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Large-scale genome-wide study reveals climate
adaptive variability in a cosmopolitan pest
Yanting Chen1,2,3,4, Zhaoxia Liu1,2,3,5, Jacques Régnière 6, Liette Vasseur 1,2,7, Jian Lin8, Shiguo Huang8,

Fushi Ke1,2,3,9, Shaoping Chen1,2,3,4, Jianyu Li1,2,3,4, Jieling Huang1,2,3, Geoff M. Gurr 1,2,10✉,

Minsheng You 1,2,3✉ & Shijun You 1,2,3✉

Understanding the genetic basis of climatic adaptation is essential for predicting species’

responses to climate change. However, intraspecific variation of these responses arising from

local adaptation remains ambiguous for most species. Here, we analyze genomic data from

diamondback moth (Plutella xylostella) collected from 75 sites spanning six continents to

reveal that climate-associated adaptive variation exhibits a roughly latitudinal pattern. By

developing an eco-genetic index that combines genetic variation and physiological responses,

we predict that most P. xylostella populations have high tolerance to projected future climates.

Using genome editing, a key gene, PxCad, emerged from our analysis as functionally tem-

perature responsive. Our results demonstrate that P. xylostella is largely capable of tolerating

future climates in most of the world and will remain a global pest beyond 2050. This work

improves our understanding of adaptive variation along environmental gradients, and

advances pest forecasting by highlighting the genetic basis for local climate adaptation.
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Human-induced climate change, especially gradual changes
in temperature and precipitation1, is impacting species’
survival and distribution2. The ability of pests to suc-

cessfully adapt to these changes will impact biodiversity, food
production, and the economy. Intraspecific variation in tolerance
to climate change has been documented for many plant and
animal species3,4. Populations with high adaptive potential are
expected to cope with changes in habitat suitability arising from
climate change5,6, but the mechanisms are not well understood.
Studying the genetic mechanisms that underpin the adaptation of
species to local climate is therefore important to predict both
population- and global-level responses to future environmental
change and assist in management efforts5.

Genetic variation associated with climate variables has been
demonstrated in several species5,7–9. Insects with high fecundity
and short generation time can accumulate adaptive alleles rapidly
through new mutations and standing variation, and potentially
have high capacity to respond to changing environmental
conditions10–12. However, little is known about the extent to
which adaptive variation is driven by climate in arthropod spe-
cies, and how populations differ in their capacity to adapt to
climate change.

In this study, by combining a newly available genomic resource
with climate data, we analyze the relationship between genomic
variation and climate variables in the diamondback moth (DBM),
Plutella xylostella L. (Lepidoptera: Plutellidae). This insect is one
of the world’s top 10 arthropod pests13, with a global distribution
spanning a remarkably wide range of climates14. We define a new
eco-genetic index to examine population-level variation in
response to climate change by combining the genetic offset (that
quantifies the disruption of gene-environment relationships
subject to future climates) with the ecoclimatic index (that
describes phenology-based habitat suitability for species persis-
tence). Subsequently, informed by a core dataset of identified
nuclear SNPs, we functionally test a temperature-related gene to
reveal its role in climatic adaptation in DBM. Our results imply
that P. xylostella is largely capable of tolerating future climates in
most regions of the world, and its pest status will be maintained
beyond 2050.

Results
Climate associated genomic variation. The fundamental
resource for this study is a new dataset of genome-wide single
nucleotide polymorphisms (SNPs) sequences of a worldwide
sample of 532 DBM individuals collected from 114 locations
(sites) in a diverse range of biogeographical regions15. To inves-
tigate the adaptive genetic variation associated with contemporary
climates, we used a subset of samples from regions in which DBM
is able to persist year-round with a positive ecoclimatic index
(EI > 0)16, where populations are subject to seasonally unin-
terrupted local selection by climatic factors. After quality filtering,
we generated a dataset of 200,055 SNPs across 357 DBM indi-
viduals collected from 75 different sites worldwide (Supplemen-
tary Fig. 1, Supplementary Data 1 and 2). Using three
complementary models: Samβada v0.5.317, latent factor mixed
models (LFMM)18, and Bayenv 219, we conducted a genome-wide
scan to test climate associations for the quality-filtered SNPs. A
total of 3648 putatively adaptive SNPs were identified by one or
more of the three models (Fig. 1a, Supplementary Data 3, 4, and
5), showing the association between genetic variation and specific
climate variables.

Understanding which climatic variables most strongly drive
natural selection can provide insights into the biological
mechanisms involved in species distribution and population
dynamics4,5. We used generalized dissimilarity modelling

(GDM)20 to examine climate-mediated genomic variation among
different populations based on 517 SNPs selected among the 3648
SNPs. Of the 12 environmental variables that had a pairwise
Pearson’s r less than 0.8, the top four variables included one that
is precipitation-related (bio18) and three that are temperature-
related (bio03, bio09, and bio08) (Fig. 1b and Supplementary
Table 1). Environment-associated genetic variation exhibited a
roughly latitudinal pattern, regardless of geographical region or
continent, suggesting that DBM populations from the same
latitude exhibit comparable genomic composition (Fig. 1c).

Genetic vulnerability and adaptive potential. We applied a
metric of genetic vulnerability called “genetic offset”, originally
developed by Fitzpatrick and Keller4, to investigate which DBM
populations might be more vulnerable to future climate change.
Populations with higher genetic offset are more vulnerable to
climate change and require greater adaptive potential (or genetic
variation necessary for adaptation) to the changing environment4.
Under greenhouse gas emission scenarios RCP8.5 for 2050, the
genetic offset was low for most populations (Fig. 2a). The com-
parison of genetic offset under different scenarios (RCP2.6,
RCP4.5, RCP6.0, and RCP8.5) showed an increasing trend with
rising greenhouse gas emissions (Supplementary Fig. 2). Most
DBM populations appeared to experience low disruption of gene-
climate associations under future climate. Taken together with
our previous findings that high levels of both intrapopulation
genetic polymorphism and interpopulation genetic differentiation
enable DBM to adapt readily to different environments
worldwide15,21, we thus assume that DBM will likely remain a
damaging pest across most of its range. In contrast, high levels of
genetic offset, indicating the need for more comprehensive
adaptive change to future climate change, were observed in
scattered populations of South America and Southeast Asia
(Fig. 2a).

We then used a validated bio-climatic model (CLIMEX) that
combined climate data with eco-physiological traits16,22 to predict
the habitat suitability for DBM under the RCP8.5 scenario for
2050. Using the current EI value as a benchmark, we calculated
the difference in ecoclimatic index (DEI) between current and
projected future climate scenarios across year-round persistence
regions of DBM worldwide. We observed that the total area of
regions with decreasing EI was much larger than that of regions
where EI increased under the RCP8.5 scenario (Fig. 2b). DBM
populations in regions of decreasing EI may be challenged by
habitat suitability decline, suggesting they may need to harness
their adaptive potential to cope with the habitat degradation
under future climate.

Local adaptation, resulting from environment-driven intraspe-
cific genetic differentiation, is an important feature of species that
inhabit spatially heterogeneous habitats23. To better reflect the
role of population-level genetic variation in DBM’s responses to
climate change, we developed a new metric, the “eco-genetic
index” (EGI), which combines the genetic offset4 and EI-based
prediction of climatic habitat suitability. We assume that regions
with increasing EI will remain hospitable to DBM while regions
with decreasing EI will be challenged by habitat suitability decline
under the RCP8.5 scenario for 2050. Thus, our analysis focused
on regions with decreasing EI. Under climate-change scenario
RCP8.5, the challenges to most populations (Fig. 2b) should be
moderate since they are predicted to experience only minor
interruptions of gene-climate associations, except for some
populations in South America and Southeast Asia (Fig. 2a).
Therefore, most DBM populations will maintain their pest status
in the context of future climate beyond 2050, without dramatic
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change to EGI-based habitat suitability in most of the world
(Fig. 2c).

Genetic basis of climate adaption. To explore the molecular and
genetic basis of climate adaptation, we performed a functional
analysis of a core dataset of 94 putatively adaptive SNPs that were
identified by at least two of three models (Samβada, LFMM, and
Bayenv 2; Fig. 1a, Supplementary Table 2). These SNPs are widely
distributed across the DBM genome, with 39 SNPs located in the
coding sequence (CDS) and intronic regions across 30 genes
(Supplementary Table 2). These genes are predicted to cover a
wide range of functions, mainly associated with physiological
responses and metabolic regulation21, with some previously
documented as having temperature-related functions. For
example, the cytochrome P450 gene (Px007339) is known for heat
and cold stress tolerance in insects24,25; whilst folding26 and gene
expression27 of the nicotinic acetylcholine receptor (Px017786)
are temperature-sensitive.

Based on the 39 SNPs located in the CDS and intron regions
from the core subset (Supplementary Table 2), we identified four
SNPs from the coding region of a single gene, PxCad. We also
found two SNPs from the temperature-related Px007339 and
Px017786 genes (Supplementary Table 2). Allelic frequencies for

these six SNPs are presented according to the global distribution
of their genotype frequency. Strong selection signals were
observed in the North American populations, followed by some
parts of Southeast Asia, Eurasia, Southern Africa, and Southern
Oceania, while no such selection signals were detected for most
populations of South America, and Central Africa (Supplemen-
tary Fig. 3).

With the highest number of SNPs (4 out of 94) identified in the
core dataset (94 putatively adaptive SNPs), PxCad was the most
likely candidate to be involved in regulating DBM’s responses to
climate change. Homologs of PxCad encode cadherin-like
proteins, which are known to be involved in cell adhesion28,
sensory perception of light29, vocal and locomotory behavior30,
and have been evidenced to be responders for thermal stress31. To
verify the function of PxCad in mediating adaptation to extreme
temperatures, we performed RT-qPCR to profile its expression
under different temperature regimes using a wild-type strain of
DBM, G88. Overall, both in males and females, the expression of
PxCad gene tended to be more sensitive to low temperatures than
high temperatures and exhibited significantly upregulated
expression at −14 °C, −17 °C, and −20 °C, suggesting an
important role in response to cold extremes (Fig. 3).

Using CRISPR/Cas9 genome-editing, we successfully knocked
out PxCad in the wild-type G88 strain (Fig. 4). A mixture of Cas9
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Fig. 1 Association between genomic variation and climate variables for diamondback moth. a Venn diagram showing the number of climate-associated
SNPs identified by the three different models, Samβada, LFMM, and Bayenv 2. b Ranked importance of climatic and geographical variables based on
generalized dissimilarity modelling (GDM), showing that the genomic variation can be mainly explained by climate variables. c GDM-predicted pattern of
climate-associated genomic variation along environmental gradients across the world. Colors are based on the results of the principal components analysis
(PCA) of transformed climate variables. The PCA-based biplot indicates the contribution of climate variables to the predicted pattern of genomic variation.
Arrows (or vectors) show the loadings of climate variables on PCA.
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mRNA and sgRNAs was injected into 195 eggs of this strain, 102
of them successfully hatched, and 83.3% (85/102) of larvae
reached adulthood. After being individually crossed with G88, we
confirmed site-specific mutagenesis in 32.8% (21/64) of G0 moths,
observing 15 bp, 46 bp, 8 bp, and 18 bp deletions at the target site
(Fig. 4a). After screening using single-pair crosses and molecular
identification, one homozygous mutant strain (MU, G88-Cad)
with a 46-bp deletion in PxCad exon 3 was generated (Fig. 4b).
Using nano-LC-MS/MS to analyze the gel slices (~120–250 kDa

of the BBMV proteins) separated by SDS-PAGE (Fig. 4b), we
identified nineteen tryptic peptides specific to PxCad from the
G88 strain (Fig. 4c and d). None of these peptides were detected
in the G88-Cad strain, which confirmed that PxCad protein was
totally disrupted in the PxCad-knockout strain.

We then examined the difference in survival rate between the
wild-type (WT) and PxCad-deficient mutant (MU) strains under
favorable temperature (26 °C) and several extreme temperatures
(40 °C, 41 °C, 42 °C, 43 °C, −14 °C, −17 °C, −20 °C). Compared

Fig. 2 Vulnerability of diamondback moth to climate change under greenhouse gas emission scenario RCP8.5 in 2050. a Projection of genetic offset
(GO) based on generalized dissimilarity modelling (GDM). b Projection of |DEI|normal (difference in ecoclimatic index) between current and projected future
climate scenarios based on CLIMEX model, with warm colors showing the EI-increased regions (DEI > 0) and blue colors showing the EI-decreased regions
(DEI < 0). c Projection of eco-genetic index (EGI) based on the combined estimation of genetic offset (GO) and eco-climatic index (EI).
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Fig. 3 Effect of extreme temperatures on expression patterns of the PxCad gene in the wild-type (WT) diamondback moth strain (G88). a Expression
level of PxCad in males. b Expression level of PxCad in females. Temperature treatments included three high-temperatures treatments: (1) H1: 40 °C for
30min, (2) H2: 43 °C for 30min, (3) H3: 43 °C for 30min with 24 h of recovery at 26 °C; and six low-temperature treatments: (1) L1: −14 °C for 30min,
(2) L2: −14 °C for 30min with 24 h of recovery at 26 °C, (3) L3: −17 °C for 30min, (4) L4: −17 °C for 30min with 24 h of recovery at 26 °C, (5) L5:
−20 °C for 15 min, and (6) L6: −20 °C for 15 min with 24 h recovery at 26 °C. Expression of PxCad at 26 °C was set as control with a relative expression
value being set as 1. The horizontal line in boxes represents the median value of three replicates, boxes show 25th–75th percentiles, and points represent
the original data. Expression of PxCad in each treatment was compared with control using independent t-test. *denotes significant difference between
control and treatment (t-test, α < 0.05).

5’-..CTGTGATCCACAACATCTACATGGACGAGTCTATTGAGGGAGATGTCATCATTGCAAGGCTCAA..-3’
     ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3’-..GACACTAGGTGTTGTAGATGTACCTGCTCAGATAACTCCCTCTACAGTAGTAACGTTCCGAGTT..-5’

Cut site Protospacer PAM Deletion

  ∆15bp

G0

WT (G88)

∆46bp
  ∆8bp
  ∆18bp

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17181920 21 22 2324 2526 2728 29 3031 3233 3410

gDNA

ADPEFRPNQAEVSFFEK
DLLGPVIR
ETALANLELVDGTK
GFWGTYDIHIR
IFLTAYDNFYSDGDGNR
IVSDISESFK
QDYETPIMR
QNELVVQIR
SDVELLTNIQR
SVSPAGVADAFYIAPGVGYQR

SYIFPISVSGEATSAR
TGELETTMPLK
VQNVESRPPR
VQYEILDLSLVNR
VSFLFQNQLTQVEQYR
VYIVSDNNR
WQEIWAVQQFDEK
YQINFAFNNR
DNQPVAADVIEALR

Peptides 1-10 Peptides 11-19
Peptides specific to PxCad identified from G88 strain

d
Start (1) End (1,717)

117 1,540

PxCad

cb

1: G88
2: G88-Cad-

M     1      2    

100
75

245

135

kDa

180

63

48

a

     CTGTGATCCACAACATCTACATGGACGA---------------TGTCATCATTGCAAGGCTCAA
     CA--------------------------------------------CATCA--GCAAGGCTCAA
     CTGTGATCCACAACATCTACATGGACGAGTCTATTGAGGGAGATG--------GCAAGGCTCAA
     CTGTGATCCACAACATCTACATGGACGAGTCTATTG------------------CAAGGCTCAA

Fig. 4 Mutagenesis of the gene, PxCad, mediated by the CRISPR/Cas9 genome editing system for diamondback moth. a Representative sequencing
trace of the PCR fragment from mutated G0 adults with multi-peaks at the cleavage site and representative sequence of the diverse indel mutations
flanking the sgRNA target sites of PxCad in the G0 individuals. The Δ46 in red denotes the deletion mutation kept establishing the G88-Cad mutant (MU)
strain. b SDS-PAGE profile of BBMV protein from the WT (G88) strain and the MU (G88-Cad) strain. c Details of the 19 peptides specific to PxCad
identified from the WT (G88) strain. d Map of the full-length PxCad protein showing the position of 19 peptides (red arrows) specific to PxCad identified
from the WT (G88) strain and absent from the MU (G88-Cad) strain. Numbers indicate the position of amino acid residues.
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with the WT, survival of the MU was not affected at favorable
temperature, but the survival rate declined at extreme tempera-
tures. In the cold-shock experiment (Fig. 5 and Supplementary
Table 3), the MU was less resistant to cold stress than the WT,
with a significantly lower survival rate at all temperatures tested,
although among males at −14 °C, there was no significant
difference in survival between strains. The heat shock experiment
showed that the MU was also less tolerant to heat stress than the
WT, especially at the highest temperature (Supplementary Fig. 4
and Supplementary Table 4). Altogether, this evidence supports a
previously unknown function of PxCad in regulating DBM
response to temperature, both under cold and heat stresses.

Discussion
In this study, we provide evidence of the genetic basis of climate
adaptation in DBM, a worldwide pest important to cruciferous
crop production and thus the economy. Climate-associated
genetic variation in DBM populations was quantified and visua-
lized. A multi-model analysis of Samβada, LFMM, and Bayenv 2
allowed robust identification of climate-associated adaptive loci,
reducing false-positives32.

Our analyses with the nuclear SNPs from geographically dis-
tributed samples go further in defining the effects of both tempera-
ture- and precipitation-related variables on the climate-associated
genetic variation in DBM populations worldwide. This follows a

number of recent studies demonstrating the key role of temperature
in mediating environment-associated adaptive variation for other
insects: Phaulacridium vittatum33, Chironomus riparius34, and Cer-
acris kiangsu35. Further, physiological data can be used to determine
the tolerance of DBM to future climate at the species level30. To date,
however, there are no site-specific data available for investigation on
the physiological variation in different populations of DBM. In this
study, we found that most DBM populations might experience little
interruption of existing gene-environment associations under pro-
jected future climates. This genomic association with climate may
elicit region-specific responses to climate change and indicates that
DBM is capable of persisting year-round as a pest in most regions of
the world beyond 2050 under the RCP8.5 climate change scenario.
This is of practical use to future pest management because the
majority of DBM populations are shown to be resistant to changing
environments under a future climate. Not only will pest management
in these regions need to be maintained and strengthened, but also
cooler areas where DBM seasonally colonizes are likely to become
more vulnerable as temperatures increase, rendering the habitats
favorable for permanent residence. For a species with high migratory
capacity, like DBM, pest status is likely to increase given high levels of
gene flow. DBM needs to be monitored at landscape and regional
scales (in addition to conventional monitoring at a local scale),
considering its genetic adaptive capacity and the spatial dynamics of
insecticide resistant strains.

Fig. 5 Effect of extreme temperatures on survival rates of the wild-type (WT, green) and PxCad-deficient (MU, blue) diamondback moth strains.
Survival rates of diamondback moth are presented for males (left) and females (right) after exposure to low temperatures (T=−14 °C, −17 °C, and
−20 °C, respectively). Survival rates are represented as mean ± SE. Twenty individuals were used for each replicate, with four replicates in each treatment.
The curves were generated from the equations in Supplementary Table 3.
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Using RT-qPCR and CRISPR/Cas9 approaches in this species,
we verified that a specific gene, PxCad, represented a
temperature-sensitive responder to climatic change, thus con-
tributing to the genetic basis of adaptive evolution. PxCad is
annotated as encoding cadherin-like proteins36,37. Classical cad-
herins are a superfamily of transmembrane proteins involved in
regulating cell-cell adhesion, signal transduction and tissue
morphogenesis38,39. In mammals, epithelial cadherin (E-cad-
herin) is involved in morphogenesis40,41 whilst in insects, studies
of cadherin-like proteins have focused primarily on their invol-
vement in mediating resistance to the biological insecticide,
Bt42–45. Pigott & Ellar46 have also demonstrated the roles of
cadherin-like proteins in maintaining structural integrity of
midgut epithelial organization.

Thermal stress (heat or cold) generally disrupts cellular
homeostasis47,48. Our results show that PxCad expression in
female adults was significantly downregulated at high tempera-
ture. This is consistent with E-cadherin studies in human lung
adenocarcinoma cells49 and in the purple sea urchin Strongylo-
centrotus purpuratus50. In contrast, cold stress significantly
upregulated PxCad expression in both males and females, and the
tolerance to cold stress in DBM declined when PxCad was
knocked-out. Comparable phenotypes have also been reported in
the clam, Ruditapes philippinarum, with cadherin genes acting as
responders to cold stress31. Under heat and cold stress, con-
siderable variation of Pxcad expression and survival rates between
DBM stains indicates that PxCad is involved in regulating DBM’s
response to thermal stress.

To understand the potential distribution and pest status of
DBM, Zalucki & Furlong16 developed a CLIMEX-based algo-
rithm to predict the ecoclimatic index (EI) for the habitat suit-
ability of DBM using climate data and eco-physiological traits.
However, the EI-based prediction of habitat suitability is highly
generalized without reflecting population-specific levels of genetic
tolerance. In this paper, based on our recently-generated genomic
data from a worldwide sample15, we have developed a new
metric, the eco-genetic index (EGI), which combines the genetic
offset (GO)4 and difference in ecoclimatic index (DEI) between
current and projected future climate scenarios. This index
mechanistically represents the genetic change required for
adaptation to a changing environment, and reflects how
population-specific genomic data can be incorporated into EI to
better predict the habitat suitability of DBM when subjected to
climate change, particularly when the population-specific data on
physiological tolerance levels are not available. Our results indi-
cate that DEI and GO are functionally complementary. With the
EI prediction, we are able to determine the regional distribution
of DBM throughout the world, which helps us focus on the
regions in which DBM persists year-round with a positive eco-
climatic index (EI > 0)16. Using the new metric (EGI), we have
identified that some DBM populations in regions of decreasing EI
(such as in the central Africa and southern China) under future
climate can overcome the challenge of habitat suitability decline
given lower levels of genetic vulnerability, suggesting that only
minor adaptive evolution will be required in situ to keep-up with
climate change (Fig. 2). Looking ahead, if population-specific data
on tolerance levels (to match our population-specific genomic
data), and data on phenotypic plasticity and epigenetic responses
were available, we would be able to make more robust conclu-
sions, potentially supported by the development of a still more
sophisticated metric that incorporates relevant information on
additional aspects of adaptive capacity.

It is increasingly recognized that acclimatization through non-
genetic inheritance (e.g., epigenetic processes) may buffer popu-
lations against environmental changes, allowing rapid adaptive
responses to climate change51–53. Because the mutation rate of

epigenetic sites is significantly higher than that of DNA sequen-
ces, epigenetic modification provides a complementary mode for
species to respond to a changing environment in a rapid and
finely regulated process54,55. In addition to directly regulating the
expression of temperature responsive genes, epigenetic effects can
also regulate other traits to indirectly affect the response of insects
to temperature fluctuation56. However, epigenetics is a recently
emerged field in insect studies57, so further work is needed to
understand the role of non-genetic effects in adaptation to future
climates including how they interact with genetic adaptive
capacity.

Methods
Genomic data. The foundational resource for this study was a dataset of
40,107,925 nuclear SNPs sequenced from a worldwide sample of 532 DBM indi-
viduals collected in 114 different sites based on our previous project15. DNA was
extracted from each of the 532 individuals using DNeasy Blood and Tissue Kit
(Qiagen, Hilden, Germany) following the manufacturer’s protocol, and eluted from
the DNeasy Mini spin column in 200 μl TE buffer. Genomic sequencing was
performed with Illumina HiSeq 2000 at BGI, Shenzhen, China, to produce 90 bp
paired-end reads for every individual. Using custom scripts, raw reads were pro-
cessed to filter out poor reads with 10 ambiguous “N” bases, >40% low-quality
bases, or identical sequences at the two ends and obtain clean reads. The clean
reads were mapped onto the DBM reference genome (v2)21 with Stampy (v1.0.27)
using default parameters. SNP calling was then performed using the GATK
HaplotypeCaller with parameters --emitRefConfidence GVCF --var-
iant_index_type LINEAR --variant_index_parameter 128,000. The 40,107,925
nuclear SNPs generated present one variant on average in every six bp of the
reference genome, which is the densest variant map for any organism, including
the recently released data on human58 and Arabidopsis thaliana genome
sequences59. The SNP dataset is available at https://www.ebi.ac.uk/ena with the
accession code PRJEB24034.

In the present study, to investigate the genetic variation associated with climate,
we excluded samples from the regions that are only seasonally suitable for growth
of DBM (with the Ecoclimatic Index EI= 0)16. This was done because in these
regions, populations are unlikely to receive perennially unpunctuated selection by
local environmental variables and genetic variation cannot be continuously passed
on to future generations over years. Specifically, regions that are only seasonally
suitable for DBM growth and development (i.e., with an ecoclimatic index, EI= 0)
are too harsh to allow survival in low temperature conditions during the winter.
Annual recolonization of those regions from areas where DBM can overwinter
(with an ecoclimatic index, EI > 0) has been biologically and genetically
confirmed14,60–63. No genetic differentiation was found among different
geographical populations spanning from overwintering regions to seasonally
inhabited regions15,62,63. If migration from one habitat overwhelms the other,
migration from the source introduces new genetic variation that may prevent local
adaptation64,65. The retained samples included 372 individuals from 78 sampling
sites in the year-round persistence regions of DBM across the world (where EI > 0).
These samples were collected from different continents, with 13 samples from
Africa, 29 from Asia, 5 from Europe, 13 from North America including Hawaii, 12
from South America, and 6 from Oceania (Supplementary Fig. 1 and
Supplementary Data 1).

The retained 372 individuals shared a subset of 34,969,375 SNPs, which
accounted for 87.19% of the total SNPs (40,107,925) and represented most of the
genomic variation among 532 individuals (Supplementary Data 2)15. Using
VCFtools v.0.1.6, we excluded the SNPs with minor allele frequency (MAF) < 5%
and missing rate >10%. We then sampled data by examining single SNPs in small,
25 bp DNA window to focus on loci independent of linkage disequilibrium. After
quality filtering, a total of 200,055 bi-allelic SNPs across 357 DBM individuals
collected from 75 different sites worldwide was retained for further analysis
(Supplementary Fig. 1, Supplementary Data 1 and 2).

Climate Data. Nineteen climate variables related to temperature and precipitation
(Supplementary Table 1), which are known to have impacts on physiological and
ecological traits of insects, were retrieved with high resolution from WorldClim, a
public database (https://www.worldclim.org)66.

Climate associated genomic variation
Identification of SNPs under climate selection. Three models, Samβada v0.5.317,
latent factor mixed model (LFMM) v1.418 and Bayenv 219, were used to identify
putatively adaptive loci associated with climate variables. Samβada identifies
associations between specific genetic markers and environmental variables by
logistic regression17. Simple univariate and multivariate logistic regression models
for each climate variable were fitted. A single SNP was considered to be a candidate
locus when the log-likelihood ratios (G scores) and/or Wald scores were significant
with Bonferroni correction at a 99% confidence level. LFMM is based on popu-
lation genetics, ecological modelling, and statistical analysis to identify the
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candidate loci that are highly correlated with environmental variables18. SNPs
showing an association with climate variables were identified based on z-scores,
which was computed using 10,000 cycles and 5000 sweeps for burn-in. We used the
R package LEA to estimate the median z-scores of 5 runs and re-adjusting p-values
with FDR correction67. SNPs with median z-scores above the absolute value of 4
and corresponding to P value < 10−5 were considered as significant locus. In
Bayenv 2, a covariance matrix based on putatively neutral markers is used as a null
model to control for demographic effects when testing relationships between the
genetic differentiation and a given environmental variable19. We randomly sam-
pled SNPs at 200 SNP intervals from the SNP dataset. A total of 117,887 SNPs with
loose linkage disequilibrium were obtained for developing the covariance matrix,
which was estimated with 100,000 iterations. We then assessed the correlations
between individual SNP and 19 climate variables at 100,000 Markov chain Monte
Carlo (MCMC) for Bayes factor analysis. Five independent runs of the Bayenv
program were performed with different random seeds68. The results were pre-
sented as Bayes factors (BFs). An averaged log10(BF) value of five runs >1.5 is
considered as high support for a model where environmental parameters have
significant effects on allele frequencies69. A total of 3648 putative adaptive SNPs
were identified by at least one of the three models (Samβada, LFMM, and Bayenv 2;
Supplementary Data 3, 4 and 5)

Prediction of climate-associated genomic variation. Generalized dissimilarity
modelling (GDM)20, a distance-based method, can account for the nonlinear
relationship between genetic variation and environmental/geographical factors, and
has been recently used to map ecological adaptation from genomic data under
current and future climates4. First, we examined a spatially explicit selection
process for each of the putative adaptive SNPs using GDM4, with the R package
gdm70. We subsampled the genetic dataset to include only populations with sample
size ≥5 (60 populations) to obtain accurate allele frequencies. To reduce the
number of bioclimatic variables, we preferentially discarded those with multiple
correlated variables (Supplementary Table 5). We then ran the GDM model using
3,648 SNPs and the variables with Pearson |r| < 0.8 (bio02, bio03, bio07, bio08,
bio09, bio12, bio15, bio18, and bio19), one of bio01 and bio11 (|r|= 0.92), one of
bio5 and bio 10 (r|= 0.94), as well as one of bio14 and bio17 (|r|= 1.0). The subset
of 12 bioclimatic variables with highest value of explained deviance (28.17%) in the
GDM model were retained, including bio01, bio02, bio03, bio07, bio08, bio09,
bio10, bio12, bio14, bio15, bio18, bio19, for further analysis. Pairwise FST matrix
among 60 populations were calculated for each of the 3648 SNPs using the R
package hierfstat71, and rescaled between 0 and 1. Geographical distance in the
GDM was based on Euclidean distance as the thirteenth variable to test whether
genetic variation across environmental gradients was better explained by climate
variables than geographical distance, which effectively acts as a screening for SNPs
that may respond predominantly to neutral genetic process including isolation by
distance72. The relative importance of the 12 climate variables and geographical
distance was ranked based on the fitted I-Splines in GDM (Fig. 1b). The maximum
value of each variable in the fitted I-Splines was rescaled between 0 and 1. Those
SNPs with geographical distance ranking as one of the 3 most important variables
were excluded in the following GDM analysis. In addition, we randomly sampled
200 SNPs as a “reference group” to test its explainable proportion of the GDM
deviance. According to our GDM record, the reference SNP group accounted for
11.2% of the GDM deviance for the entire model, so that those SNPs with
a < 11.2% contribution to the GDM deviance were also excluded in further GDM
analysis. After additional filtering, 517 of 3,648 SNPs were retained. The 517-SNP-
based genetic distance matrix was further integrated with geographical distance and
climate variables to be used in the entire GDM model, that explained 42.80% of the
deviance for the 517 SNPs. To predict the climate adaptation of DBM, we finally
retrieved current climate variables at 61,655 gridded points across the world from
WorldClim, using ArcGIS 10.2. The gdm.transform function was used to predict
and map the pattern of climate-associated genomic variation along environmental
gradients across the world (Fig. 1c). The genetic turnover was summarized using a
principal component analysis (PCA), with the top three components transformed
for visualization in a red-green-blue (RGB) color scale as suggested in the GDM
manual70. Loadings based on the principal components indicate the direction and
magnitude of association with adaptation to different predictors (Fig. 1c). The
genetic variation along environmental gradients in DBM across the world was
visualized, with similar pattern of genetic composition at climate-adaptive loci
illustrated by similar colors (Fig. 1c).

Genetic vulnerability and adaptive potential
Prediction of genetic vulnerability. To predict the population-level variation in
“genetic vulnerability” (GV) under future climate scenarios, we used the “Genetic
offset” (GO) method of Fitzpatrick and Keller4. The GO represents the extent of
mismatch between current and expected future genetic variation based on
genotype-environment relationships modelled by GDM analysis73. The projected
future climate variables of 2050 and 2080 for four different greenhouse gas sce-
narios, Representative Concentration Pathways (RCPs), including RCP2.6, RCP4.5,
RCP6.0 and RCP8.5 based on the NorESM1-M Global Climate Model (GCM)
across the world were retrieved from WorldClim, using ArcGIS 10.2. Those four
RCPs represent different gas emission scenarios, reflecting mild (RCP2.6) to
extreme (RCP8.5) conditions74. The GO was predicted by predict.gdm function in

R package gdm. A metric of GO for each of the gridded climate points was
obtained, which implied that the populations with greater genetic offset would be
more vulnerable or less tolerant to the future climate change. The resulting GOs
were rescaled between 0.1 and 0.975,76, and then mapped with ArcGIS 10.2 to show
the geographical distributions of population-level variation in genetic tolerance to
future climate changes (Fig. 2a).

Prediction of habitat suitability. The CLIMEX model, which has been shown to be
effective for examination of species distribution under future climate scenarios77, was
used to predict the habitat suitability for DBM in 2050 under the RCP8.5 scenario, the
only one that is available in CliMond (https://www.climond.org/). The CLIMEX model
for DBM in Zalucki and Furlong16 was developed based on temperature, moisture, and
stress indices. Temperature indices include limiting minimum (DV0) and maximum
temperature (DV3), lower (DV1), and upper (DV2) optimal temperature. Moisture
indices include minimum (SM0) and maximum (SM3) tolerable soil moisture, lower
(SM1) and upper (SM2) optimal soil moisture. Stress indices include cold stress, heat
stress, dry stress, wet stress, and hot-wet stress. The values of these parameters for
prediction of habitat suitability in our study were taken from Zalucki & Furlong16. We
altered one of the parameters in CLIMEX16, changing the hot-wet stress temperature
threshold from 30 °C to 32 °C based on a study on the relationship between tem-
perature and developmental rate showing that DBM can survive and develop at
temperatures <32 °C78 (Supplementary Table 6). The resulting ecoclimatic index (EI)
values based on our CLIMEX simulation were used to calculate the difference in
ecoclimatic index (DEI) between current and projected future climate scenarios using
the equation: DEI= EIF – EIC, where EIF is the ecoclimatic index under the projected
future climate scenario and EIC is the ecoclimatic index under the current climate.
Functions of Inverse Distance Weighting (IDW) and Overlay in ArcGIS 10.2 were
performed to generate maps showing the predicted distribution of DEI values (with
DEI > 0 showing the EI-increased regions and DEI < 0 showing the EI-decreased
regions) for each of the gridded climate points across the year-round persistence
regions worldwide (Fig. 2b).

Prediction of eco-genetic adaptation. The ecoclimatic index (EI) values based on
CLIMEX simulations are highly generalized and do not reflect evolutionary
adaptation and variation of tolerance levels among populations, because of the
absence of information on fitness traits. Based on our recently-generated dataset of
genome-wide single nucleotide polymorphisms (SNPs) sequenced from a world-
wide DBM sample of different locations (sites) across a diverse range of biogeo-
graphical regions15, we developed a new metric, the “eco-genetic index” (EGI),
which combines the predictions based on genetic offset (GO) with the difference in
ecoclimatic index between current and projected future climate scenarios (DEI).
EGI allows us to incorporate our population-specific genomic data into EI for
better predicting the habitat suitability of DBM subject to climate in 2050 under
RCP8.5 scenario based on NorESM1-M GCM. Because DEI and GO, are correlated
(Pearson’s R79= 0.53, P < 0.001; Supplementary Fig. 5), we used a linear normal-
ization transfer function to make values of deii and goi dimensionless, and then
used the weighted geometric averaging (WGA) operator and the artificial bee
colony (ABC) algorithm to optimize the value of alpha and improve the algorithm
of EGI. Here, only regions of decreasing EI (DEI < 0) were considered because in
these regions, DBM populations will be challenged by habitat suitability decline
under the RCP8.5 scenario for 2050. Each gridded point in ArcGIS was described
as a vector: Pi= {deii,goi}, where i= 1, 2, …, n, and n is the number of gridded
points. Let the EGI and GO of each point be egii and goi, calculated as follows:

Step 1: Calculate the absolute values of deii and goi and normalize75,76 them into
[0.1, 0.9].

Step 2: Combine the normalized deii and goi with the weighted geometric
averaging (WGA) operator80 as:

egii ¼ deii
αgoi

1�α ð1Þ
where α ϵ [0, 1] is the weight of normalized deii, i= 1, 2, …, n.

Step 3: The optimal value of α can be determined with the following steps:
Step 3.1: Take the natural logarithm of Eq. (1):

ln e gii ¼ α � ln deii þ 1� αð Þln goi; i ¼ 1; 2; � � � ; n ð2Þ
Obviously, ln deii < 0 and ln goi < 0
Step 3.2: Assuming a, b > 0, there exists a theorem such that:

a
b
þ b

a
� 2 ¼ a� bð Þ2

ab
≥ 0 ð3Þ

The equality in Eq. (3) holds only if a= b.
To balance the indices of deii and goi, we minimized the total deviation between

egii and deii, goi. According to Eq. (3) and Zhou et al.81, the deviations di and ti are
formulated as follows:

di ¼
�ln egii
�ln deii

þ�ln deii
�ln egii

� 2 ð4Þ

ti ¼
�ln egii
�ln goi

þ �ln goi
�ln egii

� 2 ð5Þ
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Hence, the minimized model (M− 1) can be expressed as:

ðM � 1Þ : min Y ¼ ∑
n

i¼1
ðdi þ tiÞ

¼ ∑
n

i¼1

� ln egii
� ln deii

þ� ln deii
� ln egii

� 2

� �
þ � ln egii

� ln goi
þ � ln goi

� ln egii
� 2

� �� � ð6Þ

Based on Eq. (3), the minimized model (M− 1) can be equivalently written as:

ðM � 2Þ : minY ¼ ∑
n

i¼1

α ln deii þ ð1� αÞln goi
ln deii

þ ln deii
α ln deii þ ð1� αÞln goi

�

þα ln deii þ ð1� αÞln goi
ln goi

þ ln goi
α ln deii þ ð1� αÞln goi

� 4

� ð7Þ

Step 3.3: The Artificial bee colony (ABC) algorithm82 is used to solve model (M− 2),
which is a fractional programming problem where Y is the objective function and α is
the independent variable. The parameters are set as: population size= 20, number of
iterations= 30, and limit= 5. The convergence curve of the ABC algorithm for solving
the above model is plotted in Supplementary Fig. 6. The algorithm converged at the
sixth iteration with the optimal estimate α= 0.5046 (Supplementary Fig. 7). Thus, we get
egii ¼ deii

0:5046goi
0:4954. The resulting EGI values were then mapped with ArcGIS 10.2

to show its geographical distribution in the EI-decreased regions under the projected
future climate scenario (Fig. 2c). It is noteworthy that this analysis used high-quality
genomic data with individuals collected from 75 sampling sites across a wide range of
eco-climate regions worldwide. This allowed us to estimate the population-level genetic
variation in response to climate change. However, we currently do not have the site-
specific physiological DBM data available for calculation of the eco-climate index. Future
detailed studies on physiological variation in different populations will further improve
our prediction of eco-genetic adaptation to climate change.

Genetic basis of climate adaption
Gene expression analysis by RT-qPCR. The wild-type strain of DBM, Geneva (G88),
was used in this assay. This G88 strain was collected from the New York State
Agricultural Experiment Station in 1988 and has since been maintained on artificial
diet without exposure to insecticides83. It was provided by Dr. Antony M. Shelton
(Cornell University, USA) to the Institute of Applied Ecology, Fujian Agriculture
and Forestry University in 2016. Since then, we maintained this strain on artificial
diet without exposure to insecticides at 26 °C that is a favorable temperature to rear
and maintain this wild-type strain.

We used nine temperature treatments and one control at 26 °C. A male or female
individual was placed in a 1.5ml plastic vial (4.0 cm height) with a pinhole in the side
wall to allow air exchange. Before treatments, all vials with DBM were placed into the
incubator at 26 °C. A group of thirty vials (15 vials with DBM females and 15 with
males) was frozen in liquid nitrogen and used as controls. Additional groups of thirty
vials (15 containing females, 15 containing males) were exposed to each of nine distinct
temperature treatments. These treatments were defined from a previous study on lethal
temperature limits of DBM84 and our preliminary experiments: three high-
temperature treatments: (1) H1: 40 °C for 30min, (2) H2: 43 °C for 30min, (3) H3:
43 °C for 30min with 24 h of recovery at 26 °C; and six low-temperature treatments:
(1) L1:−14 °C for 30min, (2) L2:−14 °C for 30min with 24 h of recovery at 26 °C, (3)
L3:−17 °C for 30min, (4) L4:−17 °C for 30min with 24 h of recovery at 26 °C, (5) L5:
−20 °C for 15min, and (6) L6: −20 °C for 15min with 24 h recovery at 26 °C (Fig. 3).
High and low temperature treatments were conducted in incubators and freezers,
respectively. The exposure duration of moths at −20 °C was set for 15min because
moths started to die when exposed to −20 °C for over 20min. After each of the
treatments, moths were immediately frozen in liquid nitrogen. The thirty moths from
each treatment were grouped into three replicates of 5 females and 5 males in tubes of
1.5ml each (in total, six tubes each containing 5 individuals of same sex for each
treatment including controls). All tubes with frozen moth samples were stored at
−80 °C before RNA extraction.

Total RNA was extracted using Eastep® Super Total RNA Extraction kit
(LS1040, Promega, USA), following the manufacturer’s protocol. A NanoDrop
Spectrophotometer (ND2000, Thermo Scientific, USA) and 2% agarose gel
electrophoresis were used to determine the quality and quantity of RNA. cDNA
was synthesized with 1 μg of total RNA using GoScriptTM Reverse Transcription
System (A5001, Promega Corporation, USA). RT-qPCR was carried out using the
target gene-specific primer (forward: 5′-AACCCCCCCTTCATCCAAG-3′, reverse:
5′-CTGCTGAGGCTGTAGGTCATG-3′), which was designed by Oligo 7 and the
reference gene primer for normalization (forward: 5′-CAATCAGGCCAATTTACC
GC-3′, reverse: 5′-CTGGGTTTACGCCAGTTACG-3′) according to the previous
reports85. qRT-PCR was conducted with 2 µL cDNA, 0.4 µL of each primer, 0.15 µL
CXR Reference Dye, 7.05 µL DEPC water and 10 µL SYBR Green Supermix
(A6001, Promega Corporation, USA) in a 20 µL total reaction mixture using
QuantStudioTM 6 Flex real-time PCR system (ThermoFisher Scientific, USA).
PCR conditions were set as follows: 10 min at 95 °C followed by 40 cycles of 15 s at
95 °C, 30 s at 60 °C and then 15 s at 95 °C, 1 min at 60 °C, 15 s at 95 °C for a melt
curve. The relative expression level of PxCad in each treatment was normalized to
the abundance of samples under control temperature, using the 2−ΔΔCt method86.
In the present study, we focused on the comparison of difference in gene
expression between each of the temperature treatments and the control rather than
the comparison between different non-control temperature treatments. Therefore,

we used independent t-tests to perform in R to establish differences in gene
expression between each temperature treatment and the control.

CRISPR/Cas9-based genome editing. The wild-type strain of G88 was used for func-
tional validation of PxCad. We selected two sgRNA target sites, 5’-AGGGAGA
TGTCATCATTGCA-3’ and 5’-ACTCGTCCATGTAGATGTTG-3’, in PxCad exon 3
according to the principle of 5’-N20NGG−3’ (with the PAM sequence underlined). To
obtain the templates for in vitro transcription of the two sgRNAs, we performed PCR
with two primer pairs (Supplementary Table 7) using the KOD-Plus-Neo Kit
(TOYOBO, Osaka, Japan), and then purified the products using the Gel Extraction Kit
(Omega, Morgan Hill, GA, USA). In vitro transcription was then performed to generate
two sgRNAs using the HiScribe™ T7 Quick High Yield RNA Synthesis Kit (New
England Biolabs, Ipswich, MA, USA) and Cas9 mRNA using the HiScribe™ T7 ARCA
mRNA Kit (with tailing) (New England Biolabs, Ipswich, MA, USA) using linearized
PTD-T7-Cas9 vector as a template87. The synthesized sgRNAs and Cas9 mRNA were
further purified using phenol–chloroform extraction and ethanol precipitation and
stored at −80 °C until use.

Fresh eggs from G88 moths laid within 15–20min were injected with a mixture of
Cas9 mRNA (380 ng/μl) and sgRNAs (100 ng/μl) using an IM 300 Microinjector
(Narishige, Tokyo, Japan). Microinjected eggs were then incubated at 26 °C and allowed
to develop to adult (G0). Virgin G0 adults were crossed with the wild-type G88 strain in
single pairs to produce the G1 progeny. After oviposition, we sacrificed G0 adults and
extracted the genomic DNA using the Tissue DNA Kit (Omega, Morgan Hill, GA,
USA). gDNA was then used to amplify the fragment containing the sgRNA target sites
using PCR with the Phanta Max Super-Fidelity DNA Polymerase (Vazyme, Nanjing,
China) and a primer pair (Supplementary Table 7). The generated PCR products were
Sanger sequenced by the Biosune Biotech Company (Fuzhou, China) to examine the
mutation in the target sequence region. After mutation identification, we focused on G1
progeny derived from mutated G0 parents. Retained G1 siblings were crossed in single
pairs to generate G2 progeny and progeny of heterozygous G1 parents were kept after
molecular identification. Similarly, we performed single-pair crosses between
G2 siblings and kept only G3 from homozygous mutant G2 parents. Retained
G3 siblings were pooled to establish the PxCad knockout strain (MU, G88-Cad).

To verify the absence of PxCad protein in the PxCad knockout strain, we isolated
midgut brush border membrane vesicle (BBMV) proteins from the G88 strain and
knockout strain using the differential magnesium precipitation method88. Total
extracted BBMV proteins (30 μg) were separated on 7.5% SDS-PAGE, and the regions
(~120–250 kDa) predicted to contain PxCad proteins were excised from the gel stained
with Coomassie blue. These gel slices were subjected to tryptic digestion and nano-LC-
MS/MS analysis at Huada Protein Research Center (Shenzhen, China).

Bioassay: behavioral responses to different temperatures. DBM strains used in this
assay were wild-type (G88 or WT) and mutant (G88-Cad or MU) adults. Female or
male individuals emerging within 24 h were placed into a 1.5 ml clear plastic vial
(4.0 cm height) with a pinhole in the side wall. Twenty vials with females and
twenty with males were then put into a plastic container (16.5 cm length, 11.5 cm
width, 3.5 cm height).

Four plastic containers with DBM adults were placed into a climate incubator
(DRX-400-DG, Ningbo Saifu Experimental Instrument CO., LTD, China) where
DBM adults were exposed to one of the following heat shock treatments: 40 °C,
41 °C, 42 °C, 43 °C, and 44 °C, for 2 h. After each heat shock treatment, the plastic
containers were removed from the climate incubator and placed in a temperature-
controlled room at 26 °C for 24 h, after which survival was recorded.

A similar procedure was used for cold stress, with four plastic containers of
DBM adults being placed into a freezer. Three temperature treatments were used:
−14 °C, −17 °C, and −20 °C. When the temperature was set at −14 °C, the adults
were exposed for periods of 150, 210, 270, and 330 min. At −17 °C, durations were
40, 60, 80, 100, and 120 min. At −20 °C, durations were 20, 25, 30 and 35 min.
After cold treatments, adults were transferred to a temperature-controlled room at
26 °C for 24 h, after which survival was recorded.

Statistical analysis. Logistic regression models were fitted to the survival data to test
behavioral responses to different temperatures. Results of the cold-exposure experiment
were analyzed first using the model: log[p/(1−p)]= aijk+ bijk t where p is the probability
of survival, i is the temperature index (−14, −17, or −20 °C), j is the strain index (WT
or MU), k is sex (male or female), and t is exposure duration (min) used as a continuous
predictor. The responses were complex, with significant interactions to the third order.
Therefore, to allow clearer interpretation of the results, a separate analysis was per-
formed for each temperature using the simpler model log[p/(1− p)] = ajk+ bjk t.

The results of the heat-shock experiment were analyzed using the model log[p/
(1− p)]= ajk + bjk T where j is the strain (WT or MU), k is sex (male or female),
and T is temperature (°C) used as a continuous predictor.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw reads of all 372 sequenced individuals used in this study have been deposited in the
CNSA (https://db.cngb.org/cnsa/) of CNGBdb with the accession code CNP0000018, and
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been synchronously deposited in the EMBL Nucleotide Sequence Database (ENA)
(https://www.ebi.ac.uk/ena) with the accession code PRJEB24034.
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