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A machine and human reader study on AI diagnosis
model safety under attacks of adversarial images
Qianwei Zhou 1,2,3, Margarita Zuley1,4, Yuan Guo1,5, Lu Yang1,6, Bronwyn Nair1,4, Adrienne Vargo1,4,

Suzanne Ghannam1,4, Dooman Arefan1 & Shandong Wu 1,7,8,9✉

While active efforts are advancing medical artificial intelligence (AI) model development and

clinical translation, safety issues of the AI models emerge, but little research has been done.

We perform a study to investigate the behaviors of an AI diagnosis model under adversarial

images generated by Generative Adversarial Network (GAN) models and to evaluate the

effects on human experts when visually identifying potential adversarial images. Our GAN

model makes intentional modifications to the diagnosis-sensitive contents of mammogram

images in deep learning-based computer-aided diagnosis (CAD) of breast cancer. In our

experiments the adversarial samples fool the AI-CAD model to output a wrong diagnosis on

69.1% of the cases that are initially correctly classified by the AI-CAD model. Five breast

imaging radiologists visually identify 29%-71% of the adversarial samples. Our study sug-

gests an imperative need for continuing research on medical AI model’s safety issues and for

developing potential defensive solutions against adversarial attacks.
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Deep learning models have shown remarkable performance
in many artificial intelligence (AI)-based medical appli-
cations, especially in medical image-related disease diag-

nosis and outcome prediction1–4. If deep learning algorithms
continue to show a comparable or superior performance to
human experts5, these AI tools will start to have a real role in
clinical practice. Today, the community has recognized that it is
imperative to build trustworthy, reliable, and safe AI systems for
clinical deployment. One of the critical measures to the safety of
an AI tool is to examine its behaviors under attacks from
adversarial data6–8. The advancement of computational techni-
ques, such as Generative Adversarial Networks (GANs), can
generate adversarial data that may be intentionally used to attack
AI models9,10. Under adversarial attacks, if a medical AI software
makes a false diagnosis or prediction, it will lead to harmful
consequences to patients, healthcare providers, and health
insurances11. In the efforts of building trustworthy deep learning-
based AI software for clinical applications, it is thus vital to
investigate behaviors and protection of AI software under
adversarial input data.

Adversarial attacks can be in different forms. Attacks made
through adding sticker-like patches to images12 are often obvious
to spot, because the added patches may break the image
appearance consistency. Using images that are generated by
GANs, or other methods13, is a more complicated form of attack,
where imperceptible noises are usually added on images to induce
a wrong output from an AI model. While the images with added
adversarial noises may have undetectable visual appearance
changes, this kind of attack may be easy for a domain expert to
catch, because the induced wrong output does not match the
visually unchanged diagnosis-sensitive contents of the images. In
the current medical diagnosis context, radiologists routinely read
or review images in daily practice, and this process can identify
potential adversarial samples. Another example is attacks that
generate entirely new/different images using standard GANs to
replace original images. These fake images can also be identified
by radiologists, who have access and use other sources of

information (such as those in clinical notes) when viewing ima-
ges, where data or clues, such as a patient’s personal history of
diseases, previous diagnoses or anatomical assessment, historical
or longitudinal imaging data, etc., can promptly alert radiologists
that an entirely different image may be a fake. A more challenging
scenario of adversarial attacks is to make intentional changes to
specific anatomical or diagnosis-sensitive contents of the original
images, aiming to simultaneously fool the diagnosis of an AI
model and the visual inspection by human experts. Today, there
are newly advanced GAN techniques that can generate highly
plausible adversarial images by making targeted modifications to
image contents. Examining the behaviors of an AI model under
such highly plausible adversarial attacks represents a critical test
for an AI software’s safety evaluation.

Deep learning has been shown to improve computer-aided
diagnosis (CAD) of breast cancer on digital mammograms. Sev-
eral recently reported deep learning-based AI-CAD models have
shown promising performances5,14–17. Adversarial attacks to such
AI-CAD models are emerging as a safety concern11 to patients,
health providers, and legislation. Adversarial modifications to
medical images can happen when the images are exposed to
unauthorized access by hackers or malware18. Adversarial images,
especially those modified with carefully designed manipulations,
may generate unexpected, false, or wrong diagnostic results when
fed to an AI-CAD model. In this work, we performed a study to
evaluate an AI-CAD model’s behaviors under adversarial attacks
of GAN-generated mammogram images by inserting cancerous
tissue into normal images and by removing cancerous tissue in
cancer-affected images. We also evaluated the effects of expert
radiologists in visually identifying these kinds of adversarial
images, without and with an educational intervention.

Results
Figure 1 illustrates an overview of our study design, which con-
sists of two components: an AI model study and a human reader
study. We assembled a study cohort composed of 1284 women

Fig. 1 An overview of our study design. An AI-CAD model was first learned and then tested on the adversarial images generated by the GAN model which
aimed to make modifications to the diagnosis-sensitive contents of images (by inserting or removing cancerous tissue). The reader study examined human
experts’ capabilities to visually recognize the GAN-generated adversarial images.
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from the University of Pittsburgh Medical Center and a total of
4346 mammogram images associated with this cohort. In this
cohort, 918 patients were evaluated as negative (including benign
findings) for breast cancer, while 366 patients were biopsy-proven
positive for breast cancer malignancy. We first used a training set
of the imaging data to build an AI-CAD model to distinguish
cancer-positive cases vs. negative cases. We developed two GAN-
based generators to synthesize adversarial samples from the real/
original samples, where cancerous regions were “inserted” into
negative images or “removed” from positive images by the GAN
models, respectively. In the AI model study, we compared the
effects of the AI-CAD model under the respective input of the
original test set and the corresponding synthetic/adversarial test
set to observe the model’s behaviors due to the adversarial attacks.
In the human reader study, we recruited five breast imaging
radiologists to visually observe images to identify potential
adversarial samples (note, here, they are not required to make a
positive vs. negative diagnosis on the images). We designed five
sessions, including applying an educational intervention to assess
the radiologists’ observation effects on adversarial images. The
purpose of the AI model study was to investigate whether and to
what extent the AI-CAD model may output a wrong diagnosis
due to an adversarial input. The purpose of the human reader
study was to measure whether and to what extent human radi-
ologists may detect/capture an adversarial image through visual
observation. Certified radiologists may be able to visually recog-
nize fake/adversarial images using their medical knowledge and
experience, especially if the GAN-generated images are less
plausible (e.g., with obvious noises, introducing perceptible arti-
facts, incompliant to well-known anatomical structures, etc.). If
radiologists can recognize that an image is fake, then they won’t
make a diagnosis, or trust any diagnosis made on a fake image. In
this sense, in a case where an adversarial input can fool an AI
model and an automated detection of adversarial inputs is not in
place, human experts’ visual observations may provide a realistic
added protection by identifying potential adversarial inputs.

For considerations in computational efficiency and stability of
the GAN models, we generated each adversarial image at two
reduced resolutions: 1728 × 1408 (denoted as high resolution) and
1024 × 832 (denoted as low resolution). GAN models are known
to be sensitive to image resolutions19 (it tends to collapse when
dealing with high-resolution images). Note that in this study,
1728 × 1408 is considered a noticeable high resolution for GAN
modeling, as in the literature most resolutions of GAN modeling
ranged from 28 × 28 to 1024 × 102420–22. We performed the AI
model study and the human reader study with the images gen-
erated at both resolutions and compared the effects. Also note that
for the human reader study, all five radiologists read all the images
generated at the 1728 × 1408 resolution, while two radiologists
(Readers 1 and 2) read the low-resolution (1024 × 832) images for
comparison purposes (at this resolution we did not perform the
readings with all five readers because of the limitation of the
readers’ availabilities during the study period).

AI-CAD model behavior under adversarial input
As shown in Fig. 1, we first built a deep learning-based AI-CAD
model for classifying between breast cancer malignancy vs. nor-
mal/negative cases. The receptive field of this AI-CAD was
optimally designed for mammogram images to cover the regions
of most breast lesions in our dataset. The dataset was split at the
patient level for the AI-CAD model training (80%), validation
(10%), and testing (10%), respectively.

After training, we measured the model’s classification perfor-
mance with respect to the original real test data and the corre-
sponding GAN-generated adversarial counterparts from the real
test data. We developed two GAN-trained U-Net23 models to
generate the adversarial images. The mammogram images in the
test set were modified with flipped labels by the GAN generators,
which were trained to generate positive-looking fake counterparts
from the negative mammogram images and to generate negative-
looking fake counterparts from the positive mammogram images,
respectively. Here, the fake counterpart images were intentionally
assigned to a flipped label, that is, negative-looking fake coun-
terparts were labeled as negative, and positive-looking fake
counterparts were labeled as positive. The generated synthetic
images from the real test set formed the adversarial test set, and
the AI-CAD model’s classification was evaluated again using the
adversarial test samples as input. We compared the model’s
performance between the two test sets (namely, real images and
adversarial images) to reveal whether, and to what extent, the AI-
CAD model may be fooled by the fake/adversarial images. We
used the area under the receiver operating characteristic curve
(AUC) to measure the AI-CAD model’s classification perfor-
mance. In general, if the model’s AUCs on both test sets are close,
then it is more likely that the model has been largely fooled by the
adversarial test set. We also further calculated classification
accuracy to analyze the model’s behaviors with respect to sub-
group testing samples of positive and negative cases.

Table 1 lists and compares the classification effects of the AI-
CAD model on the test data at the two different resolutions. We
first describe the results on the high-resolution (1728 × 1408)
images. As can be seen, on the test set (74 real positive samples
and 364 real negative samples), the AI-CAD model achieved an
AUC of 0.82. The AUC was 0.94 when tested on the corre-
sponding GAN-generated adversarial images (with flipped labels)
of the test set. These two AUC values indicate that the AI-CAD
model was largely fooled by the adversarial set of images. Fur-
thermore, when using a threshold of 0.5 to calculate the classi-
fication accuracy, for the 74 real positive images, 44 (59.5%) were
correctly classified as positive cases; and for their corresponding
GAN-generated negative-looking fake counterparts (note that
their labels were negative because of the flipping), 42 out of the 44
cases were classified as negative cases, which means that 95.5%
(42 out of 44 cases) of the GAN-generated adversarial samples
successfully fooled the classifier to wrongly output a negative
diagnosis for these originally positive cases. Likewise, out of the
364 real negative images, 319 (87.6%) were correctly classified as

Table 1 Classification effects of the AI-CAD model on the test data (74 real positive samples and 364 real negative samples, and
their corresponding GAN-generated fake images) at two different resolutions.

Image
resolution

AUC on real images
(74 positive and
364 negative
samples)

AUC on the corresponding
GAN-generated fake
counterparts (label flipped)

Classes of the
real images

Percentage of
correctly classified
real images

Percentage of the fake
counterparts (of the correctly
classified real images) that
fooled the AI-CAD model

1728 × 1408 0.82 0.94 Positive 59.5% (44/74) 95.5% (42/44)
Negative 87.6% (319/364) 65.5% (209/319)

1024 × 832 0.82 0.79 Positive 58.1% (43/74) 88.4% (38/43)
Negative 83.2% (303/364) 66.7% (202/303)
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negative cases; and for their corresponding GAN-generated
positive-looking fake counterparts (note that their labels were
positive because of the flipping), 209 out of the 319 cases were
classified as positive cases, which means that 65.5% (209 out of
319 cases) of the GAN-generated adversarial samples successfully
fooled the classifier to wrongly output a positive diagnosis for
these originally negative cases. Putting the 44 positive and 319
negative cases together, 69.1% (i.e., 251 out of the 363 cases) of
the GAN-generated adversarial images fooled the AI-CAD model.

When looking at the results in Table 1 for the low-resolution
(1024 × 832) images, we see a similar pattern as we did with the
high-resolution images, where the GAN-generated adversarial
samples fooled the AI-CAD classifier on 88.4% and on 66.7% of
the cases for the positive and negative classes, respectively. Note
that the AUC of the adversarial images was higher (0.94 vs. 0.79)
for the high-resolution images, indicating that the high-resolution
adversarial samples are more likely to fool the AI-CAD model to
result in a wrong diagnosis.

Human reader study to identify adversarial images
We designed a human reader experiment to evaluate the effects of
recognizing/identifying potential GAN-generated adversarial
images through visual observation by domain experts. For this
experiment, we recruited five readers, including four attending
radiologists (Readers 1 to 4) and one radiology fellow (Reader 5),
all specializing in breast imaging. Readers 1–5 have 14, 13, 12, 7,
and <1 year(s) of experience in breast imaging, respectively. All
readers had no specific computational background or training on
machine learning and GAN technique details. This experiment
consisted of five sessions that were pre-designed before the
experiment, and the key experimental design settings were blin-
ded to the readers. The five readers were only informed that they
were going to read some given digital mammogram images and
were asked to give an assessment for each given image, using a
3-label scoring criterion:

1. this is a real mammogram image;
2. this is not a real mammogram image; or
3. unsure this image is real or not.

The readers were told to use a reasonable amount of time at
their clinical discretion for assessing an image. For each session,
the number of images were pre-assigned, the images were chosen
randomly, and the exact same set of chosen images were dis-
tributed to corresponding folders for each reader to read. The
readers were asked to complete the five sessions independently,
without major/intentional interruptions. Also, in order to reduce
potential complications, during the reading, they were not
allowed to go back to read previous images (and change the
assessment) once they moved on to read the next images.

The five sessions are described in the following.

● Session 1. All readers were asked to observe 100 real
mammogram images (readers knew the images were real).
The purpose of this session was to have the reader become
familiar with the real images in the setting of this study
with the reduced resolutions.

● Session 2. All readers were given another set of 100 real
mammogram images to read, but they were not told
whether the images were real, fake, or a mixture. The
purpose of this session was to assess, after Session 1, how
well the readers were able to understand/read the real
images in our study.

● Session 3. All readers were given 436 images to read,
consisting of half real images and half fake/adversarial
images. The readers were completely blinded to the labels

(real or fake) of all the given images. We designed this
session to examine how well the readers were able to
identify the fake images from real images.

● Session 4. In this session, we applied an educational
intervention to the readers. All readers were given 100
educational samples (Fig. 2) to read; here each educational
sample consisted of a real image and its corresponding
GAN-generated fake counterpart image, as well as the
difference image (i.e., the subtraction of the real and
synthetic image), displayed side-by-side. The purpose of
this session was to educate the radiologists to potentially
sense/learn the differences between the real and the GAN-
generated fake images (or to perceive how the GAN
generators had modified a real image to generate a fake/
adversarial image). It should be noted that what we
implemented here was a simple qualitative educational
process for the readers, where no further information/
explanation/guidance was provided to the readers, except
showing the readers the real, fake, and subtraction images
to observe. Nobody else was present/available to provide
any assistance or consulting during this session. By viewing
these images by themselves, it is each reader’s own
experience and capability to potentially sense, perceive, or
conceptualize/generalize the differences between the real
and fake images they observed.

● Session 5. After the educational intervention, Session 3 was
repeated, but here all readers were given a completely
different set of 440 images to read, where the 440 images
consisted of half real images and half fake images. This
session was designed to examine whether and how the
readers’ performances in identifying fake images may have
changed due to the educational intervention.

Table 2 summarizes the number of images used in each session.
Except Session 4, the real images and their fake counterparts were
all randomly selected without any overlapping among the ses-
sions. Sessions 1 and 2 used images from the training set. Sessions
3 and 5 used images from a mixture of the validation and test sets.
The real images in Session 4 were all randomly selected from the
whole training set.

We reported and compared recognition accuracy of the readers
across sessions. We calculated p-values to compare statistical
significances of the accuracy values of a reader across Sessions 2,
3, and 5. Specifically, we split the samples in each session
according to the reading order into several non-overlapped sub-
groups of equal size to estimate the standard deviations, and the
average of the standard deviations estimated for the three sessions
was used to calculate one-sided p-values24.

Reader’s performance on recognizing real high-resolution
images. As shown in Table 3 for the study using high-
resolution images, the results in Session 2 showed that all read-
ers can recognize at least 50% of the real images, where two
readers (Readers 1 and 3) had a much higher accuracy (i.e., 0.89
and 0.92) than the other three readers. When comparing the
results between Session 3 and Session 2, all readers showed an
increased accuracy in identifying the real images (all p-values <
0.03, except for Reader 2 where the p-value was 0.21). As the
samples in Session 3 contained half fake images and all the
samples in Session 2 were real images, these results showed that
the presence of the fake images helped the readers in recognizing
the real images; this is particularly obvious for Reader 4 (accuracy
0.6 for Session 2 vs. 0.94 for Session 3). Even though readers were
not allowed to read images back and forth, they may still have
learned some essential visual features of the fake/adversarial
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images and that possibly contributed to the process of identifying
the real images. When comparing the results between Session 3
and Session 5, it showed that after the educational process,
Readers 1 and 2 exhibited a significantly (p-values < 0.01)
decreased recognition accuracy to the real images in Session 5,
while Readers 3-5 showed no significant (all p-values > 0.09)
changes in performance. This observation indicates that after
being exposed to the comparative viewing of the paired real and
GAN-generated fake images (in Session 4), it actually led to some
confusion to the readers (especially for Readers 1 and 2), and thus
reduced their confidence/capability in identifying the real images,
where Readers 3-5 were relatively robust to the confusion. Con-
sidering the fact that Readers 4 and 5 have less clinical experience,
their reduced performances may have to do with this fact and
thus they may be less sensitive to this specific means of educa-
tional process.

More specifically, when we look at the break-down accuracy of
the positive/negative cases of the real images for each session, the
accuracies of the positive cases (cancers) alone and negative cases
(normal) alone were close to the accuracy of the combined set of

positive and negative cases. This indicates that the readers’
reading effects are not sensitive to the samples’ classes (positive or
negative). In addition, when comparing the break-down accuracy
across sessions, we found that the patterns/trends of the accuracy
changes from Session 2 to Session 3 and to Session 5 were similar
to the patterns/trends on the combined set of positive and
negative cases.

Reader’s performance on recognizing fake/adversarial high-
resolution images. The observations on recognizing the fake
images are also summarized in Table 3. As can be seen from
Session 3, there was a large range of accuracies among the five
readers for the fake images (positive and negative cases com-
bined), indicating that the readers’ initial abilities varied when
facing the adversarial images, where their accuracies seemed not
to be associated with the length of their clinical experience. After
the educational intervention (Session 4), Readers 2, 3, and
5 showed significant (all p-values < 0.01) changes in accuracy in
Session 5, where Readers 2 and 3 increased, but Reader 5
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Fig. 2 Examples of the images shown to the readers in the educational intervention. Each case consisted of a real image, the synthetic adversarial sample
generated by the GAN model, and the difference calculated by the subtraction (real - synthetic) between the two images. Note that the arrows appeared in
the second row were not part of the images shown for the educational purpose; they were provided here to indicate important changes made by the GAN
models to the images.

Table 2 Number of images used in different sessions in the human reader study (each sample in Session 4 consisted of one real
image, its synthetic counterpart, and the difference/subtraction image).

Session # Real images GAN-generated fake images Total

Positive samples Negative samples Positive-looking counterparts Negative-looking counterparts

1 51 49 – – 100
2 49 51 – – 100
3 36 179 183 38 436
4 50 50 50 50 100
5 39 184 180 37 440
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decreased, their performances; for Readers 1 and 4, they remained
similar accuracies in Session 5 compared to Session 3.

When looking at the positive cases alone of the fake images,
Reader 2 significantly increased accuracy (0.72 in Session 5 vs.
0.53 in Session 3; p-value < 0.01) and so did Reader 3 (0.49 in
Session 5 vs. 0.35 in Session 3; p-value < 0.01). In contrast, Reader
5 significantly decreased accuracy (0.28 in Session 5 vs. 0.43 in
Session 3; p-value < 0.01). When looking at the negative cases
alone of the fake images, Reader 3 significantly increased accuracy
(0.59 in Session 5 vs. 0.34 in Session 3; p-value < 0.01) and so did
Reader 4 (0.84 in Session 5 vs. 0.68 in Session 3; p-value < 0.01).
In contrast, Reader 5 showed a significantly decreased accuracy
(0.22 in Session 5 vs. 0.50 in Session 3; p-value < 0.01). It can be
seen that for Reader 2, the significant accuracy gain in the positive
cases was at the cost of accuracy loss (from 0.39 to 0.32;
insignificant, p-value= 0.13) in the negative cases; and likewise,
for Reader 4, the significant accuracy gain in the negative cases
was at the cost of accuracy loss (from 0.71 to 0.67; insignificant, p-
value= 0.13) in the positive cases.

By comparing the overall results between the real images and
fake images, it seems that the specific means of our educational
intervention led the least experienced reader (i.e., Reader 5) to be
incapable of correctly learning characteristics about the fake/
adversarial images, thus resulting in the decreased recognition of
the fake images after the education; but at the same time, the
education did (slightly) increase this reader’s accuracy (0.65 in
Session 5 vs. 0.61 in Session 3; p-value= 0.09) in recognizing the
real images. For the other four readers, the overall comparisons

indicate that the educational process enabled them to perform
better in recognizing the fake/adversarial images, at no or little
cost of losing some accuracy in recognizing the real images.

Effects on the low-resolution images compared to high-
resolution images. In Table 3, we also present the correspond-
ing performances of the readers for the low-resolution images. As
can be seen, similar reading behaviors/patterns of the two readers
on the low-resolution images were observed in both the real and
fake images when compared to the high-resolution images. The
accuracy values of the two readers were also closer to each other
on the low-resolution images, indicating less discrepancy on
reading such images. The overall reading behaviors of the two
readers were also consistent between reading the low- and high-
resolution images. In addition, the readers’ accuracies on the low-
resolution images were overall higher than those in the high-
resolution images, indicating that it is more challenging for the
readers to read the high-resolution adversarial images, which are
more plausible to, and harder to distinguish from, the real images.

Image reading time. Table 4 summarizes the time lengths each
reader spent at each session. As can be seen, when using high-
resolution images, Readers 1–3 had prolonged reading times for
Session 5 compared to Session 3, indicating that after the edu-
cational intervention, these readers needed to spend more time to
perceive/read an image in assessing whether the image was real or
fake. For Readers 4 and 5, they had shortened times for Session 5

Table 3 Accuracies of correctly identifying real/fake images at each session of the human reader study. Real images are the
original images while fake images are the GAN-generated adversarial images.

Reader ID
(number of
years of
clinical
experience)

Mixed real
and
fake images

Real images
(positive &
negative cases)

Fake images
(positive &
negative cases)

Real images
(positive cases)

Real images
(negative cases)

Fake
images
(positive-
looking
images)

Fake
images
(negative-
looking
images)

Not
sure an
image
is real
or fake

High-resolution Images (1728 × 1408)
Session 2
Reader 1 (14) – 0.89 – 0.88 0.90 – – 0.05
Reader 2 (13) – 0.60 – 0.59 0.61 – – 0.00
Reader 3 (12) – 0.92 – 0.96 0.88 – – 0.03
Reader 4 (7) – 0.60 – 0.67 0.53 – – 0.00
Reader 5 (<1) – 0.53 – 0.55 0.51 – – 0.02
Session 3
Reader 1 (14) 0.61 0.94 0.29 0.94 0.94 0.3 0.24 0.02
Reader 2 (13) 0.58 0.65 0.51 0.64 0.65 0.53 0.39 0.00
Reader 3 (12) 0.67 1.00 0.35 1.00 0.99 0.35 0.34 0.03
Reader 4 (7) 0.82 0.94 0.71 0.97 0.93 0.71 0.68 0.00
Reader 5 (<1) 0.53 0.61 0.44 0.61 0.61 0.43 0.5 0.01
Session 5
Reader 1 (14) 0.58 0.85 0.30 0.72 0.88 0.32 0.22 0.06
Reader 2 (13) 0.57 0.49 0.65 0.31 0.53 0.72 0.32 0.00
Reader 3 (12) 0.75 0.97 0.51 0.97 0.97 0.49 0.59 0.03
Reader 4 (7) 0.82 0.95 0.70 1.00 0.93 0.67 0.84 0.00
Reader 5 (<1) 0.46 0.65 0.27 0.69 0.65 0.28 0.22 0.02
Low-resolution Images (1024 × 832)
Session 2
Reader 1 (14) – 0.86 – 0.80 0.92 – – 0.03
Reader 2 (13) – 0.71 – 0.71 0.69 – – 0.00
Session 3
Reader 1 (14) 0.77 0.93 0.61 0.89 0.94 0.66 0.34 0.02
Reader 2 (13) 0.61 0.92 0.31 0.86 0.93 0.34 0.11 0.00
Session 5
Reader 1 (14) 0.76 0.88 0.64 0.90 0.88 0.69 0.38 0.00
Reader 2 (13) 0.59 0.71 0.47 0.59 0.73 0.52 0.27 0.06
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compared to Session 3. As mentioned in previous interpretations
of the results, the educational session had almost no effect on
Reader 4, which may or may not have to do with the observed
shorter time that this reader spent on Session 5. In addition,
Readers 2 and 5 spent much more time than other readers on
Session 3 and Session 5; however, their overall reading accuracies
are lower than the other three readers. This observation indicates
that spending more time reading an image may not directly lead
to improved performance in recognizing the fake/adversarial
images. This may also imply that less experienced readers (e.g.,
Reader 5) may not have strong experience/knowledge to perceive
the characteristics of our GAN-generated adversarial images, even
if they spent more time in reading the images.

In Table 4 we also show the time lengths spent on the study
when using the low-resolution images. As we can see, the two
readers (Readers 1 and 2) spent less time than they did on the
high-resolution images. This indicates that the high-resolution
images are harder to read, and thus more time was used.

Discussion
In this work we performed an evaluation study on the safety of a
deep learning-based AI-CAD model for breast cancer diagnosis
using mammography. The evaluation was based on adversarial
attacks where fake mammogram images were synthesized by
GAN models to mimic positive-looking and negative-looking
images. In recent years, GAN models have been intensively stu-
died in medical imaging applications25. Our study focused on
using GAN models to generate highly plausible and high-
resolution adversarial images with intentional modifications to
insert or remove cancerous tissues. These kinds of adversarial
images can lead to harmful consequences to mammogram-based
AI-CAD models, because the adversarial modifications were
made with respect to specific and diagnosis-sensitive contents in
the original images, and thus it is even harder to detect such
adversarial inputs than the common adversarial images perturbed
with imperceptible noises26–29. Our main findings are that (1) the
GAN-generated highly plausible adversarial images largely fooled
the AI-CAD model in our experimental settings, and (2) the
human readers (i.e., specialized breast imaging radiologists)
visually recognized a certain proportion (accuracy range 29–71%)
of the adversarial samples, but at the cost of sacrificing accuracy
in recognizing real images. This indicates that the human readers
failed to detect a substantial portion of the adversarial samples
generated by our GAN models.

In the AI-CAD model study, it was important to build a model
that had a reasonable performance (AUC at least > 0.80 based on
our experience) for the diagnostic tasks–if a model has a very low
classification performance (i.e., low AUC values) it will not be a
good candidate to evaluate its effects under adversarial samples.
Our AI-CAD model showed an AUC of 0.82, which means it was
relatively accurate in classifying the positive/negative cases. In our

high-resolution experiments, the GAN-generated fake images
successfully fooled the AI-CAD model (i.e., generated a wrong
diagnosis label) for 95.5% of the positive cases and for 65.5% of
the negative cases in the testing set, meaning that the targeted
modifications (i.e., removal or inserting of cancerous tissue) made
by our GAN model led to wrong diagnostic results by the AI-
CAD model. The advancements of modern GAN techniques have
been showing surprising effects in generating fake/synthetic
images. By inserting a lesion into an otherwise normal image to
fool an AI model to give a wrong diagnosis of malignancy, or,
similarly, by removing a lesion from an otherwise malignant
image to fool an AI model to give a wrong diagnosis of normal,
may lead to serious consequences for clinically deployed AI-CAD
systems if these GAN models are used to generate adversarial
images as input for AI-CAD models. It should be pointed out that
such GAN models could possibly be trained using external/
independent imaging data to perform adversarial attacks, as
mammography is the standard, and widely available, imaging
modality in the clinic.

For the human reader study, there are several important impli-
cations. While the educational intervention improved the recognition
of the fake images for the more experienced readers, at a cost, it also
reduced the recognition of the real images to some extent. This
implies that the applied educational process can cause certain con-
fusion to the readers in assessing the real images. For less experienced
readers (e.g., Readers 4 and 5), the educational intervention seemed
to be less helpful (in terms of the stable accuracy in recognizing the
real images) or even harmful (in terms of the reduced accuracy after
the educational intervention in recognizing the adversarial samples).
This indicates that more clinical experience will be needed if we
would have a human expert visually inspect the images before feeding
them into an AI-CAD model. Or, this suggests that the simple
educational intervention used in our study may not be optimal,
especially for less experienced readers. Nevertheless, we suspect an
effective educational intervention would still be a meaningful
approach in educating radiologists to be aware of and to recognize
adversarial samples. Through education, the improved recognition of
fake images can reduce the chances of the AI-CAD model being
fooled, which is more critical in real-world scenarios. The slightly
reduced performance of recognizing real images may lead to some
false alarms on real images, which may trigger additional workup to
further examine these false alarm images, but the associated cost in
time and labor efforts may be acceptably low. Hence, these kinds of
false positives may be relatively tolerable in clinics, while benefiting
from having a reduced number of false negatives in capturing
adversarial attacks. We should point out, though, that in future work,
it merits further studies on how to implement more effective edu-
cational interventions to educate radiologists to efficiently and
accurately detect potential adversarial images.

In this study, we performed the experiments using adversarial
data generated at two different resolutions. Overall, the AI-CAD

Table 4 Time spent in each session (unit: minute) of the reader study.

Reader Session 1 Session 2 Session 3 Session 4 Session 5

High-resolution Images
Reader 1 10 11 61 22 80
Reader 2 32 25 100 30 130
Reader 3 14 16 57 19 65
Reader 4 9 17 51 31 46
Reader 5 38 34 136 32 128

Low-resolution Images
Reader 1 5 20 52 15 80
Reader 2 8 20 60 10 120

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27577-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7281 | https://doi.org/10.1038/s41467-021-27577-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


model and the human readers showed similar behaviors/patterns
on their performances at the two resolutions. Compared to the
low-resolution images, the high-resolution images induced a
higher chance of fooling the AI-CAD model and posed a higher
challenge to the human readers in correctly identifying the
adversarial images. It is well known that the computational sta-
bility of current GAN techniques is sensitive to image resolution.
Along with the further development of new and advanced GAN
models, it is possible that adversarial images generated with even
higher resolutions may be more difficult to identify for both AI
models and human readers.

Our study has some limitations that warrant future work. We
only tested on one AI-CAD model, so our findings are specific to
this model. However, the insights gained from this model will
help us move forward to evaluate different technical imple-
mentations of the AI-CAD model, the GAN model, and other
medical AI models. We used a small independent test set (10% of
the full data) to examine the model’s behaviors, while we have a
relatively large dataset. We did not use multi-fold cross-valida-
tion, as the goal was to examine the exact same model’s output for
a given input with the original and the GAN-generated data.
Further evaluations of our findings on large and external datasets
will be important. In addition, other means of educational
interventions are also worth evaluating in future work. And it will
also be relevant to further assess how the adversarial samples may
directly affect radiologists’ diagnostic performances.

While more efforts are advancing medical AI model develop-
ment and clinical translation, more attention and research are
now being placed on the safety aspects of AI models or systems.
As discussed in a recent article11, motivations to commit adver-
sarial attacks can include monetary gain, insurance fraud,
temptation of favorable clinical trial outcomes, among others.
Understanding the behaviors of an AI diagnostic model under
adversarial attacks will help gain critical insights on identifying
cybersecurity vulnerabilities and on developing mechanisms to
potentially defend such attacks. At this stage, human experts
remain a key role in detecting suspicious adversarial inputs, but
effective educational interventions and tools are in great need. A
potential scenario of adversary, AI, and radiologists may look like
this: adversarial samples can fool AI models into making the
wrong diagnosis (as shown in our study), and in that case, we
would expect trained human radiologists to capture these fake/
adversarial samples when visually reading/reviewing the images,
where those identified suspicious images could then be further
assessed to confirm and terminate the attacks. If, however, radi-
ologists fail to fully identify such highly plausible fake/adversarial
images, then this would constitute a real threat that must be
addressed in clinical environments (e.g., developing defending
solutions). Human-machine interactions may be one of the
important approaches to address the safety issues of machine
intelligence represented by the medical AI models, and further
investigation in this area is much needed for the safety/security of
future AI-augmented medicine. Our work is featured with both
an AI model study and a human reader study, which represents a
new contribution to the field, and we hope this will call for more
research from the communities on this important topic.

In summary, we performed an evaluation study on an AI-CAD
model and human readers pertaining to adversarial medical images.
Our experiments showed that highly plausible adversarial samples
can be generated on mammogram images by advanced GAN
algorithms, and they can induce a deep learning AI model to output
a wrong diagnosis of breast cancer. Certified human radiologists can
identify such adversarial samples, but they may not be reliable to
safely detect all potential adversarial samples, where an education
process showed promise to improve their performance in recog-
nizing the adversarial images. This poses an imperative need for

continuing research on the medical AI model’s safety issues and for
developing potential defensive solutions against adversarial attacks.

Methods
This study received Institutional Review Board approval by the Human Research
Protection Office (HRPO) at the University of Pittsburgh. Informed consent from
patients was waived due to the retrospective nature. Verbal consent was obtained
from the participants in the reader study. All five readers were women with ages of
41, 39, 44, 40, and 41 years old for Readers 1, 2, 3, 4, and 5 respectively. No
compensation was provided to the readers for their participation in the
reader study.

Dataset. The patient cohort included 1284 women who underwent digital mam-
mography screening for general populations from 2007–2014 at the University of
Pittsburgh Medical Center. There were 918 patients who were evaluated as negative
(including benign findings) of breast cancer and remained negative based on at
least one year follow-up, and 366 patients who were biopsy-proven positive for
breast cancer malignancy (consisting of 27% calcifications and 73% masses). Each
patient had one full-field digital mammogram examination with up to four images,
consisting of the left and right breast each with the craniocaudal (CC) and med-
iolateral oblique (MLO) view images. For the breast cancer positive cases, only
images of the cancer-affected breast were used. For the negative cases, we used
images of both breasts. There were a total of 4346 mammogram images included in
this study. The original mammogram images have the bit-depth of 16, resolution of
4096 × 3328 or 3328 × 2560, and the pixel spacing of 0.07 mm. In our study we kept
the original bit-depth but resized the original image resolutions to a consistent and
ratio-preserved size of 1728 × 1408 (high-resolution images) and 1024 × 832 (low-
resolution images) by the bi-cubic interpolation method. The reduction of image
resolution was mainly for considerations on computational efficiency and stability
of the GAN modeling processes.

AI-CAD classifier. Our AI-CAD model for classifying malignancy vs. normal/
negative cases was implemented based on the VGG11 network30. As shown in
Fig. 3a, before its first fully connected layer, the receptive field size was set to 406,
which was calculated based on the statistics of our imaging dataset to cover most of
the breast lesions. The optimal parameter value for the receptive field was to ensure
that each element of the feature map before the last pooling layer can predict the
presence of cancer-related features at the corresponding region in the input image.
The first 20 layers of the VGG11 network (denoted by Vnet) were used to extract
features. The rest of the AI-CAD model was denoted by Fnet, in which a Global
Max Pooling layer was used to reduce the dimensionality. Because the size of
lesions was relatively small, so only a limited number of the elements would be
activated. That was why we used Global Max Pooling to magnify the output of the
firing element rather than using Average Pooling to average the elements. Each
GroupNorm layer had 32 feature groups. The drop rate of Dropout layers and the
negative slope of LeakyReLU layers were both set to 0.2. The configuration of the
AvgPool layer was: 2 × 2 kernel size, 1 stride, and 0 padding.

In training the AI-CAD model, each image was copied twice to fill the three
channels of Vnet. We employed data augmentation to increase the size of the
training samples, using transformations including vertical flipping, rotation (−45
to 45 degrees), scaling (factor= 0.5 to 2), and shearing (−45 to 45 degrees).
Bilinear interpolation and zero value padding were used in these transformations.
By using the same normalization method as VGG11, all images were normalized to
the same range of intensity as a pre-processing for training.

The loss function we used in our model is shown in Eq. (1), where FL(·) denotes
the focal loss31 and GP(·) denotes the gradient penalty32,33.

Losscls ¼ FLðppÞ þ FLðpnÞ þ GPðgp; gnÞ; ð1Þ

FLðpsÞ ¼ � 1
N

∑
N

j¼1
ð1� pjÞγ logðpjÞ; ð2Þ

GPðx1; x2Þ ¼ k
2N

∑
N

j¼1
∇Fnet Vnetðx1j Þ

� ����
���
o

2
þ ∇Fnet Vnetðx2j Þ

� ����
���
o

2

� �� �
: ð3Þ

here, gp and gn denotes positive and negative images in one batch, respectively; pp
or pn represents the probability output of the SoftMax function for the positive
classification of gp or the negative classification of gn; ps can be pp or pn, in which
there are N predicted probabilities (N is the batch size and N= 4); pj denotes the
predicted probability of the j-th image; k and o are the coefficient (k= 10) and
power (o= 4) of the gradient penalty, which were empirically determined; γ is the
focusing parameter (γ= 2) of the focal loss.

The Adam optimizer34 was used to train Vnet and Fnet, with the following
parameters: exponential decay rates β1= 0.5 and β2= 0.9, learning rate 0.0001 for
Fnet and 0.00001 for Vnet. Note that because Vnet was initialized by VGG11, we
started the training by only optimizing Fnet in order to maintain the initialized
weights in Vnet, and after a certain number of epochs (here it was 41 in our study),
both Vnet and Fnet were trained simultaneously.
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GAN model generator and discriminator. The GAN model consists of a gen-
erator and a discriminator. The generator was trained to generate adversarial/fake
images. The generator was implemented based on U-Net23, as shown in Fig. 3b
(denoted by Gnet). The AvgPool layers were used with 2 × 2 kernel and stride 2 to
down-sample feature maps, while the UpSample layers were used with scale factor
2 and bilinear interpolation to up-sample feature maps. Other layers used similar
configurations as the networks used in the AI-CAD classifier. The input of Gnet
was a single-channel normalized image by using the normalization method of the
first channel of VGG11. The output of Gnet used Sigmoid (1/(1+e-x)) to nor-
malize its pixel value into the range from 0 to 1.

The discriminator of the GAN model had the same structure as the AI-CAD
classifier (Fig. 3a), except the last fully connected layer of Fnet was modified to output
the scores of real or fake images, using only one output neuron. The discriminator is
denoted by Dis(·)=Dnet(Vnet(·)) where Dnet refers to the modified Fnet. To
accelerate the training of the GAN model, the discriminator was initialized by the
trained AI-CAD classifier, namely, Fnet(Vnet(·)). Note that the implementation of the
discriminator also used VGG11. VGG11 was a pre-trained network without batch
normalization, and the use of VGG11 here was aligned to a previous literature35 that
suggested not to use batch normalization for GAN model training.

In training the GAN model, we used the same data augmentation and sampling
strategy as the classifier. The training process was similar for generating fake images
for the positive cases and negative cases, but it was performed independently. For the
sake of clarity, here we only describe the training method for generating negative-
looking fake images from real positive images. Eqs. (4)–(8) show the loss functions for
training the GAN model. When training for generating positive-looking fake images,
we simply switched the related variables in these equations.

Lossdis ¼ �DisðxÞ þ DisðyfnÞ þ jDisðxÞ � 1j1 þ GPðxÞ; ð4Þ

DisðgÞ ¼ � ln 1þ e�DnetðVnetðgÞÞ� �
; ð5Þ

GPðxÞ ¼ k
2

∇DnetðVnetðxÞÞ
�� ��o

2
; ð6Þ

Lossgen1 ¼ yfn � y
�� ��2

2
= y
�� ��2

2
; ð7Þ

Lossgen2 ¼ �DisðyfnÞ þ Lossgen1; ð8Þ

where x denotes the negative images and y denotes the positive images; yfn denotes the
3-channel pseudo color images that were generated from the output of Gnet(y); g can
be x, y or yfn; Lossdis is the discriminator loss for training the discriminator; GP(x) is
the gradient penalty in which the coefficient k and the power o were experimentally set
to 10 and 4, respectively; Lossgen1 is the identical loss that trains Gnet to reconstruct its
input; Lossgen2 is the adversarial loss that trains Gnet to fool the discriminator.

Based on the common choice of the loss function for GAN model training34, we
added a stabilizer |Dis(x)-1|1 in the loss function of our discriminator (Eq. (4)) to
prevent the discriminator training from divergence. Considering that the lesion size
is small relative to the size of the breast, we added the identical loss Lossgen1 to the
adversarial loss of the generator (Eq. (8)) to improve the fidelity of the generator.

The configuration of the optimizer for training the GAN model was Adam34 with
exponential decay rates β1= 0.5 and β2= 0.9. Gnet and the last layer of Dnet were
initialized with random weights, and they were trained separately in order to not
interfere each other. First, Gnet was trained with learning rate 0.0001 and Lossgen1 (Eq.
(7)) until Lossgen1 on the training dataset decreased to be less than 0.002. Second, the
last layer of Dnet was trained with learning rate 0.0001 and Lossdis (Eq. (4)) where Gnet
and the rest parts of Dnet were involved but not trained; the training stopped when
Dis(x)-Dis(yfn) increased to be greater than 0.2. In order to reduce potential overfitting,
the training for Gnet and Dnet was both iterated for a small number of epochs (i.e., 11
for Gnet and 10 for Dnet). After that, all the networks (as depicted in Fig. 4) were
trained using the following typical configurations: training Gnet once every 5 batches
with Lossgen2, and learning rate 0.00001, to minimize the difference between a negative-
looking counterpart and a negative image; training Dnet with Lossdis, learning rate
0.0001 for Fnet, and 0.00001 for Vnet, to score negative images to be higher than
negative-looking counterparts. The GAN training stopped when Dis(x)-Dis(yfn) reached
to less than 0.01.
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Fig. 3 Network design of the models used in our study. The structure of the AI-CAD classifier (a) and the GAN generator (b).
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The software that we used for implementing our methods and data analysis
included Python (3.7.4), Pytorch (1.7.1), CUDA (11.1), NumPy (1.16.2), Pillow
(5.4.1), and Commercial MATLAB R2020b (9.9.0.1467703) 64-bit (win64).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging data used in this study are not publicly available because they may contain
private patient health information. Interested users may request access to these data for
research purposes, through contacting the corresponding author. Institutional approvals
of data sharing will be required along with signed data use agreements and/or material
transfer agreements, where the data use conditions/restrictions will be negotiated based
on the purposes of the data requests. Derived results reported in this paper and
supporting the findings of this study are available upon requests.

Code availability
The source code of the developed models and algorithms in this study has been deposited
at GitHub: https://github.com/QianWeiZhou/Medical-AI-Adversarial-Attack.
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