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Single-cell chromatin accessibility landscape in
kidney identifies additional cell-of-origin in
heterogenous papillary renal cell carcinoma
Qi Wang1,8, Yang Zhang1,2,8, Bolei Zhang3, Yao Fu 4, Xiaozhi Zhao5, Jing Zhang1, Ke Zuo2, Yuexian Xing2,

Song Jiang 2, Zhaohui Qin 6, Erguang Li1, Hongqian Guo 5✉, Zhihong Liu 1,2✉ & Jingping Yang 1,2,7✉

Papillary renal cell carcinoma (pRCC) is the most heterogenous renal cell carcinoma. Patient

survival varies and no effective therapies for advanced pRCC exist. Histological and molecular

characterization studies have highlighted the heterogeneity of pRCC tumours. Recent studies

identified the proximal tubule (PT) cell as a cell-of-origin for pRCC. However, it remains

elusive whether other pRCC subtypes have different cell-of-origin. Here, by obtaining

genome-wide chromatin accessibility profiles of normal human kidney cells using single-cell

transposase-accessible chromatin-sequencing and comparing the profiles with pRCC sam-

ples, we discover that besides PT cells, pRCC can also originate from kidney collecting duct

principal cells. We show pRCCs with different cell-of-origin exhibit different molecular

characteristics and clinical behaviors. Further, metabolic reprogramming appears to mediate

the progression of pRCC to the advanced state. Here, our results suggest that determining

cell-of-origin and monitoring origin-dependent metabolism could potentially be useful for

early diagnosis and treatment of pRCC.
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While pRCC patients with poor survival are known to
display molecular features such as metabolic features,
immunologic features, or CpG island methylator

phenotype (CIMP)1–3, it is unclear whether these features are the
cause or outcome of tumor progression. From histological and
molecular characterization studies, we know pRCC tumors are
highly heterogenous and display various subtypes with different
malignancies, making the disease extremely difficult to treat1–4.
Studies of other cancers have shown that tumor heterogeneity
may emerge from different cells-of-origin—normal cells afflicted
with the cancer-causing mutation that go on to determine the fate
and pathology of a tumor cell. In breast cancers5 and
glioblastoma6,7, the same genetic mutation in a different cell
lineage can lead to different morphology, phenotype and malig-
nancy. Hematopoietic stem cells-derived leukemias showing
higher methylation levels than granulocyte-macrophage pro-
genitor cells-derived leukemias8 also suggest that the molecular
features of heterogenous tumors could be underpinned by cell-of-
origin5,7,9,10. There is also evidence showing that cell-of-origin
can affect tumor response to treatments8,11,12. Cell-of-origin,
whose features are retained in evolving tumor cells13, is therefore
a powerful biomarker for early diagnosis. Screening cell-of-origin
signatures in pRCC could potentially uncover unknown cells-of-
origin that are linked to the various pRCC subtypes and their
clinical behaviors. Understanding how the subtypes progress
could help us develop more targeted treatments and reduce
deaths14.

Stable and heritable epigenetic signatures such as transcription
factors programs15, histone modifications16 and DNA
methylation17 have been used effectively to trace the cell-of-origin
and subtypes of morphological and molecular evolving tumor
cells. In our study, we used another epigenetic signature, chro-
matin accessibility, to trace the cell-of-origin signatures in pRCC.
Because chromatin accessibility reflects transcription factor
binding, histone modifications and DNA methylation, it offers
greater insights into the gene regulatory mechanisms of the cells.
Additionally, the chromatin accessibility profiles of 34 human
pRCC samples from The Cancer Genome Atlas (TCGA) have
revealed the heterogeneity of pRCC18.

In this work, we use single-cell assay for transposase-accessible
chromatin sequencing (scATAC-seq) to capture the cell type-
specific chromatin accessibility landscape of normal human kid-
ney at single-cell resolution. The alignment of the ATAC-seq
profiles of human pRCC samples against the landscape resolves
heterogenous cell-of-origin of pRCC. Besides proximal tubule
(PT) cells, pRCC can also originate from collecting duct principal
cells (CD_PC) in the distal tubules of the kidney. We find that
pRCCs with different cell-of-origin have different molecular
characteristics, undergo different carcinogenic transformations,
and display different clinical behaviors. pRCC also show cell-of-
origin-dependent risks of progression, which is characterized by
metabolism reprogramming. pRCC that originated from CD_PC
are enriched for advanced pRCC and activated interferon sig-
naling, suggesting their potential response to checkpoint immu-
notherapy. Our study demonstrates that the chromatin
accessibility landscape is a potential early diagnostic method for
advanced pRCC, allowing cell-of-origin dependent molecular
characteristics to direct the treatment of pRCC.

Results
scATAC captures the epigenetic landscape of normal kidney.
We performed scATAC-seq on paracancerous kidney tissues
from two patients undergoing nephrectomy to profile chromatin
accessibility for cells in the kidney (Supplementary Fig. 1a, b). A
total of 9460 high-quality nuclei were kept after stringent quality

controls (Supplementary Fig. 1c, d), with a median read depth of
14,158 fragments per nuclei and median transcription start site
(TSS) ratio (the percentage of fragments at TSS) of 0.15. After
batch correction and unbiased clustering with Latent Semantic
Analysis on term frequency-inverse document frequency (LSA-
log (TF-IDF)), the nuclei formed 20 clusters (Supplementary
Fig. 1e) with an even distribution in the samples (Supplementary
Fig. 1f). Clusters with more than 50 cells were annotated by
integrating the scATAC-seq with four human kidney single-cell
RNA sequencing (scRNA-seq) datasets19–22 (Supplementary
Fig. 2a). Clusters that could not be consistently annotated (e.g.,
cluster 9) were re-clustered and re-annotated (Supplementary
Fig. 2b, c). After integrating the scRNA-seq and examining the
marker genes, a total of 20 clusters were finally annotated and all
the main cell types in the kidney were identified (Fig. 1a and
Supplementary Data 1). The annotation revealed a PT-related
renal progenitor-like (PTPL) subgroup with chromatin accessi-
bility at VCAM1 and PROM1 loci (Supplementary Fig. 2d).
Further, the profiles display cell type-specific chromatin accessi-
bility (Fig. 1b), notably at loci AQP1 in PT cells, which were not
detected in scRNA-seq (Fig. 1c, d). Immunofluorescence staining
of the kidney samples confirmed that high levels of AQP1 are
expressed only in PT cells (Fig. 1e). These results demonstrate
that scATAC-seq captured genome-wide transcriptional regula-
tion with high sensitivity.

To investigate the cell type-specificity of epigenetic regulation,
we characterized the chromatin accessible regions by comparing
the scATAC-seq peaks of different cell types (Supplementary
Fig. 3a). We detected 19,409 cell type-specific peaks and each cell
type showed cell type-specific accessible regions (Fig. 1f and
Supplementary Fig. 3b). A vast majority of these peaks were in
non-coding regions (Supplementary Fig. 3c, d). Functional
analysis of the specific peaks by GREAT23 revealed that each
group of cell type-specific peaks corresponds to the functions of
the cell type (Fig. 1g). For instance, PT-specific peaks reflect their
role in catabolism of small molecules while CD_PC-specific
peaks, though small in number, reflect their specific role in
urinary excretion. The cell type-specific peaks also revealed key
transcription factors in each cell type (Fig. 1h). HNF4A, as a key
transcription factor in PT cells24, is highly accessible only in
PT cells (Fig. 1i), and the genomic sites having the HNF4A motif
only show activity in PT cells as well (Fig. 1j). These results
indicate that the scATAC-seq profile sensitively captured cell
type-specific epigenetic features in the kidney.

Cell-of-origin of pRCC is heterogenous. We used the established
cell type-specific epigenetic features in kidney cells and the
ATAC-seq of 34 human pRCC samples from TCGA identified by
Corces et al.18 to investigate the cell-of-origin of pRCC. To
ascertain if cell type-specific epigenetic features can be used to
reveal the cell-of-origin of cancers, we compared the cell type-
specific peaks from our normal kidney scATAC-seq profile with
the cancer type-specific peaks from pan-cancer chromatin
accessibility profiles for 410 tumor samples across 23 cancer types
identified in Corces et al.18. Renal cell carcinoma including pRCC
showed significant overlap with kidney PT cells (Fig. 2a and
Supplementary Fig. 4). This enrichment, consistent with previous
reports that have identified pRCC tumor cells as originating from
PT cells19,25, confirmed that cell type-specific epigenetic features
can be used to identify the cell-of-origin of cancers.

When the cell-of-origin for the 34 pRCC samples with ATAC-
seq from TCGA18 were subsequently examined individually, two
different chromatin accessibility patterns were seen (Fig. 2b).
While most of the pRCC samples (30 out of 34) show positive
correlation with chromatin accessibility in the PT groups (with
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highest correlation for PTPL), a small group (4 out of 34) show
negative correlation with chromatin accessibility in PT (Fig. 2b).
With a second quantitative method as similarity score19, we
found the exact same four samples showed strong similarity to
distal tubule cell type CD_PC (Fig. 2c). In order to resolve the
uncertainty from scATAC-seq clustering method, we also carried
out clustering analysis using an alternative method cisTopic26

(Supplementary Fig. 5), and we found all the findings obtained

using the two different clustering algorithms are highly consistent
(Supplementary Fig. 6). We termed the first group as pRCC with
accessibility pattern 1 (pRCCa1) and the second group as pRCC
with accessibility pattern 2 (pRCCa2).

In an inverse strategy, where we identified pRCCa1- and
pRCCa2-specific peaks before examining their accessibility in
kidney cell types (Supplementary Fig. 7), the pRCCa2-specific
peaks are indeed more accessible in distal tubule cell types,

Fig. 1 Single cell chromatin accessibility captures cell type-specific epigenetic features in human kidney. a t-SNE embedding of 9428 kidney cells
colored by clustering (left), and the proportions of each cluster in two samples (right). A total of 20 clusters with more than 50 cells were annotated. b
Aggregated chromatin accessibility view shows cell type-specific chromatin accessibility at kidney cell type markers. c Genebody accessibility of AQP1 in
scATAC-seq. d RNA level of AQP1 in scRNA-seq (Lake et al.21). e Immunofluorescence staining of paracancerous kidney tissues confirmed PT-specific
expression of AQP1 (green) in kidney. Nucleus was stained with DAPI (blue). Data is from one experiment representative of three independent samples
examined. f K-means clustering of 19,409 cell type-specific peaks with each cell type showing specific accessible regions. Each row represents a cell type-
specific peak, and each column represents an individual cell type. g Enriched GO terms for cell type-specific peaks. Top three biological processes in each
cell type are shown. h Heatmap of motif enrichment on cell type-specific peaks for each cell type. Each row represents a transcription factor motif and each
column represents an individual cell type. Only motifs with -log10(p.adjust) > 10 in at least one cell type are shown. t-SNE of genebody accessibility (i) and
chromVAR motif activity (j) of HNF4A in scATAC-seq show PT-specific expression and function of HNF4A. Source data are provided as a Source Data file.
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especially CD_PC (Fig. 2d). For example, pRCCa2 do not show
chromatin accessibility at the PT marker AQP1 locus, but are
accessible at the CD_PC marker GATA3 locus and at GRHL2
locus which encodes a protein required for the function of
collecting duct27 (Fig. 2e and Supplementary Fig. 8a). Addition-
ally, the pRCCa1/2-specific peaks are enriched with motifs for
their respective cell-of-origin’s key transcription factors (Supple-
mentary Fig. 7). To verify this previously unknown cell-of-origin
for pRCC, we recruited an independent pRCC cohort of 50
patients from Drum Tower hospital (Supplementary Fig. 1b) and

performed immunofluorescence staining with the PT marker
AQP1, the CD_PC marker GATA3 or GRHL2, on tumor samples
from these patients. Although most patients were AQP1+-
GATA3− or AQP1+ GRHL2−, which indicates the tumors
originated from PT cells (Fig. 2f and Supplementary Fig. 8b), 2
out of the 50 patients were AQP1-GATA3+ or AQP1-GRHL2+,
suggesting a CD_PC origin (Fig. 2g and Supplementary Fig. 8c).
Tumor cells with GATA3 or GRHL2 positive nuclei also contain
the pRCC marker cytokeratin 7 (CK7) in the cytoplasm, without
any traces of AQP1 (Fig. 2g and Supplementary Fig. 8c).
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Together, these results demonstrate that the cell-of-origin of
pRCC is heterogeneous and, in addition to the classical PT origin,
we now identify distal tubule cells as an alternative cell-of-origin
for pRCC.

Cell-of-origin determines pRCC subtypes and their character.
Within TCGA are 255 additional pRCC samples without ATAC-
seq. To examine the cell-of-origin for these pRCC samples, we
transformed the different chromatin accessibility patterns into
cell-of-origin feature genes (Fig. 3a). To do this, we optimized
Cicero28 to construct a regulatory network for each kidney cell
type. We built the network based on genebody because its
accessibility correlated better with transcriptional regulation than
TSS accessibility29 (Supplementary Fig. 9a). The optimized net-
works significantly improve regulatory prediction (Supplemen-
tary Fig. 9b) and show cell type-specificity (Supplementary
Fig. 9c–f). We used our established regulatory networks for kid-
ney cell types or a previously defined pRCC regulatory network18

to extract the regulatory feature genes (Fig. 3a). Integrating
pRCCa1 or pRCCa2 feature genes with their cell-of-origin feature
genes, we obtained pRCC origin-derived features (Fig. 3a and
Supplementary Fig. 10a). The features show both pRCCa1- or
pRCCa2-specific and cell type-specific gene activity (Fig. 3b) as
well as specific expression (Supplementary Fig. 10b, c).

Clustering the 255 TCGA pRCC samples based on expression
of origin-derived features also revealed two groups, pRCCa1_Like
(214 samples) and pRCCa2_Like (41 samples) (Fig. 3c). Most of
those in the pRCCa2_Like group were pathological Type 2 pRCC
(left panel in Fig. 3d) and 8 out of 41 displayed CIMP features
that are present in advanced pRCC patients with worst survival
(right panel in Fig. 3d). Interestingly, all CIMP samples in the
pRCC cohort were unexpectedly characterized as pRCCa2 or
pRCCa2_Like (p= 3.9e-11) (Fig. 3d and Supplementary Fig. 11).
This suggests that the pRCCa2 cell-of-origin might be a predictor
for CIMP. Trajectory analysis of the normal and pRCC samples
showed both pRCCa1_Like and pRCCa2_Like diverged from the
normal state and formed their own distinct paths, suggesting that
they underwent different transformations (Fig. 3e). Comparing
pRCCa1 or pRCCa2 with their corresponding cell-of-origin
normal cells, we found that pRCCa1 was enriched with mTOR
and NOTCH signaling pathways (Fig. 3f), consistent with a
recent report that showed NOTCH overexpression in renal
progenitor cells can lead to pRCC25. This finding suggests that
inhibitors for NOTCH pathway30 such as LY3039478 could
potentially be used to reduce the incidence of pRCCa1. In
contrast, pRCCa2 was mostly enriched with interferon-gamma
and immune-related signaling pathways as shown by the high
expression of IL6 (Fig. 3g). Additionally, the two subgroups show
distinct mutation patterns (Supplementary Fig. 12 and

Supplementary Data 2). Mutations in MET, PBRM1 and
SMARCB1 only exist in pRCCa1_Like, while mutated genes
enriched in pRCCa2_Like are enriched in NFR2 and HIPPO
pathways. Together, these results indicate that cell-of-origin can
segregate the pRCC cohort, and that pRCC with different cell-of-
origin carry different molecular features and possibly underwent
distinct transformation pathways.

Clinical performance of pRCC depends on cell-of-origin. To
determine whether cell-of-origin is related to clinical performance
of pRCC, we performed a disease association analysis using
DisGeNET31 and found that pRCCa2 origin-derived features are
specifically related to tumor progression (Fig. 4a). Examining the
clinical profiles confirmed that pRCCa2 or pRCCa2_Like dis-
played a higher distribution of late-stage tumor, higher metastasis
to regional lymph nodes and worse survival than pRCCa1 or
pRCCa1_Like (Fig. 4b, c and Supplementary Fig. 13a, b). When
the effect of each origin-derived feature on clinical performance
was examined, we found the panel of pRCCa2 origin-derived
features predicted unfavorable prognosis, while pRCCa1 origin-
derived features predicted favorable prognosis (Fig. 4d and Sup-
plementary Fig. 13c–f). The prediction powers of pRCCa2 origin-
derived features are even higher than other existing indicators
(Supplementary Fig. 13g). Notably, these predictions are renal cell
carcinoma-specific, especially for pRCC (Fig. 4e). In an alter-
native strategy, we extracted the top gene features for CIMP, the
more lethal variants of pRCC, with logistic regression. We found
these CIMP-associated gene features were highly expressed in
CD_PC but not PT (Supplementary Fig. 14). Thus, the cell-of-
origin of pRCC is related to their clinical performance.

The predicted poorer prognosis of pRCCa2_Like was in line
with the finding that all CIMP were characterized as pRCCa2_-
Like (Fig. 3d). When we inspected the trajectory of pRCC, we
found pRCCa2_Like_CIMP tended to locate at the end of the
pRCCa2_Like branch while pRCCa2_Like_NotCIMP were found
between CIMP and normal samples (Fig. 4f). Survival analysis
revealed that pRCCa2_Like_NotCIMP performed better than
pRCCa2_Like_CIMP but remained worse than pRCCa1_Like
(Supplementary Fig. 15a). The progression from the normal state
to the terminal of this branch was accompanied by a gradual
increase in death and tumor metastasis to regional lymph nodes
(Supplementary Fig. 15b). These results suggest that CIMP is
likely an advanced state in the pRCCa2_Like subgroup.

To understand the factors driving pRCC progression in samples
with the same cell-of-origin, we compared pRCCa2_Like_Not-
CIMP with pRCCa2_Like_CIMP and found that metabolic
pathways were disrupted. The oxidative phosphorylation pathway
was mostly disrupted between the two states (Supplementary
Fig. 16a). The most up-regulated gene was lactate dehydrogenase A

Fig. 2 Integration of kidney scATAC-seq and 34 pRCC ATAC-seq from TGCA reveal the cell-of-origin of pRCC is heterogeneous. a Heatmap showing
the overlap between kidney cell type-specific peaks called from our kidney scATAC-seq and cancer type-specific peaks called from the pan-cancer ATAC-
seq. Colors indicate the percentage of cancer peaks that overlap with kidney cell type-specific peaks. Pearson correlations (b) or similarity scores (c)
between normalized chromatin accessibilities in 34 pRCC samples and normal kidney cell types identified with SnapATAC. Hierarchical clustering of pRCC
samples based on the correlations or similarity scores revealed two subgroups (left), and heatmap view of the correlations or similarity scores show two
different accessibility correlation patterns (pRCCa1 and pRCCa2) in the 34 pRCC samples. Each row represents a pRCC sample and each column
represents a cell type. The red box highlights the PT cell type groups. The patients’ prefixes of Stanford UUIDs are indicted for each sample. d Normalized
read counts in kidney cell types at pRCCa1- (top) or pRCCa2 differential peaks (bottom) confirm pRCCa2 peaks are accessible in CD_PC. Box plots depict
the median, quartiles and range. n= 973 peaks for pRCCa1 specific peak and n= 175 peaks for pRCCa2 specific peak. e Genome browser view in PT,
CD_PC, pRCCa1, and pRCCa2 at PT marker, AQP1 (top) or at CD_PC marker, GRHL2 (bottom) loci. f–g Immunofluorescence staining of tumor tissues with
AQP1 (red), GRHL2 (red), pRCC marker cytokeratin 7 (CK7, green) and DAPI (blue). Colocalization of AQP1 and CK7 and absence of GRHL2 confirmed
PT-originated pRCC (f). Data are from one experiment representative of 48 independent experiments samples examined. Localization of GRHL2 in the cell
nuclei with CK7 and absence of AQP1 confirmed CD_PC-originated pRCC (g). Data are from one experiment representative of two independent samples
examined. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27660-3 ARTICLE

NATURE COMMUNICATIONS |           (2022) 13:31 | https://doi.org/10.1038/s41467-021-27660-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(LDHA), which encodes an enzyme relevant to metabolism that
converts glucose into energy, while the most down-regulated gene
was fumarate hydratase (FH), which encodes an enzyme in the
Krebs cycle that allows cells to use oxygen to generate energy
(Fig. 4g). Survival analysis further showed that high expression of
LDHA predicted the unfavorable prognosis for pRCCa2_Like
(Fig. 4h). However, the association between LDHA and poor
prognosis only existed in pRCCa2_Like, but not in pRCCa1_Like
(Supplementary Fig. 16b). We then tried to develop a model to
predict CIMP. With origin-derived features and LDHA, we trained
a Random Forest model on the 34 pRCC samples where we
identified the origin-derived features, and tested it on the
remaining 255 pRCC samples. The model performed well on the
identification of CIMP with AUROC at 0.98 (Supplementary
Fig. 17). These results demonstrate that cell-of-origin dictates the
prognosis of the clinical behaviors of pRCC. In the case of pRCCa2,

metabolic reprogramming appears to mediate its progression to the
advanced state as CIMP and should therefore be closely monitored
as a preventive measure (Fig. 4i).

Discussion
Previous study indicated that some of the pRCC samples are not
similar to the proximal nephron with transcriptional reference
from micro-dissected nephrons3, but the limitation in the data
resolution made resolving their cell-of-origin at cell type level
almost impossible. Using scATAC-seq technology, we con-
structed the epigenetic landscape of normal kidney cell types at
single-cell resolution and used the landscape to resolve the cell-
of-origin of pRCC. We discovered that the cell-of-origin of pRCC
is heterogenous in that, besides the classical PT cells, we identified
CD_PC in the distal tubule of the kidney as an alternative origin.

Fig. 3 pRCC with different cell-of-origin show different characteristics. a Strategy used to obtain origin-derived feature genes from chromatin
accessibility. Optimized Cicero was used to construct a regulatory network from chromatin accessibility profiles. Regulatory networks are used to extract
feature genes. Overlapping feature genes in pRCC subgroups and their respective cell-of-origin produce the origin-derived features. b Normalized gene
activities of origin-derived features in pRCCa1, pRCCa2, PT and CD_PC. Gene activities were calculated based on the regulatory networks. Box plots show
distribution of gene activities of origin-derived features. Each dot represents an individual feature gene. Feature genes show the pRCC subgroup and kidney
cell type-specific activities. Box plots depict the median, quartiles and range. n= 25 genes for pRCCa1 origin-derived features and n= 7 genes for pRCCa2
origin-derived features. p= 3.97e-09 between pRCCa1 and pRCCa2 and p= 6.24e-16 between PT and CD_PC on differential activity of pRCCa1 origin-
derived features. p= 0.009 between pRCCa1 and pRCCa2 and p= 0.0007 between PT and CD_PC on differential activity of pRCCa2 origin-derived
features. Two-sided paired t tests were used. ** indicates p < 0.01. c Heatmap of gene expression of origin-derived features for 255 TCGA pRCC samples
show two expression patterns, pRCCa1_Like and pRCCa2_Like. Colors represent Z-scores of RNA-seq gene expression across the samples. Each row
represents a feature gene and each column represents a pRCC sample. d Percentage of pathological Type 1/Type 2 (left) or CIMP (right) in pRCCa1_Like or
pRCCa2_Like samples. e Trajectory of the 255 TGCA pRCC samples and 32 normal kidney samples show pRCC diverged into distinct branches. Samples
are colored according to their identities. f Top 5 Gene Set Enrichment Analysis (GSEA) hallmark terms enriched in pRCCa1 or pRCCa2 compared with their
respective cell-of-origin based on gene activity. g Expression of representative genes in 255 TCGA pRCC samples in the same order as c. AQP1: feature
gene for pRCCa1 with PT origins; WNT5A: representative gene in Notch pathway; GATA3: feature gene for pRCCa2 with CD_PC origins; IL6:
representative gene in Interferon-gamma pathway. Colors represent Z-scores of RNA-seq gene expression across the samples. Source data are provided as
a Source Data file.
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Unlike pRCC with PT origins where NOTCH and mTOR sig-
naling pathways dominate, pRCC originating from CD_PC was
enriched for inflammation and immune-related pathways. Our
results further show that pRCC with CD_PC origins have a
higher risk of progressing to advanced pRCC than those with PT
origins, and this progression appears to be driven by metabolic
reprogramming. Previous studies have identified metabolic and

immunologic features for CIMP, the more lethal pRCCs
variants2,3. However, these features are dynamic during tumor
progression. For example, ccRCC aggressiveness is linked to
increases in metabolites involved in glutathione and cysteine/
methionine metabolism pathways32. Although these features can
inform the more lethal state of pRCC, but they are unable to serve
as prognostic biomarkers for early detection of the potential
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aggressive pRCC. In contrast, cell-of-origin is stable and retained
in the evolving tumor cells, and is therefore a much more reliable
prognostic biomarker for early diagnosis.

Our study has several implications. Using ATAC-seq tech-
nology to identify the cell-of-origin of pRCC at the outset enables
us to better diagnose the risk of progression and plan treatments.
Further, monitoring metabolic changes could be an efficient way
to track the progression of pRCC. Capturing the etiology of the
disease early on can substantially improve treatment and patient
survival33. For advanced pRCC where no standard-of-care sys-
temic therapy exists34, identifying the cell-of-origin of pRCC
provides insights on the extent of the heterogeneity of the disease,
which could be used to develop better targeted treatments. For
instance, insights from our study suggest that metabolism-
directed therapy could potentially be effective for preventing the
progression of pRCC to the advanced stage while NOTCH
inhibitors are better for pRCC with PT origins.

Importantly, our results also explain why current treatments
for pRCC such as VEGF- and mTOR-directed therapies35 and
addition of interferon- α36 show only marginal clinical benefits.
As shown in our study, most advanced pRCC originate from
CD_PC that display signatures related to immune response.
Instead of NOTCH and mTOR signaling that are related to
aberrant cell proliferation, advanced pRCC shows a pre-existing
adaptive immunity. This suggests that using immune checkpoint
inhibitors are likely to offer better clinical outcomes for advanced
pRCC. Indeed, recent clinical trials demonstrated that the PD-L1
inhibitor Atezolizumab improved the objective response rate in a
group of advanced renal carcinoma with immune signatures37.
Thus, identifying cell-of-origin can predict differential clinical
outcomes that will require different therapies for the different
stages of pRCC.

Methods
Tissue procurement. This study was approved by Jinling Hospital and Drum
Tower Hospital Affiliated with the Medical School of Nanjing University under an
established Institutional Review Board protocol. We have complied with all rele-
vant ethical regulations with human participants. Informed consent for the human
study was obtained by all participants. Paracancerous kidney tissues and tumor
tissues were obtained from patients diagnosed as pRCC and undergoing
nephrectomy for renal tumor.

Nuclei isolation and scATAC-seq library preparation. Kidney tissues were cut
into 1 mm3 segments and underwent cell lysis using a Dounce homogenizer
(885302–0002; Kimble Chase) in 1 ml chilled Lysis Buffer (10 mM Tris-HCl (pH
7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% Nonidet P40 Substitute,
0.01% digitonin and 1% BSA) on ice. 9 ml chilled Wash Buffer (10 mM Tris-HCl

(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20 and 1% BSA) was then
added and the resulting solution was filtered through a 30-µm cell strainer (130-
098-458; Miltenyi Biotec). Nuclei were collected by centrifuging (500 g for 5 min at
4 °C) and resuspended in chilled Diluted Nuclei Buffer (10x Genomics; 2000207) at
~3000–4000 nuclei per µl. The nuclei concentration was determined using a
Countess II FL Automated Cell Counter.

scATAC-seq libraries were prepared according to manufacturer protocol of
Chromium Single Cell ATAC Library Kit (10x Genomics, PN-1000087). Briefly,
the required number of nuclei were combined with ATAC Buffer B and ATAC
Enzyme to form a Transposition Mix which was incubated at 37 °C for 60 min.
Then the premix containing Barcoding Reagent B, Reducing Agent B and
Barcoding Enzyme, the transposed nuclei, the Single Cell ATAC Gel Beads and
partitioning Oil was loaded onto a Chromium Chip E. Resulting single-cell GEMs
were collected and linear amplification was conducted in a C1000 Touch Thermal
cycler as 72 °C for 5 min, 98 °C for 30 s, cycled 12×: 98 °C for 10 s, 59 °C for 30 s
and 72 °C for 1 min. Emulsions were then coalesced using the Recovery Agent and
cleaned up using Dynabeads. Indexed sequencing libraries were then constructed,
purified and sequenced on an Illumina NextSeq instrument at Annoroad Gene
Technology Company (Beijing, China).

Raw data processing and quality control of scATAC-seq. Barcode sequences
consisting of 16 bp were obtained from the I2 index reads. For each read pair, we
appended the barcode sequence to the read name. We checked the barcode against
the barcode whitelist, and only kept the read pairs whose barcode perfectly mat-
ched any barcodes in the whitelist. We next trimmed the read pairs passing barcode
checking for adapter sequences using trimmomatic38 (0.32) with options
“TRAILING:3 SLIDINGWINDOW:4:10 MINLEN:25”. The trimmed read pairs
were aligned to hg38 reference genome using Bowtie239 (2.3.0) with options “-X
2000 -3 1”, and aligned fragments with a mapping quality less than 30 or that did
not map uniquely to autosomes or sex chromosomes were filtered out using
Samtools40 (1.3.1). We subsequently removed PCR duplicates (fragments with
identical start and end positions) on a cell-by-cell basis.

We identified barcodes representing genuine cells based on three criteria: (1)
number of total fragments count; (2) the ratio of fragments in TSS region; (3)
periodicity in the frequency of insert sizes. TSS region was defined as +/−1000 bp
from TSS (RefSeq of hg38). Periodicity was measured as Cusanovich et al.41.
Briefly, a periodogram was calculated using a fast Fourier transform of insert sizes
for each barcode using the “spec.pgram” in R (3.5.1) with parameters “pad= 0.3,
tap= 0.5, span= 20” and the spectral densities for frequencies between 100 and
300 bp were summed as banding score for the measure of periodicity. The
log10(numbers of total fragments), the ratios of fragments in TSS region, and
log10(banding scores) showed bimodal distribution. We used both the mclust42

package in R and view by plot to determine the cutoff of the criteria, and selected
the more stringent one as thresholds. The barcodes retained as cells were those with
log10 (number of total fragments) > 3.4, the ratio of fragments in TSS region > 0.15
and log10 (banding score) >−1.75.

Clustering analysis for scATAC-seq. The clustering analysis were conducted
using LSA-log (TF-IDF) in SnapATAC43 (1.0.0) or cisTopic26. For SnapATAC, we
split the genome into 5 kb windows and removed windows overlapping ENCODE
blacklisted regions (http://mitra.stanford.edu/kundaje/akundaje/release/blacklists).
We counted fragments for each window in each cell, converted non-zero value to 1,
and generated a large, sparse, binary window-by-cell matrix. Based on this matrix,
we filtered out the top 5% of windows with abnormally high coverage and windows

Fig. 4 Cell-of-origin predicts clinical behavior of pRCC. a Top 5 enriched DisGeNET terms for pRCCa2 origin-derived features suggest that pRCC with
these features have poor clinical performance. b Distribution of tumor stage (green), and percentage of metastasis to regional lymph nodes (orange) in
pRCCa1_Like or pRCCa2_Like samples. N: regional lymph nodes. N0: No regional lymph node metastasis; NX: Regional lymph nodes cannot be assessed;
N1/N2: Metastasis in regional lymph node(s). c Overall survival for pRCCa2_Like samples (n= 41) is poorer than pRCCa1_Like (n= 214). The Log-rank test
was used to assess the univariate survival differences. d Hazard ratio from survival analysis for pRCCa2 and pRCCa1 origin-derived features and random
selected genes. Boxplot shows distributions of hazard ratios for each group of feature genes. pRCCa2 origin features predicted unfavorable prognosis while
pRCCa1 origin features predicted favorable prognosis. Each dot represents an individual gene. Box plots depict the median, quartiles and range. n= 25
genes for pRCCa1 origin-derived features, n= 7 genes for pRCCa2 origin-derived features and n= 30 genes for random selected features. e Hazard ratio
from survival analysis for pRCCa1 (left) or pRCCa2 (right) origin feature panel. Survival analysis is performed for individual cancer types. Dash lines indicate
log2(HR)=−1 or log2(HR)= 1. Box plots depict the median, quartiles and range. n= 25 genes for pRCCa1 origin-derived features and n= 7 genes for
pRCCa2 origin-derived features. * denotes the cancer type with median log2(HR) > 1 or <−1. f Same trajectory as Fig. 3e but with pRCCa2_Like_CIMP and
pRCCa2_Like_NotCIMP identified. g Gene expression in the oxidative phosphorylation pathway show LDHA was upregulated while FH was down-
regulated. Data is ranked by GSEA rank matrix score (pRCCa2_Like_CIMP versus pRCCa2_Like_NotCIMP). h Kaplan-Meier analysis of overall survival of
pRCCa2_Like stratified by LDHA expression. LDHA gene expression was divided into “high” and “low” representing the upper and lower quarter of LDHA
gene expression, respectively. The Log-rank test was used to assess the univariate survival differences. i Schematic shows pRCC initiated from different
cell-of-origin possesses different molecular characteristics and presents different clinical performance. pRCCa2 with CD_PC origins display a higher risk of
progression to terminal stage than pRCCa1 with PT origins. Metabolic reprogramming leads to the progression in pRCCa2. Source data are provided as a
Source Data file.
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with no coverage. We then used “Log TF-IDF” transformation to reduce the
dimensionality of this large binary matrix, and used harmony44 to remove batch
effect. We used the 2nd through 40th dimensions to construct the k-nearest
neighbor (KNN) Graph with the option “k= 15”, which was subsequently used for
Louvain45 clustering with a default resolution of 1 and for Rtsne46 visualization.
Re-clustering was performed the same way as above. All clusters with more than 50
cells were retained for downstream analysis. For cisTopic, the filtered binary
window-by-cell matrix created above was used to perform Latent Dirichlet Allo-
cation, and the resulted topics-by-cells probability matrix was used for downstream
analyses with default parameters.

Identifying peaks for scATAC-seq. To identify peaks for each cell cluster, we
aggregated unique aligned fragments associated with cells in a given cluster. We
then used MACS247 (2.1.1) to call peaks on the aggregated profiles with parameters
“–nomodel –keep-dup all –extsize 200 –shift 100 –nolambda -q 0.001”. Peaks
overlapping ENCODE blacklisted regions were removed to generate clean peaks for
each cluster.

A master peak list was generated by taking all clean peaks identified in any
cluster and merging them with bedtools48 (2.25.0).

High quality peaks were selected as peaks from master peak list with
accessibility in more than 5% of the cells in any cluster.

To identify high variable peaks and cell type-specific peaks, we generated a
peak-by-cell-type proportion matrix. We calculated the proportion of cells of each
cell type that were accessible at each high quality peak. High variable peaks were
identified based on the peak-by-cell-type proportion matrix using
“FindVariableFeatures” in Seurat49 with parameters “selection.method= “vst”,
nfeatures=50,000”.

Cell type-specific peaks were identified using the R script developed by
Cusanovich et al.41. Briefly, we truncated peak-by-cell-type proportion matrix for
the 50,000 high variable peaks. We then multiplied the matrix for each cell type
with a scaling factor, which was the median fragment number for cells in each cell
type, to arrive at cell type normalized proportion matrix. The normalized
proportion matrix was used to calculated Jensen-Shannon-based specificity scores.
We then squared these scores and multiplied them again by the normalized
proportion matrix to produce final specificity scores. We selected top 20,000
returns ranked by final specificity scores, which were represented by 19,409 cell
type-specific peaks. K-means clustering of cell type-specific peaks were performed
with Cluster350 and visualized with Treeview51. Genomic annotations for cell type-
specific peaks were performed with ChIPseeker52, and gene ontology enrichment
analysis of cell type-specific peaks were performed with GREAT23.

Normalized bigwigs and sequencing tracks. To visualize scATAC-seq cluster
data genome-wide, we created ATAC-seq signal tracks that were normalized by the
number of fragments in master peaks. We converted the bedGraph file for each
cluster into bigwig file using “bedGraphToBigWig” tool. We then counted the
number of fragments in master peaks for each cluster from the bam file using
“bamfile.fetch” in Python (2.7.10) and used the number as scale factor for each
cluster. The bigwig files were viewed in IGV. All track figures in this paper show
groups of tracks with matched scale factors.

Cell type annotation of scATAC-seq clusters. To annotate cell type identity for
each cluster, we integrated scATAC-seq with scRNA-seq using Seurat53. Four
scRNA-seq datasets of human kidney were obtained from GSE14098920,
GSE12186221, GSE13188222, or downloaded from the supplementary files of
Young et al. 19. For the scRNA-seq datasets without author-provided annotation as
GSE140989 and GSE131882, we re-analyzed the dataset by clustering using
scRNA-seq pipeline in Seurat49 (3.0.0) and annotating with markers reported in
respective manuscript. With the scRNA-seq annotation results, we followed the
working flow of ‘Integrating scRNA-seq and scATAC-seq data’ in Seurat to
annotate scATAC-seq clusters. Briefly, we constructed a peak-by-cell count matrix
for master peaks and collapsed the peak-by-cell count matrix using “Create-
GeneActivityMatrix” to a genebody accessibility-by-cell matrix which was sub-
sequenctly used for unsupervised identification of anchors between scATAC-seq
and scRNA-seq with “FindTransferAnchors”. These anchors were then used to
transfer the cell type labels learned from scRNA-seq to scATAC-seq cells. We
calculated the proportion of each transferred scRNA-seq label type in each
scATAC-seq cluster. The scRNA-seq label type with highest proportion was
assigned to the scATAC-seq cluster. The cell type assignments were accepted if
they were consistent in at least 2 out of the 4 scRNA-seq datasets.

For clusters without successful assignment through above integration strategy,
we then manually annotated them based on commonly used marker genes for
kidney cell types22,54–56.

Motif analysis. To identify key regulators of chromatin accessibility, we performed
motif enrichment analysis using HOMER57 (4.11.1) on cell type-specific peaks with
parameter “-size given”. In each cell type, the −log10(p.adjust) for each known
motif was calculated as -log10(p values) multiplying 1000 and then corrected by
dividing the sum of the calculated values (for p value= 0, the calculated value was

set to 200). Motifs with −log10(p.adjust) > 10 in at least one cell type were used for
clustering and visualization.

In addition to HOMER, we measured global TF activity using chromVAR58

(1.4.1), based on peak-by-cell count matrix. We corrected GC bias based on
“BSgenome.Hsapiens.UCSC.hg38” using “addGCBias”. The filtered collection of
human motifs from CIS-BP database was used and the deviation z-scores for each
TF motif in each cell were calculated using “computeDeviations” with default
parameters.

Comparing normal kidney scATAC-seq with cancer ATAC-seq
Comparison by peak overlapping. The comparison of chromatin accessibility
between normal kidney cell type and pan-cancer types was performed based on
overlapping of peaks. The peaks for each normal kidney cell type were the cell type-
specific peaks defined above. The peaks for each cancer type were downloaded
from https://gdc.cancer.gov/about-data/publications/ATACseq-AWG18. We over-
lapped peaks from each cancer type with peaks from each normal kidney cell type
using “findOverlaps” in GenomicRanges. We then calculated the percentage of
peaks from each cancer type that overlapped with peaks from each normal kidney
cell type. The significance of overlapping was calculated with a permutation test.
For each overlap between a cell type and a cancer type, we randomly select the
same number of peaks for the cell type from the pooled cell type-specific peaks,
count the number of the cancer type-specific peaks that overlap with the randomly
select cell type peaks, and calculate the percentage. We repeat these steps 1000
times, and the average of the 1000 percentages is taken as the expected overlapping
percentage. p value is calculated using binomial test with the “binom.test” function
in R. All the p-values are then adjusted using the Benjamini–Hochberg procedure
with the “p.adjust” function in R.

Comparison by correlation. The comparison of chromatin accessibility between
normal kidney cell types and 34 pRCC samples was performed based on correla-
tion of accessibility matrix. Normalized panpeak-by-sample matrix for 34 pRCC
samples was downloaded from https://gdc.cancer.gov/about-data/publications/
ATACseq-AWG18. As each sample had two replicates, we took the average of the
two replicates to represent each sample and constructed a 562,709 × 34 matrix for
pRCC. In order to be comparable with the 34 pRCC samples, we constructed a
normalized panpeak-by-cell matrix for scATAC-seq the same way as described in
Corces et al.18. We used the 562,709 peaks from pan-cancer ATAC-seq which
covered 84% of scATAC-seq master peaks to generate the matrix. We adjusted the
start and end of the fragments (“+” stranded +4 bp, “−” stranded −5 bp) using
“scanbam” in Rsamtools, obtained the number of fragments per peak for each
cluster using “countOverlaps”, and compiled a 562,709 × 20 matrix. The matrix was
then normalized using “cpm” in edgeR (3.24.3) with parameters “log= TRUE,
prior.count= 5” followed by a quantile normalization using “normalize.quantiles”
in “preprocessCore”.

Based on these two normalized matrices, we next calculated the correlation of
accessibility between normal kidney cell types and pRCC individual samples.
Briefly, we used pRCC matrix to identify high variable peaks for pRCC ATAC-seq
using “FindVariableFeatures” in Seurat with parameters “selection.method= “vst”,
nfeatures= 50000”. The high variable peaks for normal kidney scATAC-seq were
defined above. The overlapping high variable peaks were used to reduce the two
normalized matrices to 15,390 × 34 and 15,390 × 20 dimensions. Pearson
correlation coefficient was calculated for pairs of each normal kidney cell type and
each pRCC sample using “cor” in R and the average correlation coefficient from
cell subtypes was taken for each cell type group.

Comparison by similarity score. In order to predict the similarity scores for bulk
pRCC ATAC-seq from the normal kidney scATAC-seq data, we generated pseudo-
bulk reference panel from kidney scATAC-seq data. We randomly sample 50 cells
20 times from each cell type to generate the pseudo-bulk reference panel. The full
562,709 × 220 matrix of pseudo-bulk reference for the 11 cell type groups was
converted from the panpeak-by-cell matrix by sum up the counts from the 50 cells.
The pseudo-bulk reference matrix then normalized using “cpm” in edgeR (3.24.3)
with parameters “log= TRUE, prior.count= 5” followed by a quantile normal-
ization using “normalize.quantiles” in “preprocessCore”. Cell type-specific peaks
from normal kidney scATAC-seq and high-quality peaks from pRCC ATAC-seq
(top 80,000 ranked) were used to reduce the pseudo-bulk reference matrix and
panpeak-by-sample pRCC matrix to 15,081 × 220 and 15,081 × 34 dimensions,
respectively.

We then trained binomial logistic regression models on the cellular identities in
the pseudo-bulk reference, and used these models to predict similarity scores for
each pRCC sample. This approach was implemented using the R package glmnet59

(4.1-1). In the training process, we used an offset for each model as log (f/(1− f)) (f
is the fraction of cells in the cell type being trained), performed tenfold cross
validation and selected the largest regularization coefficient, lambda. In the
predicting process, an offset of 0 was used.

Differential peaks between pRCC subgroups. The differential peaks between pRCC
subgroups (pRCCa1and pRCCa2) were identified by edgeR (3.24.3) as
abs(logFC) > 2.5, FDR < 0.05, and logCPM > 1. The accessibilities of these peaks in
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normal kidney cell types were then compiled from above normalized panpeak-by-
cell matrix.

Optimization of Cicero and computing gene activity. We optimized Cicero28

(1.0.15) by using “genebody accessibility” instead of “TSS accessibility” to calcu-
lated co-accessibility scores. Briefly, we computed “genebody accessibility” for each
protein_coding gene (ensemble hg38) in each cell by summarizing the overall
chromatin accessibility of all peaks within a given gene based on the binary peak-
by-cell count matrix. The ‘genebody accessibility’ matrix were assigned with
rownames as−200/+100 bp coordination of TSS, and was appended to the original
binary peak-by-cell count matrix. We then used “ran_cicero” function in Cicero on
this matrix for each cell type to establish co-accessible connections using para-
meters “aggregation k= 30, window size= 500 kb, distance constraint= 250 kb”.
Cutoff as 0.1 were used to establish the regulatory networks.

Gene activities were calculated using “build_gene_activity_matrix” in Cicero.
For normal kidney cells, the above regulatory networks were used. For pRCC
samples, the cancer regulatory networks (https://api.gdc.cancer.gov/data/dbf21e32-
c335-4d86-b42b-f0d5d1808fef)18 were used.

Origin-derived features. We identified feature genes for normal kidney cell types
and pRCC subgroups based on gene activity matrices compiled above. Briefly, for
normal kidney cells, we filtered out genes that were accessible in less than ten cells,
and extracted cell type feature genes with “pct.1 > 0.5, avg_logFC > 0.5” using
“FindAllMarkers” in Seurat. For pRCC subgroups, we extracted feature genes with
“abs (logFC) > 1, FDR < 0.05, logCPM > 5” using edgeR. We then used overlapping
of PT feature genes and pRCCa1 feature genes as pRCCa1 origin-derived features,
and overlapping of CD_PC feature genes and pRCCa2 feature genes as pRCCa2
origin-derived features. DisGeNET31 enrichment analysis of origin-derived features
was performed using Enrichr60.

Clustering of pRCC samples. Clustering of pRCC was performed using Cluster3,
based on correlation with PT cell types for 34 TCGA pRCC samples with ATAC-
seq, or based on RNA-seq gene expression of origin-derived features for 255 pRCC
samples without ATAC-seq. RNA-seq gene expression (FPKM) of pRCC were
downloaded from UCSC XENA61. Clinical information of pRCC was downloaded
from Ricketts et al.2.

Trajectory analysis of 255 pRCC samples. Trajectory analysis of 255 TCGA pRCC
samples along with normal kidney samples was performed using Monocle 262

(2.10.1) pseudotime ordering algorithm. Briefly, we filter out genes with average
expression < 1 or deviation of expression > 10 in the gene expression matrix con-
sisting of 214 pRCCa1_Like samples, 8 pRCCa2_Like_CIMP samples, 33
pRCCa2_Like_NotCIMP samples and 32 normal kidney samples. The filtered
matrix subsequently underwent t-SNE dimensionality reduction. Differential
expression test was performed for each gene, including the sample labels as indi-
cator variables to find differential expression genes across samples. The differential
expression genes with p-value < 0.00003 were chosen as ordering genes for tra-
jectory inference. We then used Monocle 2’s DDRTree dimensionality reduction
algorithm to align samples to a branched trajectory.

Top gene features associated with CIMP. The top gene features associated with
CIMP were identified by feature selection function using L1-regularized logistic
regression based on coefficient value. The expression profiles with all genes of the
288 (33+ 255) TCGA pRCC samples (one of the 34 samples does not have
expression data) were used. The gene expressions were normalized across the
samples using z-score for each gene feature. In the training process, L1-
regularization was used for sparse coefficient values and the inverse regularization
strength value was set as C= 1.0.

Model for predicting CIMP. Random Forest model was trained with expression of
the origin-derived features and LDHA. The model was trained on the 33 classified
pRCC samples (one of the 34 samples does not have expression data) using scikit-
learn (V.0.4.2) package. The trained model was then used to predict CIMP from
the other 255 pRCC samples. In the Random Forest model, we set the maximum
depth as 2 to avoid overfitting.

Gene set enrichment analysis. Gene set enrichment analysis was performed on gene
activity matrix of pRCC subgroups and their respective cell-of-origin cell types
using GSEA63 (4.1.0) against hallmark gene sets.

Survival analysis. Survival analysis of pRCC (TCGA) was performed using “Cgdsr”
and “Survival” in R. The Kaplan-Meier method was used to generate curves for
overall survival, which was defined as the time from the nephrectomy to death of
any cause. The Log-rank test was used to assess the univariate survival differences.

For Hazard plots of risk of dying from pRCC, the Cox Proportional Hazard
model included the binary value of feature gene expression, age, gender, stage, and
tumor type as covariates. Feature gene expression was divided into “high” or “low”
representing the upper or lower quarter of gene expression.

Differential expression between CIMP and NotCIMP in pRCCa2_Like. We filtered
out genes with average expression < 1 or deviation of expression > 10 in expression
matrix. The differential expression genes between CIMP and NotCIMP in
pRCCa2_Like were identified as “abs (logFC) > 1, FDR < 0.05, logCPM > 5” using
edgeR. Gene ontology enrichment was performed using Metascape64 or KEGG
pathways analysis. The rank matrix scores of genes in oxidative phosphorylation
pathway were calculated by GSEA.

Immunofluorescence staining. Tissues from patients were formalin-fixed, paraffin-
embedded, and processed for sectioning. For immunofluorescence staining, sec-
tions were deparaffinized, rehydrated and underwent antigen retrieval. Sections
were then blocked with 10% bovine serum in PBS for 10 m and incubated with
primary antibodies for 4 h at RT. After wash, sections were incubated with sec-
ondary antibodies for 1 h at RT and mounted with Fluoroshield Mounting Medium
with DAPI (ab104139, Abcam). Images were obtained with fluorescence micro-
scopy (DM5000B, Leica). The primary antibodies included mouse anti-AQP1
(ab9566; Abcam, 1:100 diluted), rabbit anti-GATA3 (ZA-0661; ZSGB-BIO), rabbit
anti-GRHL2 (HPA004820; Sigma-Aldrich,1:50 diluted), rabbit anti-CK7 (ZA-0573;
ZSGB-BIO) and mouse anti-CK7 (ZM-0071; ZSGB-BIO). The secondary anti-
bodies included Alexa Fluor® 647 goat anti-rabbit IgG (H&L) (ab150079, Abcam),
Alexa Fluor® 594 goat anti-rabbit IgG (B40944, Invitrogen), Swine Anti-Rabbit IgG
(F020502-2, Dako), Rabbit Anti-Mouse IgG (F026102-2, Dako) and Alexa Fluor®

488 Donkey Anti-Mouse IgG (H&L) (ab150105, Abcam).

Statistics. Differential analysis of gene activities for feature genes between pRCC
subtypes and their cell-of-origin was assessed using paired t test (for pRCCa1
origin features: df= 24, t= 8.9647 between pRCC subtypes and t= 18.927 between
origin cell types; for pRCCa2 origin features: df= 6, t=−3.7814 between pRCC
subtypes and t=−6.3796 between origin cell types).

The probability of recovering all CIMP in pRCCa2_Like (41 samples) was tested
by bootstrap. We randomly selected 41 samples in 255 pRCC samples and counted
the number of CIMP. The processes were repeated 10000 times to generate a
distribution of the number of recovered CIMP. We then calculated the probability
of recovering all eight CIMP using “pnorm” with parameter “lower.tail= FALSE”
based on this distribution. All other statistical analyses were described in respective
sections.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq publicly available data used in this study are available in the GEO
database under accession code GSE14098920, GSE12186221, GSE13188222 or
downloaded from the supplementary files of Young et al.19. The publicly available
ATAC-seq data for 34 pRCC samples and the cancer regulatory networks were
downloaded from https://gdc.cancer.gov/about-data/publications/ATACseq-AWG. The
publicly available gene expression (FPKM) of pRCC was downloaded from https://
xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Kidney%20Papillary%20Cell%
20Carcinoma%20(KIRP)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%
3A443. The publicly available clinical information of pRCC was downloaded from the
supplementary files of Ricketts et al., 20182. The raw scATAC-seq data generated in this
study have been deposited in the GEO database under accession GSE166547. The raw
scATAC-seq data are also available at Genome Sequence Archive for Human (GSA-
Human) under accession number HRA001419. The remaining data supporting the
findings of this study are available within the Article, Supplementary Information or
Source Data file. Source data are provided with this paper.

Code availability
Customized code65 used in this study is available at GitHub (https://github.com/
labYangNJU/scATAC-seq) and Zenodo and the corresponding DOI is as follows:
(https://doi.org/10.5281/zenodo.5537024).
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