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A star-nose-like tactile-olfactory bionic sensing
array for robust object recognition in non-visual
environments
Mengwei Liu1,2,12, Yujia Zhang1,2,12, Jiachuang Wang1,2,12, Nan Qin1, Heng Yang1,2, Ke Sun1,2, Jie Hao3, Lin Shu3,

Jiarui Liu3, Qiang Chen4, Pingping Zhang5 & Tiger H. Tao 1,2,6,7,8,9,10,11✉

Object recognition is among the basic survival skills of human beings and other animals. To

date, artificial intelligence (AI) assisted high-performance object recognition is primarily

visual-based, empowered by the rapid development of sensing and computational cap-

abilities. Here, we report a tactile-olfactory sensing array, which was inspired by the natural

sense-fusion system of star-nose mole, and can permit real-time acquisition of the local

topography, stiffness, and odor of a variety of objects without visual input. The tactile-

olfactory information is processed by a bioinspired olfactory-tactile associated machine-

learning algorithm, essentially mimicking the biological fusion procedures in the neural sys-

tem of the star-nose mole. Aiming to achieve human identification during rescue missions in

challenging environments such as dark or buried scenarios, our tactile-olfactory intelligent

sensing system could classify 11 typical objects with an accuracy of 96.9% in a simulated

rescue scenario at a fire department test site. The tactile-olfactory bionic sensing system

required no visual input and showed superior tolerance to environmental interference,

highlighting its great potential for robust object recognition in difficult environments where

other methods fall short.
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The ability to effectively observe different objects and to
accurately recognize targets is a perceptive skill that ani-
mals have developed during their evolutionary history.

Robust object recognition in sophisticated environments for
automobiles and robots is a research topic that has raised a lot of
interest in the scientific community over recent years1–3. Many
approaches have been proposed and most of them are visual-
based4–11. However, interferences such as unclear objects
(occlusions) or poor light conditions can severely impact the
accuracy when performing visual object recognition5,12. Recently,
the combination of visual information and other sensing mod-
alities, such as somatosensory and auditory sensing, has achieved
notable progress3,5,13–16.

In addition to vision, tactile and olfactory perceptions are two
other crucial natural capabilities that animals have developed in
order to achieve object recognition17–19. For example, star-nosed
moles have evolved the capability of object recognition using only
tactile and olfactory perception thanks to the nerve-rich appen-
dages around its nose, allowing it to survive in the lightless
underground environment20–22. In fact, the mole’s visual-related
nervous area is replaced with the tactile perceptive and fusion
area during the embryonic period as a naturally evolved trade-
off23. This type of biological strategy demonstrates the advantages
of tactile-olfactory fusion in object recognition, including com-
pact sensory constituents, high accuracy, excellent environmental
suitability, high efficiency, and low power consumption.

In this work, we report a star-nose-like tactile-olfactory sensing
array mounted on a mechanical hand which permits the real-time
acquisition of an object’s local topography, stiffness, and odor
when touching the object. The information is gathered and then
processed by a bioinspired olfactory-tactile (BOT) associated
machine-learning strategy, essentially mimicking the biological
fusion procedures in the neural system of the mole. We aim to
use the tactile-olfactory intelligent sensing arrays to achieve
human identification and support human rescuing in hazardous
environments as a proof-of-concept.

Results
Bioinspired design of tactile-olfactory sensory system. Star-
nosed moles are considered to have one of the best tactile senses
among mammals. The unique nose structure of the star-nosed
mole significantly improves its ability for object perception dur-
ing exploring and foraging23. Benefitting from the naturally
evolved tactile sensing organs (Eimer’s organs) on the 22 epi-
dermal appendages around the nostrils, the star-nosed mole
combines the senses of touch and smell together perfectly for
rapid detection and predation in dark underground environments
with little contribution from vision or audition22.

The tactile-olfactory sensing and fusion procedures of the star-
nosed mole are achieved through the compact linkage between
the perceptive organ and the cerebral nervous system. These
procedures include the conducting and processing of information
from the initial organs to the primary areas (PA), feature
extraction and early interactions of the original signals in the
association area (AA), and the subsequent multisensory fusion
process (Fig. 1a)24–27.

The general layout of the biological perceptual organs in star-
nosed moles has been retained in our design. Figure 1b shows an
ancillary mechanical hand that is composed of 5 tactile sensing
arrays with 14 force sensors evenly attached on each fingertip (70
force sensors in total) and 1 olfactory sensing array with 6
different gas sensors attached on the palm, allowing effective
acquisition of both tactile and olfactory information. Herein, this
bioinspired intelligent perception system was designed and
applied to achieve the robust object recognition for human

rescue in challenging environments, such as where victims may
be buried or where there is the presence of harmful gas. In this
work, 11 objects in five categories (i.e., Human, Olfactory
interference objects, Tactile interference objects, Soft objects,
and Rigid objects) were selected as proof-of-principle recognition
targets (Fig. 1c). Among these, the human is the main target to be
identified in dangerous situations. In addition to soft and rigid
commodities, objects with similar stiffness and odor to those of
humans, such as animals and worn clothes were selected as the
interference objects in order to test the recognition system
because they are usually difficult to distinguish from humans
solely by single modal sensing.

To mimic the rapid decision-making of the mole, our BOT
associated architecture consists of three neural networks resem-
bling the olfactory and tactile signal fusion hierarchy in the mole
brain (Fig. 1d). First, a convolutional neural network (CNN) and a
fully connected network were used for early tactile and olfactory
information processing, which resembles the function of the local
receptive field of biological nervous systems and thus mimics the
initial processing of tactile and olfactory information in the PA.
Second, two fully connected networks were used for extracting the
features from the original information and for making pre-
decisions about the output weights of the tactile and olfactory
information based on the surrounding environment at the same
time, mimicking the early interactions of the original signals in the
AA of biological nervous systems. Afterwards, three more fully
connected networks are used for multisensory fusion, resembling
the biological information fusion process.

Design and functionality of individual sensors and integrated
sensing arrays. We have designed and fabricated a series of
silicon-based force and gas sensors with high sensitivity and
stability. The sensors were transferred and integrated in arrays on
flexible printed circuits for compliant attachment onto the
ancillary mechanical hand (Fig. 2a). The small footprint (0.5 ×
0.5 mm2) of the force sensors ensured the high resolution of our
tactile sensing for object recognition28,29. Appropriate protections
have been implemented to improve device robustness under
harsh conditions (Supplementary Fig. 1)30–32. Furthermore, six
gas sensors (3 × 3 mm2 for a single unit) compose one olfactory
sensing array, and each sensor is functionalized to be highly
sensitive to one particular gas, resulting in a customizable cap-
ability for specific perception of the odor of the detected object in
a complex environment, mimicking biological olfactory receptor
cells33–39 (see “Methods”).

High sensitivities provided accurate sampling data for the
following analysis (Fig. 2b)28–30,34–41 (Supplementary Figs. 2 and
3 and Supplementary Notes 1 and 4). In this work, these force
sensors could accurately reflect the multiple statuses during the
contact procedure in a typical object interaction sequence with a
sensitivity of 0.375mv kPa−1 over a range of 0−400 kPa (Fig. 2c).
Figure 2d indicates that the force sensor performs well in the
identification of objects with various elastic stiffness (Supplemen-
tary Fig. 4 and Supplementary Notes 2 and 3). The gas sensors
demonstrated rapid responses during contact with the detected
gas flow (response phase of ethanol gas sensor for example,
Fig. 2e), which took approximately ten seconds before reaching
the steady phase. As shown in Supplementary Fig. 5, the
performance of our gas sensor keeps steady over 60 days,
providing an accurate olfactory dataset for object recognition. The
sensor recovered to the initial status within ten seconds after the
gas was cut off. Gases with different concentrations and types
could be distinguished (Supplementary Fig. 6). Both force and gas
sensors showed high stability from −20 to 60°C, providing robust
performance under challenging conditions (Supplementary Fig. 7).
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We next performed a demonstration of human arm
recognition to test the performance of the sensing arrays
(Fig. 2f). It is worth noting that we focused on the tactile
perception over the fingertips, rather than identifying objects
based on their overall shape17. Therefore, we could prominently
reduce the spatial mapping pixels and corresponding data
complexity, while maintaining the high accuracy via perceiving
object stiffness and local topography (See details in Supple-
mentary Figs. 2, 8, 9 and Notes 2 and 3). Figure 2g presents the
gradually increasing output voltage at three sequential feature
points (i.e., the minimum force, maximum gradient, and
maximum force), consistent to Fig. 2c. Tactile mappings
captured the key features of local topography and the material
stiffness of the objects in real-time, while the olfactory array
presented excellent recognition capability for distinguishing a
human arm from other objects (Fig. 2h). In addition, our tactile
and olfactory sensing arrays also present the capability of
detecting objects covered with water or mud, which is common
in real rescue scenarios. As shown in Supplementary Fig. 10,
such interferences of olfactory perception can be alleviated after
combining olfactory sensing with tactile perception, maintain-
ing the high recognition accuracy (See details in Supplementary
Notes 4 and 5).

To implement a recognition task based on BOT-associated
learning, we built a custom tactile-olfactory dataset containing
55,000 samples distributed into 11 types of objects covering five
categories. Each sample consists of one group of output voltage
data captured from 70 force sensors and a group of output
resistance data from six gas sensors. We used the t-distributed
stochastic neighbor embedding, a dimensionality reduction

technique, in order to visualize the tactile and olfactory data
(Supplementary Fig. 11)42. Each point on the tactile/olfactory
data plot represents the corresponding sensory information of
one object projected from the 70D/6D data into two dimensions.
The points of the same object type were clustered together,
forming 11 categories of objects. Grasping gestures can cause a
difference in the tactile array response and therefore result in
multiple clusters for one object in the plot, which can be
distinguished in our system.

Design and recognition performance of the BOT algorithm.
Figure 3a shows the framework of the BOT associated learning
architecture, including a versatile CNN for extracting tactile
information from time-variant tactile mappings17, a single fully
connected neural network for obtaining olfactory information,
and a three-layer fully connected neural network (with a 0.5
dropout rate) for final associated learning. The sparse con-
nectivity of the neural network enhanced the generalization
ability of the BOT architecture for scalable sensory data fusion
considering the different data formats of tactile and olfactory
signals (dimensionality, temporary density, and sparseness). In
the fusion procedure, a scenario-dependent feedback was added
in the BOT associated learning network, which enabled a tunable
weight ratio between tactile and olfactory information. According
to actual applications, when one input perception is severely
disturbed or damaged by the environment, the BOT network
could be adjusted to rely on the other one by increasing the
relative weight of another perception, ensuring a high recognition
rate for objects in challenging scenarios.

a
Tactile Perception

Olfactory Perception

Force Sensors

Olfactory Sensors

Natural Neural Networks Artificial Neural Networks

Biomimicking Sensor ArraysStar-nosed Mole b
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5 Categories
(H, O, T, S, R)

c

Fig. 1 Bioinspired tactile-olfactory associated intelligent sensory system. a Schematic illustration of the bio-sensory perceptual system in the star-nosed
mole (left) and biomimicking intelligent sensory system (right). Top left: diagram of the unique structure of the star-shaped nose. Bottom left: Scheme
showing the processing hierarchy of tactile and olfactory information in the neural system of the star-nosed mole. Blue and red areas represent the
processing region (PA, primary area; AA, association area) for tactile and olfactory information, respectively. Blue and red arrows represent the direction of
tactile and olfactory information flow; the purple arrow shows the information flow of the multisensory fusion. Top right: schematic diagram of the sensing
array on the mechanical hand, including force and olfactory sensors. Bottom right: illustration of artificial neural networks. Images of the mechanical hand
with scale bar of 2 cm (b) and eleven different objects to be identified, scale bar: 3 cm (c). Objects to be tested can be divided into five categories including
Human (H, main target), Olfactory interference (O, e.g., worn clothes), Tactile interference (T, e.g., mouse), Soft objects (S, e.g., fruits), and Rigid objects
(R, e.g., debris). d The machine learning framework consists of three connected layers of neural networks that mimic the multisensory fusion process
hierarchy. Top left: early tactile information processing. Bottom left: early olfactory information processing. Right: neural network resembling the high-level
fusion of tactile and olfactory interactions.
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Moreover, we also implemented two unisensory learning
approaches for object recognition, including sole tactile-based
recognition using only tactile data based on a CNN, and sole
olfactory-based recognition using only olfactory data based on a
feedforward neural network (Supplementary Fig. 12). The
confusion matrixes for these approaches showed that, in a testing
dataset containing 11,000 samples, BOT associated learning has a
higher accuracy for correct recognition (91.2%) than tactile-only
recognition (81.9%) and olfactory-only recognition (66.7%)
(Fig. 3b, c and Supplementary Fig. 14a, b), proving the
importance of multi-modal sensing and fusion.

We further optimized the BOT associated learning by altering
the eigenvalue extraction method of the original data and the data
output mode for objects recognition using the same training and
testing tactile-olfactory dataset, implementing fusion based on
random points extraction (BOT-R), fusion based on feature
points selection (BOT-F), and fusion based on feature points
selection and multiple data output mode fusion (BOT-M)
(Supplementary Fig. 13). The accuracy of object recognition
was improved significantly following learning optimization with
the highest recognition rate (96.9%) for BOT-M (Fig. 3d). The
recognition accuracy of the optimized learning architecture began
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Fig. 2 Characterization of tactile and olfactory sensing array. a The design of the array architecture (i) shows the location of the 14 force sensors on
each fingertip (ii), along with the location of the six gas sensors on the palm (iii). The Si-based force (iv) and gas (v) sensors are fabricated using
microelectromechanical systems techniques and integrated on flexible printed circuits. Blue area: force-sensitive area (single-crystalline silicon beam) with
scale bar of 200 μm. Red area: area modified by gas-sensitive material with scale bar of 400 μm. b The sensitivity of the force and gas sensors. n = 12 for
each group. The error bars denote standard deviations of the mean. Top: the output voltage response of the force sensor under gradient pressure loading.
Bottom: The normalized resistance response of the gas sensor in the continuously increasing ethanol gas concentration. c In a typical touching process, the
fingers increasingly get closer to the object until the point of contact (i. reach phase) and experiences a sudden rise in tactile forces as the object is touched
(ii. load phase). Then the hand would hold the object for a certain time (iii. hold phase) and at last release the object (iv. release phase). d Response curve
of the force sensor during the process of contacting three different objects. When the same force is applied to the objects by the mechanical hand, the
deformation degree of the objects varies according to their different elasticity modulus, changing the local contact area and consequent reactive pressure.
e The normalized resistance response curve of the gas sensor during the process of contact and separation from the detected gas flow. f Photograph of the
mechanical hand touching a human arm, scale bar: 2 cm. g The tactile mappings at three different feature points in (c). Each contains 70 pixels with 14
pixels for each fingertip. h The hexagonal olfactory mappings of three different objects including an arm, worn clothes, and an orange.
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convergent and remained stable after around 20 training cycles
for both testing and training datasets (Fig. 3e). We further
evaluated the influence of both tactile and olfactory noise on the
recognition accuracies of these trained models (olfactory, tactile,
and BOT-M-based recognition strategies) by adding Gaussian
white noise in the testing dataset. The increased noise level
significantly deteriorates the recognition accuracies of the
unisensory strategies, while BOT-M continues to maintain high
recognition accuracies (Fig. 3f).

Human recognition in challenging conditions. We adapted our
sensing system for human recognition as demonstrated in a
simulated rescue scenario at a fire department test site. Figure 4a
depicts the system, consisting of a mechanical hand equipped
with tactile-olfactory sensing arrays, a data pre-processing unit
for capturing the tactile and olfactory information from the
sensing array, and a data-fusion unit for implementing the BOT-
M associated learning and final object recognition. Four different
scenarios with various obstructions were built in terms of (1) gas
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interferences, (2) buried objects, (3) partially damaged tactile
sensors, and (4) simulated rescue mission.

We first tested the recognition performance of different body
parts, such as the arm and leg, using the multisensory fusion
system in environments with different inference gases of various
concentrations. In order to simulate the practical scene and to
prove the system’s capability of resisting disturbance, acetone and
ammonia were chosen to interfere with the recognition of the
human body. Specifically, acetone simulates the emergent
situation of gas leakage in an industrial accident, while ammonia
possesses a similar odor to that of the human body (Fig. 4b). The
recognition accuracies for both unisensory and multisensory
approaches (olfactory and BOT-M) under acetone and ammonia

interferences are shown in Fig. 4c. When the concentration of
acetone increased, the accuracy of the sole olfactory approach
decreased dramatically, whereas the tactile-olfactory fusion
method maintained high accuracy (>99%), showing excellent
human recognition performance in the situation of a dangerous
gas leak. Similarly, with the increase of ammonia concentration,
the multisensory fusion approach maintained high accuracy
(>80%) of human recognition under the disturbance of similar
odor when compared to the rapid decline of accuracy for sole
olfactory recognition. Meanwhile, the system can also sense the
presence of the inferencing gases (Supplementary Fig. 15), which
could provide warning for timely evacuation if needed. The
robust performance of the BOT system under gas disturbance
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primarily depends on tactile compensation while olfactory
perception is disturbed.

In a burial scenario that involves visual obstruction, tactile-
olfactory sensing plays a major role in object and environment
perception. However, for sole tactile perception of the object’s
overall shape, the obstruction of debris will cause serious
deviation, resulting in a decline of recognition accuracy43. In
contrast, the local topography and material stiffness perception of
our tactile arrays could achieve higher accuracy when the target is
partially exposed, such as partially buried human body (Fig. 4d).
As proof-of-concept, one to four fingers of the mechanical hand
are blocked in order to simulate different degrees of burying
(Supplementary Fig. 16). The results in Fig. 4e show that when
the burial level increases, the accuracy of the sole tactile
perception decreases dramatically, whereas the tactile-olfactory
fusion method maintains its initial high accuracy (>99%). One
accountable reason is that the force sensor can distinguish objects
with various stiffness, thus distinguishing the soft human arm
from the rigid debris with high accuracy of tactile perception
could be achieved when there is no block for the mechanical
hand. In addition, by increasing the weight proportion of
olfactory information, identification of human odor can be a
strong supplement to the lack of tactile perception, leading to an
improvement in the accuracy of human body recognition in
burial scenarios with tactile olfactory fusion method.

Importantly, it is possible that the tactile and olfactory sensing
array could endure partial failure due to contact with sharp
objects or damaging radiation during practical application. Thus,
we also intentionally disabled some of the sensors randomly, with
a failure rate varying from 0 to 60% (Fig. 4f). In this case, the
tactile-olfactory fusion method displays excellent recognition
accuracy compared to the sole tactile perception (Fig. 4g). On one
hand, the result is attributed to the complementary effect of the
olfactory information to supplement the defected tactile informa-
tion in the multisensory fusion process. On the other hand, the
scenario-dependent feedback in the BOT associated learning can
accommodate harsh environments and can improve accuracy via
changing the tactile and olfactory weight (see “Methods”).

On top of the search and discovery of human existence in these
challenging conditions, the rescue mission may also include
removing obstacles and evaluating the burial degree. As proof-of-
concept, we combined our sensing system with a dexterous
robotic arm for the demonstration of removing the debris and
then rescuing the buried human (Fig. 4h). The design of the
robotic arm focuses more on handling debris so is different from
the previous mechanical hand used for object recognition. In
detail, the degree of burial is determined by the relative
proportion of classification vectors of debris and the exposed
human body in the detected area. Following the rescue
procedures shown in Fig. 4i, our sensing and BOT system could
evaluate the existence and burial degree of human if needed,
guiding the robotic arm to automatically remove the covering
debris until the buried body part being fully exposed. As shown in
the Supplementary Movies 1 and 2, we mounted the mechanical
hand on a robotic arm to recognize and grab the debris, and then
move them away from the designated area; then we let the same
robotic system to touch and recognize the fully-exposed human
arm/leg. Figure 4j shows such process of the step-by-step debris
removal and corresponding reduced burial degree. In the end, the
fully exposed body part can be recognized by our system and
could furnish a rescue window for dragging and healthcare.

Discussion
Odor is the chemical fingerprint of every object, but until now has
rarely been combined with tactile sensing for object identification.

Many recognition modalities already published do not use the
explicit combination of tactile and olfactory sensing44,45, mainly
because gas sensors have both dimensional and temporal data
mismatch with force sensors, and are susceptible to ambient gas
interference. Nevertheless, by the effective data preprocessing and
complementary setting of 6 different gas sensors, we have proved
that olfactory sensing can also be suitable for feature fusion with
tactile data. Therefore, the olfactory sensing provides an alter-
native option for object recognition, which essentially carries
more information of objects compared to other ordinary physical
parameters, such as temperature or humidity.

Comparing with the vision-based sensing systems2, our tactile
and olfactory fusion strategy has a relatively small input data size,
leading to smaller requirements of computing resources and
faster identifications, which are crucial in the rescue mission. In
addition, for recent studies about objects identification using
tactile sensors, most of them choose to use flexible none-silicon-
based strain sensors17. However, in our design, we use silicon-
based force/gas sensors fabricated by micro-electromechanical
systems technologies, which have more robust performance,
smaller size, and higher accuracy. Meanwhile, our strategy for the
first time takes odor as one input modality and thus is more
suitable for situations that gas plays an important role, such as
human recognition in rescue scenarios.

We have reported a star-nose-mimicking tactile-olfactory
sensing system combined with machine learning architecture to
achieve robust object recognition under challenging conditions.
Using silicon-based force and gas sensors with high sensitivity
and stability, the flexible sensing arrays on the mechanical hand
could acquire reliable tactile-olfactory information by touching
the object. We have developed a BOT-associated machine-
learning strategy to extract key features about the local topo-
graphy, material stiffness, and odor of the tested object. By fusing
tactile and olfactory information together, our BOT-based
architecture could classify objects against environmental inter-
ferences with an accuracy of 96.9% and offer excellent human
identification performance (accuracy > 80%) under the hazardous
scenarios of gas interference, object burying, damaged sensors,
and rescue mission. Compared to visual perception, our tactile-
olfactory sensing strategy orchestrated an alternative approach in
dark or blocked spaces and exhibited its superiority for human
identification in rescue conditions.

Methods
Fabrication of the force sensor. After thermal oxidization on the front side of the
silicon wafer, the first-time photolithographic steps were performed to define the
locations of the piezoresistors. The piezoresistors were formed by boron ion-
implantation followed by the drive-in process. Then a 0.3 μm thick low-stress
silicon nitride layer and a tetraethoxysilane layer with a thickness of 0.8 μm were
formed by low-pressure chemical vapor deposition (LPCVD). Then the second
photolithography was conducted to pattern the cavity-releasing micro-holes with
silicon deep reactive ion etching (RIE). Then, the low-stress silicon nitride film with
a thickness of 0.2 μm and tetraethoxysilane film with a thickness of 0.2 μm were
sequentially deposited by LPCVD. RIE was used to selectively etch off the deposited
low stress silicon nitride and tetraethoxysilane composite layer at the trench bot-
tom to expose bare silicon at the bottom surface of the holes. After that, silicon
deep RIE was processed again to deepen the holes, forming pressure reference
cavity. Then 40% aqueous KOH was used to complete the inter hole cavity-release
by lateral under etch. Subsequently, LPCVD was used again to form a layer of
conformal poly-silicon with a thickness of 4 μm for the seal of the sensor. After
that, a deeper trench-etch was processed by deep RIE to define the shape of the
cantilever structure and the structure was then released into free-standing with wet
etching by aqueous KOH (25%). Finally, the interconnection lines of the piezo-
resistive Wheatstone bridge were formed by sputtering a layer of Al film with a
thickness of 0.1 μm. Further details are in Supplementary Note 1. Please also check
previously reported works for the basic version of fabrication procedures and
detailed characterizations28,30.

Fabrication of the gas sensor. In the convenience of silicon anisotropic wet
etching, we used the silicon wafer with (100) surface as the device substrate. Silicon
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oxide and silicon nitride multilayer composite membrane were selected as devices
support layer for better insulation. In detail, a combination of dry and wet oxygen
thermal oxidation method was used to fabricate 200 nm silicon oxide and LPCVD
was used to make silicon nitride with a thickness of 1000 nm. The Ta/Pt heating
resistance wire and pad were fabricated by lift-off process, with a thickness of 300
and 3000 Å. The composite film of silicon oxide (2000 Å) and silicon nitride
(4000 Å) deposited by PECVD was used as the isolation layer. Then the RIE
process was used to etch the isolation layer to expose the heating electrode below.
The pair of Ta/Pt cross finger electrodes and pad were fabricated by lift-off process
with a thickness of 300 and 3000 Å. After that, the exposed silicon oxide and silicon
nitride composite films were etched thoroughly by RIE process, and the substrate
silicon was exposed to form a window for the following film releasing. At last, the
structure was released by anisotropic wet etching in tetramethylammonium
hydroxide solution for 4 h and then gas-sensitive material was modified.

The sensing materials of these six gas sensors are: (1) carbon nanotubes
modified by magnesium oxide particles; (2) carbon nanotubes modified with
platinum particles; (3) graphene modified with copper oxide particles; (4)
platinum-doped tin oxide; (5) platinum-doped tungsten oxide; (6) composite
material of zinc oxide and tin oxide.

Respectively, these six gas sensors were sensitive to six different gases, including
ethanol, acetone, ammonia, carbon monoxide, hydrogen sulfide, and methane.
Further details are in Supplementary Note 4. Please also check previously reported
works for the basic version of fabrication procedures and detailed
characterizations40,41,46.

Integration of the force and gas sensors. We used Altium Designer software for
the design of the flexible printed circuit. Force sensors were fixed on the flexible
printed circuit with vinyl. In order to protect the force sensor from external damage
during practical applications, further protections were implemented to the sensing
arrays after wire bonding. First, the silver paste was applied at the wire binding
node on the flexible printed circuits in order to strengthen the contact. Then the
printed circuits were placed on hot plate for 30 min at 160 °C for solidification
process. After that, vinyl was applied on the wire bonding area and then stayed on
hot plate for 45 min at 105 °C. For gas sensors, after each sensor was packaged, six
sensors were soldered on the flexible printed circuit following similar procedures.
At last, silica gel was applied on the surface of the force sensor and curing for 24 h
to solidify. After integration, the sensing arrays were attached on a commercial
mechanical hand for further test.

Characterization of the tactile-olfactory sensing arrays. The sensing arrays
were connected to a home-built data serial bus for powering and signal pre-
processing. An instrumentation amplifier array (AD 8221) and a data acquisition
card (NI 6255) were used to amplify the output voltage signals forty times and
collect the amplified signals. A portable resistance detection unit was used to
measure the resistive gas responses. Digital force measurement equipment was used
to apply external force on the tactile arrays. The sensing arrays were put in an 18 L
glass chamber for quantitative gas detection. The gas concentration was controlled
by a dynamic gas pumping system. A LabVIEW program was used to gather the
data with a sampling frequency of 50,000 points per sec from different channels for
the next step. All experiment participants were fully voluntary and the construction
of all challenging scenarios are under the guidance from the Shanghai fire
department.

Detailed touching process and corresponding tactile responses. As shown in
Fig. 2c, the mechanical hand gradually approached to the object in the beginning,
showing relatively stable proprioceptive signal in the tactile map (reach phase); the
gray dot showed the local minimum value. When contact started (load phase), the
output voltage of the tactile array increased suddenly, resulting in a steep temporal
gradient; the blue dot showed the location of the local maximum gradient. Then in
the third phase (hold phase), since the mechanical hand kept contacting with the
objects with a fixed posture, the output voltage maintained a certain value with
some slight variations; the red dot showed the local maximum value. In the end, as
the mechanical hand separated from the target, the output value decreased at the
same time (release phase).

Detailed olfactory responses. The results presented in Supplementary Fig. 5
detailed the responses of these six gas sensors in the same gaseous ethanol
environment, showing different outputs due to various gas-sensitive material
modifications. Because of these unique features of our olfactory sensing array, gases
with different concentrations and types could be distinguished accurately (Sup-
plementary Fig. 6). Especially, for some similar gases, such as methanol and
ethanol, the olfactory sensing array preserved excellent recognition capability on
account of the sensors selection and complementation (numbers 2 and 5).

Dataset preparation and design of the machine-learning architecture. Eleven
detected objects: orange, towel, stone, can, worn clothes, carton, mug, mouse, hair,
leg, and arm (Supplementary Fig. 17). During the experiment, Balb/c mice
(6–8 weeks old, male, Shanghai SLAC Laboratory Animal Co., Ltd, China) were
kept under room temperature and humidity. The mechanical hand, covering with

the tactile-olfactory sensing arrays, was controlled to touch the object and hold it
for a minute subsequently. Both tactile and olfactory information were collected
and saved in the computer simultaneously for further analysis. To allow for device
variation and hysteresis, the raw olfactory data was first normalized at the pre-
processing procedure. We build the machine-learning architecture using the
PyTorch deep learning framework. Further details are in Supplementary Notes 5
and 6.

Spurring by the rapid development of machine learning techniques, especially
the widely used deep convolutional neural networks (CNNs), object recognition
could be divided into several steps, including image capturing, categories labeling,
data training, and target identification based on probability distribution. For the
two unisensory learning approaches for objects recognition, the training and
testing samples were randomly selected in a ratio of 4:1 from the 55,000 samples
within the tactile-olfactory dataset.

The framework of the BOT associated learning architecture began with a
versatile CNN for extracting tactile information from time-variant tactile
mappings17. Because of the relatively small scale of the tactile mapping, we chose a
visual geometry group (known as VGGNet) model of twice convolution to process
tactile information, leading to a rapid extraction of key features about object’s local
topography and material stiffness47. This learned tactile output (512D vector) of
CNN was then concatenated with the learned olfactory representation—a 512D
vector of the collected olfactory data from one object—to form a new feature that
served as an input to the three-layer fully connected neural network (with 0.5
dropout rate) for final learning. It is notable that the tactile and olfactory input
weight during fusion process is adjusted as:

T 0
net ¼ kT ´Tnet

O0
net ¼ kO ´Onet

DT ¼ kD ´ 512
DO ¼ ð2� kDÞ ´ 512

8
>>><

>>>:

ð1Þ

where T 0
net and O0

net are the inputs of tactile and olfactory vectors after feature
extraction; DT and DO are the length of tactile and olfactory vectors for the fusion
process; kT, kO, and kD are the proportionality coefficients obtained from the
supervised scenario-dependent feedback. Further details are in Supplementary
Table 1, Supplementary Notes 5, 6, 7, and 8.

The operation of improving accuracy via changing the tactile and olfactory
weight is mainly in the multimodal fusion algorithm, which is defined as:

Ifusion ¼ MCB Tnet;Onet; nt ; no; d
� � ð2Þ

where Tnet and Onet are the tactile and olfactory features extracted from CNN, nt is
the length of tactile feature vector, no is the length of olfactory feature vector and d
is the length of fusion feature vector. All of them are environmental parameters
obtained from the supervised scenario-dependent feedback. We can rewrite above
equation specifically as:

Ifusion ¼ FFT�1 FFT Ψ Resize Tnet; nt
� �� �� �� FFT Ψ Resize Onet; no

� �� �� �� � ð3Þ
where FFT means fast Fourier transform, and length (Ifusion)= length (Ψ)= d, the
Resize function adjusts the feature vector according to the proportionality
coefficients of tactile and olfactory vectors in the fusion process. This operation
alleviates the impact caused by interference and increases the data
representativeness.

In general, the results showed that our BOT-associated learning architecture
was tolerant towards defects in the input information and was better than
unimodal recognition approaches.

Development of the robotic arm system. First, the system was developed with
robot operating system (www.ros.org) using a computer. The developed system was
then implemented on an industrial robot-manipulator (UR5 6-DOF) controlled by
a computer through a custom-made TCP/IP communication driver. An allegro
hand was then mounted on the end of the arm with full 16 DOFs and was
connected to the controlling computer. Assuming a rough location was known in
advance, the basic idea was to compute the trajectory of the end-effector in Car-
tesian space, and solve the trajectory of each DOF using inverse kinematic. In order
to improve the security and accuracy of the system, the force sensors attached on
the fingertips could provide force feedback information. Once the output value had
exceeded a certain threshold, the system would record the attached position and
replay the trajectory to avoid possible damage.

The trajectory was planned online to react instantaneously to unforeseen and
unpredictable events. Online Trajectory Generation (OTG) was used in this case48.
The basic idea of the OTG algorithm was as follows. Assuming the execution cycle
of the robot is Tcycle, the time discrete overall system with a set of time instants is
written as:

T ¼ fT0; ::;Ti; ¼ ;Tng;withTi ¼ Ti � 1þ Tcycleand i 2 f1; ¼ ;Ng ð4Þ
The position of the robotic system at time, where K is the number of DOFs.

Velocities, accelerations, and jerks are analogously represented by Vi, Ai, and Ji. The
current state of the motion descreted by Mi = (Pi,vi,Ai,Ji), and the motion
constrains are denoted as Bi = (Vi

max,Amax
i,Jimax). Given input parameters

formated in Wi= (Mi,Mi
target,Bi), the OTG algorithm computes the motion profile
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after one cycle time:

Miþ 1 ¼ f ðWiÞ ð5Þ
We first used a decision tree to compute the synchronization time tsync, at which

all the DOFs were able to reach the target state, then another decision tree was used
to determine the motion profile during this period and recomputed the trajectory
for all DOFs to reach the target position simultaneously. Note that this algorithm
will determine the whole motion profile from Mi to Mi

target, but just execute Mi+1

at time i, and recomputed the trajectory at time t+ 1 with new sensor readings.

Statistics and reproducibility. Each experiment was repeated at least three times
independently. The experimental outcomes between independent experiments
were in all cases comparable. All data are presented as mean ± standard deviation.
All software used in this study for data analysis is either commercially available or
open source. For example, Matlab R2020a and Origin 8.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and the
Supplementary Information. Additional data related to this paper may be requested from
the authors. The computational data is available from GitHub at https://github.com/
wjcbob/BOT. DOI identifier: 10.5281/zenodo.5714516. year: 2021

Code availability
The Replication code that supports the plots within this paper and other findings of this
study is available from GitHub at https://github.com/wjcbob/BOT.
DOI identifier: 10.5281/zenodo.5714516. year: 2021. The code that supports the

robotic arm manipulation and wireless data communication is available from the
corresponding author upon reasonable request.
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