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Clonal architecture predicts clinical outcomes and
drug sensitivity in acute myeloid leukemia
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The impact of clonal heterogeneity on disease behavior or drug response in acute myeloid

leukemia remains poorly understood. Using a cohort of 2,829 patients, we identify features of

clonality associated with clinical features and drug sensitivities. High variant allele frequency

for 7 mutations (including NRAS and TET2) associate with dismal prognosis; elevated GATA2

variant allele frequency correlates with better outcomes. Clinical features such as white blood

cell count and blast percentage correlate with the subclonal abundance of mutations such as

TP53 and IDH1. Furthermore, patients with cohesin mutations occurring before NPM1, or

transcription factor mutations occurring before splicing factor mutations, show shorter sur-

vival. Surprisingly, a branched pattern of clonal evolution is associated with superior clinical

outcomes. Finally, several mutations (including NRAS and IDH1) predict drug sensitivity based

on their subclonal abundance. Together, these results demonstrate the importance of

assessing clonal heterogeneity with implications for prognosis and actionable biomarkers for

therapy.
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Acute myeloid leukemia (AML) is an aggressive cancer that
develops from the accumulation and clonal expansion of
somatic driver mutations in hematopoietic stem and

progenitor cells1–3. While the mutational burden in AML is
relatively low4,5, patients present with heterogeneous disease
characterized by variable clonal and subclonal genotypes and a
relatively stable cytogenetic karyotype6–9. These properties endow
AML with several advantageous features for studying the clonal
evolution of cancer. Recent studies have noted that subclones
within leukemia samples can show differences in morphology and
immunophenotype, response to chemotherapy or hypomethy-
lating agents, proliferation in response to myeloid growth factors
in vitro, and engraftment in immunocompromised mice10–14.
Emerging reports have also suggested that increased mutation
burden and clonal heterogeneity correlate with worse survival
outcomes8,15,16. Whether the increased risk is associated with
sequential accumulation of mutations in the same clone or dis-
tribution across independent subclones is unknown. There is also
increasing evidence that clonal dynamics impact the development
and clinical outcomes of AML. For example, the subclonal pre-
valence of specific mutations, as measured by variant allele fre-
quency (VAF), has been shown to predict progression from
clonal hematopoiesis of indeterminant potential to myeloid
malignancy, in addition to predicting time-to-relapse17–21. Recent
work has also correlated higher VAF of ASXL1, DNMT3A, JAK2,
TET2, and TP53 mutations with worse outcomes in AML patients
with intermediate risk disease22. Additionally, TP53 VAF and
allelic state have recently been shown to be prognostic in mye-
lodysplastic syndromes (MDS)23–25. Despite the prognostic utility
of VAFs in these and other focused genotypes in AML26,27, there
has yet to be a comprehensive analysis using VAFs to assess risk
stratification or identify differences in response to therapy.

Emerging single-cell DNA-sequencing studies have provided
unprecedented resolution of leukemia evolution and clonal
structure, largely recapitulating trends observed in bulk
sequencing28–30. Unfortunately, due to cohort sizes, these studies
are insufficiently powered to correlate granular features of clon-
ality with clinical outcomes. In contrast, several large bulk
sequencing studies of AML are powered to provide insights into
broad clonal trends, correlation of combinatorial genetic features
to clinical outcomes, and biomarkers of therapeutic response to
targeted therapies7–9,31,32. However, clonal evolution and VAF
have yet to be systematically integrated with response to therapy
or with more granular risk stratification in these cohorts. To
address these questions, we aggregated clinically annotated
cohorts of genotyped AML patients and analyzed the clonal
architecture of recurrent somatic mutations in order to identify
potential correlations with features of disease presentation, sur-
vival outcomes, and drug sensitivity.

Here, we show unreported survival associations with mutation
co-occurrence patterns, VAF, and clonal evolutionary trajectories
that would not have been observed using traditional analyses
(mutation present/absent). We also infer unique drug sensitivities
based on the clonal abundance of specific mutations, providing
insights as to how certain mutations may influence the bulk
leukemia depending upon their subclonal abundance. Overall,
our findings validate the clinical importance of incorporating
clonal analysis into the molecular evaluation and treatment
of AML.

Results
Cohort curation and summary. A total of 13 studies7–9,33–42 were
aggregated into a database comprising of 2829 patient samples pro-
filed with an admixture of DNA-sequencing modalities and ex vivo
drug screening (Fig. 1a and Supplementary Fig. 1a). A summary of

clinical characteristics and treatment histories for this cohort can be
found in the Supplementary Material (Supplementary Fig. 1b–j).
Study aggregation recapitulated previously reported mutation fre-
quencies in AML, with broad similarities in mutation patterns of co-
occurrence, mutual exclusivity, and prognosis (Fig. 1b)8,31. Notably,
our augmented cohort size identified FLT3-TKD and RAD21 as
mutations previously unreported to be associated with favorable
outcomes (Supplementary Fig. 1k). For studies reporting VAFs,
bimodal distributions highlighted the presence of clonal and sub-
clonal populations (Supplementary Fig. 1l). VAF distribution for
individual genes also showed significant variability in mean VAF,
reflecting different patterns of clonal and subclonal dynamics
between mutations (Supplementary Fig. 1m). In total, 2038 de novo
patients with VAF and survival outcomes data were identified for
subsequent analyses.

Distinct genotypes predict clinical presentation and survival.
AML is a cancer of low mutation-burden4,5 and thus provides an
ideal model disease to investigate how mutations interact to
promote and drive disease progression. Specific mutation com-
binations can be selected for during cancer development and
drive clonal expansion because their co-occurrence improves
tumor fitness, thus driving epistatic patterns observed in cancer
sequencing studies43,44. Theoretically, if epistasis is driven by the
selective pressure of leukemia fitness, then there might be cor-
relations between broad binary epistatic trends and features of
disease presentation and patient outcomes. To better understand
how the relationship between co-occurring mutations might
influence aspects of disease, we first defined the associations
between individual mutations and features of clinical presentation
(Supplementary Fig. 2). Multiple associations were identified, for
example the finding that IDH2, but not IDH1, mutations asso-
ciated with lower lactate dehydrogenase (LDH) levels (Supple-
mentary Fig. 2).

We next used our augmented cohort size to define the
statistical co-occurrence and mutual exclusivity of frequent
mutations (Fig. 2a). In addition to previously reported
associations8,9,31, we identified several unreported co-occurrence
(e.g. EZH2 and CBL; odds ratio= 4.7; q= 0.046) or mutually
exclusivity patterns (e.g. TP53 and KRAS; odds ratio= 0.07;
q= 0.017) (Supplementary Fig. 3a). Next, we analyzed the
correlation between pairwise mutations and survival (Fig. 2b).
We identified multiple cases where co-occurring mutations either
re-stratified (e.g., NRAS+ SRSF2) or strengthened the trend (e.g.,
NRAS+ RAD21) of survival associations seen at the single
mutation level (compare Supplementary Figs. 1k and 3b).
Interestingly, overlaying the epistatic landscape with survival
associations showed no correlation between pairwise epistasis
(odds ratios) and survival (hazard ratios) (Fig. 2c). More
specifically, there was no enrichment for worse outcomes based
on an increased odds ratio of co-occurrence (Chi-squared test;
p= 0.15), suggesting that an increased frequency in mutation co-
occurrence does not necessarily drive improved leukemia fitness.
One possible explanation is that “co-occurring” mutations in the
same leukemia might not occur in the same cells, but instead
occupy distinct clonal/subclonal populations. For example, when
we investigated the relationship between co-occurring NRAS and
KRAS mutations, we observed a strong pattern of inverse
clonality (high VAF in one gene associated with low VAF in
the other), suggesting these mutations arise in independent
cellular populations (Supplementary Fig. 3c). We observed a
similar pattern between NRAS and PTPN11 mutations (Supple-
mentary Fig. 3d). Given their functional redundancy in RAS/
MAPK signaling, these results suggest mutual exclusivity in
clones harboring hyperactivation of RAS/MAPK pathway
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signaling in AML. Indeed, recent single-cell genotyping of
myeloid malignancies offers definitive evidence that mutations
in RAS/RTK genes tend to be mutually exclusive29,30.

We next tested the hypothesis that co-occurring mutations
might drive differences in disease presentation. Pairwise mutation
analysis revealed strong associations between several genotypes
and the abundance of white blood cells (WBCs), platelets, LDH,
and blast percent in the bone marrow and peripheral blood
(Supplementary Fig. 3e). Of note, the effect size of mutations in
FLT3, IDH2, TP53, CEBPA, and NRAS varied drastically
depending on their co-occurring mutations (compare Supple-
mentary Figs. 3e and 2), suggesting a complex interplay between
clonal genotypes and features of disease presentation.

We also investigated if multiple mutations in the same gene or
functional category/pathway were correlated with clinical features or
risk. Compared to patients with only one mutation, multiple
mutations in CEBPA predicted high platelet counts, lower
hemoglobin counts and peripheral blood blast percentages, older

age, and better survival outcomes (Supplementary Fig. 3f–g). Multi-
hit TP53 correlated with higher bone marrow and peripheral blood
blast percentages and decreased age while multiple mutations in
FLT3-TKD was associated with older age (Supplementary Fig. 3f).
Multiple mutations in genes related to transcription were associated
with decreased WBC counts, hemoglobin levels, and peripheral blast
percentages, while also associating with increased platelet counts and
improved outcomes (Supplementary Fig. 3h, i). More than one
mutation in tumor suppressors predicted higher bone marrow blast
percentages, whereas multiple mutations in RTK/RAS signaling
components correlated with improved outcomes (Supplementary
Fig. 3h, i). Finally, multiple mutations in genes related to chromatin
remodeling and cohesin components correlated with lower WBC
counts, younger age, and worse survival outcomes (Supplementary
Fig. 3h, i).

We next augmented our analysis to investigate the prognostic
association of triple-mutated genotypes compared to pairwise
mutated genotypes. In total, 48 distinct triple-mutated genotypes

Fig. 1 Cohort curation and summary. a A systematic literature review was performed to identify studies reporting clinically annotated samples and/or
molecularly profiled cohorts of adult AML. 12 cohorts met inclusion criteria and were curated for mutations, drug screening results, clinical features, and
survival outcomes. These studies were then aggregated into a uniformly annotated database with an admixture of overlapping data types available for
analysis. b Oncoprint for the most frequently mutated genes in our cohort. Each column is an individual sample (n= 2914) and the color of the vertical line
represents the type of mutation reported. Sex, cohort, ELN 2017 risk group, subset, and survival information is indicated on the bottom of the plot. Source
data are provided as a Source Data file.
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had at least ten patients with all three mutations present (Fig. 2d).
We confirmed the association of worse outcomes in patients with
mutations in DNMT3A, NPM1, and FLT3-ITD (q < 0.01; HR=
1.77; 95% CI: 1.37–2.29), in addition to improved outcomes in
patients with mutations in DNMT3A, NPM1, and NRAS
(q= 0.01; HR= 0.48; 95% CI: 0.31–0.76; Fig. 2e)8. Importantly,
our analysis revealed unreported survival correlations for four
genotypes: DNMT3A:FLT3-ITD:IDH1 (q < 0.01; HR= 3.26; 95%
CI:1.79–5.93), DNMT3A:FLT3-ITD:IDH2 (q= 0.11; HR= 2.06;
95% CI: 1.14–3.71), and DNMT3A:FLT3-ITD:PTPN11 (q= 0.02;
HR= 2.79; 95% CI: 1.41–5.5) were associated with worse
outcomes while NPM1:DNMT3A:RAD21 predicted better prog-
nosis (q < 0.01; HR= 0.06; 95% CI: 0.01–0.46; Fig. 2e). Of note,
the survival-associated genotypes were only slightly enriched for
more frequently occurring patient genotypes (Fig. 2d), suggesting

that epistatic patterns are a weak predictor of increased leukemia
aggressiveness.

Because worse survival did not associate with more frequent
pairwise and triple-mutated genotypes, we wondered whether
other aspects of mutation clonality might shed light on features of
clinical presentation and outcomes. These observations motivated
us to model the clonal landscape of AML to understand if more
granular aspects of clonality (e.g., VAF or mutation ordering),
rather than the simple presence or absence of mutations, might
associate with features of disease.

Variant allele frequency predicts clinical features and survival.
To investigate the relationship between mutation clonality and
aspects of disease presentation and survival, we first defined high
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and low VAF thresholds for each mutation based on the median
copy number-corrected VAF for frequent mutations (Fig. 3a and
Supplementary Fig. 4a). We observed that stratification based on
median VAF for many genotypes correlated strongly with WBC
counts, LDH levels, and the abundance of blasts in the peripheral
blood (Fig. 3b). Interestingly, high VAF for SF3B1, but not other
spliceosome genes, was associated with increased WBC counts
(q= 0.09; Effect size= 0.71; 95% CI: 0.11–1.30; Fig. 3b), sug-
gesting potential phenotypic differences for mutations in distinct
spliceosome components. Interestingly, many of the mutation-
phenotype associations identified using VAFs were not apparent
when considering the categorical presence or absence of muta-
tions (compare Fig. 3b and Supplementary Fig. 2). Of particular
interest, we noticed pronounced differences in the directionality
of effect sizes when comparing binary to VAF associations with
clinical features (Fig. 3c). For example, the presence of TP53
mutations correlated with low WBC and PB blast percentages, yet
high TP53 VAF was associated with increased WBC and PB blast
percentages (q < 0.01; Fig. 3c). In contrast, both the presence of
and higher VAF in IDH1 and NPM1 mutations associated with
increased PB blast percentages and WBC count, respectively
(q < 0.01; Fig. 3c). Together, these results indicate that the VAF of
mutations can have additive, neutral, or re-stratifying impact on
the effect size of mutational associations with clinical features of
disease presentation, presumably reflecting an influence of clonal
composition on disease behavior.

We next investigated the correlation of mutation VAF in risk
stratification. Using a previously reported threshold of >30% to
define high VAF22, we performed survival analysis for the most
frequent mutations in de novo AML patients. Univariate Cox
proportional-hazards regression modeling identified four genes
(BCOR, KRAS, U2AF1, and NRAS) which showed significantly
worse outcomes with high VAF (q < 0.3; Supplementary Fig. 4b).
Because a heuristic threshold applied to all genotypes might miss
significant gene-specific correlations (Supplementary Fig. 4b, c),
we next determined optimal thresholds for each mutation using
maximally selected rank statistics (Supplementary Fig. 4d, e).
Using this approach, we found that VAF thresholds could
significantly re-stratify outcomes for 8 mutations (q < 0.1; Fig. 3d).
For most mutations (NF1, BCOR, PHF6, ASXL1, KRAS, PTPN11,
and NRAS), increased VAF associated with worse outcomes
(q= 0.01–0.07); Fig. 3d, e and Supplementary Fig. 4e). However,
for GATA2, higher VAF correlated with better outcomes
(q= 0.04; HR= 0.23; 95% CI: 0.07–0.68; Fig. 3d, e and

Supplementary Fig. 4e). These analyses provide evidence that
VAF adds additional information for understanding clinical
features of disease presentation and risk stratification in AML.
These results prompted us to investigate how clonal relationships
between mutations might associate with outcomes.

Modeling the clonal dominance of co-occurring mutations and
their relationships to survival. Experimental and computational
methodologies have revealed strong trends in the ordering of
mutation functional categories during leukemogenesis, with
initiating mutations occurring in genes that regulate the epigen-
ome, followed by mutations in genes involved in regulating
proliferation3,8. Because of these trends, we hypothesized that
atypical ordering of mutation acquisition might associate with
differential leukemia phenotypes. Indeed, recent evidence in
myeloproliferative neoplasms (MPN) and MDS supports the idea
that the order of mutation acquisition can have significant effects
on disease development and stratification of patient survival45,46.
To test this hypothesis in AML, we leveraged our cohort size to
infer the order of mutation acquisition for co-occurring pairs of
mutations by comparing their VAF relationships (Fig. 4a and
Supplementary Fig. 5). For pairwise genotypes with enough
patients with nonambiguous ordering (n= 27), we performed
survival analysis based on the putative order of mutational
acquisition. We observed that the order of co-occurring NRAS
and GATA2 mutations robustly stratified patient outcomes;
patients where NRAS occurred before GATA2 showed remarkably
poor survival compared to patients where NRAS occurred later
(q= 0.05; HR= 0.1; 95% CI: 0.02–0.06; Fig. 4b, c). Given their
pairwise VAF relationships (Fig. 4c), this result is consistent with
our previous observations that high VAF in NRAS associates with
poor outcomes (q= 0.06; HR= 1.56; 95% CI: 1.11–2.2) yet high
GATA2 VAF associates with improved outcomes (q= 0.06;
HR= 0.22; 95% CI: 0.07–0.68; Fig. 3d).

Next, to increase the number of patients available for survival
analysis, we grouped mutations into functional categories. Using a
Bradley–Terry model, we rank-ordered mutations based on their
relative order of acquisition and observed similar trends as previous
reports: epigenetic dysregulation typically occurs early while
mutations enhancing proliferation occur late in tumor development
(Fig. 4d). We then performed survival analysis between patient
groups with nonambiguous ordering of categories (n= 12) and
identified two cases where the ordering of mutations in functional
classes significantly stratified survival (q= 0.2; Fig. 4e and

Fig. 2 Distinct patterns of mutation co-occurrence associate with overall survival. a Co-occurrence and mutual exclusivity of the most frequent
mutations present in de novo AML was performed using a two-sided Fisher’s Exact test. Significant associations (FDR < 0.05) are colored according to the
odds ratio of co-occurrence (red) or mutual exclusivity (blue). Points are sized based on the number of patients with co-occurring mutations for each
genotype. b Summary of pairwise mutations and their association with prognosis based on Cox proportional-hazards regression modeling. Significant
genotypes (FDR < 0.05) are colored according to the log-transformed hazard ratio compared to wild-type patients, with green depicting better prognosis
(HR≤ 1) and purple representing worse prognosis (HR≥ 1). Points are sized based on the number of patients with co-occurring mutations for each
genotype. c Scatterplot of the correlation between the odds ratio and hazard ratio of co-occurring mutations from a, b. Percentages indicate the fraction of
genotypes per quadrant which associate with significant (Bonferroni FDR < 0.05) survival associations. For each error band, the measure of center is the
line of best fit as derived from linear regression between the odds ratio and hazard ratio for each group. Shaded bands represent 95% confidence intervals
for each linear regression. Points are sized based on the number of patients with co-occurring mutations for each genotype and colored according to the
log-transformed hazard ratio compared to wild-type patients, with green depicting better prognosis (HR≤ 1) and purple representing worse prognosis
(HR≥ 1). d Frequency distribution of the number of de novo patients with the most frequent 3-way mutation combinations. Bars are colored based on the
association with a significant survival correlation (p≤ 0.05) compared to patients with only two genes mutated: red= a significant survival association,
gray= no significant association. e Forrest plot (left) and Kaplan–Meier plots (right; Bonferroni FDR≤ 0.15) depicting survival analysis between triple-
mutated and double-mutated genotypes. For the forest plot (left), points represent the hazard ratios calculated between triple vs. double-mutated patients
using a Cox proportional-hazards model. Significant genotypes (two-sided log-rank p≤ 0.05) are colored: green represents cases where the presence of all
three mutations correlated with improved survival, while purple hits represent genotypes where all three mutations correlated with worse survival. q-values
were calculated in terms of the false discovery rate using Bonferroni correction. Points are sized relative to the number of patients with all three mutations
and bars represent the 95% confidence intervals of the hazard ratios. Source data are provided as a Source Data file.
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Supplementary Fig. 6). The strongest association was observed in
patients with co-occurring mutations in NPM1 and the chromatin/
cohesin complex (Fig. 4e). In these patients, if a chromatin/cohesin
mutation occurred before an NPM1 variant, there was a strong
association with poor survival (q= 0.2; HR= 1.65; 95% CI:
1.08–2.52; Fig. 4e, f). Similarly, when transcription factor mutations
occurred before splicing mutations, patients showed worse outcomes
(q= 0.2; HR= 1.43; 95% CI: 1.01–2.04; Fig. 4e, g). These results
provide evidence in human data that the ordering of mutations
carries prognostic significance in AML.

Architecture of clonal evolution associates with outcomes.
Recent reports have suggested that clonal heterogeneity (i.e.,
mutational/clonal burden and Shannon diversity index) is

prognostic in AML8,15,16. To investigate similar features in our
cohort, we analyzed samples profiled with whole exome
sequencing (WES; n= 731) to model the clonal architecture of
AML (Fig. 5a). Using PyClone47, a single-cell-validated statistical
inference method to model clonal population structure, we
identified distinct clonal genotypes and cancer cell fractions for
each sample across our cohort (Fig. 5b and Supplementary
Fig. 7a, b). We confirmed that higher mutation burden correlates
with worse survival (p= 0.015; Supplementary Fig. 7c); however,
in contrast to a previous report29, we found no association
between clonal burden and outcomes (p= 0.51; Supplementary
Fig. 7d). We also observed no statistical correlation between
mutational or clonal burden with age or European LeukemiaNet
(ELN) risk (Kruskal–Wallis p= 0.14; Supplementary Fig. 7e–h).
Not surprisingly, a robust correlation between mutation burden
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and the number of unique clones was observed (Kruskal–Wallis
p < 0.001; Fig. 5c). Because there was a strong correlation between
mutation and clonal burden, yet only mutation load associated
with survival (Supplementary Fig. 7c, d), we sought to understand
if the distribution of mutations across clones associated with
outcomes. Indeed, higher median mutation burden per clone was
correlated with poor prognosis (p= 0.013; Fig. 5d), suggesting
that the accumulation of mutations in the same clonal population
associates with increased leukemia fitness.

To further characterize the architecture of these leukemias, we
modeled clonal evolution trajectories using ClonEvol (Fig. 5a and
Supplementary Fig. 7i)48. We observed that most tumors
displayed linear trajectories rather than branched evolution
(Supplementary Fig. 7j), in agreement with a recent report29.
AML patients exhibiting branched evolution showed increased
mutational and clonal burden compared to tumors with linear
evolution (p < 0.001; Supplementary Fig. 7k, l). Strikingly, patients
exhibiting branched clonal evolutionary architectures showed
significantly better overall survival, despite having an increased
mutational burden (p= 0.029; Fig. 5e, f and Supplementary
Fig. 7k). Interestingly, clonal diversity, as measured by multiple
metrics, did not associate with outcomes (Shannon diversity
index p= 0.31; MATH score p= 0.17; Supplementary Fig. 7m,
n). However, we observed that high mutational burden re-
stratified outcomes in patients exhibiting branched evolution
(p= 0.007) but that this association was not seen in patients with
linear evolution (Fig. 5g and Supplementary Fig. 7o, p).
Specifically, low mutational (but not clonal) burden in branched
tumors identified a low-risk patient subset (p < 0.001; Fig. 5g and
Supplementary Fig. 7o, p). These results reveal a unique interplay
between clonal heterogeneity and leukemia fitness (Fig. 5h) and
define a low-risk subset of patients.

Subclonal abundance predicts drug sensitivity in patient
samples. Previous work modeling mutation-specific drug sensi-
tivity has used the presence or absence of mutations, not their
clonal abundance, to correlate genomic alterations with drug
response9. To investigate if the clonality of mutations correlate
with drug sensitivity, we analyzed data from an ex vivo drug
screen of primary AML samples9 and modeled the correlation
between VAF and drug response (measured using area-under-the
curve; AUC) in de novo samples (Fig. 6a). Differential drug
sensitivity analysis between wild-type and mutated samples
identified expected correlations between FLT3 status and tyrosine

kinase inhibitor (TKI) response in addition to NRAS-dependent
resistance, amongst other associations (Fig. 6b). Analyzing the
copy number-corrected VAF landscape of recurrent mutations
showed significant variability in clonal abundance (Fig. 6c and
Supplementary Fig. 8a), suggesting a potential range of drug
sensitivity based on the subclonal prevalence of specific muta-
tions. For drug-gene pairs with sufficient heterogeneity of VAF
and drug response (see Methods), linear regression of drug sen-
sitivity against VAF identified multiple cases where VAF corre-
lated strongly with sensitivity to targeted agents (Fig. 6d and
Supplementary Fig. 8b–d). We noted unique trends for the most
predictive genes; higher VAF of IDH1 and NPM1 showed only
increased sensitivity to drugs, while greater NRAS VAF showed
only increased resistance to multiple agents (Fig. 6d). One of the
strongest correlations between VAF and drug sensitivity was
between ponatinib and IDH1, where a VAF increase of 35%
correlated with a drop in AUC of 127 (R2= 0.69; p= 0.003;
Fig. 6e). Conversely, one of the strongest correlations between
VAF and drug resistance was between pelitinib and NRAS, where
a VAF increase of 42% correlated with an increase in AUC of 176
(R2= 0.59; p= 0.001; Fig. 6f). Of particular interest, across the
panel of FLT3-specific or general TKIs, FLT3-TKD VAF showed
significantly more AUC-VAF correlations than FLT3-ITD
(Fig. 6d and Supplementary Fig. 8d). Because patient survival
based on FLT3 status is highly dependent on the presence of
additional mutations8, we re-analyzed FLT3 VAF-dependent
sensitivity in the context of common mutational backgrounds.
Co-occurrence of FLT3-ITD with DNMT3A predicted resistance
to axinatinib, cediranib, crizotinib, ponatinib, and tofacitinib in
an ITD VAF-dependent manner (Fig. 6g). These results indicate
that the subclonal prevalence of secondary mutations in AML
might predict response to targeted therapy.

When we compared the drug-gene correlations identified
through our binary and VAF analyses in the de novo cohort, we
saw no overlap in drug-gene pairs (Supplementary Fig. 8e),
indicating that modeling drug sensitivity using VAFs identified
unique associations between AML mutations and targeted agents.
Of particular clinical significance, we observed that NRAS VAF
was a strong predictor of drug resistance in both de novo and
secondary AML samples (Supplementary Figs. 8d and 9), despite
the fact that secondary samples are inherently far more resistant
to the same set of targeted agents compared to de novo samples9.
Given that NRAS is the fourth most common mutation in AML,
these results suggest a previously unappreciated biomarker for

Fig. 3 Variant allele frequency associates with features of disease presentation and overall survival. a VAF distribution for frequent mutations in our de
novo cohort (n= 1636 patients). Mutations were assigned as high or low VAF based on the median copy number-corrected VAF for each gene. Red points
represent cases where the VAF is above the median while blue points represent those below the median VAF. For each distribution, the boxplot represents
the boundaries for the first and third quartiles with a line at each median; whiskers delimit the highest data point below the third quartile +1.5× the
interquartile distance and the lowest data point above the first quartile −1.5× the interquartile distance. b Distribution of effect sizes for differences in
clinical features of AML based on high or low VAF for each mutation. Points represent the effect size (Cohen’s d) between high and low VAF for each
genotype across the different clinical variables (n patients: WBC= 1507; Hemoglobin= 1280; Platelet= 1292; LDH= 1228; BM blasts= 1472; PB
blasts= 1385; Age= 1643). Significant associations are colored based on the level of significance (Bonferroni FDR < 0.2); error bars represent the 95%
confidence intervals of the effect sizes. c Scatterplots of effect sizes for WBC levels and peripheral blood blast percentages between mutated and wild-type
patients versus effect sizes calculated between high and low VAF for each mutation. Points are sized based on the number of patients analyzed and colored
based on VAF effect size significance (FDR < 0.1). d Forest plot summarizing univariate Cox proportional-hazards regression modeling of common
mutations based on VAF thresholds in the de novo cohort. Points represent the hazard ratio for overall survival between high and low VAF groups based on
VAF thresholds calculated using maximally selected rank statistics. Points are sized based on the number of patients above the VAF threshold. Error bars
represent the 95% confidence intervals of the hazard ratios. Green hits represent cases where higher VAF correlated with improved survival, while purple
hits represent genotypes where increased VAF correlated with worse survival. e Scatterplot of hazard ratios calculated between mutated and wild-type
patients versus hazard ratios calculated between high and low VAF for each mutation. Hazard ratios are calculated using a standard Cox proportional-
hazards model. Points above the dotted line indicate mutations where greater VAF associates with worse outcomes compared to patients with lower VAF
for that mutation. Points are colored by significance of VAF hazard ratio calculations (red points= Bonferroni FDR < 0.1) and sized relative to the VAF
threshold for each genotype. Source data are provided as a Source Data file.
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Fig. 4 Clonal dominance of co-occurring mutations stratifies survival. a Summary of pairwise clonal relationships for recurrent mutations present in de
novo AML. Color represents the fraction of patients where mutations in gene 1 occurred before gene 2 (i.e. are clonally dominant; green= gene 1 before
gene 2; brown= gene 1 after gene 2). Size is scaled to reflect the total number of patients with co-occurring mutations. b Schematic depicting how pairwise
VAF relationships were used to bin patients into groups (left) and forest plot of hazard ratios calculated from univariate Cox proportional-hazards modeling
based on the order of pairwise mutations (right). Points represent the hazard ratio, as calculated using standard Cox proportional-hazards regression,
between patients with different mutation order. Bars represent the 95% confidence intervals of the hazard ratios and points are sized based on the number
of patients with defined mutation ordering. c Scatterplot (left) and Kaplan–Meier plot (right) showing how the order of mutation acquisition in patients with
co-occurring mutations in NRAS and GATA2 robustly improved patient stratification. Green points/line represent cases where NRAS mutations occur
before those in GATA2. Brown points/line represent cases where GATA2 mutations occur before those in NRAS. The reported p-value was calculated using
a two-sided log-rank test. d A Bradley–Terry model was used to assign the relative order of global mutation acquisition from pairwise relationships as
determined in a. Only patients with at least two mutations were considered in this model. Density plots (left) represent the VAF distribution for each
mutation in the analysis (corrected for copy number and X-linkage in males) and are ordered on the y-axis based on their relative order of acquisition
compared to all other genes in the analysis. Points and error bars (right) represent the Bradley–Terry model results for the point estimate and 95%
confidence interval, respectively, for relative gene ordering in temporal acquisition. e Schematic depicting how pairwise VAF relationships were used to bin
patients into groups (left) and forest plot of hazard ratios calculated from univariate Cox proportional-hazards regression modeling based on the order of
mutation category acquisition (right). Bars represent the 95% confidence intervals of the hazard ratios. f, g Kaplan–Meier plots for significant pairs from e.
p-values in c, f, g were calculated between nonambiguous groups using a two-sided log-rank test. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27472-5

8 NATURE COMMUNICATIONS |         (2021) 12:7244 | https://doi.org/10.1038/s41467-021-27472-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


resistance to current and emerging targeted therapies. In
aggregate, these results identify multiple drug-gene sensitivity
relationships which warrant further experimental validation and
retrospective analyses of therapy response in clinical trials
for AML.

Discussion
Here, we report a large, aggregated cohort of AML profiled by
deep sequencing and describe several unique features for risk
stratification and prediction of sensitivity to a panel of small
molecule inhibitors. Of particular interest, we observed unre-
ported associations between VAF and the architecture of clonal
evolution in leukemia with drug response and clinical outcomes.
These observations suggest an unappreciated nuance in how
genotypically similar patients might differ in disease risk and
clinical response.

Our results suggest that VAF is a clinically useful feature for
improving risk stratification in specific AML genotypes. This
observation may reflect differences in the timepoint of therapeutic
intervention rather than underlying biology of the disease. For
example, our observation that patients with low NRAS VAF have
better prognosis than those with high NRAS VAF may reflect that
low VAF patients were diagnosed and treated earlier in disease
progression. However, our observation that NRAS VAF was a

strong predictor of drug resistance offers support for the
hypothesis that the biological properties of specific subclonal
genotypes might drive VAF risk stratification. Nevertheless, the
underlying biological reason as to why the VAF of only certain
mutations enhances risk stratification remains to be understood.

Our observation that the ordering of specific mutations and
functional categories carries prognostic significance might reflect
underlying differences in leukemia aggressiveness given the type
of initial mutation. Indeed, recent functional and observational
studies in MPN, MDS, and mesothelioma have provided some of
the earliest evidence for differences in cell fitness and tumorigenic
potential given the ordering of mutations and clonal
architecture45,46,49. Because there are strong trends in the
ordering of functional categories of mutations in AML, it is fea-
sible that this order is preferentially selected for in tumor evo-
lution because it provides a fitness advantage in disease
progression. However, even with our cohort size, analyzing sur-
vival by mutation order remains weakly powered for less frequent
genotypes and survival differences based on the ordering of
mutation categories represent relatively few patients. Addition-
ally, using VAF to infer mutation co-occurrence and clonality
may not always be accurate, and more refined single cell geno-
typing could be employed to more robustly define mutational
ordering and correlate clonal diversity with outcomes28–30.

Fig. 5 Architecture of clonal evolution associates with survival outcomes. a Schematized workflow for modeling clonal architecture in a cohort of WES
patients. Briefly, a deep-sequenced cohort was assembled and analyzed using PyClone to generate robust clonal populations and cellular prevalences.
These cellular prevalence estimates were then leveraged to model the temporal acquisition of mutations and clonal architecture using ClonEvol. b Heatmap
summarizing PyClone results of the per-patient cellular prevalence for the most common clonal genotypes. Each column is an individual patient sample
grouped by hierarchical clustering based on similarity in clonal patterns. For patients with multiple mutations in the same gene, only the mutation with the
largest cancer cell fraction (CCF) is shown. c Correlation between mutation burden and the number of unique clones derived from PyClone in the de novo
cohort (Kruskal–Wallis p= 1.6e−33; n= 409 patients). Points are colored by broad clonal evolution architecture as determined by ClonEvol
(blue= branched evolution; gray= linear evolution). For each distribution, the boxplot represents the boundaries for the first and third quartiles with a line
at each median; whiskers delimit the highest data point below the third quartile +1.5× the interquartile distance and the lowest data point above the first
quartile −1.5× the interquartile distance. d Kaplan–Meier plot showing the association between higher median mutational burden per clone (red curve) and
worse outcomes in de novo patients (two-sided log-rank test). e Kaplan–Meier plot showing the association of improved outcomes in patients exhibiting
branched evolutionary architecture (blue curve= branched evolution; gray curve= linear evolution; two-sided log-rank test). f Forrest plot depicting
univariate Cox proportional-hazards ratios for various aspects of the clonal architecture analyses. g Forrest plot depicting univariate Cox proportional-
hazards ratios for clonal and mutational burden risk stratification based on linear or branched architecture. h Schematic depicting the different genetic and
clinical features associated with evolutionary architecture. Source data are provided as a Source Data file.
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Future studies in even larger cohorts will be needed to address
this question more precisely.

Understanding the interplay between tumor heterogeneity and
patient risk can improve our understanding of cancer biology and
clinical intervention. By modeling the trajectories of clonal

evolution, we show that the serial accumulation of mutations in
the same clone (linear evolution), rather than their distribution in
multiple subclones (branched evolution), correlates with poorer
prognosis. This observation could be explained by the mechan-
istic hypothesis that sequential acquisition of mutations in the

Fig. 6 Clonal abundance predicts drug sensitivity in primary AML samples. a Schematic depicting how linear regression of drug response (AUC) against
VAF can identify correlations between drug sensitivity and the clonal prevalence of mutations. Red points represent sensitivity trends while blue points
represent resistance trends. b Volcano plot of drug response between mutated and wild-type samples for de novo samples from the Beat AML study. Points are
sized based on the number of samples analyzed and colored by significance (Bonferroni FDR < 0.1; red= sensitive, blue= resistant). c Copy number-corrected
VAF distribution for mutations with paired drug data in the de novo cohort of the Beat AML study (nmut + drug≥ 5; n= 202 biologically independent patient
samples). For each distribution, the boxplot represents the boundaries for the first and third quartiles with a line at each median; whiskers delimit the highest
data point below the third quartile+1.5× the interquartile distance and the lowest data point above the first quartile−1.5× the interquartile distance. d Dotplot of
the most significant (p < 0.05) drug-gene correlations identified through linear regression of drug AUC against mutation VAF in de novo AML samples. Points
are sized based on the range of VAFs for each mutation and are colored based on the type of drug sensitivity trend (red—sensitive; blue—resistant). Asterisks
represent drug-gene associations with a Bonferroni FDR < 0.1. e, f Representative binary distributions (left) and AUC-VAF scatterplots (right) for clinically
relevant sensitivity and resistance VAF correlations for IDH1 (e; nWT= 195 samples; nMut= 10 samples) and NRAS (f; nWT= 177 samples; nMut= 14 samples),

respectively. For each distribution (left), the boxplot represents the boundaries for the first and third quartiles with a line at each median; whiskers delimit the
highest data point below the third quartile +1.5× the interquartile distance and the lowest data point above the first quartile −1.5× the interquartile distance; p-
values are calculated using a two-sided Wilcoxon rank-sum test. For each scatterplot (right), shaded bands represent 95% confidence intervals for each linear
regression. For each error band, the measure of center is the line of best fit as derived from linear regression between the drug AUC and VAF for each mutation-
drug pair. g Schematic (top) depicting the potential correlation between the subclonal prevalence of a secondary mutation (e.g. FLT3-ITD) and sensitivity to
inhibitors. AUC-VAF scatterplots (bottom) for pairwise genotypes with enough samples (n≥ 5; DNMT3A:FLT3) where linear regression of drug AUC against
VAF revealed strong resistance trends. Shaded bands represent 95% confidence intervals for each linear regression. For each error band, the measure of center
is the line of best fit as derived from linear regression between the drug AUC and VAF for each mutation-drug pair. h Schematics representing possible
relationships between VAF and drug response. Source data are provided as a Source Data file.
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same clone progressively increases cell-autonomous leukemia
robustness leading to therapeutic resistance. Additionally, the
effects of mutation co-occurrence could be due to either cell-
autonomous or cell non-autonomous effects, even for mutations
that occur in separate clones. Overall, these findings indicate a
previously unappreciated nuance of what type of clonal hetero-
geneity more accurately associates with clinical outcomes.

Biomarkers of drug sensitivity are of significant clinical rele-
vance. Here, we present evidence that the VAF of specific
mutations in AML is predictive of drug sensitivity to a wide array
of small molecule inhibitors in various stages of clinical devel-
opment. Critically, the drug-gene correlations identified in our
approach showed no overlap with relationships identified in a
previous analysis of the same dataset9. This is most likely because
we (i) analyzed de novo and secondary samples independently
and (ii) utilize VAF as a predictive feature in this drug screening
dataset. One caveat of our approach is the assumption of steady
clonal/subclonal structures during ex vivo maintenance. The
question of why some mutations show VAF correlation to drug
sensitivity and others do not is fascinating and warrants careful
experimental study. Possible contributing factors could be the
presence of additional co-occurring resistance mutations or non-
autonomous cellular interactions (Fig. 6h). Importantly, many
VAF-drug response relationships are not evident with a
straightforward binary comparison (e.g., Fig. 6e, f) and would be
missed by traditional analyses. Further experimental follow-up
and retrospective analyses of drug response and VAF in clinical
trials are warranted to identify biomarkers of response to current
and emerging therapies

Retrospective analyses in large, aggregated cohorts are not able
to define causal relationships between molecular or clinical
observations and the underlying mechanistic biology of cancer.
Regardless, they provide comprehensive descriptions of disease
features and can identify associations not observed in smaller
studies. Although raw sequencing data was not available to uni-
formly analyze all samples in our study, intra-patient VAF rela-
tionships should be maintained regardless of the inter-patient
sequencing depth or platform, thus mitigating traditional issues
with aggregating preprocessed data. Additional studies are
required to validate our findings, as well as orthogonal data sets
such as single-cell proteomics and transcriptomics. In particular,
experimental models of co-occurring mutations and controlled
mutation timing will be important to understand how these
features drive leukemogenesis and evolution. As larger cohorts of
clinically annotated deeply sequenced AML emerge, coupled with
large single-cell studies28–30,50, validation of our molecular cor-
relations to clinical outcomes will become feasible. Retrospective
analysis of mutation VAF and response to targeted therapies in
clinical trial cohorts will be essential to validate our observations
of VAF-dependent drug responses.

Methods
Study design, cohort aggregation, and data homogenization. We performed a
systematic literature review for cohorts of sequenced adult AML patients (n ≥ 50),
excluding studies focused on specific genotypes or AML subtypes (e.g., secondary
AML, normal karyotype, single genotype, etc.) in order to maintain a broadly
representative landscape of the disease. For most studies, sequencing results and
clinical annotations were downloaded from published supplemental data tables. In
one case, additional data (e.g. VAFs, sex) were obtained through direct commu-
nication with the authors37. Molecular and clinical annotations were manually
assessed and modified when necessary to generate uniform coding across
studies. When available, raw VAFs were corrected using copy number status
or karyotype data. In total, we aggregated 13 studies into our cohort (Supple-
mentary Fig. 1a).

Clonal modeling and diversity analysis. Rigorous clonal modeling was performed
using PyClone (v0.13.0; Python v2.7)47 for all samples with whole exome
sequencing results (ntotal= 731; nde novo= 329); all variants (rather than just driver

mutations) were used to enhance the modeling. For samples analyzed by multiple
mutation callers, only consensus calls were used as inputs to PyClone, however,
reads mapped by Pindel were included because it is exclusively used to call FLT3-
ITD indels. Raw VAFs were corrected using available copy number and karyotype
information prior to clonal modeling (Supplementary Fig. 5a). Clonal architecture
was modeled using the R package ClonEvol (clonevol_0.99.11) to define types of
clonal evolution (branched or linear)48. Shannon diversity index for each tumor
was calculated using the cellular prevalence output obtained from PyClone or VAF
(R package: vegan_2.5-7).

Mutation order analysis. We defined clonal dominance/mutational ordering
based on an empirical VAF threshold. Iterating through a VAF threshold from 1-
10% showed minimal differences in pairwise mutation ordering or Bradley–Terry
modeling. Therefore, to reduce the number of ambiguous cases and also retain as
many high confidence calls as possible, a mutation was defined as occurring earlier
(clonally dominant) than a second mutation if its VAF was ≥ 5% higher. Mutations
within 5% VAF were assigned as ambiguous in their relative ordering. Using this
criterion for pairwise mutation ordering, we applied a Bradley–Terry model (R
package: BradleyTerry2_1.1-2) to all de novo samples with at least two mutations
to generate point estimates and 95% confidence intervals for relative order of
acquisition. Orderings of pairwise mutation categories (e.g., tumor suppressors,
transcription factors) were defined using a similar approach. For cases with mul-
tiple mutations in the same gene/category, only the largest VAF per gene/category
was used to assign ordering.

Drug sensitivity analysis. Drug sensitivity and whole exome sequencing results
were available for 122 small molecule inhibitors across 168 de novo patients from
the Beat AML cohort9. For each drug-gene combination, linear regression of drug
AUC against mutation VAF was performed only if the following criteria were met:
number of samples with mutation and drug data ≥ 5; ΔVAF (VAFmax−
VAFmin) ≥ 0.25; and ΔAUC (AUCmax−AUCmin) ≥75 (R package: ggpubr_0.4.0).
These heuristic cut-offs were implemented in order to restrict our analysis to drug-
gene pairs with (i) sufficient numbers of samples and (ii) a dynamic range of both
drug response (ΔAUC) and clonal heterogeneity (ΔVAF). Drug sensitivity was
defined as interactions in which increased VAF was associated with decreased
AUC; resistance was defined as interactions in which increased VAF was associated
with increased AUC. To account for multiple hypothesis testing for drug-gene pairs
meeting these criteria, we calculated q values in terms of the false discovery rate
using Bonferroni correction (R package: stats_4.0.4).

Statistical analysis. Overall survival was modeled with standard Cox
proportional-hazards regression methods using binary mutation calls, VAF
thresholds, clonality, and mutation ordering as random effects (R package: surv-
miner_0.4.9). P values from survival analyses were calculated using a log-rank test.
Optimal VAF thresholds for survival analysis were determined using maximally
selected rank statistics (R package: MaxStat v. 0.7-25). Odds ratio calculations and
Fisher’s Exact tests were used to analyze pairwise categorical variables (R package:
stats_4.0.4). Effect sizes (Cohen’s d) for differences in clinical features were cal-
culated between mutation genotypes and high vs. low VAF groups per genotype (R
package effsize_0.8.1). Multiple hypothesis testing correction was performed using
Bonferroni FDR correction to calculate reported q values (R package: stats_4.0.4).
All tests are two-sided unless otherwise indicated. All analyses were performed
using the RStudio statistical software platform v1.2.1114 and in R version 4.0.4
(2021-02-15).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Processes mutation calls and clinical data for the publicly available datasets used in this
study were obtained from the following links: TCGA (http://download.cbioportal.org/
laml_tcga_pub.tar.gz); Tyner (https://static-content.springer.com/esm/art%3A10.1038%
2Fs41586-018-0623-z/MediaObjects/41586_2018_623_MOESM3_ESM.xlsx);
Papaemmanuil (https://github.com/gerstung-lab/AML-multistage/blob/master/data/
AMLSG_Clinical_Anon.RData?raw=true; https://raw.githubusercontent.com/gerstung-
lab/AML-multistage/master/data/AMLSG_Genetic.txt); Lindsley (https://
ashpublications.org/blood/article/125/9/1367/34220/Acute-myeloid-leukemia-ontogeny-
is-defined-by); Wang (https://www.oncotarget.com/article/7028/); Au (https://
diagnosticpathology.biomedcentral.com/articles/10.1186/s13000-016-0456-8); Welch
(https://www.nejm.org/doi/full/10.1056/NEJMoa1605949); Garg (https://
ashpublications.org/blood/article/126/22/2491/34632/Profiling-of-somatic-mutations-in-
acute-myeloid); Greif (https://clincancerres.aacrjournals.org/content/early/2018/01/12/
1078-0432.CCR-17-2344.figures-only?versioned=true); Hirsch (https://static-
content.springer.com/esm/art%3A10.1038%2Fncomms12475/MediaObjects/
41467_2016_BFncomms12475_MOESM1147_ESM.pdf; https://static-
content.springer.com/esm/art%3A10.1038%2Fncomms12475/MediaObjects/
41467_2016_BFncomms12475_MOESM1148_ESM.xlsx); Huet (https://ash.silverchair-
cdn.com/ash/content_public/journal/blood/132/8/10.1182_blood-2018-03-840348/4/
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blood840348-sup-tables2.xlsx?Expires=1579153943&Signature=VCqH4IQOtZ~
x9YPe1dJSz1AHegirMKv6N4euRcbvd3gsayA~RULg17B6mjZY0lrUzbbbj5D7MdLJN-
zI0sUk4QFDz6IKvvWsV~l1CQL4J1lOHejvckLQzXikTy-
4SD62jwmDMgSeBMhXqVo6pmdHXI0iO7b8ARJV8EDZ9Bt8h~h6nIXOaf5JZqe8he-
hacxWIMjCWRd5OulQjpqQu10MLfK6GrpISgRGDYe1WODtkPIQ~o6qQ-
j~eqTFGvzwbSmhWuRGSAFKEFzPzgYLiKmkQ8errjq9vI2uHgpurlwtB98gQOnizt9-
goXVoDPsGd0P~fk8CPPEGJdUtSkOB41b8p3JTg__&Key-Pair-
Id=APKAIE5G5CRDK6RD3PGA); Majeti (https://static-content.springer.com/esm/art
%3A10.1038%2Fng.3646/MediaObjects/41588_2016_BFng3646_MOESM43_ESM.xlsx;
https://cancerdiscovery.aacrjournals.org/highwire/filestream/41655/
field_highwire_adjunct_files/6/181878_2_supp_4135424_zsdnjx.xlsx). Raw TCGA
sequencing data used in this study are available at the NIH Genomic Data Commons
[https://gdc.cancer.gov]. Raw sequencing data for the Papaemmanuil study is deposited
at the European Genome-Phenome Archive with accession number EGAS00001000275.
For the Tyner study, sequencing data and clinical annotations can be found at dbGaP
and the Genomic Data Commons. The dbGaP study ID is 30641 and accession ID is
phs001657.v1.p1. For the Welch dataset, exome sequencing data are deposited in the
database of Genotypes and Phenotypes under the accession number phs000159. For the
Huet study, raw exome and targeted sequencing data are deposited at the European
Genome-phenome Archive (EGA, https://ega-archive.org) under accession number
EGAS00001001779 - data are available upon request from the Data Access Committee of
the MyPAC clinical research group. The aggregated mutational and clinical data frames
used for the analyses in this paper are available at https://github.com/brooksbenard/
Meta_AML. Source data are provided with this paper.

Code availability
All code used to aggregate, analyze, and visualize data for this study has been deposited at
https://github.com/brooksbenard/Meta_AML. The Zenodo DOI is: https://doi.org/
10.5281/zenodo.564131551. Source data are provided with this paper.
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