS39. Hotspots were annotated by the nearest gene, by their expression impact, by their epigenetic impact from ChromHMM, and by their
status as known drivers. The p values indicate the significance level calculated by sigDriver of the corresponding hotspot after multiple testing correction.
Occurrence across entities were summarized in percentages on the heatmap section of the table. The replication cohort designated CATCH comprises
metastatic breast cancer samples (blue); the replication status is provided in the respective column. Source data are provided as a Source Data file.
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APOBEC-associated hotspots. APOBEC induced signatures are
associated with the highest numbers of putative driver mutations.
In total, 34 associated hotspots were linked to APOBEC sig-
natures (SBS2, SBS13, SBS-E2/E13, Supplementary Data 7, Sup-
plementary Fig. 2). A literature review showed that 11 of the 34
hotspots (32%) are known drivers and are amongst the top
hotspots linked to APOBEC signatures (Supplementary Data 7).
Five of the seven identified APOBEC-associated hotspots were
replicated in an independent cohort of metastatic breast cancer
(Supplementary Data 8). The graphical illustration of the muta-
tion spectrum of APOBEC signatures (SBS2/SBS13) is presented
in Fig. 3a. All point mutations associated with APOBEC sig-
natures showed the characteristic C > G, C > T and C > A sub-
stitutions confirming the link with this enzyme (Supplementary
Fig. 2). Analyzing the DNA replication strand asymmetry at these
sites, we annotated the leading and lagging strands for 6 out of 34
APOBEC hotspots with 4 hotspots on the lagging strand (Sup-
plementary Data 7). The finding is in line with the observation
that APOBEC mutagenesis primarily occurs on the lagging strand
template during DNA replication29. Substrate optimality
prediction21 revealed that APOBEC hotspots are at least weak
substrates of APOBEC enzymes (optimality > 0), while the

hotspot p values are only weakly correlated with substrate
optimality (r= 0.190, Spearman’s Correlation, Fig. 3b). Some
proposed driver hotspots nearby NTRK2 and MAPKAPK2
are low in APOBEC optimality (<1.1, Supplementary Data 7).
Major APOBEC-associated hotspots are described in Supple-
mentary Fig. 2. This suggests that sigDriver can distinguish
APOBEC-associated drivers from other drivers without being
confounded by the optimal substrates of APOBEC.

APOBEC-associated hotspots are enriched for regulatory
elements, coding elements, transcription factors binding sites
and known tumor drivers (Fig. 1b). Enrichment for regulatory
elements was most pronounced (20 of 34, Supplementary Data 7,
coding: p < 0.002, regulatory: p < 1 × 10−6, permutation test).
Using ChromHMM 18-state annotations from 98 epigenomes22,
we found significant enrichment of enhancer or promoter
elements in hotspots associated with APOBEC signatures (SBS2
and SBS13, adj. p value < 1.1 × 10−4). Exploration in the non-
coding region for APOBEC hotspots sigDriver can identify
candidate drivers like ADGRG6 among the genes identified as
likely passengers30.

APOBEC initiated mutagenesis is common across multiple
tumor entities6. However, entity-specific positive selection causes

Fig. 3 Selected mutation spectra of COSMIC SBS V3 and NxSxN signatures and analysis of APOBEC substrate optimality in relation to sigDriver
APOBEC(SBS13) significance. a The mutation spectrum of signatures from COSMIC SBS V3 signatures and NxSxN-extended signatures. The left panel is
showing the mutation spectrum of the APOBEC signatures (SBS2/SBS13) and signature SBS39 under the COSMIC SBS V3 signature definition. The right
panel is showing the mutation spectrum of the defective homologous recombination signature SBS-E3 and signatures SBS-E101, SBS-E102 in the NxSxN-
extended signature definition. b APOBEC substrate optimality analysis on recurrent hotpots tested by sigDriver. Hotspots were extracted from APOBEC
positive tumors (more than 5% activity) for APOBEC substrate optimality analysis by ApoHP30. Potential drivers reported by PCAWG, sigDriver and the
overlap of the two were annotated per hotspot. Spearman’s correlation between the APOBEC substrate optimality and the sigDriver significance was used
to assess the relationship between the two. Source data are provided as a Source Data file.
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differences in prevalence of APOBEC induced driver mutations
(Supplementary Data 9). We observed a high frequency of bladder-
transitional cell carcinomas (Bladder-TCC) with mutations at
APOBEC hotspots (20 of 34). Hotspots in NTRK2 or MAPKAPK2
are not present in bladder carcinoma but in other entities (Head-
SCC, Lung-AdenoCA and Uterus-AdenoCA). MAPKAPK2 hot-
spots were shared across three entities, namely breast carcinoma (7
of 644 tumors), head and neck squamous cell carcinoma (3 of 56
tumors) and cervical squamous cell carcinoma (1 of 18 tumors).
Most APOBEC hotspots are found in breast carcinoma (33 of 34
hotspots) where APOBEC activity is common.

The APOBEC hotspot on MAPKAPK2 is characterized by C > T
or C >G substitutions at chr1:206859376 overlapping with the
promoter region of MAPKAPK2 (Supplementary Fig. 3). The
variant is also present at low frequency in the general population
(gnomAD allele frequency = 0.00152, rs180968364). It is supported
by 12 sSNVs across 4 tumor entities (Breast-AdenoCA, Lung-
AdenoCA, Head-SCC, and Cervix-SCC). Interestingly, this muta-
tion is not identified in bladder carcinoma, even though this entity
is associated with high APOBEC activity. According to the
algorithm DeepBind, three transcription factors are predicted to
have reduced binding probability in that region: CHD2, ZBTB33,
and BRCA1 (Supplementary Data 10). The respective binding sites
are active as indicated by ChIP-seq experiments31 and the
corresponding transcription factors are also expressed in bladder
carcinomas32. The APOBEC activity predominantly substituted C
to T within the core CGCG repeat of the ZBTB33 (Kaiso) binding
site. The mutation could potentially disrupt the co-repressor activity
of Kaiso for activation of MAPKAPK2. The weak APOBEC
substrate optimality of the hotspot (1.36) further supports it as
driver candidate as hotspots with a score below 4 are known or
likely drivers30. This hotspot was replicated in an independent
cohort of metastatic breast cancer (9 of 258 tumors, 3.5%,
Supplementary Data 8), where the occurrence is higher than that
of primary breast cancers (7 of 640, 1.1%, Supplementary Data 9).
Although the hotspot mutation does not significantly affect
MAPKAPK2 expression, it is associated with the downregulation
of DYRK3 (PCAWG, q < 0.036, CATCH p < 0.003, Supplementary
Fig. 4). In line with this finding is the GeneHancer database33 that
describes this regulatory region on MAPKAPK2 regulating the
nearby DYRK3 gene, a gene within the topologically associating
domain (TAD) boundaries of the hotspot.

Hotspots associated with spontaneous deamination signature.
The spontaneous deamination signature (SBS1) is based on a
mutational process correlated with age6. Hotspots were investi-
gated for their relationship with age to understand whether the
putative driver mutations are acquired over time. The majority of
hotspots associated with the spontaneous deamination signature
(SBS1) are coding with functional impact (Fig. 1b), affecting
known drivers such as PTEN, EGFR, and H3F3A (Supplementary
Data 5 and Supplementary Note 3). However, no link with age
can be found over the hotspots associated with the spontaneous
deamination signature (Supplementary Data 11).

Apart from the six driver-associated signatures, hotspots from
other mutational signatures showed less overlap with known
regulatory elements. These COSMIC SBS signature hotspots only
accounted for 17% (14 of 82) of all hotspots identified on coding
DNA or regulatory elements (Supplementary Data 12). They are
referred to as susceptible targets of the underlying mutational
process.

The interplay between PIK3CA activating mutations and
mutational processes. Two hotspot mutations were detected in
the oncogene PIK3CA and are linked to two independent

mutational signatures. While the hotspot p.E542K/p.E545K is
associated with APOBEC signatures (SBS13, adj. p value <
1.0 × 10−16), the hotspot p.H1047R is negatively associated with
signature SBS39 (adj. p value < 0.018, Supplementary Data 5) and
with homologous recombination deficiencies (SBS-E3, adj.
p value < 2.2 × 10−5). The p.E542K/E545K hotspot is known to
be raised by APOBEC with the characteristic C > T substitution
on the antisense strand34. We observed that tumors carrying
p.E542K/E545K mutations have significantly higher fraction of
APOBEC signature linked mutations than p.H1047R carriers
(Fig. 4c). Meanwhile, tumors carrying these hotspots have a lower
occurrence of signature SBS39 (p.H1047R, adj. p value <
1.3 × 10−3, Fig. 4d). Both hotspot mutations are activating driver
mutations of the PIK3CA kinase affecting the helicase or the
kinase domain35. By investigating the presence of APOBEC sig-
natures (SBS2/13) and signature SBS39 in breast cancer subtypes
defined by TCGA36, we found a significant enrichment of SBS39
exposures in the basal subtype compared with 3 other breast
cancer subtypes defined by PAM50 (Her2, Luminal A, Luminal B;
Supplementary Fig. 5). By our independent cohort of advanced
breast cancers, we observed a weak negative correlation between
APOBEC induced and SBS39 signatures (r=−0.27, spearman).
An interplay between the mutational signatures (APOBEC and
SBS39) was observed through hotspot mutations in PIK3CA.

Additional hotspots discovered by NxSxN-extended and penta-
nucleotide motifs. By extending the analysis to additional sig-
nature sets, additional hotspots were discovered. Some were
exclusive to NxSxN-extended signatures (SBS-E) (Supplementary
Data 13), as exemplified by known coding driver hotspots at TP53
(SBS-E3), and two coding hotspots exclusively identified by
its somatic hypermutation signature (SBS-E9) (Supplementary
Data 26). A total of 59 hotspots were identified using NxSxN-
extended signatures with 10 hotspots showing a maximum entity
prevalence of more than 3% (Supplementary Data 14). Of the 115
unique hotspots discovered using NxSxN-extended signatures, 60
are also present among the identified COSMIC SBS hotspots
(Supplementary Fig. 6). Additionally, NxSxN-extended signatures
exclusively identified coding hotspots with functional impact on
SPOP and SMARCA4. Signatures SBS-E102 and SBS-E108 pro-
vided the most complementary information as compared to
COSMIC SBS signatures (Supplementary Data 13). Homologous
recombination deficiency signatures SBS-E3 showed a higher
number of putative driver hotspots than SBS3, but there is
insufficient evidence to classify SBS-E3 as driver-associated. In
conclusion, utilization of NxSxN-extended signatures resulted in
additional hotspots including 11 known drivers missed from
COSMIC SBS signatures analysis (Supplementary Data 13).

Although full penta-nucleotide signatures accounted for more
context information, only 47 additional hotspots were added to
the classical COSMIC SBS signatures (Supplementary Data 13).
Of all the penta-nucleotide associated hotspots, BRAF and
FOXO1 from PSBS69 and PSBS71 are notable examples
unaccounted for by COSMIC SBS signatures. The BRAF signal
originates from V600E coding mutations in glioblastoma, a
potential biomarker for drug response in glioblastoma24. Penta-
nucleotide signatures can therefore extract information missed by
using only COSMIC trinucleotide SBS signatures for analysis.

We here report hotspots discovered by NxSxN-extended
signatures and by penta-nucleotide signatures (Supplementary
Data 15). The overlapping hotspots between the two signature
sets are 44% (46 of 105 Penta-nucleotide signature hotspots,
Supplementary Fig. 6). Surrogate signatures showed consistency
of the method despite differences in signature construction
(Supplementary Fig. 7). The inclusion of additional signature sets
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can benefit driver discovery by two aspects: repeated measure-
ments by surrogate signatures and extraction of missing
information by so far disregarded signatures.

Differential expression analysis comparing mutational status
of hotspots. Using expression data from 1359 tumors of
PCAWG, the impact of the hotspot mutations on gene expression
was evaluated. Tests were performed across all entities and
on each entity when sufficient number of tumors were available
(n >= 3). Gene copy numbers were controlled to focus on the
effect from hotspots.

Twenty-five of 90 hotspots from COSMIC SBS signatures
showed differential gene expression after false discovery rate
correction (Supplementary Data 16). Likewise, in our study 20 of
65 hotspots showed differential transcript expression (Supple-
mentary Data 17). Deregulations were observed on genes such as
TERT, PLEKHS1, and ADGRG6 (Fig. 5b, c) or RAD51B and
FCGR3B (both of them have hotspots located on the last intron,
overlapping with regions annotated as enhancer). By intersecting
with ChromHMM annotations, we detected that 23 of 25 gene
expression changes coincided with mutations in regulatory
elements defined by chromatin states (enhancer or promoter,
Supplementary Data 18, Supplementary Fig. 8) and supporting
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Fig. 4 Relationship between PIK3CA hotspot mutations and mutational signature exposures. a PIK3CA hotspot on exon 12 positively associated with
APOBEC signatures (SBS2/SBS13). b PIK3CA hotspot on exon 1 negatively associated with signature SBS39. c Violin-plot comparing APOBEC signature
exposures (SBS2+SBS13) on PIK3CA hotspots, significance between the wild-type (WT) group and the mutated group was tested by a two-sided Wilcoxon
rank-sum test (p < 2.0 × 10−4 and p < 0.0020). The box indicates the 25th and 75th percentiles with the median highlighted by a black line, whiskers
extend to 1.5 times the interquartile range from the 25th and 75th percentiles, and polygons represent density estimates of data. d Bar-plot comparing the
binary status of signature SBS39 exposures in tumors carrying different hotspot mutations. Tumors with more than 5% normalized signature exposures
were considered positive, significance between the wild-type (WT) group and the mutated groups were evaluated by a two-sided chi-square test and
corrected for multiple testing according to Bonferroni (padj<1.3 × 10−3 and 0.0022). Source data are provided in Supplementary Data 4.
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the role of these hotspots as regulatory drivers. Hotspots
associated with expression impact and within regulatory elements
provide evidence for their potential role promoting tumor
development.

Hotspots associated with somatic hypermutation are charac-
terized by sSNVs clusters in promoter regions. Hotspots on
regulatory regions of IGKV4-1, CD83, CIITA, PIM1, and IGKJ5
are associated with the upregulation of the respective gene
(Fig. 5a). Clusters of mutations were caused by somatic
hypermutation, in contrast to APOBEC signature-associated
hotspots consisting of only 1 to 2 specific point mutations
(Supplementary Fig. 9). Over 80% of the hotspots associated with
hypermutation activity are affecting promoter or enhancer
elements defined by ChromHMM annotations (Fig. 1b). This is
consistent with previously observed enrichment of somatic
hypermutation hotspots at promoter regions37. To investigate

whether our observation is due to immune cell maturation,
tumors from the entity chronic lymphocytic leukemia (CLL) were
further sub-classified by their IGHV mutational status38. The
differentially expressed genes are unchanged with or without sub-
classification by IGHV mutation status. By inspecting structural
variants (SVs) nearby the hotspots of IGKV4-1, we observed that
hotspot sSNVs are mutually exclusive to nearby SVs (Fig. 5e,
Supplementary Data 19). Hotspot sSNVs associated with somatic
hypermutation could be an alternative or synergistic mechanism
of putative driver gene upregulation in Non-Hodgkin lymphoma
(Lymph-BNHL).

Comparison with other methods of driver discovery. To
investigate the overlap between PCAWG identified candidate
drivers with our list of putative drivers, mutational process-
inclusive list of PCAWG candidate drivers were taken into

Fig. 5 Gene expression changes related to putative driver hotspots. Significance and log2 fold changes for two-sided tests were provided by DESeq2 and
presented values are VST transformed. p values were FDR corrected by the total number of expression tests performed on the COSMIC SBS signature set,
indicated by the q-values. For details of the hotspots, refer to lollipop plots in the Supplementary Figs. 2, 3, and 7. In the violin plots, the white box indicates
the 25th and 75th percentiles with the median highlighted by a black line, whiskers extend to 1.5 times the interquartile range from the 25th and 75th
percentiles, and polygons represent density estimates of data and extend to extreme values. a Expression boxplots for PIM1, IGKJ5, IGKJ1, and IGKV4-1
from lymphomas (Lymph-BNHL and Lymph-CLL) associated with somatic hypermutation (SBS84, SBS9), contrasting tumors with and without hotspot
mutations. b Expression boxplots for PLEKHS1 and ADGRG6 (GPR126) from bladder cancer (Bladder-TCC) associated with APOBEC activity (SBS2/SBS13).
c Expression boxplots for TERT hotspot associated with spontaneous deamination (SBS1). d Oncoprint on mutation status of IGKV4-1 in B-cell non-Hodgkin
lymphoma (Lymph-BNHL), describing the relationship between structural variants (SVs) within 200 kb and single nucleotide variants (SNVs) on the
hotspot. Source data are provided as a Source Data file and in Supplementary Data 16.
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account. To this list we added all driver candidates likely linked to
mutational processes that were removed in the final PCAWG
driver candidate list. All 12 of the identified coding candidate
drivers are present in the mutational processes-inclusive list of
PCAWG candidate coding drivers (n= 183, Supplementary
Data 5). Notably, the overlap of mutational processes-inclusive
non-coding candidate drivers from PCAWG (n= 188) with the
candidate drivers from sigDriver (n= 70) is 16 (Supplementary
Data 5). It is however difficult to evaluate the exclusive drivers
from PCAWG and from our study, as the two approaches differ
by the scope of genomic regions (functional/regulatory elements
versus the entire genome) and the relationship of driver muta-
tions with mutational processes (all driver mutations versus dri-
vers associated with mutational processes).

We compared sigDriver with DriverPower, a method combin-
ing mutational burden and mutation impact for driver
discovery39. At the false discovery rate of 10%, DriverPower
reported 113 hits across coding and regulatory elements. Thirty-
five of 113 hits are shared between DriverPower and sigDriver
(Supplementary Data 20), of which 9 overlapping candidates
from sigDriver were counted more than once due to the
aggregation of coding and non-coding elements altogether in
one test window. Overall, 45 of 70 hits are exclusive to sigDriver,
of which 43 are categorized as non-coding elements. Since
sigDriver is expected to reveal only putative drivers strongly
associated with a mutational process, it detects less driver
candidates. However, sigDriver presents a substantial addition
of driver candidates to the non-coding region of the genome.

Discussion
We performed a genome-wide search for mutational hotspots and
drivers associated with three sets of mutational signatures. The set
of NxSxN-extended signatures not only supported the findings
but in addition lead to the discovery of putative drivers. In this
context, we identified four mutational processes linked to six
mutational signatures associated with driver mutations. Sig-
natures were associated with mutational hotspots consisting of
sSNVs, where knowledge-based annotations (chromatin states,
coding regions) were applied to find putative drivers. As sig-
natures of mutational processes can be found across multiple
tumor entities, hotspot discovery can be performed on a collec-
tion of signature-positive entities. Our method took an auto-
matized search-then-annotate approach to characterize hints of
positive and negative selection implicated by dependencies and
enriched targets of mutational processes, an approach different
from using BMR models. Hotspots associated with mutational
signatures were identified by mutational burden, whereas func-
tional and regulatory annotations were applied to hotspots to
evaluate driver potential.

Our approach attempts to distinguish driver from passenger
mutations related to mutational processes. It revealed a number
of potential non-coding drivers and suggested their link with one
or more mutational signatures. The majority of those driver
hotspots are cis-regulatory elements, located in regulatory ele-
ments of the target genes and yielding in gene expression
alterations. Some hotspots are highly recurrent but unexplained
by regulatory annotations, demonstrated by hotspots nearby
NTRK2 and SLC14A2. A subset of APOBEC activity linked hot-
spots were replicated in a smaller (n= 258) independent cohort
of advanced metastatic breast cancer, assuring the reproducibility
of the method. Additional non-coding drivers were identified5.
SigDriver revealed known drivers in the coding sequence com-
partment without taking advantage of coding impact annotations.
The characteristic annotation-free hotspot identification step

enabled driver discovery in coding as well as under-investigated
non-coding regions.

Six mutational signatures showed enrichment of hotspots with
known drivers, regulatory and coding elements (SBS1, SBS2,
SBS13, SBS39, SBS84, SBS9). APOBEC and somatic hypermuta-
tion hotspots are highly enriched for mutations in enhancer or
promoter regions and are more likely to disturb transcription
factor binding motifs. Deamination is instead more often found
in coding regions. Physiological mutation processes, such as local
hypermutations observed during immune cell maturation, could
further increase hotspot at coding or regulatory elements.

To account for mutational processes that are known to target
specific motifs or regulatory elements (SHM), we further per-
formed APOBEC optimality analysis and IGHV mutational
status analysis of our driver hotspots. This showed that sig-
Driver does not preferentially identify the favorite substrates of
the mutational processes as drivers. A large proportion of
hotspots from signature SBS84 (SHM) are overlapping with the
COSMIC Cancer Gene Census (6 of 17)25. Putative drivers of
chronic lymphocytic leukemia showed an increased gene
expression regardless of IGHV mutational status. Moreover, the
exclusivity of sSNVs and sSVs in IGKV4-1 hint towards a
positive selection during tumor evolution. These observations
provide evidence for sigDriver-based hotspots in non-coding
regions as putative drivers.

Complex interplay was observed between mutational processes
and driver mutations. As an example, we observed patients car-
rying APOBEC-associated PIK3CA driver mutation (H1047R) are
less likely to show SBS39 signature. Applying sigDriver, we have
detected both positive and negative association between hotspots
and mutational signatures, a potential determinant for the path of
tumor evolution.

Some identified non-coding drivers apparently disrupt gene
expression on the gene- or on the transcript-level. Non-coding
driver mutations of RAD51B and FCGR3B are associated with
disruption of isoform regulation. Promoter mutations of
ANKRD53 or SHM targets are associated with upregulation of
gene expression, similar to the TERT gain-of-function promoter
mutations. Likewise, hotspot sSNVs within an enhancer of
IGKV4-1 suggest a gene up-regulation mechanism. Some
expression changes are detectable only in a subset of tumor
entities, as demonstrated by the PLEKHS1 hotspot in bladder
cancer. It is foreseeable that by increasing cohort sizes of tran-
scriptome sequencing efforts, the effects of these potential non-
coding drivers on transcription regulation will be further
uncovered.

Hotspots associated with mutational signatures provide a clue
to the underlying mechanism for some uncharacterized sig-
natures. Signatures SBS32/SBS37 are enriched for hotspots on
LINE elements. By motif analysis on SBS17 hotspots, we found
recurrent substitution within the motif AAAAC[T > G]TA,
describing a characteristic feature of this otherwise poorly char-
acterized signature.

Studying multiple mutation signature sets clearly improves the
interpretation of associated hotspots and leads to additional dri-
ver discoveries. The penta-nucleotide information leads to
increased complexity (6x4x4x4x4= 1536 combinations) and gain
of information27. Nevertheless, signatures reconstructed from
NxSxN penta-nucleotides have the same complexity as trinu-
cleotide signatures (6x4x4= 96 classes), ensuring compatibility
with existing signature analysis frameworks. Some NxSxN-
extended signatures are surrogates of COSMIC SBS signatures,
such as APOBEC and UV-light signatures. We here show that
other - uncorrelated - NxSxN-extended signatures are a source
for identification of additional mutation hotspots.
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Our cancer whole-genome association studies using mutational
signatures has led to candidate driver discoveries. This has been
achieved despite the fact that mutational process associated dri-
vers are entangled with passenger mutations. We anticipate that
this approach will be further expanded by implementing further
levels such as indel or methylome signatures. The forthcoming
international efforts on large scale whole-genome sequencing will
provide additional power for more discoveries by providing even
larger sample collections.

Methods
Discovery cohorts. Somatic single nucleotide variants (sSNVs) information was
retrieved from the ICGC data portal (dcc.icgc.org) and the R2 database (ped-
pancan.com), which were used to construct the driver analysis dataset. Summarized
penta-nucleotide context information was retrieved from synapse database (https://
www.synapse.org/#!Synapse:syn11801889) for NxSxN-extended signatures train-
ing. The driver analysis dataset is a subset of the signatures training dataset consist
of 3813 tumors, where the full signature training set has 5070 tumors (Supple-
mentary Data 1).

The NxSxN-extended signature training dataset. The NxSxN-extended signature
training dataset is a combined set including the entire whole-genome sequencing
cohort included in the PCAWG mutational signatures study (https://
www.synapse.org/#!Synapse:syn11726601/files/), ICGC brain tumors and tumors
in the pan-pediatric cancer cohort, summing up to 5070 tumors. The NxSxN
penta-nucleotide information was extracted from the full 1536 classes of penta-
nucleotides information provided in the synapse database and reduced into 96
classes of NxSxN penta-nucleotide context. For tumors not included in the
PCAWG analysis, the 96 NxSxN penta-nucleotide classes were prepared by the
preparation script provided by the PCAWG mutational signatures project, also by
reducing the full 1536 classes of penta-nucleotides information to 96 NxSxN
classes. See Supplementary Notes 1 and 2 for details.

The driver analysis dataset. The analysis dataset is a subset of the signature dis-
covery dataset (n= 3813). For samples in this set, the genomic positions and the
substitution type of somatic SNVs are available. Tumors from the ICGC data portal
and in-house tumors passing quality control were included. The NxSxN penta-
nucleotide information (96 classes) were extracted for these cases. There are some
small numeric differences in terms of the 96 NxSxN penta-nucleotide substitution
counts comparing to the signature training dataset, possibly due to different variant
filtering strategies.

Replication cohort. The whole-genome sequencing data generated within the
CATCH study comprise 258 metastatic breast cancer samples. Tumor tissue and
matched normal control sample for sequencing were obtained after receiving a
written informed consent under an institutional review board-approved protocol,
details can be found in the CATCH publication40.

In short, the whole-genome sequencing data from the replication cohort were
processed by the DKFZ OTP pipeline41. The pipeline used BWA-MEM (v0.7.15)
for alignment, biobambam (https://github.com/gt1/biobambam) for sorting and
sambamba for duplication marking. The tumor-germline paired alignments were
then used by DKFZ indel SNV callers for indel and SNV discovery42 (https://
github.com/DKFZ-ODCF/SNVCallingWorkflow, https://github.com/DKFZ-
ODCF/IndelCallingWorkflow).

Somatic single nucleotide substitution variants(sSNV) artifacts removal.
Somatic single nucleotide substitution variants (sSNV) artifacts were removed
similar to the approach described a previous study43. Somatic single nucleotide
variants present in over 1% of the samples in the local control list comprising 4879
WGS control samples from in-house cohorts were considered as technical artifacts
and were removed from the driver analysis dataset.

To further exclude hotspots potentially due to sequencing artifacts, signatures
that are potentially associated with sequencing artifacts were removed from the
driver hotspots analysis6. For NxSxN-extended signatures, signatures found to be
frequently associated with our in-house control list were removed.

APOBEC substrate optimality analysis. APOBEC substrate optimality prediction
was performed by ApoHP(initial1)30. The prediction was restricted to recurrent
(n > 3) hotspots for tumors showing more than 5% APOBEC activity (n= 2636).
Pearson correlation was calculated between log2 transformed substrate optimality
and log10 transformed significance of APOBEC test from sigDriver.

Signature exposures estimation. Five candidate assignment tools were compared
for signatures assignment: sigProfiler (v2.5.14)18, Quadratic programming, YAPSA
(1.16.0)44, sigfit-NMF and sigfit-Emu (2.0.0)45. Different mathematical methods
are employed by each assignment method: sigProfiler uses constrained convex

optimization, YAPSA uses linear combination decomposition, sigfit-NMF uses
non-negative matrix factorization, sigfit-Emu uses expectation maximization, and
quadratic programming is an in-house method using quadratic programming for
signature exposures assignment. A signature benchmark in the translation table
described in Supplementary Data 21 and Supplementary Fig. 10 showed sigProfiler
showed the best performance among those. Therefore all signature exposure esti-
mations were performed by sigProfiler2. Details of the benchmark were described
in Supplementary Note 2, “Testing the assignment algorithms by known biological
processes active in both contexts”.

Sample QC for association tests. There are 121 specimens from the PCAWG
cohort originating from different biological tumor specimens of the same patient,
they were removed from the analysis (Supplementary Data 1). The unresolved
relationship between these specimens can interfere the association test. For the
somatic SNVs, an in-house blacklist on sequencing artifacts was used to filter the
variants. After the removal of artifact SNVs, more than 38 million of SNVs
remained for association tests.

Genomic window pruning algorithm. The hotspot search is based on assumptions
that many driver mutations form clusters on a functional domain in the genome.
Some of the hotspots are in the non-coding regions and they could regulate one or
more genes nearby. Region pruning in a given genomic window allows the test to
focus on the most important sites and to disregard background mutations. A
hotspot search is therefore designed to find mutation cluster(s) per predefined
region, where some regions could carry multiple hotspots. The kernel regression
method allows point mutations of different effect sizes in each tested region, the
phenomenon is common in major oncogenes and tumor suppressors where more
than one mutational process can be involved. However, a limited number of mixed
effects can be modeled per region. The window pruning was performed by fol-
lowing procedure:

1. Restrict sSNVs to entities involved in each association test. In the normal
mode, it is restricted to entities with at least 5% tumors positive for the
signature, while the restriction is at 2% for the wide window mode.

2. Perform overlapping sliding window search per 30 bp at steps of 15 bp. Let a
window i in tumor t be defined as uit with i= 1,…, I and t= 1,…,T, where I
is the total number of sliding windows and T is the total number of tumors.
Let each sSNV j in tumor t be sSNVjt with j= 1,…, J, where J is the total
number of sSNVs.

a. Let the total number of somatic single nucleotide variations of tumor t
be

Vt ¼ ∑
J

j¼1
sSNVjt ð1Þ

b. sSNVs were binned per tumor t into window i and represented by lit.
The number of variants lit in window uit is denoted by,

lit ¼ ∑
j2uit

sSNVjt ð2Þ
c. The per tumor weight wt is defined by,

wt ¼
1

log2Vt
ð3Þ

d. Compute the weighted mutational load L of the window i by,

Li ¼ ∑
T

t¼1
wtlit ð4Þ

3. Window i is defined as a hotspot when satisfying all the following
conditions, with L presenting a vector containing all Li,

Li ≥
max Lð Þ

2
ð5Þ

Li>3 �mean ðLÞ ð6Þ

Li ≥mean Lð Þ þ sd Lð Þ � 3 ð7Þ

Genome-wide association test. We performed a genome-wide search for putative
drivers regardless of genomic and epigenomic annotations. For this purpose,
sliding windows of 2 kb at steps of 1 kb over the whole genome were created.
Windows with less than 6 somatic variants were discarded. Afterwards, each
window undergoes pruning by the genomic window pruning algorithm. Remaining
hotspot mutations were used in the following association test. The number of
tumors tested is presented in Supplementary Data 5, 7, 12, and 13.

The sample size of this study provides the statistical power for testing
association between somatic mutation burden of hotspots and signature exposures.
In detail, the hotspot association test was performed per window after pruning.
Association tests were performed on sSNVs of unknown effects, where the
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relationship with normalized exposures can be non-linear. To account for this,
kernel regression was preferred over general linear models. The association tests
were only performed when the minimum recurrence per site is > = 6 or the total
number of variants within region is >= 10 given minimum recurrence >= 3. The
association tests were corrected for confounders including tumor mutation load,
entity and the sex of the patient. Each variant is weighted by R ´median Lð Þ, where
R is the recurrence of the site and L is the somatic mutational load for tumor(s)
carrying the variant. The regression model is given by:

signature exposure � β �Genotypeij þ entity þ nvarþ gender ð8Þ
where β was tested for significance in the test, Genotypeij is the genotype matrix of
the tested genomic window where Genotypeij = 0 or 1, nvar refers to the
mutational load of tumors, and signature_exposure refers to the normalized
signature exposures of the tested mutational signature.

The association was performed by a rare-variant kernel regression association
R-package SKAT(2.0.1)17 with the possibility of providing weight to each tested
point mutation and detection of negative effects. The model SKAT-O was selected
as an optimal method given its performance on mixed-effect17. The efficient
resampling method provided by the package was used to calibrate the p values in
each test performed29. The p values were corrected by Bonferroni correction
considering the number of tests performed per signature.

Surrogate signatures were found across all three sets of tested mutational
signatures (50 COSMIC SBS V3 signatures, 61 Penta-nucleotide signatures, 43
NxSxN-extended signatures). Surrogate signatures reflecting APOBEC activity can
be found across all three set of signatures. Hotspots assigned to surrogate
signatures of APOBEC activity (SBS2/13 and SBS-E2/E13) were in good agreement
(>=78% overlap, Supplementary Fig. 7) and were combined for the analysis.

Removal of signatures from candidate signatures related to driver mutations.
The distributions of p values were evaluated by quantile-quantile plots (Supple-
mentary Fig. 11). Some signatures have too many small p values which suggest
higher false positive rate or poor model fitting. Signatures with many small p values
(λ > 1.5) were removed from putative driver analysis (Supplementary Data 22).

Enhancer and transcription start site (TSS) annotation using 18-state
ChromHMM from 98 epigenomes. To annotate hotspots, each of them was
intersected with 98 epigenomes from roadmap epigenetics23. For enhancers, the
ratio between enhancer states (EnhG1, EnhG2, EnhA1, EnhA2) and background
states (ChromHMM states 1–6, 12–14) were considered. If the ratio is more than
1:2, hotspots are annotated as enhancers. For transcription start site (TSS) anno-
tations, a similar approach was taken using the ratio between TSS states (TssA,
TssFlnk) and background states (ChromHMM states 5–6,7–15).

Evaluating the significance explained by each somatically mutated site. The
association tests report only the significantly associated regions. To further resolve
the contribution of each somatic point mutation, the p values were perturbed by
dropping one site at a time to evaluate the significance explained by each site. The
significance explained by each somatic mutation was evaluated by the Pt/min(P)
where Pt is the perturbed p value after dropping the site and P is a vector of
perturbed p values of all point mutations in the hotspot. The results of the per-
turbation can be visualized by a lollipop plot (Figs. S1, S2, S3).

Genomic annotations and enrichment analysis. Each hotspot was annotated by
ANNOVAR (2019Oct24)46 using refGene annotations on hg19. Only the top point
mutations of the associated hotspots were considered for this analysis. The annotated
coding and regulatory elements were taken together for enrichment analysis by the
empirical p values distribution derived by permutation. The empirical p values were
calculated by 100.000 rounds of permutation by simulating point mutations over the
mappable genome (mappability > 25 at read length 100 bp)47. The mappable estimates
were provided by umap (0.2.7.0)47, regions with mappability smaller than 0.25 were
removed from the test. The permutation test is one-sided.

Transcription factor binding sites annotation and enrichment analysis. Top
point mutations from hotspots were annotated for transcription factor binding sites
(TFBS) using TFBS clusters (V3) from ENCODE31. All recurrent sSNVs were
annotated likewise for comparison. The enrichment of TFBS from each tested
signature was performed by hypergeometric test.

Known driver annotation and enrichment analysis. Known drivers were curated
from drivers identified in 17 studies (Supplementary Data 6). As our method is
using the information on mutational processes, we included the driver candidates
removed due to a strong link to specific mutational processes in the PCAWG driver
study and named this extended list “mutational processes-inclusive list of PCAWG
candidate coding drivers”. In the list for driver genes curated from 17 studies we
identified 802 unique driver genes after removing overlapping genes. To compute
known drivers overlapping with COSMIC Cancer Gene Census (CGC)25, tier 1
cancer driver genes were taken for comparison, overlaps by gene names were
presented in Supplementary Data 5. The enrichment of known drivers from each

signature was performed by hypergeometric test on the basis of 21 thousand
coding genes.

Differential expression analysis. The differential gene expression analyses and
differential transcript expression analysis were performed by DESeq2 (1.26.0). For
cross entity analysis, entities without carriers of hotspot mutations or with less than
5% tumors positive for the mutational signature were removed from the test. For
both cross entities analysis and single entity analysis, differential expression ana-
lysis was performed only when the test set had three or more hotspot-positive
tumors.

The analysis was restricted to 1359 tumors where isoform counts from RNA-
seq data provided by PCAWG were available. The differential expression analyses
were performed on hotspots associated with mutational signatures. Tumors
carrying at least one hotspot were contrasted with tumors without hotspot
mutations. The differential gene and transcript expression analysis was performed
under the following model:

y � genotypeþ CNR þ entity ð9Þ
CNR is the log2 copy number ratio between the copy number of the tested gene

and the estimated ploidy. To assess the distribution of p values across differential
gene expression tests, the quantile-quantile plot was presented as Supplementary
Fig. 12.

Identification of artifact signatures. To investigate signatures frequently asso-
ciated with artifacts, two different variants sets were used for association. The
artifacts list was defined by an in-house artifacts list of SNVs and Indels often
found in the output of the DKFZ somatic mutational pipeline. The two variant sets
tested are namely variants before artifacts filter and variants after artifacts filter.
Independent association tests were performed on both variant sets and associated
hotspots were further investigated. Each associated hotspot is further refined by
perturbation to point mutation resolution and each of the most associated sites are
compared with the artifacts list. When a signature is frequently associated with
artifact sites, the signature is likely to be an artifact. Signatures frequently associated
with artifacts were removed from the analysis.

Prediction of differential transcription factor binding. Using DeepBind (0.11)31,
the binding affinity changes of 515 human transcription factors caused by somatic
mutations were evaluated. From each of the reported hotspots, only the top point
mutation was taken for evaluation. Predictions were only performed when the
transcription factor binding sites (TFBS) are active on the hotspot, indicated by
TFBS clusters (V3) from ENCODE31. For each site, the FASTA sequence ±20 bp
from the mutations were taken, the binding affinity of the mutant sequence and the
wild-type sequence were compared across 515 human transcription factors. Dif-
ferential binding sites were defined by the following conditions: (1) the wild-type
sequence has >=0.6 probability to be bound by a transcription factor, (2) the
binding probability of the mutated sequence drops by >=0.4

Statistics. All tests in this study are two-sided unless otherwise mentioned. If no
statistical method is provided the p values or adjusted p values are resulting from
sigDriver. Analyses were performed with R (3.6.0), and visualized with ggplot2
(3.3.3).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Somatic variant calls from PCAWG and ICGC were obtained from the ICGC web portal
(https://dcc.icgc.org/api/v1/download?fn=/PCAWG/consensus_snv_indel/
final_consensus_passonly.snv_mnv_indel.icgc.public.maf.gz, s3://pcawg-tcga/
consensus_snv_indel/final_consensus_passonly.snv_mnv_indel.tcga.controlled.maf.gz),
the TCGA section of the dataset is under controlled access (https://dcc.icgc.org/releases/
PCAWG/consensus_snv_indel), access can be requested through https://
dbgap.ncbi.nlm.nih.gov/. Download details are provided at http://docs.icgc.org/pcawg/
data/#download-from-pdc. Somatic variant calls from the pediatric cancer cohort were
obtained from the R2 database (https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?
&dscope=DKFZ_PED&option=about_dscope). Tumors from the CATCH cohort were
collected by National Center for Tumor Diseases (NCT) in Heidelberg and were
processed by ODCF using DKFZ whole genome sequencing and transcriptome
sequencing pipelines. Sequencing data for CATCH can be found at EGA under accession
ID: EGAD00001007563. The CATCH dataset is under controlled access, please contact
hipo_daco@dkfz-heidelberg.de to request for access permission. Datasets described
specifically in this manuscript can be found in the Supplementary Data. Source data are
provided with this paper.

Code availability
The code of sigDriver for driver discovery and NxSxN-extended signature definitions are
available at (https://github.com/wkljohn/sigDriver)48.
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