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Proximal and distal effects of genetic susceptibility
to multiple sclerosis on the T cell epigenome
Tina Roostaei1, Hans-Ulrich Klein 1, Yiyi Ma 1, Daniel Felsky 2, Pia Kivisäkk3, Sarah M. Connor1,

Alexandra Kroshilina1, Christina Yung1, Belinda J. Kaskow4, Xiaorong Shao5, Brooke Rhead5,

José M. Ordovás 6, Devin M. Absher7, Donna K. Arnett 8, Jia Liu 9, Nikolaos Patsopoulos4,

Lisa F. Barcellos5, Howard L. Weiner 4 & Philip L. De Jager 1✉

Identifying the effects of genetic variation on the epigenome in disease-relevant cell types can

help advance our understanding of the first molecular contributions of genetic susceptibility

to disease onset. Here, we establish a genome-wide map of DNA methylation quantitative

trait loci in CD4+ T-cells isolated from multiple sclerosis patients. Utilizing this map in a

colocalization analysis, we identify 19 loci where the same haplotype drives both multiple

sclerosis susceptibility and local DNA methylation. We also identify two distant methylation

effects of multiple sclerosis susceptibility loci: a chromosome 16 locus affects PRDM8

methylation (a chromosome 4 region not previously associated with multiple sclerosis), and

the aggregate effect of multiple sclerosis-associated variants in the major histocompatibility

complex influences DNA methylation near PRKCA (chromosome 17). Overall, we present a

new resource for a key cell type in inflammatory disease research and uncover new gene

targets for the study of predisposition to multiple sclerosis.
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Multiple sclerosis (MS) is a genetically complex inflam-
matory disease of the central nervous system. Despite a
growing list of drugs that prevent relapses1, there is, as

yet, no preventive strategy for MS, highlighting our limited
understanding of the molecular events leading to disease onset.
Given that genetic risk factors can be presumed to be causally
linked to MS, they serve as a robust starting point for under-
standing the mechanisms predisposing to the disease. The
most recent genome-wide association study (GWAS) of MS
susceptibility2, provides compelling evidence for the effects of 32
independent susceptibility variants in the major histocompat-
ibility complex (MHC) and 200 autosomal non-MHC suscept-
ibility variants.

Our understanding of the functional consequences of these
variants remains limited2–5. Here, we examined the first level of
downstream molecular changes: alterations in the epigenome.
Specifically, we focused on mapping methylation of CpG dinu-
cleotides, an epigenomic mark for which nucleotide-resolution
data can be reliably produced throughout the genome. Insights
into the functional consequences of risk alleles on the epigenome
can, in turn, be used to further elucidate the causal chain of
biological mechanisms involved in disease onset. While the effects
of many variants are shared, others demonstrate cell-type and
context specificity. As CD4+ T cells are believed to play a major
role in the pathogenesis of MS and other inflammatory
disorders3, we purified these cells from MS patients to study the
epigenome in a disease-relevant context.

CD4+ T cells have been interrogated in a number of recent
quantitative trait locus (QTL) studies, albeit mainly from a gene
expression (eQTL) perspective and mostly in healthy controls3,6.
Here, using the Illumina MethylationEPIC array, we generated
genome-wide DNA methylation profiles from CD4+ T cells iso-
lated from 156 MS patients. These data were used to generate a
resource outlining the genome-wide genetic architecture of T cell
DNA methylation levels in a disease state. We then performed a
comprehensive set of analyses to determine the effects of MS risk
loci. As a result, we (1) provide a genome-wide cis- DNA
methylation QTL (mQTL) map of CD4+ T cells in MS patients,
which can be utilized in future studies of MS and other inflam-
matory diseases, (2) identify cis- effects of MS genetic suscept-
ibility variants on nearby CpG dinucleotide methylation, (3)
discover and validate a trans-mQTL effect of an MS variant, and
(4) demonstrate that polygenic scores of MS susceptibility influ-
ence DNA methylation at specific CpG dinucleotides and suggest
the convergence of the effects of multiple variants on methylation
levels in distal CpG sites.

Results
Data generation. We selected subjects from participants in the
Comprehensive Longitudinal Investigation of Multiple Sclerosis
at the Brigham and Women’s Hospital (CLIMB) study7 that
fulfilled our selection criteria: (1) age 18–55 years old, (2) a
diagnosis of MS fulfilling 2010 McDonald criteria, (3) a relapsing-
remitting disease course at the time of sampling, (4) being on one
of two disease-modifying therapies (either glatiramer acetate
[GA] or dimethyl fumarate [DMF]) at the time of sampling, (5)
no evidence of disease activity in the prior 6 months, (6) no
steroid use in the preceding 30 days, and (7) an Expanded Dis-
ability Status Scale (EDSS) score between 0 and 4. A prospectively
collected, cryopreserved vial of peripheral blood mononuclear
cells (PBMC) was accessed for each patient, and CD4+ T cells
were purified after thawing using a positive selection strategy and
a magnetic bead-based approach (“Methods”). DNA methylation
profiles were generated using the DNA extracted from the pur-
ified CD4+ T cells using the Illumina MethylationEPIC array. We

performed the mapping of mQTL effects using data from the
156 subjects for which both genotype and DNA methylation data
passed all quality control measures, while adjusting for the effects
of confounding factors including age, sex, and treatment (see
“Methods”; demographic details are available in Table 1).

Genome-wide mapping of cis-mQTLs in primary CD4+ T cells
of MS patients. From the 769,699 DNA methylation sites that
passed quality control measures, we found evidence for the influ-
ence of cis genetic effects (within ± 1Mb of each CpG site) on the
methylation levels of 107,922 CpGs (FDR-adjusted p < 0.05)
(Supplementary Data 1), after adjusting for the effect of technical
and confounding variables (“Methods”). The high percentage of
mCpGs (CpG sites which methylation levels are influenced by
mQTLs = 14%) is comparable to findings from previous mQTL
studies8,9. As expected, the majority of lead cis-mQTL SNPs
(mSNPs) are in a few kilobase distance from their target CpGs8,
with 50% of mSNPs within 8 kb and 90% within 123 kb of their
respective CpG sites (Supplementary Fig. 1). To examine enrich-
ment of cis-mCpGs in specific functional regions of the genome,
we performed enrichment analyses using chromatin state anno-
tations modeled for CD4+ T cells (sample #E043, Roadmap Epi-
genomics Project10), in addition to annotations for CpG islands
and gene transcribed regions. We found lower than expected
number of mCpGs in transcription start sites (TSS), transcribed
regions, and CpG islands (which often occur at or near TSS). In
contrast, enrichment was observed for mCpGs in flanking areas to
TSS, flanking areas to CpG islands (island shores), and enhancer
regions (Fig. 1a). Subset analysis revealed that the enrichment
patterns were largely similar between the two versions of the
Infinium methylation profiling platform: HumanMethylation450
and MethylationEPIC (Supplementary Fig. 2a). The identified
mCpGs were distributed over 59,603 unique functional chromatin
segments, 45% of which (n= 26,987) were not covered by
HumanMethylation450 array (Supplementary Fig. 2b), high-
lighting the added value of using MethylationEPIC over the 450
array in our study.

We then compared our results with findings from a previous
cis-mQTL study of naïve CD4+ T cells from 132 healthy controls
performed as part of the BLUEPRINT Epigenome Project9. Of
note, the Illumina 450 K array used for measuring DNA
methylation in the BLUEPRINT study contains only one-half of
the number of CpGs tested in our study. Hence, our comparison
is limited to the subset of CpGs shared between the two arrays. Of
our 107,922 identified mCpG-mSNP pairs, 40,853 (38%) were
tested in the BLUEPRPINT study. Of those, 38,776 (95%) showed
the same direction of effect, 33,128 (81%) also had a nominally
significant p value (p < 0.05), and 25,544 (63%) had an FDR-
adjusted p < 0.05 in the BLUEPRINT data (Fig. 1b, Supplemen-
tary Data 1). The agreement between the two studies is further
visualized using the estimated standardized regression coefficients
for the effects of SNPs on the methylation of target CpGs
(Fig. 1b).

In order to investigate whether the 5% of mQTL effects that
showed opposite direction of effect in the two datasets are MS- or
treatment-specific, we performed gene set enrichment analyses on
the annotated genes for the relevant mCpGs. No enrichment was
observed for MS-susceptibility associated genes2. Moreover, these
mCpGs were not enriched for differentially-methylated CpGs in
CD4+ T cells of DMF-treated MS-patients11. Further comparison
with the subset of available cis-mQTL results (n= 18,221 mCpG-
mSNP pairs) from a study of CD4+ T cells from 717 related
individuals of the GOLDN study (dbGaP Study Accession:
phs000741.v2.p1) (Supplementary Data 1) confirmed that the
majority of the identified cis-mQTLs had a similar direction of
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effect in all three datasets (92.4%) (Supplementary Fig. 3). The
slight differences between our results and the two other studies
might have arisen from technical variation and population-
specific effects, as well as the choice of cell type between our study
and the BLUEPRPINT study (CD4+ T cells comprising both
naïve and memory cells in our sample vs. naïve-only CD4+

T cells in the BLUEPRPINT study) and disease status (MS
patients in ours vs. healthy controls in the BLUEPRINT and
GOLDN studies). Nonetheless, the high degree of agreement
between the three studies provides validation for our methylome-
wide results.

Colocalized cis-mQTL effects of non-MHC MS susceptibility
loci. Of the 107,922 significant cis-mQTL effects, lead mQTL
SNPs for 3090 CpGs were located within 100 kb of the lead non-
MHC MS-associated SNPs2 (n= 200). To determine the loci with
likely shared causal effects on cis DNA methylation and MS
susceptibility while minimizing false positive findings as a con-
sequence of coincidental overlap because of linkage dis-
equilibrium (LD), we performed Bayesian colocalization
analyses12 between MS and cis-mQTL effects. MS susceptibility
summary association statistics were taken from the discovery
phase of the recent MS GWAS2 performed using data from
41,505 individuals. We found strong evidence of colocalization
(posterior probability >0.8) between 19 MS-associated loci and 43
cis-mQTL effects (Supplementary Data 2). The top three colo-
calized loci (posterior probability >0.95) are shown in Fig. 2a: the
rs2248137 MS effect on chromosome 20 was colocalized with the
cis-mQTL effect for cg14595058 upstream of the CYP24A1 gene;
the rs1077667 MS effect on chromosome 19 was colocalized with
the cis-mQTL effect for cg23071186 located in the TNFSF14 gene;
and the rs7731626 MS effect on chromosome 5 was colocalized
with cis-mQTL effects for 13 CpGs located in and around the
ANKRD55 and IL6ST genes (8 CpGs with posterior probability
>0.95 and 5 CpGs with posterior probability >0.8) (CpG locations
are illustrated in higher resolution in Supplementary Fig. 4).
Further examination of the 13 CpGs in the chromosome 5
colocalized locus revealed that they were all located in methyla-
tion open sea regions spanning over an area up to 172 kb from
the lead MS SNP. Reference chromatin state annotation (Road-
map Epigenomics Project10) suggested that they were located in
putative enhancer regions, and their methylation levels were
positively correlated with each other (Supplementary Fig. 5).
Colocalization with mQTL effects has previously been reported
for this locus in the BLUEPRINT study9. The 16 other colocalized
MS loci with posterior probability >0.8 and <0.95 affected
methylation levels of 28 CpGs including CpGs in the vicinity of
C1ORF106, RGS14, AHI1, CHST12, ZNF767P, TRIM14,
SLC15A3, RMI2, TBX6, TEAD2, CCDC155, NCOA5, and NCF4
genes (Supplementary Data 2).

We further compared the results of our colocalization analysis
with the outcome of a similar analysis that we performed using
cis-mQTL summary statistics obtained from the BLUEPRINT
study. Data from 1,414 CpGs (out of 3,090) were shared between
the two MS-cis-mQTL colocalization analyses, and high correla-
tion was observed between colocalization posterior probability
estimates (Spearman’s ρ= 0.71) (Fig. 2b). Of the 43 CpGs with
colocalized MS-cis-mQTL effects in our data, eight were available
in BLUEPRINT. All, except for the cg14130459 cis-mQTL effect
in the SLC15A3 gene, showed replication, with comparable
evidence of colocalization using the BLUEPRINT data (posterior
probability estimates >0.67, Supplementary Data 2, Fig. 2b). The
lack of colocalization evidence between MS and the cg14130459
cis-mQTL effect might be explained by the weaker mQTL
association observed for cg14130459 in naïve CD4+ T cells ofT
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healthy participants (p= 0.006, BLUEPRINT study) in compar-
ison to CD4+ T cells of MS patients (p= 2.68 × 10−10, our study).

Taking advantage of available RNA sequencing data from
primary naïve and memory CD4+ T cells from a subset of our
subjects (n= 36), we examined the gene expression correlates of
the 43 identified CpGs with colocalized MS susceptibility and cis-
mQTL effects. Our association analyses between methylation
levels of the identified CpGs and expression levels of the genes in
cis (±1Mb of each CpG) revealed significant DNA methylation-
gene expression associations at one of the colocalized effects
(inverse correlation with ANKRD55 gene expression at 5% FDR,
top association: cg21124310: p= 2.7 × 10−6 in naïve and
p= 1.2 × 10−5 in memory CD4+ T cells). The MS risk allele at
this locus, rs7731626G, has previously been linked with higher
ANKRD55 expression, and the known cis-eQTL effect has been
demonstrated to colocalize with the MS effect in CD4+ T cells of
healthy individuals5,9. Similarly, we observed cis-eQTL effects for
the MS SNP on ANKRD55 expression in both naïve
(p= 6.9 × 10−4, t= 3.7, Fig. 2c) and memory CD4+ T cells
(p= 1.0 × 10−4, t= 4.4) in our MS subjects. Our analyses further

suggested that the effect of rs7731626G on ANKRD55 expression
is mediated by its effect on cg21124310 methylation (p for
mediated effect <2 × 10−16 and p for direct effect >0.05 in both
naïve and memory CD4+ T cells), while the effect of rs7731626G

on cg21124310 methylation is not mediated by its effect on
ANKRD55 expression (p for mediated effect >0.05) (see
“Methods“). We note that our sample size for the DNA
methylation-gene expression sub-analysis was small, limiting
our power to identify the weaker gene expression correlates of
other colocalized MS-mQTL effects. However, the identified
genetic loci and their corresponding CpGs can be used in future
studies of proper sample size with specific focus on identifying the
gene expression correlates of these loci and their relationship with
methylation effects.

We also reviewed the cis-eQTL studies of peripheral blood
mononuclear cells2, purified blood immune cells3,6,9, and brain
tissue8 from MS patients or healthy controls, and summarized the
results for lead MS and lead mQTL SNPs of the colocalized MS-
cis-mQTL effects in Supplementary Data 3. We note that 3 of the
colocalized loci (SNPs in the vicinity of C1ORF106, CMC1, and
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Fig. 1 Characterization of genome-wide significant cis-mCpGs and cis-mQTLs. a Enrichment of the identified cis-mCpGs in comparison to all tested CpGs
in relation to UCSC CpG islands and gene functional regions (annotations from R IlluminaHumanMethylationEPICanno.ilm10b2.hg19 package) and
chromatin states modeled for CD4+ T cells (annotations from Roadmap Epigenomics Project, sample #E043). Significant enrichment/depletion are shown
using upwards/downwards arrows, respectively. b Percentage of our identified cis-mCpGs available in the BLUEPRINT study and the comparison between
the two studies regarding the direction of effect and significance of association for the lead mSNPs are shown on the left. Comparison between the effect
sizes found in our study and in BLUEPRINT are shown on the right.
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SOX8 genes) have not been previously associated with cis-eQTL
effects in any cell types in the above-mentioned studies, and five
additional loci (SNPs close to EIF3B, TMEM25, TNFSF14, CD40,
and CYP24A1 genes) have been associated with cis-eQTL effects
in cell types other than CD4+ T cells. This information highlights
the need for further investigation of the functional effects of
these loci.

Colocalized trans-mQTL effects of non-MHC MS susceptibility
loci. To investigate the influence of MS susceptibility loci on
DNA methylation at distant CpG sites (trans-mQTL effects), we
first mapped the trans-mQTL effects of all variants within 100 kb
of the lead MS-associated SNPs. We then performed colocaliza-
tion analysis and found evidence for colocalization (posterior

probability >0.95) of the effect of the MS locus centered on
rs3809627 (chromosome 16) and three trans-mQTL effects. All
three trans-mCpGs were located in a CpG island on chromosome
4 in the area flanking a transcription start site in the PRDM8 gene
(p-value for the top colocalized mQTL effect: rs3809627-
cg27018912= 5.7 × 10−11, t= 7.1, colocalization posterior prob-
ability= 0.98) (Fig. 3a, Supplementary Fig. 6, Supplementary
Data 2). While this MS locus centered on rs3809627 also showed
colocalization with 2 cis-mQTL effects (CpGs in an enhancer
region in the TBX6 gene; colocalization posterior probability=
0.92), the methylation levels of the trans and cis mCpGs were not
correlated (Supplementary Fig. 7), suggesting that the trans-
mQTL effects of rs3809627 were not directly mediated through its
cis-mQTL effects.

Fig. 2 Colocalized cis-mQTL effects of MS susceptibility loci. a The top 3 colocalized MS-cis-mQTL effects are illustrated (posterior probability >0.95 for
colocalization between MS susceptibility and ≥ 1 cis-mQTL effect). The MS GWAS rows (blue dots) show -log(p-value) of association between SNPs and
MS susceptibility in the discovery phase of the 2019 IMSGC GWAS. CpG rows (plum dots) show -log(p-value) of association between SNPs and the
specified cis-CpGs methylation levels. Locations of the local CpGs measured with the Infinium MethylationEPIC kit are shown using light blue vertical lines.
Gene exon/intron positions are based on Ensembl 93. Chromatin state annotations for CD4+ T cells are downloaded from the Roadmap Epigenomics
Project (sample #E043). Green vertical lines represent the genomic location of the colocalized CpGs: Long vertical lines traversing all rows represent the
top specified CpGs, while other vertical lines represent the additional colocalized cis-mCpGs with posterior probability >0.8. All genomic positions are in
GRCh37 (hg19) coordinates. b Comparison between MS-cis-mQTL colocalization posterior probabilities using mQTL summary statistics from our study
and BLUEPRINT for the available common CpGs. Vertical red line represents the threshold for high colocalization posterior probability in our study (i.e.,
0.8). c The cis-mQTL, cis-eQTL, and CpG-mRNA association for the chromosome 5 top MS-cis-mQTL colocalized effect (n= 156, 36 and 36, respectively).
Methylation levels are shown in M-values. Gene expression values are in TPM. Boxplot center lines represent median; the lower and upper hinges
correspond to the 25th and 75th percentiles; the lower/upper whisker extends from the hinge to the smallest/largest value no further than 1.5× inter-
quartile range. Error band represents 95% confidence interval.
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We replicated our trans-mQTL finding - rs3809627 on
chromosome 16 and the chromosome 4 CpG island—in three
independent datasets (Fig. 3b). First, we found the same effect
using the BLUEPRINT naïve CD4+ T cell DNA methylation data
(p= 4.8 × 10−6). Second, we replicated the trans-mQTL in a
dataset of DNA methylation profiles from whole blood of 208 MS
patients from UC Berkeley (p= 5.4 × 10−13). Third, we analyzed
targeted methylation data from CD4+ T cells purified from 48
healthy participants in the PhenoGenetic study13 (p= 7.1 × 10−4)
(see “Methods” for more details). These results generate high
confidence in the trans-mQTL effect of rs3809627 and establish it
as an effect seen in both MS and healthy subjects. Given the

previous implications of activated CD4+ T cells in the pathophy-
siology of MS, we had generated, in parallel, a dataset of ex vivo
activated CD4+ T cells using a subset of the PhenoGenetic subjects
(n= 28) to investigate the effect of ex vivo activation on the
methylation of CpGs of interest. We did not observe a significant
difference in the CpG island methylation in the pairs of non-
stimulated and stimulated samples (p= 0.95). However, assessing
the functional effects of the trans-mCpGs using the BLUEPRINT
data, we observed a highly significant positive association between
cg19409579 methylation level and PRDM8 mRNA expression in
naïve CD4+ T cells (n= 127, ρ= 0.49, association p value adjusted
for age and sex= 4.7 × 10−9, Fig. 3c).

Fig. 3 Colocalized trans-mQTL effect of MS susceptibility locus centered on rs3809627. a The top colocalized MS-trans-mQTL effect observed between
MS susceptibility locus centered on rs3809627 in chromosome 16 and cg27018912 located in a CpG island in chromosome 4. Left: Association (-log(p-
value)) between SNPs located in the chromosome 16 locus and MS susceptibility (blue dots) and the trans-mCpG cg27018912 methylation levels (plum
dots), accompanied by visualization of the CpGs, genes and modeled chromatin states in the chromosome 16 locus. Green vertical lines represent
additional colocalized cis-mCpGs (posterior probability >0.8). Right: Genomic position of the trans-mCpGs (cg27018912, cg19409579 and cg04235768)
on chromosome 4 (vertical green lines) in relation to nearby CpGs, genes, and modeled chromatin states. The top colocalized trans-mQTL effect is shown
in the bottom using methylation M-values (n= 156). b Replication of the identified trans-mQTL effect between rs3809627 MS susceptibility variant
(chromosome 16) and CpGs in the CpG island located on chromosome 4 in three independent studies. Methylation levels are shown in M-values. Data is
shown for cg19409579 in the BLUEPRINT study as the top available trans-mCpG measured with the Infinium HumanMethylation450 array. Methylation
data shown for the PhenoGenetic study are the average methylation levels of all the measured CpGs in the identified CpG island. Boxplot center lines
represent median; box limits represent upper and lower quartiles. c Significant CpG-mRNA association was observed between cg19409579 trans-mCpG
and PRDM8 gene expression in the BLUEPRINT study. Methylation levels are in M-values. Gene expression levels are ComBat normalized values available
from the BLUEPRINT. Error band represents 95% confidence interval. Boxplots (a, b): center lines represent median; the lower and upper hinges
correspond to the 25th and 75th percentiles; the lower/upper whisker extends from the hinge to the smallest/largest value no further than 1.5× inter-
quartile range.
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cis and trans DNA methylation effects of an MS susceptibility
polygenic score for the MHC. The MHC has a complex long-
range LD structure and harbors 32 independent genome-wide
significant associations with MS2, including the haplotype with
the largest MS-associated risk, HLA-DRB1*1501. Given the
region’s complexity, we elected to focus our investigation on an
assessment of the summary risk of MS based on the susceptibility
variants found within the MHC. Specifically, we calculated a
weighted MHC polygenic score representing the aggregate genetic
effects of all of the independent susceptibility variants in this
region and used this measure as the outcome for our methylome-
wide association study (MWAS). Our MWAS revealed significant
associations between the MS MHC polygenic score and the
methylation of 55 CpGs (FDR < 0.05), 54 of which were located
inside the extended MHC region on chromosome 6, and one was
located on chromosome 17 (Fig. 4a, Supplementary Data 4,
Supplementary Fig. 8).

The 54 identified CpGs located in the MHC region consisted of
both hypo- and hyper-methylated CpGs in association with a
higher MS MHC polygenic score. The majority of these CpGs
were located in the MHC class II region, which also included the
most significant association (a CpG located in the HLA-DRB1
gene) (Fig. 4b, Supplementary Fig. 9). The majority of the hypo-
methylated CpGs were located in two CpG islands in or around
the transcription start sites of HLA-DRB1 and HLA-DQB1 genes,
although both genes also had a few hyper-methylated CpGs. On
the other hand, the majority of the hyper-methylated CpGs were

located in HLA-DRB5, HLA-DRB6 and LOC101929163 (XXbac-
BPG154L12.4) (Supplementary Data 4, Supplementary Fig. 10).
Our findings are supported by previous studies14,15 which also
observed hypo- and hyper-methylated CpGs in the MHC class II
region in MS patients in comparison to healthy controls and also
in association with the HLA-DRB1*1501 genotype. Moreover,
replication analysis using the BLUEPRINT data showed compel-
ling evidence of association with the MHC polygenic score for all
available CpGs (Supplementary Data 4).

The only CpG significantly associated with the MS MHC
polygenic score outside of the MHC region was located in an
enhancer of the PRKCA gene on chromosome 17 (cg03805787,
p= 1.2 × 10−6, q= 0.018, t= 5.8) (Fig. 4c). The effect of the
MHC polygenic score on cg03805787 methylation was not
mediated by the methylation of the CpGs in the MHC region.
Additionally, this effect was not explained only by the HLA-
DRB1*1501 genotype, as the effect of the MHC polygenic score
remained significant (p= 0.002) after accounting for the effect of
HLA-DRB1*1501 in the model. Replication analysis for
cg03805787 could not be performed using data from the
BLUEPRINT study, as measurement of cg03805787 methylation
is not included in the Illumina 450 K array. However, we did
replicate the association of the MHC polygenic score and
cg03805787 methylation in CD4+ T cells from healthy partici-
pants in the PhenoGenetic study (p= 0.025, Fig. 4c). No
significant difference was found in cg03805787 methylation levels
between primary and ex vivo-activated CD4+ T cells in these

Fig. 4 cis and trans DNA methylation effects of MS MHC polygenic score. a Manhattan plot shows association p-values between CpG methylation levels
and MS-associated MHC polygenic score. Red horizontal line shows the significance threshold (FDR < 5%). Top CpGs in the two significant regions are
specified. b t-statistics for positive and negative associations between the methylation levels of the CpGs located inside the extended MHC region and the
MHC polygenic score are shown (red: positive, blue: negative). The inset illustrates the genomic location of the significant CpGs in the MHC class II region
in relation to nearby CpGs, genes, and modeled chromatin states. Blue/red vertical lines represent the locations for CpGs with negative/positive
associations with the MHC polygenic score, respectively. Association between the top identified CpG, cg09139047 located in the HLA-DRB1 gene, and
MHC polygenic score (shown in Z-scores) is visualized in the top right corner. Colors represent the number of HLA-DRB1*1501 alleles. c The genomic
location for cg03805787 (associated with the MHC polygenic score in chromosome 17, red vertical line) is shown in relation to surrounding CpGs, genes,
and modeled chromatin states. Bottom panel illustrates the association between cg03805787 methylation levels (M-values) and MHC polygenic score (Z-
scores) in our main study of MS subjects, as well as the replication in the healthy subjects of the PhenoGenetic study. Error bands (b, c) represent 95%
confidence interval. MHC=Major Histocompatibility Complex.
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individuals (p= 0.84). This finding on the effects of MHC genetic
variation on DNA methylation in the PRKCA region opens an
interesting arena for further investigation, as this gene may play a
role as a focal point for the functional consequences of MHC
variants.

DNA methylation effects of MS susceptibility total polygenic
score. In our final analysis, we investigated the effects of two MS
multi-locus polygenic scores on DNA methylation in order to find
the targets for the aggregate effects of known MS susceptibility loci
that could act as part of singular biological pathways. Our MWAS
on the aggregate effects of non-MHC MS susceptibility loci (non-
MHC polygenic score) on DNA methylation in CD4+ T cells did
not result in any significant finding (all FDR-adjusted p > 0.05).
However, 38 CpGs showed significant association with the MS
total polygenic score (i.e., the sum of the MS MHC and non-MHC
polygenic scores) at FDR < 0.05 (Fig. 5a, Supplementary Data 5). 36
of these CpGs were located in the MHC and were also identified in
association with the MS MHC polygenic score alone. The non-
MHC polygenic score did not contribute to these associations. In
contrast, the association of 2 CpGs that were found outside of the
MHC, on chromosomes 10 and 17, could not be explained by cis
effects. Methylation of cg16050799 (in an intron of the CRHR1
gene on chromosome 17, Fig. 5a) was affected by independent and
additive effects of both MHC (p= 7.6 × 10−4) and non-MHC
(p= 1.9 × 10−6) polygenic scores, suggesting a convergence of the
effects of multiple MS-associated loci on this methylation site. On
the other hand, cg19223119 methylation (located in the DIP2C
gene on chromosome 10) was mainly associated with the MHC
polygenic score (p for MHC Score = 6.5 × 10−6, p for non-MHC
Score = 0.024).

As cg16050799 methylation was affected by both MHC and
non-MHC polygenic scores, we decided to further characterize
this effect and identify the individual MS-associated loci which

were driving this association. Although no individual association
passed the multiple comparison testing correction (FDR < 0.05),
results revealed suggestive (p < 0.05) associations between three
MHC and six non-MHC risk loci and higher cg16050799
methylation. Gene set enrichment analysis performed on genes
associated with the six non-MHC risk loci (n= 168; details can be
found in the “Methods”) showed enrichment for the IL-6 and
NF-κB pathways (Fig. 5b, Supplementary Data 6). Replication
analysis could not be performed for cg16050799, as the
methylation measurement was not available as part of the
BLUEPRINT methylation array and the measurements per-
formed in the PhenoGenetic samples did not pass quality control.
In addition, the MHC variants were not imputed in the UC
Berkeley study, and the association between non-MHC polygenic
score and cg16050799 methylation was not significant in their
whole blood sample. Given the shortcomings of our replication
attempts, we could not determine the replicability of the observed
association. However, we believe that convergent effect of both
MHC and non-MHC polygenic scores on cg16050799 methyla-
tion in CD4+ T cells of MS patients deserves more thorough
investigation in future studies.

Discussion
Our examination of the genetic architecture of DNA methylation
profiles of primary CD4+ T cells from MS patients yielded two
major products. First, we provide a new resource: a genome-wide
cis-mQTL map for primary CD4+ T cells which is more extensive
than the existing map (e.g., the cis-mQTLs available from the
BLUEPRINT Epigenome Project9) due to a greater number of
DNA methylation sites being assessed. Our extended T cell DNA
methylation mQTL map will therefore be useful to a wide variety
of investigators, including those outside of the field of MS. Results
for the significant cis-mCpGs are available in Supplementary
Data 1. Importantly, there is high concordance of the cis-mQTL

Fig. 5 DNA methylation effects of MS total polygenic score. a Manhattan plot shows association p-values between CpG methylation levels and MS total
polygenic score. Red horizontal line shows the significance threshold (FDR < 5%). Top CpGs in the three significant regions are specified. The genomic
location for cg16050799 (the top associated CpG outside the MHC region, red vertical line) in relation to nearby CpGs, genes, and modeled chromatin
states, in addition to its association with the MS total polygenic score (Z-scores) is further shown. Error band represents 95% confidence interval.
Methylation levels are shown in M values. b Genomic locations of MS susceptibility alleles nominally associated with cg16050799 methylation (p < 0.05)
are shown. Gene sets enriched for genes associated with these loci are specified.
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effects in CD4+ T cells from MS patients (our study) with those
found from healthy individuals (the BLUEPRINT and GOLDN
studies), which (1) increases our confidence in the robustness of
all resources and (2) suggests that the majority of our cis-mQTL
effects are not specific to MS. This makes our cis-mQTL map an
excellent exploratory resource for the study of cis functional
effects of genetic loci associated with other diseases that have
CD4+ T cell involvement and other CD4+ T cell-related traits
such as CD4+ T cell functional phenotypes.

Second, in a series of analyses focused on MS, we identified not
only the cis effects of individual MS susceptibility loci but also
robust evidence for trans effects: (a) the MS locus near TBX6 on
chromosome 16 influences methylation of a CpG island in the
PRDM8 gene on chromosome 4, and (b) the MHC polygenic score
affects methylation of an enhancer of PRKCA on chromosome 17.
Both of these results are supported by replication analyses per-
formed using independent datasets of healthy subjects and MS
patients. Such robust trans-QTL effects are notoriously difficult to
identify, and, here, they suggest that there may be convergence of
the effects of multiple MS risk variants on DNA methylation of
sites that are not themselves genetically implicated in MS.

PRDM8 belongs to a family of histone methyltransferases
that are believed to act as negative regulators of transcription
and play an important role in the development and cell differ-
entiation. Hypermethylation of PRDM8 is associated with the
first step of thymocyte differentiation (transition from thymic
progenitors with lymphomyeloid potential to T-lineage-restricted
progenitors)16. Among T cell subtypes, PRDM8 has higher
expression levels in regulatory, memory and ex vivo activated
CD4+ T cells6. Its chromatin accessibility increases upon stimu-
lation in naïve CD4+ T cells, and the region remains accessible in
memory CD4+ T cells17. Although PRDM8 has not previously
been associated with MS, our replicated trans-mQTL findings
suggests a role for this gene in the peripheral immune patho-
physiology of MS as a downstream effect of the rs3809627 MS
susceptibility variant.

Given that the MHC is by far the largest genetic risk factor for
MS, the PRKCA region may offer a potential alternative to
functional dissection of the genetically complex MHC region as
we develop prevention strategies. The PRKCA locus has been
linked genetically with MS in familial MS cases in independent
sets of British18, Finnish and Canadian families19. Protein kinase
C alpha (PKCα, encoded by the PRKCA gene) is a member of a
family of serine/threonine protein kinases which is expressed
ubiquitously in T cells and is involved in T cell receptor como-
dulation (i.e., downregulation of non-engaged T cell receptors
following peptide-MHC complex engagement and T cell
activation)20. Programmed downregulation of T cell receptors is
believed to represent a negative feedback mechanism that con-
strains T cell effector function in order to avoid excess inflam-
matory damage21. In addition, PKCα has been implicated in
signaling pathways necessary for T cell interferon gamma22,
interleukin (IL)-223 and IL-17A24 production which are impli-
cated in MS pathogenesis, and Prkca deficiency protects mice
from experimental autoimmune encephalomyelitis (EAE, an MS
animal model)24. Finally, pharmacologic inhibition of PKCα has
been shown to be beneficial in models of a number of other T
cell-related immune conditions25. This extensive biological
understanding of PRKCA is consistent with our observation that
the effects of the MHC polygenic score on MS susceptibility may
be exerted, in part, through this locus.

Likewise, our finding on the effect of MS total polygenic score
on methylation of the CRHR1 region, if replicated, would provide
an interesting target for modulation of the convergent effects of
several MS susceptibility loci. CRHR1 is a receptor protein for
corticotropin-releasing hormone (CRH). Peripheral CRH is

believed to have proinflammatory effects, with CRH-deficient
mice showing an attenuated form of EAE and their CD4+ T cells
showing reduced proliferation and a shift towards Th2 cytokine
profile26. Hence, our finding might relate to the role of cortico-
tropin hormone-related pathways in MS treatment or prevention.

In terms of the 19 MS susceptibility loci with colocalized cis-
mQTL effects (with the TBX6 locus also having the colocalized
trans-mQTL effect), seven were confirmed in the BLUEPRINT
data, and the other 12, while significant in our analysis, will need
further validation. While these analyses prioritize certain haplo-
types as likely having effects on both MS susceptibility and cis or
trans-DNA methylation, colocalization methods are limited in
their ability to distinguish between two colocalized effects and
two independent effects whose causal variants are in very high
LD. Moreover, colocalization does not necessarily represent a
mediatory causal relationship whereby one of the traits (e.g.,
DNA methylation) mediates the effect of genetic variation on the
other trait (e.g., MS risk). A pleiotropic effect (i.e., independent
effects of genetic variation on DNA methylation and MS risk) is
alternatively possible, and the exact nature of the relationship
(mediation, partial mediation, or full independence) cannot be
resolved without large-scale longitudinal data. Nevertheless,
colocalized MS and mQTL effects are reasonable candidates for
further molecular and functional interrogation.

In addition, we acknowledge that our DNA methylation
measurements were performed only on primary CD4+ T cells
and not in the other cell types known to be involved in MS
pathophysiology (such as B cells, NK cells, monocytes and
microglia). Moreover, due to the cross-sectional design of our
study, we were not able to take into account the dynamics of
DNA methylation. Finally, our analyses are restricted to those
CpGs interrogated by the array.

Although available information from previous eQTL and pro-
tein QTL studies have helped to identify the functional con-
sequences of a number of MS risk variants2–5,27, it is notable that
not all of our identified DNA methylation-associated MS variants
have previously been associated with gene or isoform expression
changes (Supplementary Data 3). This lack of gene-level infor-
mation can stem from a number of reasons, including cell type- or
context-specificity of the effects, or exclusion of genes with lower
levels of total mRNA or isoform expression from prior analyses. In
addition to providing complementary information to eQTL
results, mQTL studies can be used to prioritize genetic loci for
more thorough investigation of their gene-level effects. In line with
this, and despite the moderate sample size, we were able to show
that the rs7731626 MS variant’s effect on ANKRD55 RNA
expression is likely caused by altered DNA methylation in cis.

Our new data resource has therefore generated clear paths for
further investigating the molecular events that contribute to the
onset of MS at 19 of the more than 150 validated susceptibility
loci. By sampling CD4+ T cells in an inflammatory disease
population, we have not only validated the robustness of the
previous mQTL results (BLUEPRINT and GOLDN studies) for
this cell population, but also made the important observation that
most of the evaluated mQTLs are not significantly different in
health and disease. This makes our expanded set of 107,922
(82,374 new) CD4+ T cell mQTLs of interest to a broad array of
investigators interested in this important cell type outside of the
MS context. Finally, our strategy of targeted trans-mQTL inves-
tigations returned replicable results in the PRDM8 and PRKCA
loci, providing important evidence of the propagation of the
functional consequences of MS variants outside of their
immediate vicinity and a demonstration of the utility of our
approach to find distal functional consequences. Our results will
therefore help to ground future study designs to continue to
elaborate the cascade of events leading to MS onset.
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Methods
Main methylation study
Subjects. Subjects were participants in the Comprehensive Longitudinal Investi-
gation of Multiple Sclerosis at the Brigham and Women’s Hospital (CLIMB)
study7. CLIMB is a natural history observational study of MS, in which participants
undergo semi-annual neurological examinations and annual magnetic resonance
imaging and blood draw, from which PBMC are cryopreserved. In 2015, cryo-
preserved PBMC samples from subjects meeting the following criteria were pulled
from the archive for sample processing: (1) age 18–55 years old, (2) a diagnosis of
MS fulfilling 2010 McDonald criteria, (3) a relapsing-remitting disease course at the
time of sampling, (4) being on disease-modifying therapies (either GA or DMF) at
the time of sampling, (5) no evidence of disease activity in the prior 6 months, (6)
no steroid use in the preceding 30 days, and (7) an EDSS score between 0 and 4 at
the time of sampling. Of note, the patients were recruited at the time of clinical
remission in order to avoid the transient and heterogeneous effects associated with
clinical relapse and its treatment, while capturing the underlying chronic disease
processes. The study was approved by the Institutional Review Board of the
Brigham and Women’s Hospital, and all participants had signed a written
informed consent to participate in CLIMB. Samples from 208 patients who fulfilled
the criteria were used for further processing.

Peripheral blood CD4+ T cell isolation. PBMC were collected prospectively from
participants using the Immune Tolerance Network (https://www.immunetolera
nce.org/) protocol to ensure data quality and to minimize variation among samples.
In short, fresh blood was processed within 4 h using the Ficoll procedure to extract
PBMC. The PBMC were then resuspended in fetal bovine serum with 10% DMSO
and cryopreserved in liquid nitrogen. The samples meeting study criteria were
removed from the sample archive and thawed in batches. Cell viability was accessed
by acridine orange/propidium iodine staining and CD4+ T cells were isolated using
a positive selection strategy implemented with Miltenyi magnetic CD4 MicroBeads
(130-045-101). 1.7 million CD4+ T cells were obtained from each vial (range:
0.26–6.9 million). Isolated cells were resuspended into lysis buffer, and DNA was
extracted from each sample using QIAamp DNA Blood Mini Kits (Qiagen 51104).

DNA methylation data. Whole-genome DNA methylation measurement was per-
formed on DNA from purified CD4+ T cells using Infinium MethylationEPIC
BeadChip (Illumina 850 K array) by the Center for Applied Genomics Genotyping
Laboratory at the Children’s Hospital of Pennsylvania. Quality control was per-
formed using minfi28 by comparing log2 median intensities of methylated and
unmethylated channels, inspecting samples’ beta distributions and control probes
bisulfite conversion rates, and removing samples with detection p values > 0.05 at
>1% of the methylation sites. No sample was excluded at this step and average
probe detection p values were <0.01 for all samples. Further processing included
normalization using Noob29 and BMIQ30 algorithms (from minfi28 and
wateRmelan31 packages, respectively), removing methylation sites with beadcount
<3 in >5% of samples or detection p value > 0.01 in any sample, in addition to sites
located on sex chromosomes, sites associated with probes with polymorphic targets
with minor allele frequency >1% in individuals with European ancestry32, and sites
associated with cross-reactive probes32. M-values were calculated for 769,699
methylation sites to be used in statistical analysis. Data from probes measuring
single nucleotide polymorphisms were also extracted to be used for identity check
by cross-referencing with the genetic data.

Genotyping data. Whole-genome genotyping data were available for the majority of
participants (n= 180) as part of previously genotyped batches of CLIMB samples
using Illumina MEGA-EX and Affymetrix 6.0 arrays. Preprocessing of the genetic
data was performed using PLINK 2.033. SNPs with call rate <95% and samples with
genotyping rate <90%, mismatch between recorded sex and genetic sex, and low or
high heterozygosity rates (>3 standard deviation) were removed. Data from the two
genotyping batches were merged and samples from related individuals (pi-hat >
0.125) were also excluded. Multidimensional scaling was performed using Hap-
Map3 reference data. Samples from individuals of non-European ancestry and
ethnic outliers with >3 standard deviation difference from the European samples
were identified and further removed (final N at this stage = 158). Imputation was
performed for each genotyping batch separately using the Michigan Imputation
Server34 and the Haplotype Reference Consortium (HRC) panel v1.1. Imputed data
from the study participants were merged, and SNPs with low imputation quality
(R2 < 0.8) were removed.

Final dataset. Principal component (PC) analysis was performed on the methyla-
tion data from individuals that passed genetic data quality control (n= 158). The
first four principal components explained 39% of the total variability (Supple-
mentary Fig. 11) and were used to remove outlier samples from the methylation
data (>3 standard deviation on any of the 4 PC values). Two additional samples
were removed using this measure, and the final dataset consisted of data from 156
individuals (demographic details are available in Table 1).

mQTL analyses (cis and trans). We used QTLtools35 to perform genome-wide
mapping of CD4+ T cell cis-mQTLs, as well as targeted mapping of trans-mQTLs
among SNPs in 100 kb of the lead autosomal non-MHC MS-associated SNPs

reported in2. SNPs with minor allele frequency <0.05, minor allele count <15, and
departure from Hardy-Weinberg equilibrium (p < 1 × 10−6) were excluded from
mQTL analyses.

For the cis-mQTL analysis, linear regression analysis was performed between
quantile normalized DNA methylation M-values and imputed genotype dosages for
SNPs in cis (±1Mb) of each CpG site, accounting for the effects of age, sex,
treatment, genotyping array, the first three genotyping PCs, and the first FDR
methylation PCs. The nominal p values for the top variants in cis were then adjusted
for the number of tests performed in cis using a permutation scheme (n= 1000
permutations) which models the null distribution of associations using a beta
distribution. Finally, to account for the multiple CpG sites tested across the whole
genome, significant associations were reported at 5% False Discovery Rate (FDR).

For the trans-mQTL analysis, linear regression analysis was performed between
SNPs in ±100 kb of the lead MS-associated SNPs and all CpG sites outside their cis
windows, accounting for the effects of the previously mentioned covariates. The
nominal p-values were adjusted for the number of variants being tested using the
null distribution of associations built from beta approximation of permutation
outcome by permuting and testing associations between randomly selected 10,000
CpG methylation levels and all included variants. FDR adjustment was then
implemented to account for the multiple CpG sites being tested.

Colocalization analyses. Analyses were performed using the R coloc package12 in
order to determine whether mQTL effects and MS susceptibility effects that are
located in close proximity of each other are likely the result of a shared causal variant.
Briefly, for each autosomal non-MHC MS locus, mQTL effects whose lead SNPs were
located in 100 kb of the lead MS SNP were identified. Colocalization of the effects of
each identified MS–mQTL pair was assessed separately. The input data for each
analysis consisted of: 1) summary association statistics (p value, beta -regression
coefficient-, variance of beta, sample size, and minor allele frequency) of SNPs in
100 kb of the lead MS SNP extracted from the discovery phase of the IMSGC GWAS
study2 (n= 14,802 MS and 26,703 control participants), as well as our cis or trans
mQTL analyses; 2) the suggested prior probabilities12 of 1 × 10−4 for the association
between each SNP and each of the two traits, and 1 × 10−6 for the association between
each SNP and both traits. The posterior probability of each locus containing a causal
variant affecting both MS and mQTL effects was estimated against the probabilities of
other models (a null model of no association, association with only the first or the
second trait, or independent associations with each of the two traits). Results are
reported at a posterior probability cut off of 0.8 for the colocalized effects.

Polygenic score calculations. MS polygenic scores were calculated based on the
genome-wide significant results from the 2019 IMSGC MS GWAS study (31 MHC
markers and 200 autosomal non-MHC SNPs)2. SNPs, amino acids, and HLA
alleles in the MHC region were imputed using the SNP2HLA package36 and the
Type 1 Diabetes Genetics Consortium HLA reference panel. The MS MHC poly-
genic scores were then calculated as the sum of the imputed dosages of the 31 MHC
markers associated with MS multiplied by their effect sizes2 (log odds ratio). For
the MS total polygenic score, SNP dosages for the autosomal non-MHC MS SNPs
(or if not available, tag SNPs in LD > 0.8) were extracted from the whole-genome
imputed data (imputed using the Michigan Imputation Server34 and the HRC
reference panel), multiplied by their effect sizes, and added to the MHC polygenic
score. Data from 10 of the 200 non-MHC SNPs were not available in the quality-
controlled imputed data and were substituted by a close by SNP in LD > 0.8. Data
from seven SNPs were not included in the MS total polygenic score, as no data
were available for them or SNPs in LD > 0.8 with them. The list of MHC and non-
MHC markers used in the calculation of the MS total polygenic score and their
effect sizes can be found in Supplementary Data 7.

Methylome-wide association studies. GLINT37 was used to perform the methylome-
wide association studies (MWAS). The final methylation dataset was used to assess
the associations between DNA methylation and MS polygenic scores at each of the
methylation sites, while adjusting for the effects of age, sex, treatment, genotyping
batch, the first three genotyping PCs and the first four methylation PCs. Significant
results were reported at 5% FDR.

Gene mapping and gene set enrichment analysis. We used FUMA38 (v1.3.3d)
SNP2GENE function for gene mapping and GENE2FUNC function for gene set
enrichment analysis. Briefly, genotypes were mapped to genes (Ensembl Release
92) using the following parameters: Input genotypes were SNPs in LD with the
lead SNPs (r2 > 0.6); p value < 0.05; reference panel population 1000G Phase3 EUR;
minor allele frequency >0.01; merging distance between LD blocks <250 kb.
Gene mapping was performed by positional, eQTL and 3D chromatin interaction
mapping using all available annotation datasets and default parameters (positional
mapping window: 100 kb, eQTL: FDR < 0.05, chromatin interaction: FDR < 1e-6,
promoter region window 250 bp upstream and 500 bp downstream of transcription
start sites). The mapped genes were then fed to the GENE2FUNC function for
pathway analysis. Minimum overlap with each gene set was set to two genes.
Results were reported at 5% FDR.

Statistical analysis. Post-hoc linear regression studies were performed while
accounting for the effects of age, sex, treatment, genotyping batch, the first three
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genotyping PCs, and the first four methylation PCs, unless otherwise specified.
Enrichment analyses for chromatin states were performed using Chi-square tests.
Mediation analyses for assessing the significance of the direct and causal mediated
effects between genetic variation, DNA methylation, and RNA expression were
performed using R mediation package39. All reported p-values are two-sided. All
results are reported in GRCh37/hg19 genomic coordinates.

RNA sequencing sub-study. RNA sequencing data from peripheral blood purified
naïve and memory CD4+ T cells were available from a subset of participants of the
main DNA methylation study as part of a separate and larger RNA sequencing
project (n= 42 and 43 naïve and memory CD4+ T cell samples, respectively). Data
from participants who had changed medication between the sampling dates for
DNA methylation and RNA sequencing studies were excluded (n= 6 from each
cell type). All remaining RNA sequencing samples were from patients receiving
glatiramer acetate at the time of sampling for both studies. All RNA sequencing
samples were taken within 5 years of the sampling date for the DNA methylation
study, with 80% being performed within one year of the DNA methylation sam-
pling. PBMC sampling and CD4+ T cells isolation were performed using the same
protocol used in the DNA methylation study. Naïve and memory CD4+ T cells
were isolated on a BD FACSAria flow cytometer using fluorochrome-labeled anti-
CD3 (1:50 dilution, 2 μl to 100 μl staining volume containing 1 × 106 cells), anti-
CD4 (1:50 dilution), and anti-CD45RA (1:33 dilution) antibodies. Whole tran-
scriptome 25-bp paired end sequencing was performed using the Broad Institute
HiSeq 2500 platform to an average depth of 15 million reads. Processing was
performed according to the Broad Institute RNA-seq pipeline for the GTEx
Consortium. Briefly, RNA sequence reads were aligned to the GRCh38/hg38
genome reference using STAR40, quality control was performed using RNA-
SeQC41, and quantification of gene expression levels was performed using RSEM42.
Transcripts with low expression values (average TPM < 2) were removed. Samples
with outlier average correlation with the other samples (|D statistic43|>3 standard
deviation from the mean) were excluded from further analysis (one memory CD4+

T cell sample was removed). TPM values were log-transformed and quantile-
normalized. Gene start and end positions were extracted from Ensembl Release 93
annotations. Linear regression modeling was used to investigate the associations
between methylation levels of CpGs of interest—identified from cis, trans, and
polygenic score analyses—and mRNA expression levels of genes within ±1Mb of
their respected CpGs, while adjusting for the effects of age and sex. In total, 912
association analyses were performed for naïve CD4+ T cells assessing associations
between 49 CpGs and 488 genes, and 887 association analyses were performed for
memory CD4+ T cells between 49 CpGs and 480 genes, each using data from 36
participants. Associations with FDR-adjusted p < 0.05 were considered significant.

Additional datasets
BLUEPRINT study. BLUEPRINT Epigenome Project’s publicly available cis-mQTL
summary statistics9 from the study of naïve CD4+ T cells were used for com-
parison with our cis-mQTL and colocalization findings. DNA methylation mea-
surements were performed using Illumina Infinium HumanMethylation450
BeadChips, and samples were from 132 healthy individuals of European origin
(Table 1). In order to perform replication analysis for our trans-mQTL and
polygenic score analyses findings, we downloaded the BLUEPRINT genetic data
from the European Genome-phenome Archive and performed whole-genome and
MHC imputation of the data in a similar manner to the main methylation study.
Associations were performed between genetic measures and BLUEPRINT’s pub-
licly available processed DNA methylation data (M values), accounting for the
effects of age and sex.

UC Berkeley study. Data from this study were both gathered and analyzed inde-
pendently by the UC Berkeley investigators. Whole blood samples from 208 self-
identified white, female MS patients were used for the study (Table 1). Genome-
wide DNA methylation was profiled using Infinium MethylationEPIC BeadChips.
Methylation data were analyzed using Bioconductor minfi package28. Background
dye correction and quantile normalization were performed, followed by the
removal of batch effects using the ComBat44 function of R sva package. Ancestry
and cell-type heterogeneity were estimated using GLINT37, and methylation M
values were adjusted for ancestry and cell type components as well as for age at
sampling. Genome-wide genotyping was performed using Illumina Infinium 660 K
OmniExpress or OmniExpressExome BeadChip arrays. Merged 660 K and Omni
Express genotyping dataset (273,906 SNPs) were phased using SHAPEIT2, and
imputed against reference haplotypes from Phase 3 of the 1000 Genomes Project
using IMPUTE4. Linear regression models were used to study the association
between adjusted M values and genotypes, while covarying for MS treatment status
(0/1, never/ever treated). MHC imputation was not available for this study.

PhenoGenetic study. Frozen PBMC samples from 48 healthy participants of Eur-
opean origin from the PhenoGenetic Project who were part of the ImmVar
study3,13 and had available genotyping data were selected for replication analyses
(Table 1). CD4+ T cells were purified from cryopreserved PBMC using a magnetic
microbead-based strategy (Miltenyi 130-096-533) after thawing with 10 ml PBS.
Cells from a subset of the samples (n= 28) were split in half, and one half
was placed in culture with serum-free X-Vivo medium and then stimulated using

2 μg/ml anti-CD3 and 1 μg/ml anti-CD28 antibodies. Cells were collected 24 h after
stimulation. DNA was extracted from the 48 primary and 28 in vitro activated
CD4+ T cell samples and underwent bisulfite conversion. Methylation levels of
CpGs of interest were measured using the Agena Bioscience mass spectrometry-
based EpiTYPER assay, with primers designed using EpiDesigner (Supplementary
Data 8). Genotyping was performed as part of two larger batches of samples
previously genotyped using Illumina Infinium OmniExpressExome and Illumina
MEGA-EX arrays. Whole-genome and MHC imputation were performed as
mentioned in the main methylation study. Association analyses were performed
between genetic measures and DNA methylation M values, adjusting for the effects
of age and sex. Paired t tests were used to compare the methylation levels between
primary and activated cells at each CpG site.

GOLDN study. Available baseline data from 717 related participants from the
Genetics of Lipid-lowering Drugs and Diet Network (GOLDN) study (dbGaP
Study Accession: phs000741.v2.p1) were used for the cis-mQTL replication ana-
lyses (Table 1). CD4+ T cells were isolated from peripheral blood at the time of
fasting. Genotyping was performed using Affymetrix 6.0 array, and imputation was
performed using MaCH45 with HapMap Phase II (release 22, Human Genome
build 36) as the reference. Genome-wide DNA methylation was profiled using
Illumina Infinium HumanMethylation450 BeadChips, and beta scores were derived
using Illumina’s GenomeStudio software. QC details can be found at46. Association
analyses were performed between genotypes and DNA methylation beta values in
two steps: 1) adjusting the methylation beta values for the fixed effects of methy-
lation plate ID and methylation array position and the random effect of methy-
lation array ID; 2) association of the adjusted beta-values with genotypes while
accounting for the effects of age, sex, study center, the first four DNA methylation
PCs, and kinship (modeled using lmekin47 function of R kinship package).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genotyping and DNA methylation data from our MS CD4+ T cell dataset have been
deposited in the Synapse database under accession codes syn26340457 [https://doi.org/
10.7303/syn26340457] and syn26339303 [https://doi.org/10.7303/syn26339303],
respectively. As sensitive human data, these data can be accessed upon request, following
the establishment of a Data Use Agreement with the Brigham and Women’s Hospital.
The initial request can be sent to the corresponding author, and the applicants will be
contacted within a week. The complete set of summary statistics from the cis-mQTL
analysis are available for download from the Synapse database under accession code
syn26339302 [https://doi.org/10.7303/syn26339302]. The genome-wide significant cis-
mQTL effects can be found in Supplementary Data 1. Data from the Genetics of Lipid-
lowering Drugs and Diet Network (GOLDN) study used for the cis-mQTL replication
analyses can be obtained from dbGaP under accession code phs000741.v2.p1 [https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000741.v2.p1].
BLUEPRINT Epigenome Project’s9 publicly available cis-mQTL summary statistics were
downloaded from ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/. BLUEPRINT
genetic data were accessed from the European Genome-phenome Archive under
accession code EGAD00001002663.
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