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Computational mechanisms of distributed value
representations and mixed learning strategies
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Learning appropriate representations of the reward environment is challenging in the real

world where there are many options, each with multiple attributes or features. Despite

existence of alternative solutions for this challenge, neural mechanisms underlying emer-

gence and adoption of value representations and learning strategies remain unknown. To

address this, we measure learning and choice during a multi-dimensional probabilistic

learning task in humans and trained recurrent neural networks (RNNs) to capture our

experimental observations. We find that human participants estimate stimulus-outcome

associations by learning and combining estimates of reward probabilities associated with the

informative feature followed by those of informative conjunctions. Through analyzing

representations, connectivity, and lesioning of the RNNs, we demonstrate this mixed learning

strategy relies on a distributed neural code and opponency between excitatory and inhibitory

neurons through value-dependent disinhibition. Together, our results suggest computational

and neural mechanisms underlying emergence of complex learning strategies in naturalistic

settings.
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Successful value-based decision making and learning depend
on the brain’s ability to encode and represent relevant
information and to properly update those representations

based on reward feedback from the environment. For example, to
be able to learn from an unpleasant reaction to consuming a
multi-ingredient meal requires having representations for reward
value (i.e., subjective reward experience associated with selection
and consumption) and/or predictive value of certain individual
ingredients or combinations of ingredients that resulted in the
outcome (informative attributes). Learning such informative
attributes and associated value representations is challenging
because feedback is non-specific and scarce (e.g., stomachache
after a meal with combinations of ingredients that may never
recur), and thus, it is unclear what attributes or combinations of
attributes are important for predicting the outcomes and must be
learned1. Such learning becomes even more challenging in high-
dimensional environments where the set of possible stimuli or
choice options grows exponentially as the numbers of attributes,
features, and/or their instances increase—the problem referred to
as the curse of dimensionality.

Recent studies have shown that human and non-human pri-
mates can overcome the curse of dimensionality by learning and
incorporating the structure of reward environment to adopt an
appropriate learning strategy2–8. For example, when the envir-
onment follows a generalizable set of rules such that the values of
choice options can be inferred from their features or attributes,
humans follow a feature-based learning to estimate reward value
or predictive value of options based on their features instead of
learning about individual options (object-based learning)
directly2–11. In contrast, lack of generalizable rules shifts learning
away from fast but imprecise feature-based learning to slower but
more precise object-based learning3,10.

Despite evidence for adoption of such simple feature-based
learning, it is currently unknown whether and how more-
complex learning strategies and value representations emerge.
Specifically, it is not clear whether in high-dimensional envir-
onments, humans and other animals adopt representations
involving conjunctions of features to go beyond feature-based
learning, stop at feature-based learning, or transition to object-
based learning when the environment is stable. From a compu-
tational point of view, although feature-based learning can be
faster because feature values are updated more frequently than
conjunction and object values, higher learning rates for object-
based and conjunction-based learning could make these strategies
more advantageous.

Multiple reinforcement learning (RL) and Bayesian models
have been proposed to explain how animals can learn informative
representations at the behavioral level3,5,6,11–14. However, all
these models assume the existence of certain representations or
generative models. For example, there are different proposals for
what representations are adopted in connectionist models ran-
ging from extreme localist theories, with single processing unit
representations (i.e., grandmother cells)15–17, to distributed the-
ories with representations that are defined as patterns of activity
across a number of processing units18–20. Although local repre-
sentations are easy to interpret and are the closest to naïve
reinforcement learning models, the scarcity of reward feedback
and large number of options in high-dimensional environments
make these models unappealing. In contrast, distributed repre-
sentations allow for more flexibility, making them plausible
candidates for learning appropriate representations in high-
dimensional reward environments. Nonetheless, it is currently
unknown how multiple value representations and learning stra-
tegies emerge over time and what the underlying neural
mechanisms are.

We hypothesized that in stable, high-dimensional environ-
ments, animals start by learning a simplified representation of the
environment before learning more complex representations
involving certain combinations or conjunctions of features. This
conjunction-based learning would provide an intermediate
learning strategy that is faster than object-based learning and
more precise than feature-based learning alone. At the neural
level, we hypothesized that such mixed feature- and conjunction-
based learning relies on a distributed representation across dif-
ferent neural types.

Here, to test these hypotheses and investigate whether and how
appropriate value representations and learning strategies are
acquired, we examine human learning and choice behavior dur-
ing a naturalistic task with a multi-dimensional reward envir-
onment and partial generalizable rules. Moreover, we train
recurrent neural networks (RNNs), which have been successfully
used to address a wide range of neuroscientific questions21–32, to
perform our task. We find that participants estimate stimulus-
outcome associations by learning and combining estimates of
reward probabilities associated with the informative feature fol-
lowed by those of informative conjunctions, and this behavior is
replicated by the trained RNNs. To reveal computational and
neural mechanisms underlying the emergence of observed
learning strategies, we then apply a combination of representa-
tional similarity analysis33, connectivity pattern analysis, and
lesioning of the trained RNNs and moreover, explore alternative
network structures. We show that the observed mixed learning
strategy relies on a distributed neural code and distinct con-
tributions of excitatory and inhibitory neurons. Additionally, we
find that plasticity in recurrent connections is crucial for the
emergence of complex learning strategies that ultimately rely on
opponency between excitatory and inhibitory populations
through value-dependent disinhibition.

Results
Learning about informative features and conjunctions of fea-
tures in multi-dimensional environments. Building upon our
previous work on feature-based vs. object-based learning3, we
designed a multi-dimensional probabilistic learning task (mdPL)
that allows study of the emergence of intermediate learning
strategies. In this task, human participants learned stimulus-
outcome associations by selecting between pairs of visual stimuli
defined by their visual features (color, pattern, and shape) fol-
lowed by a binary reward feedback. Moreover, we asked partici-
pants to provide their estimates of reward probabilities for
individual stimuli during five bouts of estimation trials
throughout the experiment (see Methods section for more
details). Critically, the reward probability associated with selec-
tion of each stimulus was determined by the combination of its
features such that one informative feature and the conjunctions of
the other two non-informative features could partially predict
reward probabilities (Fig. 1). For example, square-shaped stimuli
could be on average more rewarding than diamond-shaped sti-
muli (i.e., average probability of reward on three shapes were
equal to 0.3, 0.5, and 0.7), whereas stimuli with different colors
(or patterns) were equally rewarding on average (i.e., average
probability of reward for these features was equal to 0.5, 0.5, and
0.5). This example corresponds to shape being the informative
feature and color and pattern being the non-informative features.
At the same time, stimuli with certain combinations of color and
pattern (e.g., solid blue stimuli) could be more rewarding than
stimuli with other combinations of color and pattern, making
conjunctions of color and pattern to be the informative con-
junction (i.e., average probability of reward for different color and
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pattern conjunction instances were equal to [0.63, 0.27, 0.63; 0.5,
0.5, 0.5; 0.37, 0.74, 0.37]).

Analyzing participants’ performance and choice behavior
suggested that most participants understood the task and learned
about stimuli while reaching their steady-state performance
in about 150 trials. This was evident from the average total
harvested reward as well as the probability of choosing the better
stimulus (i.e., stimulus with higher probability of reward) in each
trial over the course of the experiment (Fig. 2a). To identify the
learning strategy adopted by each participant, we fit individual
participants’ choice behavior using 24 different reinforcement
learning (RL) models that relied on feature-based, object-based,
mixed feature- and conjunction-based, or mixed feature-
and object-based learning strategies (see Methods section). By
fitting participants’ choice data and computing AIC and BIC
per trial (AICp and BICp; see Methods section) as different
measures of goodness-of-fit10,34, we found that one of the mixed
feature- and conjunction-based models provided the best overall

fit for all data and throughout the experiment (Supplementary
Table 1, Fig. 2b, and Supplementary Fig. 1). In this model (the
F+ C1 model), the decision maker updates the estimated reward
probabilities associated with the informative feature and the
informative conjunction of the selected stimulus after each
feedback while forgetting reward probabilities associated with the
unchosen stimulus (by decaying those values toward 0.5). As a
result, this mixed feature- and conjunction-based model was able
to learn quickly without compromising precision in estimating
reward probabilities (Supplementary Fig. 2). Consistent with this,
we found that the difference in the goodness-of-fit between this
model and the second-best model (feature-based model)
increased over time (Fig. 2b), pointing to more use of the mixed
learning strategy by the participants.

In addition to choice trials, we also examined estimation trials
to determine learning strategies adopted by individual partici-
pants over the course of the experiment. To that end, we used
three separate generalized linear models (GLMs) to fit

Fig. 1 Experimental procedure. a Timeline of a choice trial during the multi-dimensional probabilistic learning task. In each choice trial, the participants
chose between two stimuli (colored patterned shapes) and were provided with reward feedback (reward or no reward) for both the chosen and
unchosen stimuli. The inset at the top shows the set of all visual features used in the experiment (S: shape; P: pattern; C: color). The inset at the bottom
shows the screen during a sample estimation trial. In each estimation trial, the participants provided their estimate about the probability of reward for the
presented stimulus by pressing 1 of 10 keys (A, S, D, F, G, H, J, K, L, and;) on the keyboard. b Example of reward probabilities assigned to 27 possible stimuli.
Stimuli were defined by combinations of three features, each with three instances. Reward probabilities were non-generalizable, such that reward
probabilities assigned to all stimuli could not be determined by combining the reward probabilities associated with their features or conjunctions of their
features. Numbers in parentheses demonstrate the actual probability values used in the experiment due to limited number of trials. For the example
schedule, the shape was on average informative about reward (average probability of reward on three shapes were equal to 0.3, 0.5, and 0.7). Although
pattern and color alone were not informative, the conjunction of these two non-informative features was on average informative about the reward. Each
participant was randomly assigned to a condition where the informative feature was either pattern or shape.

Fig. 2 Evidence for adoption of mixed feature- and conjunction-based learning. a Time course of performance and learning during the experiment. Plotted
are the average total harvested reward and probability of selecting the better stimulus (i.e., stimulus with higher probability of reward) in a given trial within
a session of the experiment. The running average over time is computed using a moving box with the length of 20 trials. The shaded areas indicate ±s.e.m.,
and the dashed line shows chance performance. b Plotted is the goodness-of-fit based on the average AIC per trial, AICp, for the feature-based model,
object-based model, and the best mixed feature- and conjunction-based (F+C1) model. The smaller value corresponds to a better fit. The black curve
shows the difference between the goodness-of-fit for the F+C1 and feature-based models. c The plot shows the time course of explained variance (R2) in
participants’ estimates based on different GLMs. Color conventions are the same as in panel b with cyan, red, and purple curves representing R2 based on
the feature-based, object-based, and F+C1 models, respectively. The solid line is the average of fitted exponential function to each participant’s data and
the shaded areas indicate ±s.e.m. of the fit. d Time course of adopted learning strategies measured by fitting participants’ estimates of reward probabilities
using a stepwise GLM. Plotted is the normalized weight of the informative feature, informative conjunction, and object (stimulus identity) on reward
probability estimates. Error bars indicate s.e.m. The solid line is the average of fitted exponential function to each participant’s data, and the shaded areas
indicate ±s.e.m. of the fit. Source data are provided as a Source Data file.
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participants’ estimated reward probabilities associated with each
stimulus based on the predicted reward probabilities using
different learning strategies (see Methods section). The explained
variance from different GLMs confirmed that the F+C1 model
captured participants’ estimates the best (Fig. 2c).

Although the above analyses of choice behavior and estimation
trials confirmed that participants ultimately adopted a mixed
(feature- and conjunction-based; F+ C) strategy, they also
showed a small discrepancy. More specifically, toward the end
of the session, the fit of choice behavior by the object-based model
becomes marginally better than that of the feature-based model
(Fig. 2b), but this is not the case for the explained variance in
estimated reward probabilities (Fig. 2c). We found that this
discrepancy was mainly due to similarity of object-based values to
predicted values based on the F+C1 model (spearman correla-
tion; ρ= 0.86, P= 8.3 × 10−9), making the object-based model to
fit choice behavior better than the feature-based model as
participants progress through the experiment. To demonstrate
this directly, we ran additional analyses to show that the object-
based strategy does not capture more variance than the feature-
based strategy. To that end, we used stepwise GLM to fit
estimated reward probabilities associated with each stimulus
based on the actual reward probabilities (object-based) and the
predicted reward probabilities using the informative feature and
conjunction. We found that the predicted values based on the
informative feature explained most variance followed by the
predicted values based on the informative conjunction. Moreover,
adding object-based values did not significantly increase the
explained variance of estimated reward probabilities beyond a
model that included both feature- and conjunction-based values
(median ± IQR= 0.9 ± 1.0%; two-sided sign-rank test, P= 0.12,
d= 0.48, N= 67). It is worth noting that unlike fitting of choice
behavior, which is done using different models separately,
stepwise GLM does not suffer from the similarity of object values
to predicted values based on the F+ C1 model. Together, these
results demonstrate that the influence of object-based strategy on
estimated reward probabilities did not increase over time and that
the observed improved fit of object-based relative to feature-based
model was a byproduct of the similarity of object values to
predictions of F+C1 model (i.e., the best model).

In addition, the time course of extracted normalized weights
for the informative feature regressor and the informative
conjunction regressor in a stepwise GLM suggested that
participants assigned larger weight to the informative feature
and learned the informative feature followed by the informative
conjunction. More specifically, we fit the time course of extracted
normalized weights to estimate the time constant at which these
weights reached their asymptotes (see Eq. 3 in Methods section).
We found that the time constant of increase in the weight of
informative feature (median ± IQR= 69.3 ± 35.9) was an order of
magnitude smaller than the time constant of increase in the
weight of informative conjunction (median ± IQR= 985.1 ± 49.0;
two-sided sign-rank test, P= 3.24 × 10−5, d= 0.73, N= 67;
Fig. 2d), indicating much faster learning of the informative
feature compared with the informative conjunction.

These results are not trivial even though feature-based learning
should be learned faster than conjunction-based learning due to
more frequent updating of feature than conjunction values. This is
because larger learning rates for conjunction-based than feature-
based learning can compensate for more frequent updates of
feature values. To demonstrate this point, we compared accuracy
of different learning strategies during the first 50 trials of the
experiment. Specifically, we simulated RL models based on
feature-based, conjunction-based, mixed feature- and conjunc-
tion-based, or object-based strategy (with decay of values for the
unchosen stimulus) and computed error in estimation of reward

probabilities for these models (Supplementary Fig. 3). We found
that the superiority of feature-based over conjunction-based
strategy depends on the choice of the learning rates and the
decay rate. More specifically, early in the learning, a conjunction-
based model with a large learning rate exhibits a smaller average
squared error in predicting reward probabilities than that of a
feature-based learner with a small learning rate, whereas a
conjunction-based learner with a small learning rate is less
accurate than a feature-based learner with a large learning rate
(Supplementary Fig. 3a). Moreover, parameter space for which the
feature-based learner is more accurate increases with larger decay
rates (Supplementary Fig. 3b, c). Similarly, an object-based
learner’s accuracy early in the experiment can be better than that
of the mixed feature- and conjunction-based learner and the
feature-based learner, depending on the learning and decay rates
(Supplementary Fig. 3d–i). Together, these simulation results
illustrate that the advantage and thus the adoption of certain
learning strategies could greatly vary, making our behavioral
findings non-trivial.

We also analyzed data from the excluded participants.
However, this analysis did not provide any evidence that excluded
participants adopted learning strategies qualitatively different
from those used by the remaining participants (Supplementary
Fig. 4). Instead, it showed that excluded participants simply did
not learn the task. Together, these results demonstrate that our
participants were able to learn more complex representations of
reward value (or predictive value) over time and combined
information from these representations with simple representa-
tion of individual features to increase their accuracy without
slowing down learning.

Direct evidence for adoption of more complex learning stra-
tegies. To confirm our results on adopted learning strategies
more directly, we also used choice sequences to examine parti-
cipants’ response to different types of reward feedback (reward vs.
no reward). To that end, we calculated differential response to
reward feedback by computing the difference between the ten-
dency to select a feature (or a conjunction of features) of the
stimulus that was selected on the previous trial and was rewarded
vs. when it was not rewarded (see Methods section, Supplemen-
tary Fig. 5). Our prediction was that participants who learned
about the informative feature and informative conjunction, as
assumed in the F+ C1 model, should exhibit positive differential
response for the informative feature and informative conjunction
(but not non-informative features and conjunctions). In contrast,
differential response would be positive for the informative feature
(and possibly the non-informative features) for participants who
only learned about individual features and not their conjunctions.
We used our measure of goodness-of-fit to determine whether a
participant adopted feature-based or mixed feature- and
conjunction-based learning (62 out of 67 participants). We did
not calculate differential response for the small minority of par-
ticipants (5 out of 67) who adopted the object-based strategy.

As expected, we found that differential response for informa-
tive conjunction and informative feature was overall positive for
participants who adopted the best mixed feature- and
conjunction-based learning strategy (the F+ C1 model) (two-
sided sign-rank test; informative feature: P= 8 × 10−4, d= 0.59,
N= 41; informative conjunction: P= 0.029, d= 0.19, N= 41).
For these participants, differential response for the non-
informative features and the non-informative conjunctions were
not distinguishable from 0 (two-sided sign-rank test; non-
informative features: P= 0.23, d= 0.058, N= 41; non-
informative conjunctions: P= 0.47, d= 0.056, N= 41). We also
found that differential response for the informative feature was
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larger than that of the non-informative features (two-sided sign-
rank test; P= 0.013, d= 0.41, N= 41; Fig. 3a). Similarly,
differential response for the informative conjunction was larger
than that of the non-informative conjunctions (two-sided sign-
rank test; P= 0.031, d= 0.38, N= 41; Fig. 3b). Finally, the
difference between differential response for the informative and
non-informative features was larger than the difference between
differential response for the informative and non-informative
conjunctions (two-sided sign-rank test; P= 0.025, d= 0.23,
N= 41; Fig. 3c).

In contrast, for participants who adopted the feature-based
strategy, only differential response for the informative feature was
significantly larger than zero (two-sided sign-rank test; informa-
tive feature: P= 0.022, d= 0.37, N= 21; non-informative fea-
tures: P= 0.09, d= 0.25, N= 21) with differential response for
the informative feature being larger than that of non-informative
features (two-sided sign-rank test; P= 0.005, d= 0.43, N= 21;
Fig. 3d). Moreover, for these participants, differential response for
either the informative conjunction or non-informative conjunc-
tions was not distinguishable from zero (two-sided sign-rank test;
informative conjunction: P= 0.27, d= 0.17, N= 21; non-
informative conjunctions: P= 0.08, d= 0.41, N= 21), and
differential response for the informative conjunction was not
distinguishable from that of non-informative conjunctions (two-
sided sign-rank test; P= 0.15, d= 0.12, N= 21; Fig. 3e). Finally,
the difference between differential response for the informative

and non-informative features was larger than the difference
between differential response for the informative and non-
informative conjunctions (two-sided sign-rank test; P= 0.045,
d= 0.31, N= 41; Fig. 3f). Together, these illustrate consistency
between differential response analysis and fitting of choice
behavior.

Finally, to illustrate the adoption of the mixed learning strategy
in a completely model-independent manner, we also compared
differential response across all participants. Results of this
analysis revealed that participants responded differently to reward
vs. no reward depending on the informativeness of both features
and conjunctions of the selected stimulus in the previous trial. On
the one hand, differential response of the informative feature was
significantly larger than zero (two-sided sign-rank test; P= 10−3,
d= 0.61, N= 67; Supplementary Fig. 6a), whereas differential
response of the non-informative features was not significantly
different than zero (two-sided sign-rank test; P= 0.09, d= 0.28,
N= 67; Supplementary Fig. 6b). Similarly, differential response of
the informative conjunction but not non-informative conjunc-
tions was significantly larger than zero (two-sided sign-rank test;
informative conjunction: P= 2.7 × 10−3, d= 0.65, N= 67; non-
informative conjunctions: P= 0.11, d= 0.21, N= 67; Supple-
mentary Fig. 6c, d).

Overall, our experimental results demonstrate that when
learning about high-dimensional stimuli, humans adopt a mixed
learning strategy that involves learning about the informative

Fig. 3 Direct evidence for adoption of mixed feature- and conjunction-based learning strategy. a Plot shows differential response for the informative
feature vs. differential response for the non-informative features for participants whose choice behavior was best fit by the F+C1 model. The inset shows
the histogram of the difference between differential response of the informative and non-informative features. The dashed line shows the median values
across participants, and the asterisk indicates the median is significantly different from 0 (two-sided sign-rank test; P= 0.013). b Plot shows differential
response for the informative conjunction vs. differential response for the non-informative conjunctions for the same participants. The inset shows the
histogram of the difference between differential response of the informative and non-informative conjunctions (two-sided sign-rank test; P= 0.031). c Plot
shows the difference between differential response for the informative and non-informative features vs. the difference between differential response for the
informative and non-informative conjunctions. The inset shows the histogram of the difference between the aforementioned differences (two-sided sign-
rank test; P = 0.025). d–f Similar to a–c but for participants whose choice behavior was best fit by the feature-based model (two-sided sign-rank test;
features: P= 0.005, conjunctions: P= 0.15, difference: P= 0.045). Source data are provided as a Source Data file.
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feature as well as the informative conjunction of the non-
informative features. The informative feature is learned quickly
and is slowly followed by learning about the informative
conjunction, indicating the gradual emergence of more complex
representations over time.

RNNs adopt intermediate learning strategies similar to human
participants. To account for our experimental observations and
gain insight into computational and neural mechanisms under-
lying the emergence of different learning strategies and value
representations, we constructed and trained RNNs to perform our
task (Fig. 4). Specifically, we used biologically inspired recurrent
networks of point excitatory and inhibitory populations (with 4 to
1 ratio) endowed with plausible reward-dependent Hebbian
learning rules35–37. Recurrent design was chosen to ensure that
the network can demonstrate long-term complex dynamics while
learning from reward feedback.

We trained these RNNs in two steps to mimic realistic agents.
First, we employed the stochastic gradient descent (SGD)
method to train RNNs to learn input-output associations for
estimating reward probabilities of the 27 three-dimensional
stimuli used in our task, and then we used the trained RNNs to
perform our task. For each training session of 270 trials, reward
probabilities were randomly assigned to different stimuli to
enable the network to learn a universal solution for learning
reward probabilities in multi-dimensional environments with
different levels of generalizability (i.e., how well reward
probabilities based on features and conjunctions predict actual
reward probabilities associated with different stimuli). This first
training step allowed the networks to learn a general task of
learning and estimating reward probabilities without overfitting
(Supplementary Fig. 7). Moreover, training in different environ-
ments also resulted in natural variability in the trained networks’
connectivity, mimicking participant’s individual variability in our
experiment.

In the second step (simulation of the actual experiment), we
stopped SGD and simulated the behavior of the trained RNNs in
a session of learning task with reward probabilities used in our

experiment. In this step, only connections endowed with the
plasticity mechanism were modulated after receiving reward
feedback in each trial. The overall task structure used in these
simulations was similar to our experimental paradigm with a
simple modification where only one stimulus was shown in each
trial and the network had to learn the reward probability
associated with that stimulus. By such simplification, we assume
that there is no effect across chosen and unchosen stimuli, which
is supported by the results of fitting participants’ choice behavior
(Supplementary Table 1). Using this approach, we also avoided
complexity related to decision-making processes and mainly
focused on learning aspects of the task. In summary, in the first
step, RNNs learned to perform a general multi-dimensional
reward learning task, whereas in the second step, the trained
RNNs were used to perform our task.

We first confirmed that the networks’ estimate of reward
probabilities during the simulation of our task matched that of
the human participants (Fig. 5a). Moreover, we also examined
population activity dynamics at different time points in the
session to test whether the networks’ activity reflected learned
reward probabilities (see Methods section). We found that the
trajectory of population response projected on the three principal
components was not distinguishable at the beginning of the
session, whereas this response diverged according to reward
probabilities as the network learned these values through reward
feedback (Supplementary Fig. 8).

Next, we utilized three separate GLMs to fit reward probability
estimates in order to identify learning strategies adopted by the
trained RNNs during the course of the experiment. The explained
variance of fit of RNNs’ estimates confirmed that similar to our
human participants, estimates of RNNs over time were best fit by
the F+ C1 model (Fig. 5b). Moreover, the extracted normalized
weights for the informative feature and informative conjunction
in a stepwise GLM suggest that similar to our human participants,
RNNs learn the informative feature followed by the informative
conjunction (Fig. 5c). This was reflected in the time constant of
increase in the weight of the informative feature (median ±
IQR= 80.12 ± 68.44) being significantly smaller than that of
the informative conjunction (median ± IQR= 200.75 ± 107.19;

Fig. 4 Architecture of the RNN models. a The models consist of three layers with different types of units mimicking different populations of neurons:
sensory units, recurrent units, and an output unit. The recurrent units (N= 120) included both excitatory and inhibitory populations that receive input from
63 sensory populations encoding individual features (N= 9), conjunctions of features (N= 27), and object-identity of each stimulus (N= 27). Among the
recurrent populations only the excitatory recurrent populations project to the output population. Half of the connections from sensory populations and the
connections between recurrent populations were endowed with reward-dependent plasticity. b Based on the type of populations and uniform presence/
absence of reward-dependent plasticity in the connections to and between recurrent populations, these populations could be grouped into eight disjoint
populations: Excrr and Inhrr corresponding to populations with no plastic sensory or recurrent connections (rigid weights indicated by subscript r); Excfr and
Inhfr corresponding to populations with plastic sensory input only (flexible weights indicated by subscript f); Excrf and Inhrf corresponding to populations
with plastic recurrent connections only; and Excff and Inhff corresponding to populations with plastic sensory input and plastic recurrent connections.
c Activity of the sensory and recurrent populations in an example trial. Upon presentation of a stimulus, three feature-encoding, three conjunction-
encoding, and one object-identity encoding populations become active and give rise to activity in the excitatory and inhibitory recurrent populations. Source
data are provided as a Source Data file.
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two-sided sign-rank test, P= 0.008, d= 0.36, N= 50). Consistent
with human participants, RNNs’ predicted values based on the
informative feature explained most variance followed by the
predicted values based on the informative conjunction. Moreover,
adding object-based values did not significantly increase the
explained variance of estimated reward probabilities beyond a
model that included both feature- and conjunction-based values
(median ± IQR= 5.7 ± 3.0%, two-sided sign-rank test, P= 0.08,
d= 0.96, N= 50).

To avoid overfitting, we did not fit RNNs to choice behavior
directly38. Nonetheless, to confirm that the trained RNNs can
produce choice data compatible with human participants, we fit
choice behavior of the trained RNNs using various RL models.
To that end, we added a decision layer (using a logistic function)
to the output layer of RNNs to generate choice based on
the presentation of a pair of stimuli on each trial and found
that the mixed feature- and conjunction-based model provided
the best overall fit across all trained RNNs (Supplementary
Table 2).

Moreover, we also calculated differential response of the
trained RNNs using their estimates of reward probabilities in each
trial. This analysis revealed results similar to our human

participants. Specifically, we found that in the trained RNNs,
differential responses for the informative feature and the
informative conjunction were both positive (two-sided sign-
rank test; informative feature: P= 0.03, d= 0.28, N= 50;
informative conjunction: P= 0.04, d= 0.23, N= 50). In contrast,
differential response for the non-informative features and the
non-informative conjunctions were not distinguishable from 0
(two-sided sign-rank test; non-informative features: P= 0.11,
d= 0.14, N= 50; non-informative conjunctions: P= 0.13,
d= 0.09, N= 50). In addition, differential response for the
informative feature was larger than that of the non-informative
features (two-sided sign-rank test; P= 0.013, d= 0.41, N= 50;
Fig. 5d), and differential response for the informative conjunction
was larger than that of the non-informative conjunctions (two-
sided sign-rank test; P= 1.4 × 10−6, d= 0.48, N= 50, Fig. 5e).
Finally, similar to our experimental results, the difference between
differential response for the informative and non-informative
features was larger than the difference between differential
response for the informative and non-informative conjunctions
(two-sided sign-rank test; P= 0.018, d= 0.18, N= 50; Fig. 5f).
Together, these results illustrate that the trained RNNs can
qualitatively replicate behavior of human participants.

Fig. 5 RNNs can capture main behavioral results. a Plotted are average estimates at the end of a simulated session of our learning task for N= 50
instances of the simulated RNNs and the average value of participants’ reward estimate vs. actual reward probabilities associated with each stimulus (each
symbol represents one stimulus). Error bars represent s.e.m., and the dashed line is the identity. b The plot shows the time course of explained variance
(R2) in RNNs’ estimates based on different GLMs. Error bars represent s.e.m. The solid line is the average of exponential fits to RNNs’ data, and the shaded
areas indicate ±s.e.m. of the fit. c Time course of adopted learning strategies measured by fitting the RNNs’ output using a stepwise GLM. Plotted is the
normalized weight of the informative feature, informative conjunction, and object (stimulus identity) on reward probability estimates. Error bars represent
s.e.m. The solid line is the average of exponential fits to RNNs’ data, and the shaded areas indicate ±s.e.m. of the fit. d Plot shows differential response for
the informative feature vs. differential response for the non-informative features in the trained RNNs. The inset shows the histogram of the difference
between differential response of the informative and non-informative features. The dashed line shows the median values across all trained RNNs, and an
asterisk indicates the median is significantly different from 0 (two-sided sign-rank test; P= 0.013). e Similar to d but for the informative and non-
informative conjunctions (two-sided sign-rank test; P= 1.4 × 10−6). f Plot shows the difference between differential response for the informative and non-
informative features vs. the difference between differential response for the informative and non-informative conjunctions. The inset shows the histogram
of the difference between the aforementioned differences (two-sided sign-rank test; P= 0.018). Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27413-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7191 | https://doi.org/10.1038/s41467-021-27413-2 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Together, these results illustrate that our proposed RNNs with
biophysically realistic features are able to replicate our experi-
mental findings and exhibit transition between learning strategies
over the course of the experiment. Next, we examined the
response of the trained RNNs’ units to identify the neural
substrates underlying different learning strategies and their
emergence over time.

Learning strategies are reflected in the response of different
neural types. To investigate value representations that accom-
pany the evolution of learning strategies observed in our
experiment, we applied representational similarity analysis33 to
the response of populations in the trained RNNs. More specifi-
cally, we examined how dissimilarity in the response of recurrent
populations (response dissimilarity matrix) can be predicted
based on the dissimilarity of reward probabilities calculated
according to different learning strategies (reward probability
dissimilarity matrices; see Methods section for more details). To
that end, we used GLMs to estimate the normalized weights of the
reward probability dissimilarity matrices in predicting the
response dissimilarity matrix (Supplementary Fig. 9). Using this
method, we were able to quantify how much representations in
recurrent populations reflect or accompany a particular learning
strategy.

We found that recurrent populations with plastic sensory input
(Excfr, Excff, Inhfr, Inhff) show a strong but contrasting response
to reward probabilities associated with stimuli and their features
(Fig. 6). Importantly, dissimilarity of reward probabilities based
on the informative feature could better predict dissimilarity of
response in the inhibitory populations with plastic sensory input
(Inhfr, Inhff; Fig. 6g, h) compared to the excitatory populations
with plastic sensory input (Excfr, Excff; Fig. 6d). This was reflected

in the difference between the weights of the informative feature
for these inhibitory and excitatory populations being significantly
larger than 0 (median ± IQR= 0.33 ± 0.19; two-sided sign-rank
test, P= 0.006, d= 1.05, N= 50). In contrast, dissimilarity of
reward probabilities based on objects could better predict
dissimilarity of response in the excitatory populations with
plastic sensory input (Excfr and Excff) (Fig. 6c, d) compared to the
inhibitory populations with plastic sensory input (Inhfr and Inhff)
(Fig. 6g, h). This was evident from the difference between the
weights of the reward dissimilarity matrix based on objects for
these excitatory and inhibitory populations being larger than 0
(median ± IQR= 0.06 ± 0.07; two-sided sign-rank test, P= 0.002,
d= 1.32, N= 50).

Finally, we did not find any significant difference between how
dissimilarity of reward probabilities based on the informative
conjunction predicts dissimilarity in the response of inhibitory
and excitatory populations. The difference between the weights of
the informative conjunction for inhibitory and excitatory
populations was not significantly different from 0 (median ± IQR
=−0.004 ± 0.08; two-sided sign-rank test; P= 0.53, d= 0.48,
N= 50). However, we found that dissimilarity of reward
probabilities based on the informative conjunction can better
predict the dissimilarity of response in recurrent populations with
plastic sensory input only (Excfr and Inhfr) (Fig. 6c, g) compared
to recurrent populations with plastic sensory input and plastic
recurrent connections (Excff and Inhff) (Fig. 6d, h). This was
reflected in the difference between the weights of the informative
conjunction for these populations being larger than 0 (median ±
IQR= 0.59 ± 0.19; two-sided sign-rank test; P= 0.001, d= 1.94,
N= 50).

Together, these results demonstrate distinct contributions of
excitatory and inhibitory neurons to different learning strategies
and their accompanying value representations and thus, provide a

Fig. 6 Response of different types of recurrent populations show differential degrees of similarity to reward probabilities based on different learning
strategies. a–d Plotted are the estimated weights for predicting the response dissimilarity matrix of different types of recurrent populations (indicated by
the inset diagrams explained in Fig. 4b) using the dissimilarity of reward probabilities based on the informative feature, informative conjunction, and object
(stimulus identity). Error bars represent s.e.m. The solid line is the average of fitted exponential functions to RNNs’ data, and the shaded areas indicate
±s.e.m. of the fit. e–h Same as a–d but for inhibitory recurrent populations. Dissimilarity of reward probabilities of the informative feature can better predict
dissimilarity of response in inhibitory populations, whereas dissimilarity of reward probabilities of the objects can better predict dissimilarity of response in
excitatory populations. Source data are provided as a Source Data file.
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few predictions about the representations of reward value (or
predictive value) by different neural types. First, only neurons
with plastic sensory input exhibit value representations compa-
tible with the evolution of learning strategies observed in our task.
Second, there is a competition or opponency between representa-
tions of object and feature values by excitatory and inhibitory
neurons, respectively: excitatory neurons better represent object
values, whereas inhibitory neurons better represent feature values.
Finally, neurons with only plastic sensory input exhibit more
pronounced representations of conjunction values. To better
understand the roles of different neural types in learning, we next
examined how the different value representations emerge
over time.

Connectivity pattern reveals distinct contributions of excita-
tory and inhibitory neurons. To study how different value
representations emerge in the trained RNNs, we probed con-
nection weights at the end of the training step and examined how
these weights were modulated by reward feedback during the
simulation of our task. We refer to the weights at the end of the
training step as naïve weights because at that point, the network
has not been exposed to the specific relationship between reward
probabilities of stimuli and their features and/or conjunctions in
our task. These naïve weights are important because they reveal
the state of connections due to learning in high-dimensional
environments with different levels of generalizability (Supple-
mentary Fig. 10). Moreover, these weights determine the activity
of recurrent populations that influences subsequent changes in
connections due to reward feedback in our task.

We found that after training in high-dimensional environ-
ments with different levels of generalizability, feature-encoding
populations were connected more strongly to the inhibitory
populations with plastic sensory input (Inhfr and Inhff) (Fig. 7a).
Specifically, the average value of naïve weights from the feature-
encoding populations to the inhibitory populations with plastic
sensory input was significantly larger than the average value of
naïve weights from feature-encoding populations to other
populations (median ± IQR= 0.07 ± 0.02, two-sided sign-rank
test; adjusted P= 1.5 × 10−3, d= 1.21, N= 50). In contrast,
object-identity encoding populations were connected more
strongly to the excitatory populations with plastic sensory input
(Excfr and Excff). Specifically, the average value of naïve weights
from the object-encoding populations to the excitatory popula-
tions with plastic sensory input was significantly larger than the
average value of naïve weights from object-encoding populations
to other populations (median ± IQR= 0.06 ± 0.03, two-sided
sign-rank test; adjusted P= 2.7 × 10−2, d= 0.45, N= 50). Finally,
we did not find any evidence for differential connections between
sensory populations that encoded conjunctions to different types
of recurrent populations (median ± IQR < 0.006 ± 0.007, two-
sided sign-rank test; adjusted P > 0.39, d= 0.10, N= 50).

With regards to recurrent connections, we found stronger
connections between excitatory and inhibitory populations than
for self-excitation and self-inhibition. Specifically, the average
value of naïve weights from excitatory to inhibitory populations
and vice versa were significantly larger than the average value of
naïve excitatory-excitatory and inhibitory-inhibitory weights
(median ± IQR= 0.017 ± 0.009, two-sided sign-rank test; adjusted
P < 10−9, d= 0.41, N= 50; Fig. 7b). Among these weights, we
found that weights from the inhibitory populations with plastic
sensory input (Inhfr and Inhff) to the excitatory populations with
plastic sensory input (Excfr and Excff) were stronger than the
average naïve weights between other excitatory and inhibitory
populations. This was reflected in the difference between these
average naïve weights being significantly larger than zero

(median ± IQR= 0.036 ± 0.006, two-sided sign-rank test; adjusted
P < 10−9, d= 1.31, N= 50). Similarly, the average value of naïve
weights from the excitatory populations with no plastic sensory
input (Excrr and Excrf) to the inhibitory population with plastic
sensory input and plastic recurrent connections (Inhff) was
significantly larger than the average naïve weights between other
excitatory and inhibitory recurrent populations (median ± IQR=
0.041 ± 0.005, two-sided sign-rank test; adjusted P < 10−9,
d= 1.7, N= 50). Finally, among excitatory populations, those
with plastic sensory input had the strongest influence on the
output population, as the naïve weights from these populations to
the output population was significantly larger than the average
value of naïve weights from the excitatory populations with no
plastic sensory input to the output population (median ± IQR=
0.015 ± 0.008, two-sided sign-rank test; adjusted P= 0.02,
d= 0.51, N= 50; Fig. 7c).

Together, analyses of naïve weights illustrate that learning in
environments with a wide range of generalizability results in a
specific pattern of connections influencing future learning.
Specifically, feature-encoding sensory populations are more
strongly connected to inhibitory neurons, whereas object-
encoding sensory populations are more strongly connected to
excitatory neurons. Moreover, stronger cross connections
between inhibitory and excitatory neurons indicate an oppo-
nency between the two neural types in shaping complex learning
strategies. Although this opponency was expected to account for
transition between types of different learning strategies, the
ability of excitatory recurrent populations to influence the output
population could explain the larger contribution of excitatory
populations to the object-based strategy. Specifically, object
values can be estimated directly by a single connection from
sensory populations to recurrent populations because they do
not require integration of information across features and/or
conjunctions as is the case for feature-based and conjunction-
based strategies. As a result, object values could directly drive
excitatory populations which in turn drive the output of the
network.

Due to activity dependence of the learning rule, initial stronger
connections could be modified more dramatically due to reward
feedback in our experiment, and thus, are more crucial for the
observed behavior. To directly test this, we used GLMs to fit
plastic input weights from sensory units during the course of
learning in our experiment. More specifically, we used reward
probabilities associated with different aspects of the presented
stimulus (features, conjunctions of features, and stimulus
identity) to predict flexible connection weights from sensory to
recurrent units. This allowed us to measure the rates of change in
connection weights due to reward feedback in our task and thus,
the contributions of different populations to observed learning
behavior. We also measured changes in plastic connections
between recurrent populations over time (see Methods section for
more details).

We found that connection weights from feature-encoding
populations to inhibitory populations showed a value-dependent
reduction that was only significant in the connections from
sensory populations encoding the informative feature (median ±
IQR=−0.34 ± 0.06, two-sided sign-rank test; P < 0.01, d > 0.44,
N= 50; Fig. 7d). In contrast, the connection weights from
feature-encoding populations to excitatory populations showed a
significant value-dependent increase (median ± IQR= 0.47 ±
0.07, two-sided sign-rank test; P < 0.01, d > 0.42, N= 50). At
the same time, the connection weights from the sensory
populations encoding the informative conjunction to the
excitatory populations with plastic sensory input showed only a
trend for value-dependent increase (median ± IQR= 0.25 ± 0.07,
two-sided sign-rank test; P= 0.08, d= 0.17, N= 50).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27413-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7191 | https://doi.org/10.1038/s41467-021-27413-2 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Finally, analysis of plastic recurrent connections showed that
the rates of change in weights to the inhibitory populations with
plastic sensory input (Inhfr and Inhff) was modulated more
strongly than all other recurrent connections (median ± IQR=
3.5 × 10−4 ± 1.7 × 10−5, two-sided sign-rank test; P= 3.6 × 10−4,
d= 0.33, N= 50; Fig. 7e). Among connections to the these
populations, the rates of change in weights from the excitatory
populations with plastic recurrent connections (Excrf and Excff)
was stronger than the rates of change in weights from the
inhibitory populations with plastic sensory input (Inhrf and
Inhff) (median ± IQR= 2.2 × 10−4 ± 1.4 × 10−5, two-sided sign-
rank test; P= 0.01, d= 0.22, N= 50). These results suggest
the importance of the inhibitory populations with plastic
sensory input for the observed changes in learning strategies
over time.

Together, our results on changes in connectivity pattern
due to learning in our task illustrate that learning about stimuli
leads to simultaneous increase in connection strength from the
feature- and conjunction-encoding populations to excitatory
populations and a decrease in connection strength from the

feature-encoding populations to inhibitory populations, recep-
tively. These simultaneous changes effectively cause excitation
and disinhibition of excitatory populations, suggesting a role for a
delicate interplay between inhibition and excitation in acquiring
and adopting mixed feature- and conjunction-based learning
strategies.

These results can be explained by noting that inhibitory
populations disinhibit excitatory populations according to a
feature-based strategy, and because our learning rules depend on
pre- and post-synaptic activity, learning in input connections
from sensory populations to recurrent populations become
dominated by the feature-based and not the object-based strategy.
Because of this value-dependent disinhibition, representations of
feature values are reinforced (while suppressing object-based
values) in excitatory populations, allowing for the intermediate
strategies to drive the output layer. Finally, the absence of changes
in the connections from object identity-encoding populations to
excitatory populations suggests a role for interaction between
excitatory and inhibitory populations in suppressing object-based
strategy.

Fig. 7 RNNs’ naïve weights at the end of the training step and their subsequent rates of change due to reward feedback during the simulation of our
task. a–c Plotted is the average strength of the naïve weights from feature-encoding, conjunction-encoding, and object-identity encoding populations to
eight types of recurrent populations (indicated by the inset diagrams explained in Fig. 4b) (a), naïve weights between eight types of recurrent populations
(b), and naïve weights from four types of excitatory recurrent populations to the output population (c). d Plotted is the average rate of value-dependent
changes in the connection weights from feature-encoding, conjunction-encoding, and object-identity encoding populations to recurrent populations with
plastic sensory input, during the simulation of our task. Asterisks and plus sign indicate two-sided and one-sided significant rates of change (sign-rank test;
P < 0.05), respectively. Hatched squares indicate connections with rates of change that were not significantly different from zero (two-sided sign-rank test;
P > 0.05). Highlighted rectangles in cyan, magenta, and red indicate the values for input from sensory units encoding the informative feature, the
informative conjunction, and object-identity, respectively. e Plot shows the average rates of change in connection weights between recurrent populations.
Conventions are the same as in d. Source data are provided as a Source Data file.
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Causal role of certain connections in emergence of mixed
learning strategies. As mentioned above, we found strong con-
nections between the inhibitory and excitatory populations with
plastic sensory input (Fig. 7b, e). This suggests that these con-
nections could play an important role in the emergence of mixed
feature- and conjunction-based learning strategies over time. To
test this, in two separate sets of simulations, we lesioned con-
nections from the inhibitory populations with plastic sensory
input (Inhfr and Inhff) to the excitatory populations with plastic
sensory input (Excfr and Excff) and vice versa. We found that
RNNs with lesioned connections from the inhibitory populations
with plastic sensory input to the excitatory populations with
plastic sensory input exhibited a dominant object-based learning
strategy (Fig. 8a). Consistent with this result but unlike the intact
networks, there was no value-dependent changes in connection
weights from the feature- and conjunction-encoding populations
to excitatory and inhibitory populations (Fig. 8b). However, we
found significant value-dependent changes in connection weights
from the object-encoding populations to the recurrent popula-
tions with plastic sensory input and plastic recurrent populations
(median ± IQR= 0.14 ± 0.03, two-sided sign-rank test; P= 0.06,
N= 50), pointing to the role of excitatory neurons in driving
object-based learning.

Consistent with these observations, we also found that in the
network with lesioned connections from the inhibitory popula-
tions with plastic sensory input to the excitatory populations with
plastic sensory input, the difference between the weight of object
and the weights of informative feature and informative conjunc-
tion was larger than 0 (median ± IQR= 0.06 ± 0.11, two-sided
sign-rank test; P= 4.87 × 10−4, d= 0.34, N= 50; Supplementary
Fig. 11). This indicates that the dissimilarity of the stimulus
reward probabilities was better predicted by the dissimilarity of
response based on objects in these lesioned networks.

In contrast, lesioning the connections from the excitatory
populations with plastic sensory input (Excfr and Excff) to
the inhibitory populations with plastic sensory input (Inhfr and
Inhff) did not strongly impact the emergence of mixed feature-
and conjunction-based learning (Supplementary Fig. 12a, b). In
these lesioned networks, however, only the connection weights
from feature-encoding populations to excitatory populations
showed a value-dependent increase over time (median ± IQR=

−0.31 ± 0.05, two-sided sign-rank test; P < 0.01, N= 50, Supple-
mentary Fig. 12c). In addition, we found a decrease in the
explanatory power of dissimilarity of the informative feature and
the informative conjunction in predicting the dissimilarity of the
stimulus reward probabilities compared to the intact network
(median ± IQR=−0.19 ± 0.31, two-sided sign-rank test;
P= 2.83 × 10−5, d= 0.40, N= 50; Supplementary Fig. 13). Unlike
the intact networks, however, the informative feature and
conjunction still better explained the dissimilarity of the stimulus
reward probabilities as reflected in the difference between the
weights of the informative feature and conjunction and the weight
of the objects being larger than 0 (median ± IQR= 0.45 ± 0.27,
two-sided sign-rank test; P < 10−8, d= 0.61, N= 50).

Altogether, results of lesioning suggest that the observed mixed
feature- and conjunction-based learning strategy mainly relies on
recurrent connections from the inhibitory populations with
plastic sensory input to the excitatory populations with plastic
sensory input as the object-based strategy dominates only in the
absence of these specific connections. This happens because once
the connections from the inhibitory populations are lesioned,
feature-based disinhibition is removed and the object-based
strategy dominates. This suggests that the value-based disinhibi-
tion of excitatory neurons leads to suppression of object-based
strategy and allows for the adoption of intermediate learning
strategies. We next tested the importance of learning in these
connections using alternative network architectures.

Plasticity in recurrent connections is crucial for complex
learning strategies to emerge. We trained three alternative
architectures of RNNs to further confirm the importance of
recurrent connections and reward-dependent plasticity in sensory
and recurrent connections. Specifically, we trained RNNs without
plastic sensory input, RNNs without plastic recurrent connec-
tions, and feedforward neural networks (FFNNs) with only
excitatory populations and plastic sensory input.

We found that the RNNs without plastic sensory input were
not capable of learning even non-structured stimulus-outcome
associations during the training step. Moreover, although the
RNNs without plastic recurrent connections and the FFNNs were
able to perform the task and learn stimulus-outcome associations,

Fig. 8 Lesioning recurrent connections from the inhibitory populations with plastic sensory input (Inhfr and Inhff) to the excitatory populations with
plastic sensory input (Excfr and Excff) results in drastic changes in the behavior of the RNNs. a The plot shows the time course of explained variance
(R2) in RNNs’ estimates based on different models. Error bars represent s.e.m. The solid line is the average of exponential fits to RNNs’ data, and the
shaded areas indicate ±s.e.m. of the fit. b Plotted is the average rate of value-dependent changes in the connection weights from feature-encoding,
conjunction-encoding, and object-identity encoding populations to recurrent populations with plastic sensory input (indicated by the inset diagrams
explained in Fig. 4b), during the simulation of our task. The plus sign indicates one-sided significant rate of change (sign-rank test; P < 0.05), whereas
hatched squares indicate connections with rates of change that were not significantly different from zero (two-sided sign-rank test; P > 0.05). Highlighted
rectangles in cyan, magenta, and red indicate the values for input from sensory units encoding the informative feature, the informative conjunction, and
object-identity, respectively. Source data are provided as a Source Data file.
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their behavior was significantly different from the behavior of our
human participants. Specifically, the RNNs without plastic
recurrent connections only exhibited a dominant object-based
learning strategy (Supplementary Fig. 14a). In contrast, the
explained variance of fit of FFNNs’ estimates over time was best
fit by the F+ C1 model (Supplementary Fig. 14b), however, the
learning time course in this model was different from that of the
human participants. Specifically, unlike our experimental results,
we did not find any significant difference between the time
constant of increase in the weight of the informative feature and
the time constant of increase in the weight of the informative
conjunction in the FFNN (τinf :feature: median ± IQR= 37.04 ±
29.09, τinf :conjunction: median ± IQR= 50.18 ± 30.51, two-sided
sign-rank test; P= 0.34, d= 0.47, N= 50; Supplementary
Fig. 14c). Together, these results demonstrate the importance of
plasticity in recurrent connections between excitatory and
inhibitory populations for the observed emergence of more
complex learning strategies and the time constant of their
emergence.

Discussion
Using a combination of experimental and modeling approaches,
we investigated the emergence and adoption of multiple learning
strategies and their corresponding value representations in more
naturalistic settings. We show that in high-dimensional envir-
onments, humans estimate reward probabilities associated with
each of many stimuli by learning and combining estimates of
reward probabilities associated with the informative feature and
the informative conjunction. Moreover, we find that feature-
based learning is much faster than conjunction-based learning
and emerges earlier. These results are not trivial for multiple
reasons. First, instead of gradually adopting a combination of
feature-based and conjunction-based strategies, participants
could simply stop at feature-based learning or gradually transition
to object-based learning. This is because in the absence of for-
getting (decay in estimates of values over time), an object-based
strategy could ultimately provide more accurate estimates of
reward probabilities even with less frequent updates. Second,
more complex representations of value increase the complexity of
learning and decision-making processes and thus, are less
desirable.

Analyses of connectivity pattern and response of units in the
trained RNNs illustrate that such mixed value representations
emerge over time as a distributed code that depends on distinct
contributions of inhibitory and excitatory neurons. More speci-
fically, learning about multi-dimensional stimuli results in con-
trasting connectivity patterns and representations of feature and
object values in inhibitory and excitatory neurons, respectively.
Through disinhibition, recurrent connections allow gradual
emergence of a mixed (feature-based followed by conjunction-
based) learning strategy in excitatory neurons. This emergence
relies more strongly on connections from inhibitory to excitatory
populations because in the absence of these connections, object-
based learning can quickly dominate. Moreover, alternative net-
work structures without such connections failed to reproduce
the behavior of our human participants, demonstrating the
importance of learning in these connections for emergence of
conjunction-based learning. Our results thus, provide clear tes-
table predictions about the emergence and neural mechanisms of
naturalistic learning.

Our behavioral results support a previously proposed
adaptability-precision tradeoff (APT) framework3,39,40 for
understanding competition between different learning strategies.
Moreover, they confirm our hypothesis that the complexity of
learning strategies depends on the generalizability of the reward

environment. Importantly, in the absence of any instruction,
human participants were able to detect the level of generalizability
of the environment and learn the informative feature and con-
junctions of non-informative features. The conjunction-based
learning that follows feature-based learning enables the partici-
pants to improve accuracy in their learning without significantly
compromising the speed, thus improving the APT.

The timescale at which conjunction-based learning emerged
was an order of magnitude slower than that of feature-based
learning. Although expected, this result provides a critical test for
finding the underlying neural architecture. Our results also
indicate that humans can learn higher-order associations (con-
junctions) when lower-order associations (non-informative fea-
tures) are not useful. However, this only happens if the
environment is stable enough (relative to the timescales of dif-
ferent learning strategies) such that there is sufficient time for
slower representations to emerge before reward contingencies
change. Ultimately, the timescale of different learning strategies
have important implications for learning in naturalistic settings
and for identifying their neural substrates41,42.

The categorization learning and stereotyping literature can
provide an alternative but complementary interpretation of our
behavioral results43–46. A task with generalizable reward schedule
can be considered a rule-based reasoning task (i.e., a task in which
optimal strategy can be described verbally), whereas a task with a
non-generalizable reward schedule can be interpreted as an
information integration task (i.e., a task in which information
from two or more stimulus components should be integrated).
For example, the Competition between Verbal and Implicit Sys-
tems (COVIS) model of category learning assumes that rule-
based category learning is mediated primarily by an explicit (i.e.,
hypothesis-testing) system, whereas information integration is
dominated by an implicit (i.e., procedural-learning-based) system.
According to COVIS, these two learning systems are imple-
mented in different regions of the brain, but the more successful
system gradually dominates47. In general, feature-based and
conjunction-based strategies can be considered as rule-based
category learning, whereas object-based strategy can be con-
sidered as procedural learning. Thus, in this framework, our
results and the APT can be seen as a way of quantifying what
factors can cause one learning strategy to dominate the other.

Our training algorithm was designed to allow the network to
learn a general solution for learning reward probabilities in multi-
dimensional environments. Networks capable of generalizing to
new tasks or environments have been the focus of the meta-
learning field48–52 and were used to simulate learning a dis-
tribution of tasks53. Extending this approach to a learning task
with three-dimensional choice options, our modeling results thus
suggest that the brain’s ability to generalize might arise from
principled learning rules along with structured connectivity
patterns.

We found distributed representations of reward value in our
proposed RNNs. Such representations have been the focus of
many studies in memory54, face- and object-encoding55–57, and
semantic knowledge58,59, but have not been thoroughly examined
in reward learning. Due to similarities between learning and
categorization tasks, recurrent connections between striatum and
prefrontal cortex have been suggested to play an important role in
this process14,47. However, future experimental studies are
required to investigate the emergence of distributed value repre-
sentations in the reward learning system.

Based on multiple types of analyses, we show that respectively
differential connections of feature-encoding and object-encoding
sensory neurons to excitatory and inhibitory populations results
in an opponency between representations of feature and object
values. This opponency by excitatory and inhibitory neurons
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allows for value-based modulation of the excitatory neurons
through the inhibitory neurons and enables the adoption of
intermediate strategies. Our results can also explain a few existing
neural observations. First, we showed that recurrent inputs from
certain inhibitory populations in the RNNs result in disinhibition
of excitatory populations during the learning. Our RNNs struc-
ture does not make any specific assumption on where such dis-
inhibition is originating from, and therefore it can be further
extended to explain the effects of disinhibition in subcortical
areas, such as the basolateral amygdala60–63 or striatum64,65, on
associative learning. Second, our findings could explain a pre-
viously reported link between disruption in recurrent connections
between excitatory and inhibitory neurons in basal ganglia and
deficits in the adoption of proper learning strategies in Parkin-
son’s Disease66–69. Third, we observed a higher degree of simi-
larity between activity of inhibitory recurrent populations and the
informative feature value, which is in line with recent findings on
the prevalence of feature-specific error signal in narrow-spiking
neurons11. Finally, our results predict that error signals in neu-
rons with plastic sensory input are skewed toward conjunction-
based learning strategies.

Our experimental paradigm and computational modeling have
a few limitations. First, because of the difficulty of the task, we
used a stable, multi-dimensional reward environment. However,
humans and animals are often required to learn reward and/or
predictive values in changing environments. Future experiments
and modeling are required to explore learning in dynamic multi-
dimensional environments. Second, recent studies have suggested
that reward can enhance processing of behaviorally relevant sti-
muli by influencing different low-level and high-level processes
such as sensory representation, perceptual learning, and
attention11,70–77. Our RNNs only incorporate low-level synaptic
plasticity and thus, future studies are needed to understand the
contribution of high-level processes (such as attention) in nat-
uralistic value-based learning. Finally, we utilized a back-
propagation algorithm to train the RNNs, which often is viewed
as non-biological. Our aim was to offer a general framework to
test hypotheses about learning in naturalistic environments.
Nonetheless, recent studies have proposed dendritic segregation
and local interneuron circuitry as a possible mechanism that can
approximate this learning method78–82. Future progress in
mapping the backpropagation method to learning in cortical
structures would clarify the plausibility of this training approach.

Together, our study provides insight into both why and how
more complex learning strategies emerge over time. On the one
hand, we show that mixed learning strategies are adopted because
they can provide an efficient intermediate learning strategy that is
still much faster than learning about individual stimuli or options
but is also more precise than feature-based learning alone. On the
other hand, we provide clear testable predictions about neural
mechanisms underlying naturalistic learning and thus, address
both representations and functions of different neural types and
connections.

Methods
Participants. Participants were recruited from the Dartmouth College student
population (ages 18–22 years). In total, 92 participants were recruited (66 females)
and performed the experiment. We excluded participants whose performance was
not significantly different from chance (0.5) indicating that they did not learn the
task. To that end, we used a performance threshold of 0.55, equal to 0.5 plus two
times s.e.m., based on the average of 400 trials after excluding the first 32 trials of
the experiment. This resulted in the exclusion of 25 participants from our dataset.
We also analyzed the behavior of excluded participants to show that indeed, they
did not learn the task (Supplementary Fig. 4). No participant had a history of
neurological or psychiatric illness. Participants were recruited through the
Department of Psychological and Brain Sciences experiment scheduling system
at Dartmouth College. They were compensated with a combination of money and
T-points, which are extra-credit points for classes within the Department of

Psychological and Brain Sciences at Dartmouth College. The base rate for com-
pensation was $10/hour or 1 T-point/hour. Participants were then additionally
rewarded based on their performance by up to $10/hour. All experimental pro-
cedures were approved by the Dartmouth College Institutional Review Board, and
informed consent was obtained from all participants before the experiment.

Experimental paradigm. To study how appropriate value representations and
learning strategies are formed and evolve over time, we designed a probabilistic
learning paradigm in which participants learned about visual stimuli with three
distinct features (shape, pattern, and color) by choosing between pairs of stimuli
followed by reward feedback (choice trials), and moreover, reported their learning
about those stimuli in separate sets of estimation trials throughout the experiment
(Fig. 1). More specifically, participants completed one session consisting of 432
choice trials (Fig. 1a) interleaved with five bouts of estimation trials that occurred
after choice trial 86, 173, 259, 346, and 432 (Fig. 1a bottom inset). During each
choice trial, participants were presented with a pair of stimuli and were asked to
choose the stimulus that they believed would provide the most reward. These two
stimuli were drawn pseudo-randomly from a set of 27 stimuli, which were con-
structed using combinations of three distinct shapes, three distinct patterns, and
three distinct colors. The two stimuli presented in each trial always differed in all
three features. Selection of a given stimulus was rewarded (independently of the
other stimulus) based on a reward schedule (set of reward probabilities) with a
moderate level of generalizability. This means that reward probability associated
with some but not all stimuli could be estimated by combining the reward prob-
abilities associated with their features (see Eq. 1 below). More specifically, only one
feature (shape or pattern) was informative about reward probability whereas the
other two were not informative. Although the two non-informative features were
on average not predictive of reward, specific combinations or conjunctions of these
two features were partially informative of reward (Fig. 1b). Finally, during each
estimation trial, participants were asked to provide an estimate about the reward
probability associated with a given stimulus (Fig. 1a bottom inset).

Reward schedule. The reward schedule (e.g., Fig. 1b) was constructed to test the
adoption of different learning strategies. To that end, we considered three types of
learners with distinct strategies for estimating reward and/or predictive value of
individual stimuli. Assume that stimuli or objects (O) have m features (e.g., color,
pattern, and shape), each of which can take n different instances (e.g., yellow, solid,
and triangles), indicated as Fi,j for the feature instance j of feature i, where
i= {1,…,m} and j= {1,…, n}. In contrast to an object-based learner that directly
estimates reward probability for each stimulus using reward feedback, a feature-
based learner uses the average reward probability for each feature instance to
estimate the reward probability associated with each stimulus in two steps. First,
the average reward probability for a given feature instance (e.g., color yellow) can
be computed by averaging the reward probability of all stimuli that contain that
feature instance (e.g., all yellow stimuli); �prðFi;jÞ ¼ ð1=nm�1Þ∑OacontainsFij

prðOaÞ or
by multiplying the likelihood ratios of all stimuli that contain that feature instance:

�prðFi;jÞ ¼ ðQOacontainsFij
LLrðOaÞÞ1=n

m�1

. Second, reward probability for a stimulus

Oa , epr Oa

� �
, can be estimated by combining the reward probability of features of

that stimulus using Bayes theorem:

~prðOaÞ ¼ ðprðF1;jÞ ´ prðF2;kÞ ´ ¼ Þ=ðprðF1;jÞ ´ prðF2;kÞ ´ ¼ þ ð1� prðF1;jÞÞ
´ ð1� prðF2;kÞÞ ´ ¼ Þ forOa containing F1;j; F2;k; etc

ð1Þ

These estimated reward probabilities constitute the estimated reward matrix
based on features. The rank order of probabilities in the estimated reward matrix,
which determines preference between stimuli, is similar to that of the fully
generalizable reward matrix whereas the exact probabilities may differ slightly.
Note that although we assumed an optimal combination of feature values (using
Bayes theorem), a more heuristic combination of feature values results in
qualitatively similar results3,76.

Similarly, a mixed feature- and conjunction-based learner combines the
reward probability for one or more feature instances, Fi,j (where i= I � {1,…,m}
and j= {1,…, n}), and the conjunctions of the other remaining features (e.g.,
solid triangle, indicated as Cl,k for the conjunction instance k, k= {1,…, nm-|I|} of
conjunction type l, where li = {1,…,m}-I) to estimate reward probabilities of
stimuli in three steps. First, the average reward probability associated with one or
more feature instances can be calculated as above. Second, the average reward
probability associated with one or more conjunctions of remaining features can
be computed by averaging the reward probabilities of all stimuli that contain
that conjunction instance (e.g., all solid triangle stimuli); �prðCk;lÞ ¼ ð1=nm�jIjÞ
∑OacontainsCk;l

prðOaÞ, or by multiplying the likelihood ratios of all stimuli that

contain that conjunction instance; �prðCk;lÞ ¼ ðQOacontainsCk;l
LLrðOaÞÞ1=n

m�jIj
. Finally,

reward probability for a stimulus Oa , epr Oa

� �
, can be estimated by combining the
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reward probabilities of features and conjunctions using the Bayes theorem:

~prðOaÞ ¼ ðprðF1;jÞ ´ prðC23;kÞ ´ ¼ ÞðprðF1;jÞ ´ prðC23;kÞ ´ ¼

þ ð1� prðF1;jÞÞ ´ ð1� prðC23;kÞÞ ´ ¼ Þ forOa containing F1;j; C23;k; etc:

ð2Þ

Generalizability index. To define generalizability indices, we used the Spear-
man correlation between the stimuli’s actual reward probability and estimated
reward probability based on their individual features or between stimuli’s actual
reward probability and estimated reward probability based on the mixture of the
informative feature and the conjunctions of the two non-informative features (see
previous section). Based on this definition, the generalizability index can take on
any values between −1 and 1.

Using estimates of reward probabilities to assess learning strategies. We
utilized estimates of reward probabilities provided by both the human participants
(during estimation trials) and those extracted from the trained RNNs to examine
how these estimates were constructed and determine the underlying learning
strategies. Specifically, first, we used GLMs to predict both participants’ and RNNs’
estimates of reward probabilities as a function of each of the following variables:
actual reward probabilities assigned to each stimulus (object-based term); reward
probability estimates based on the combination of the reward probabilities asso-
ciated with individual features (feature-based term; Eq. 1); reward probability
estimates based on the combination of the reward probability of the informative
feature and the conjunctions of the other two non-informative features (mixed
feature- and conjunction-based term; Eq. 2); and an additional constant term to
capture the overall bias. Second, we used a single stepwise GLM to predict parti-
cipants’ estimates of reward probabilities using the aforementioned object-based
and feature-based terms as well as those based on the reward probability of the
conjunctions of the two non-informative features.

Fitting the time course of regression weights to predict participants’ esti-
mates. To quantify the learning time course using participants’ estimates of reward
probabilities, in addition to R2 of the GLMs, we also fit stepwise regression nor-
malized weights for the informative feature and conjunction, and object (stimulus
identity) using an exponential function:

y tð Þ ¼ yss � ðyss � y0Þexpð
�t
τ Þ ð3Þ

where y0 and ySS are the initial and steady-state values of weights, τ is the time
constant for approaching steady state, and t represents the trial number in a
session.

Testing behavioral predictions of learning models. To directly assess the effects
of learning strategy on choice behavior, we defined a few quantities we refer to as
differential response separately for the informative and non-informative features,
and conjunctions of non-informative features. Differential response for individual
features is defined as the difference between two conditional probabilities: (1)
conditional probability of selecting stimuli that contain only one of the two features
(informative or non-informative) of the stimulus selected and rewarded in the
previous trial when these stimuli were paired with a stimulus that did not share any
feature with the previously rewarded stimulus; and (2) a similar conditional
probability when the previous trial was not rewarded (see Supplementary Fig. 5).
Similarly, we defined differential response for conjunctions of non-informative
features by considering stimuli that contain the conjunction of non-informative
features of the stimulus selected in the previous trial.

Model fitting. To capture participants’ learning and choice behavior on a trial-by-
trial basis, we used 24 different reinforcement learning (RL) models based on
feature-based, mixed feature- and conjunction-based, and object-based strate-
gies (see below). These models were fit to choices from individual participants by
minimizing the negative log likelihood (LL) of the predicted choice probability
given different model parameters using the fminsearch function in MATLAB
(Mathworks). We computed three measures of goodness-of-fit in order to deter-
mine the best model: average negative log likelihood, Akaike information criterion
(AIC), and Bayesian information criterion (BIC). In addition, to compare the
ability of different models in fitting choice behavior over time, we used AIC and
BIC per trial10,34, denoted as AICp and BICp:

AICpðtÞ ¼ �2LLðtÞ þ 2k=N trials ð4Þ

BICpðtÞ ¼ �2LLðtÞ þ 2klogðN trialsÞ=N trials ð5Þ
where k indicates the number of parameters in a given model, t represents the trial
number, LL(t) is the log likelihood in trial t, and N trials is the number of trials in the
experiment. By dividing the penalty terms in AIC and BIC by the number of trials,
we ensure that the sum of AICp(t) and BICp(t) over all trials is equal to AIC and
BIC, respectively. The smaller values for these measures indicate a better fit of
choice behavior.

Object-based models. In this group of models, the reward probability associated
with each stimulus is directly estimated from reward feedback in each trial using a
standard RL model. For example, in the chosen-update object-based RL, only the
reward probability associated with the chosen stimulus is updated in each trial.
This update is done via separate learning rates for rewarded or unrewarded trials
using the following equations, respectively:

VchoS t þ 1ð Þ ¼ VchoS tð Þ þ αrew 1� VchoS tð Þ� �
; if r tð Þ ¼ 1

VchoS t þ 1ð Þ ¼ VchoS tð Þ � αunr VchoS tð Þ� �
; if r tð Þ ¼ 0 ð6Þ

where t represents the trial number, VchoO is the estimated reward probability
associated with the chosen stimulus, rðtÞ is the reward outcome on the chosen
stimulus (1 for rewarded, 0 for unrewarded), and αrew and αunr are the learning
rates for rewarded and unrewarded trials. The reward probability associated with
the unchosen stimulus is not updated in this model.

In the full-update object-based RL, the reward probabilities associated with both
stimuli presented in a given trial are updated. Specifically, while reward probability
associated with the chosen stimulus is updated based on Eq. 6, the value of
unchosen stimulus is also updated based on reward feedback on that stimulus
according to the following equations:

VuncS t þ 1ð Þ ¼ VuncS tð Þ þ αrew 1� VuncS tð Þ� �
; if runc tð Þ ¼ 1

VuncS t þ 1ð Þ ¼ VuncS tð Þ � αunr VuncS tð Þ� �
; if runc tð Þ ¼ 0 ð7Þ

where t represents the trial number, VuncS is the estimated reward probability
associated with the unchosen stimulus, and runc(t) is the reward outcome on the
unchosen stimulus.

The estimated reward probability values are then used to compute the
probability of selecting between the two stimuli in a given trial (S1 and S2) based on
a logistic function:

logit PS1ðtÞ ¼ wo VS1 tð Þ � VS2 tð Þ� �þ bias ð8Þ
where PS1 is the probability of choosing stimulus 1, VS1 and VS2 are the estimated
reward probability associated with stimuli 1 and 2, respectively, bias measures a
response bias toward the left or right stimulus to capture the participant’s location
bias, and wo determines the influence of difference in reward probabilities
associated with a pair of presented stimuli (objects) on choice.

Feature-based models. In this group of models, the reward probability associated
with each stimulus is computed by combining the reward probability associated
with features of that stimulus, which are estimated from reward feedback using a
standard RL model. The update rules for the feature-based RL models are identical
to the object-based ones (chosen-update and full-update models), except that the
reward probability associated with the chosen (unchosen) stimulus is replaced by
the reward probability associated with features of the chosen (unchosen) stimulus.

Similar to object-based RL models, the probability of choosing a stimulus is
determined based on the logistic function of the difference between the estimated
reward probability associated with the two presented stimuli in a given trial:

logit PS1 tð Þ ¼ ∑
Fi¼ shape;pattern;colorf g

wFi VFiðS1Þ tð Þ � VFiðS2Þ tð Þ
� �

þ bias ð9Þ

where VFiðS1Þ and VFiðS2Þ are the reward probabilities associated with a given feature
(out of three possible features) of stimuli 1 and 2, respectively, bias measures a
response bias toward the left stimulus to capture the participant’s location bias, and
three values of wF determine the influence of difference in reward probabilities
associated with feature F of presented stimuli on choice.

Mixed feature- and conjunction-based models. In this group of models (referred
to as the F+C models for abbreviation), the reward probability associated with each
stimulus is computed by combining the reward probabilities associated with one
feature and the conjunction of the other two features of that stimulus, all of which
are estimated from reward feedback using a standard RL model. In these models,
we assume that participants identify one feature as the likely informative feature
early in the experiment and subsequently learn about the conjunctions of the other
two features. The update rules for the mixed feature- and conjunction-based RL
models are identical to the previous models, except that the reward probability
associated with the chosen or unchosen stimulus is replaced by the reward prob-
ability associated with one of the three features (which we refer to as the learned
feature) or the conjunctions of the other two features (learned conjunction) of the
chosen or unchosen stimulus. Additionally, we considered separate learning rates
for rewarded and unrewarded trials (αrew, αunr) when updating reward probabilities
associated with the learned feature and conjunction. This setting results in three
different mixed feature- and conjunction-based models depending on the learned
feature and conjunction. In the F+C1 model, we assume that the informative
feature and the conjunction of the other two non-informative features are being
learned; for example, values of shapes and conjunctions of colors and patterns are
learned (Fig. 1). In the F+C2 and F+C3 models, one of the two non-informative
features is learned along with the conjunction of the other non-informative feature
and the informative feature. In the example reward schedule shown in Fig. 1,
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reward probabilities associated with colors and conjunctions of shapes and patterns
are learned in F+C2, whereas reward probabilities associated with patterns and
conjunctions of shapes and colors are learned in F+C3.

Finally, the probability of choosing a stimulus is determined based on the
logistic function of the difference between the total estimated reward probabilities
associated with each of the two presented stimuli in a given trial:

logit PS1 tð Þ ¼ wF VFðS1Þ tð Þ � VFðS2Þ tð Þ
� �

þ wC VCðS1Þ tð Þ � VCðS2Þ tð Þ
� �

þ bias

ð10Þ
where VFðS1Þ and VFðS2Þ are reward probabilities associated with a feature of stimuli
1 and 2, respectively, VCðS1Þ and VCðS2Þ are the reward probabilities associated with
the conjunctions of the other two features of stimuli 1 and 2, respectively, bias
measures a response bias toward the left stimulus to capture the participant’s
location bias, and wF and wC determine the influence of the difference in reward
probabilities associated with the learned feature and learned conjunction of
presented stimuli on choice, respectively.

Mixed feature- and object-based models. In this group of models (referred to as
F+O models for abbreviation), the reward probability associated with each sti-
mulus is computed by combining the reward probabilities associated with one of
the three features (learned feature) and the reward probability associated with
stimulus estimated using reward feedback. In these models, we assume that par-
ticipants identify one feature as the likely informative feature early in the experi-
ment and combine this learning with what they learn about individual stimuli later
in the experiment. The update rules for the mixed feature- and object-based RL
models are similar to the previous models. Additionally, we considered separate
learning rates for rewarded and unrewarded trials (αrew, αunr) when updating
reward probabilities associated with the learned feature and each stimulus. This
setting results in three different mixed feature- and object-based models depending
the learned feature. In the F1+O model, we assume that the informative feature and
the objects are being learned; for example, values of shapes and objects are learned
(Fig. 1). In the F2+O and F3+O models, one of the two non-informative features is
learned along with the value of the objects. In the example reward schedule shown
in Fig. 1, reward probabilities associated with colors and objects are learned in
F2+O, whereas reward probabilities associated with patterns and objects are
learned in F3+O.

Finally, the probability of choosing a stimulus is determined based on the
logistic function of the difference between the total estimated reward probabilities
associated with each of the two presented stimuli in a given trial:

logit PS1 tð Þ ¼ wF VFðS1Þ tð Þ � VFðS2Þ tð Þ
� �

þ wO VS1 tð Þ � VS2 tð Þ� �þ bias ð11Þ

where VFðS1Þ and VFðS2Þ are reward probabilities associated with a feature of stimuli
1 and 2, respectively, VS1 and VS2 are the reward probabilities associated with the
stimuli 1 and 2, respectively, bias measures a response bias toward the left stimuli
to capture the participant’s location bias, and wF and wO respectively determine the
influence of the difference in reward probabilities associated with the learned
feature of presented stimuli and objects on choice.

RL models with decay. Additionally, we investigated the effect of forgetting
reward probabilities associated with the unchosen objects, conjunctions of features,
or feature(s) in the chosen-update models by introducing a decay in estimated
probabilities that has been shown to capture some aspects of learning, especially in
multi-dimensional tasks3,6. More specifically, reward probabilities associated with
unchosen stimuli, conjunctions of features, or feature(s) decay to 0.5 with a rate of
d, as follows:

V t þ 1ð Þ ¼ V tð Þ � d ´ ðV tð Þ � 0:5Þ ð12Þ
where t represents the trial number and V is the estimated reward probability
associated with a stimulus, or a conjunction of two features, or a feature.

Recurrent neural network. To understand computations and neural mechanisms
underlying the emergence of different learning strategies, we used recent methods
for training recurrent neural networks24–28,30,31 to construct biologically inspired
recurrent networks of point neurons endowed with plausible, reward-dependent
Hebbian learning rules35–37. Recurrent design was chosen to ensure that the net-
work can demonstrate long-term complex dynamics when learning using reward
feedback. We first used stochastic gradient descent (SGD) to train recurrent neural
networks (RNNs) consisting of excitatory and inhibitory units to learn input-
output associations for estimating reward probabilities and then used the trained
RNNs to perform our task. The first training, which was done in a series of multi-
dimensional environments (see below), was to allow the networks to learn a general
task of learning and estimating reward probabilities. Without such training, these
networks would not have the connectivity pattern necessary to choose between
multi-dimensional stimuli.

In the first (training) step, we trained RNNs to learn the temporal dynamics of
input-output associations and a set of reward probabilities randomly associated
with 27 stimuli used in our task. This was done to enable the network to learn a

universal solution for learning and estimating reward probabilities in environments
with different levels of generalizability. We used SGD to train the network to learn
reward probabilities using a three-factor, reward-dependent Hebbian learning rule
for weights from sensory units to recurrent units and between recurrent units.
Reward probabilities were drawn from a uniformly random distribution between 0
and 1 for each training session that consisted of 270 trials. Every 50 iterations,
RNNs’ performance (equal to the mean squared error of reward probability
estimates at the end of the session) in a task with reward probabilities similar to our
experimental paradigm was calculated. The RNNs were trained until this
performance matched the average performance of our participants. In the second
step (simulation of the experiment), we stopped SGD and simulated the behavior of
the trained RNNs in a session with reward probabilities similar to our experimental
paradigm and compared the behavior of the trained RNNs with that of our
participants. In this step, only plastic connections were modulated after each
reward feedback.

The overall structure of the simulated task was similar to our experimental
paradigm with a few exceptions. Specifically, only one stimulus was shown in each
trial and the network had to learn the reward probability associated with that
stimulus. Moreover, in each trial, networks received visual information about the
presented stimulus (i.e., distinct sensory inputs representing features, conjunction
of features, and object-identity) as a tonic input and had to learn reward probability
associated with that stimulus using reward feedback provided in each trial. We did
not require our networks to demonstrate working memory or make decisions
between stimuli to be able to better isolate the necessary structure for multi-
dimensional reward learning. Using this approach, we avoided complexity related
to decision-making processes and mainly focused on learning aspects of our
experimental paradigm. Nonetheless, we also simulated choice data generated by
the trained RNNs. Specifically, without retraining the networks, we added a
decision layer after the output layer to generate binary choice between pairs of
stimuli (using a logistic function) and fit simulated choice data (similar to our
participants) to show our results and main conclusion do not depend on the choice
mechanism.

Network structure. Networks consist of three layers with different types of units
mimicking different populations of neurons: 63 sensory units, 120 recurrent units,
and one output unit (Fig. 4). Recurrent units receive a set of Nin= 63 time-varying
inputs (ut) from the sensory units and were trained to produce an output zt . Inputs
encode stimuli-relevant sensory information, and the output represented the
estimate of the network for reward probability. Input to the recurrent units include
the output of 9 nodes representing all features, 27 nodes representing conjunctions
of features, and 27 nodes representing object identity of the stimuli. The activity of
recurrent units follows the continuous dynamical equation as below (bold capital
letters refer to matrixes, bold small letters refer to vectors and italic letters refer to
scalars):

τ _x ¼ �x þWrecrþWinuþ brec þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2τσ2rec

q
ζ ð13Þ

r ¼ ½x�þ
where τ is the time constant of the activity in the recurrent units, Win is an Nin ×N
matrix of connection weights from the sensory units to recurrent units, Wrec is an
N ×N matrix of recurrent connection weights, brec is a bias term, ζ is Gaussian
white noise processes with zero mean and unit variance, σrec is the strength of the
intrinsic noise to the network, and []+ is the rectifying linear function (ReLu). The
output unit z reads out linearly from the network as below:

z ¼ woutr ð14Þ
where wout is an 1 ×N vector of connection weights from the recurrent units to the
output unit. To solve the resulting dynamical system, we used the first-order Euler
approximation with a time-discretization step Δt to arrive at the following equa-
tions:

xt ¼ 1� αð Þxt�1 þ αðWrec
t�1rt�1 þWin

t�1ut þ brec þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α�1σ2rec

q
ζÞ ð15Þ

rt ¼ ½xt �þ

zt ¼ woutrt

where α= Δt/τ and t= [0, T] is the time elapsed within a single trial. The network
received noisy sensory input from 63 populations of sensory encoding units (ut) as
follows:

ut ¼ s ´ ðHt�0:5 �Ht�1:5Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
2τσ2in

q
ζ ð16Þ

where H is the Heaviside function allowing stimuli onset at 0.5s and stimuli offset
at 1.5s, s is a vector 0’s and 1’s with 1’s corresponding to feature, conjunctions of
features, and stimulus identity of the presented stimulus, and σin is the strength of
the input noise. In our simulations, we set Δt= 0.02s, τ ¼ 0:1s, σrec= 0.01, and
σin= 0.01.

Critically, we designed our network to obey some of biological constraints
observed in mammalian cortex. First, we constrained populations to have purely
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excitatory or inhibitory effects and hypothesized that excitatory populations (Exc)
outnumber inhibitory populations (Inh) by a ratio of 4 to 1. Second, we assumed
that all inputs and outputs of the network were long-range excitatory inputs from
an upstream circuit, and therefore all elements of Win

t and wout were forced to be
non-negative. Finally, to impose excitatory or inhibitory effects on recurrent
connections, we implemented Wrec

t as the product between a matrix for which all
entries were trained and forced to be non-negative (Wrec

t ) and a fixed diagonal
matrix with 1 s corresponding to excitatory populations and −1 s corresponding to
inhibitory populations on its main diagonal25,27.

To enable the networks to learn a universal structure of our task, we embedded
three-factor reward-dependent Hebbian learning in selected weights of the
RNNs35. Specifically, we hypothesized that a combination of pre- and post-synaptic
activity (Fðprei; postjÞ) and the modulator signal (Dt) results in an update of only

the recurrent and input weights (Wrec
t , and Win

t ) as follows:

τW
d
dt

Wt ¼ ωt �Wt ð17Þ

d
dt

ωt prei; postj

� �
¼ Dt ´ F prei; postj

� �

F prei; postj

� �
¼ cpre�r

i
t þ cpost�r

j
t þ ccorr�r

i
t�r

j
t

where cpre; cpost; ccorr are the pre-, post-synaptic, and the correlation terms, �r
represents the firing rate that is lowpass filtered with time constant of 0:1s, and
τW ¼ 0:1s is the time constant of the weights’ update. The modulator signal Dt was
defined as follows:

Dt ¼
Rt ; t 2 TR

N=A; o:w:

�
ð18Þ

where TR= [1.75s, 2s] represents the time when reward feedback is present, and Rt
denotes the binary reward (+1 when reward was present and −1 when reward was
absent).

We assigned each inhibitory or excitatory population to one of four types of
populations: (a) Excrr and Inhrr corresponding to populations with no plastic
sensory or recurrent connections (rigid weights indicated by subscript r); (b) Excfr
and Inhfr corresponding to populations with plastic sensory input only (flexible
weights indicated by subscript f); (c) Excrf and Inhrf corresponding to populations
with plastic recurrent connections only; and (d) Excff and Inhff corresponding to
populations with plastic sensory input and plastic recurrent connections. These
eight populations cover all combinations of possible rigid and flexible input and
recurrent connections in excitatory and inhibitory populations.

Finally, we simulated three alternative versions of our model. We trained RNNs
without plastic sensory input, RNNs without plastic recurrent connections, and
feedforward neural network (FFNNs) with only excitatory populations with plastic
sensory input.

RNN training procedure. In the first training step, we used the Adam version of
SGD83 to train the networks. The objective function ϵ to be minimized was
computed by time-averaging the squared errors between the network output zt and

the target output z’t (L) in addition to using the L2-norm regularization term (R)
for encouraging sparse weights/activation patterns. The objective function was
calculated as follows:

ϵ ¼ 1
N trials

∑
N trials

n¼1
ðLn þ λrRnÞ ð19Þ

Ln ¼ 1
Ntime

∑
Ntime

t¼1
ðzt � z0tÞ2

Rn ¼ 1
NN time

∑
N

i¼1
∑
N time

t¼1
ðrtÞ2i

where λr= 0.01 determines the effect of the regularization term Rn. The default set
of parameters were used for the training where the learning rate was set to 0.001
and the decay rate for the first- and second-moment estimates were set to 0.9 and
0.999, respectively. Model parameters including the learning and decay rates as well
as the regularization term were determined by a coarse grid search to achieve a
faster training. During training, we adjusted Win

0 ;W
rec
0 ;wout; brec; bout; x0; ðcpre;

cpost; ccorrÞU!E=I; and ðcpre; cpost; ccorrÞE=I!E=I
parameters, where W0

in and

W0
rec are the initial connection weights and x0 refers to the initial neuronal activity

at time t ¼ 0 in each trial. The network was trained with randomly generated
reward probabilities between 0 and 1 for each session where target output z0t was
defined as the reward probability of the stimuli during the choice period
Tch ¼ ½1s; 1:5s�� �

and zero activity before the stimuli onset ½0s; 0:5s�ð Þ. Each
training session consisted of N trials ¼ 270 trials of T ¼ 2s, equivalent to a session in
our experimental paradigm. We used mean squared error of reward probability
estimates at the end of a session (with reward probabilities equal to our experi-
mental paradigm) to define network performance and to stop training. Specifically,

training was continued until each network achieved a final estimation error similar
to that observed in participants’ last reported estimates.

Simulating the experiment with the trained RNNs. In the second step, we
stopped SGD and simulated the behavior of the trained RNNs in a session with
reward probabilities equal to our experimental paradigm. Specifically, during these
simulations Win

0 ;W
rec
0 ;wout; brec; bout; x0; ðcpre; cpost; ccorrÞU!E=I

; and

ðcpre; cpost; ccorrÞE=I!E=I
parameters were fixed at the values found in the training

step while plastic connections were modulated after each reward feedback
according to Eqs. 17–18.

Adjustment for multiple comparisons. Using the described formulations, we
initially trained and analyzed N= 20 RNNs. According to the results obtained from
these networks, we trained and analyzed a new set of N= 50 RNNs. As a result, for
the comparison of naïve weights (Win

0 ;W
rec
0 ;wout), we adjusted the P-values

according to the number of comparisons we performed.

Analysis of response in recurrent units. To explore the dynamics of population
activity in our networks, we applied principal component analyses (PCA) to the
response of excitatory recurrent units of the trained RNNs because this response
determines the output of the networks. More specifically, we performed three
separate PCAs on the activity of excitatory recurrent units during the simulated
experiment (repeated 100 times to obtain smoother results). This includes: PCA on
the response of excitatory recurrent units to all stimuli at the beginning of each
session before the network has learned about the reward environment; PCA on the
response of excitatory recurrent units to all stimuli at the end of each session when
the network has fully learned the task; and PCA on the response of excitatory
recurrent units to all stimuli during the choice period throughout each session.

Additionally, to identify value representations associated with different
strategies in our network model, we examined the dissimilarity in the response of
recurrent units to all stimuli and its relationship to dissimilarity of reward value of
different stimuli (i.e., reward probabilities associated with different stimuli) based
on different learning strategies33,84. The response dissimilarity matrix was
computed as the distance between the activity of recurrent excitatory or inhibitory
populations during the choice period (Supplementary Fig. 9). The reward
probability dissimilarity matrix was calculated as the distance between reward
probability estimates based on each of the three models (informative-feature,
conjunction of non-informative features, and object-based models) for all the
stimuli. We then used GLMs to estimate the normalized weights of the reward
probability dissimilarity matrix for predicting the response dissimilarity matrix. We
obtained qualitatively similar results when measuring dissimilarity with Euclidian
distance, correlation, and cosine, but only report those based on the Euclidian
distance.

Measuring reward modulations of connection weights. To measure the effects
of reward-dependent plasticity, we examined changes in the weights of plastic
sensory input during the simulation of our task. Specifically, we used GLM to fit
weights from a given sensory population type (e.g., yellow color-encoding unit) to a
given recurrent population (e.g., Excfr) using the reward probability estimates
associated with a feature or conjunction of features represented by that sensory
population (e.g., value of color yellow). Value estimates were calculated using a
simple reinforcement learning agent (learning rates (αrew, αunr)= 0.05). Addi-
tionally, we used GLMs to estimate changes in plastic recurrent connection weights
as a function of time (trial number).

Data analysis. Unless otherwise mentioned, the statistical comparisons were
performed using Wilcoxon signed-rank test in order to test the hypothesis of zero
median for one sample or the difference between paired samples. The reported
effect sizes are Cohen’s d-values. All data was collected using custom code written
in Matlab with Psychtoolbox Version 3 extensions85. All behavioral analyses and
model fitting were done using custom code written in MATLAB 2018a (Math-
Works, Inc., Natick, MA). RNN simulations were implemented using the Ten-
sorflow package in Python 3.7 environment86.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw and processed data generated in this study have been deposited in a GitHub
repository accessible at https://doi.org/10.5281/zenodo.559468487. Source data are
provided with this paper.

Code availability
The source code to reproduce the results of this study has been deposited in a public
repository accessible at https://doi.org/10.5281/zenodo.559468487.
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