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Vesicle shape transformations driven by confined
active filaments
Matthew S. E. Peterson 1, Aparna Baskaran 1✉ & Michael F. Hagan 1✉

In active matter systems, deformable boundaries provide a mechanism to organize internal

active stresses. To study a minimal model of such a system, we perform particle-based

simulations of an elastic vesicle containing a collection of polar active filaments. The interplay

between the active stress organization due to interparticle interactions and that due to the

deformability of the confinement leads to a variety of filament spatiotemporal organizations

that have not been observed in bulk systems or under rigid confinement, including highly-

aligned rings and caps. In turn, these filament assemblies drive dramatic and tunable

transformations of the vesicle shape and its dynamics. We present simple scaling models that

reveal the mechanisms underlying these emergent behaviors and yield design principles for

engineering active materials with targeted shape dynamics.
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Active matter encompasses systems whose microscopic
constituents consume energy at the particle scale to pro-
duce forces and motion. Novel macroscale phenomena

emerge in these systems when these forces collectively organize
into mesoscale ‘active stresses’. For example, many biological
functions, such as cytoplasmic streaming, morphogenesis, and
cell migration, are driven by active stresses that emerge from
active components confined within a cell1–8. Understanding
physical mechanisms that underlie these functions is a key goal of
cellular biophysics. From a technological perspective, harnessing
active stresses to drive particular emergent behaviors could enable
a new class of materials with life-like properties that would be
impossible in traditional equilibrium materials. However,
rationally designing active constituents to generate a desired
emergent behavior requires identifying the principles that govern
organization of mesoscopic active stresses.

In particular, the membrane protrusions (filopodia and
lamellipodia) that underlie these processes are driven by bundled
actin filaments undergoing polymerization; at the same time,
actin-bundling is enhanced by funneling of the filaments by the
resulting membrane curvature9. Achieving such capabilities in
minimal bio-derived experimental systems (e.g. refs. 9–12) is
essential to engineer controlled shape transformations. There
have been a number of numerical studies forcused on specific
aspects of the actin cortex organization driving these
phenomena13–16. However, given the complexity of active matter
systems, it is important to develop and study minimal models,
which focus on specific mechanical aspects of the complex
emergent behavior. More broadly, such studies will guide the
design of soft robotics, artificial cells, or other advanced materials
that mimic the capabilities of living organisms.

The field of active matter has identified two key mechanisms
that provide control over active stress organization: (1) aniso-
tropic interactions between active components that realign forces,
and (2) confining boundaries. These mechanisms fundamentally
differ from the effects of internal stresses and boundaries in
equilibrium systems17. Due to their persistent motion, aligned
active particles can generate system-spanning net forces or flows.
For example, interactions between self-propelled particles that
drive interparticle alignment result in bands or flocks18,19, and
changing the length and stiffness of active polymers leads to
dramatic reorganization of active stresses20–25. While boundary
effects are typically short-ranged in an equilibrium system, con-
fining an active system can redirect the hierarchical organization
of its internal active stresses and thus qualitatively change its
macroscopic emergent behavior. For example, confining active
particles leads to system-spanning effects such as spontaneous
flow26–33. Furthermore, deformable confining boundaries enable
non-equilibrium boundary fluctuations12,34–38, including elon-
gated tendrils and bolas35 and budding39. The latter results sug-
gest that flexibility is a key characteristic of a confining boundary,
as it allows shape transformations, sensing and response to
environmental cues.

Despite the important insights from these studies, relatively
little is known about the behaviors that may arise when these two
active stress organization modes are coupled—that is, enclosing
anisotropic active components within deformable boundaries. In
particular, most existing theoretical and computational studies
have focused on rigid boundaries40–43, isotropic active
particles34–36,44–48, or have been in 2D22,49,50. More closely
related to our work are simulation studies of droplets containing
active material that show tantalizingly life-like behaviors such as
motility and division51–54. These elegant studies highlight the
importance of understanding the types of emergent behaviors
that arise when active matter and deformable boundaries are
combined. However, the continuum hydrodynamic theories

employed in these works require key assumptions about the
nature of particle organization and particle-membrane
interactions.

Here, we describe a particle-based computational study of a
minimal model that combines active interparticle alignment
interactions and deformable confinement, in which the form of
particle assemblies and their interactions with the membrane are
an emergent property of the dynamics. In particular, we use
Langevin dynamics simulations of polar self-propelled semi-
flexible filaments confined within 3D elastic vesicles. Rather than
directly describing the cytoskeleton as in recent computational
studies9,13–16, we seek a minimal mechanical model that can
describe shape transformations in vesicles deformed by active
stresses. Thus, we consider active filament propulsion in the
overdamped limit without long-ranged hydrodynamic coupling.
Our results thereby identify a generic route to control self-
organizing active stresses by enclosing active components with
anisotropic shapes and/or internal degrees of freedom within
deformable confining boundaries.

The simulations show that the interplay between these two
methods of active stress organization leads to a positive feedback,
in which active forces drive boundary deformation while passive
stresses from the boundary re-align and reinforce self-
organization of the internal active stresses. This leads to a rich
variety of steady-state behaviors that have not been observed in
bulk systems or under rigid confinement, including highly aligned
rings, and caps that have tunable self-limited sizes, number, and
symmetry. Each filament organization drives a characteristic
large-scale vesicle shape transformation that can be selected by
varying parameters such as filament length, density, and flex-
ibility. We also present simple scaling analyses that reveal how the
feedback between vesicle geometry and filament organization
drives and stabilizes these emergent behaviors. The applicability
of these scaling arguments suggests that these behaviors arise
generically due to feedback between vesicle elasticity and active
filament organization, independent of the specific model.

Results
To discover the steady-state conformations that arise due to
coupling between active propulsion and elasticity, we have per-
formed simulations over a wide range of control parameters
which we present in nondimensional form as: the volume fraction
of filaments in the vesicle ϕ∈ [0.01, 0.4], filament aspect ratio
a= 1+ (M− 1)(bfil/σ)∈ [3, 25.5] (with bfil and σ the mean bond
length and monomer diameter, respectively), Péclet number
Pe= faσ/kBT∈ [0, 10] (with fa the active propulsion force, and T
the system temperature), filament rigidity χves= κfil/kBT∈ [102,
104] (with κfil the filament bending modulus), and vesicle rigidity
χves= κves/kBT∈ [102, 104] (with κves the vesicle bending mod-
ulus). Additional simulation details can be found in the Methods
section.

Figure 1 shows the steady-states as a function of filament volume
fraction and aspect ratio for moderate activity Pe= 8. At this activity
and vesicle size, for aspect ratios a ≳ ð24Rves=σPeÞ1=3 � 4:2 the
system is in the strong confinement limit: because the persistence
length of the filament center-of-mass motion, lCOMp ¼ σa3Pe=12, is
larger than the vesicle size, lCOMp > 2Rves, most filaments are found
on the vesicle surface at all times55 (see Supplementary Note 1, see
Supplemental Material for model details and additional figures).

Under these conditions we can classify the steady-state vesicle
conformations into several categories: (I) spherical, (II) oblate,
(III) polar-prolate, (IV) apolar-prolate, and (V) polyhedral. These
vesicle configurations are tightly coupled to the spatiotemporal
organization of the filaments within, as follows.
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(I): Spherical vesicle shapes arise at low filament volume frac-
tions and aspect ratios. Under these conditions, filament-filament
collisions are rare and inter-filament aligning forces are
weak56–62. Thus, filament positions and orientations are homo-
geneous (throughout the vesicle interior below strong confine-
ment, or on the vesicle surface above strong confinement),
leading to little deformation of the vesicle.

(II): For low volume fraction but high aspect ratios, such that
the filament length L= aσ is comparable to the unperturbed
vesicle radius, L ~ Rves, the vesicle deforms into oblate spheroid
conformations. This transition is driven by the filaments orga-
nizing into a stable polar band in which all filaments move in the
same direction, resulting in deformations of the vesicle along a
geodesic. This filament arrangement closely resembles the polar
bands observed on the surface of rigid spheres for active particles
with polar propulsion and polar interparticle alignment
interactions46, which arise due to topological requirements for a
surface-constrained polarization field42. However, note that such
polar bands would be unstable to fluctuations that are transverse
to the polar orientation of the band in our system if the confining
geometry was a rigid sphere because the filament-filament
interactions in our system are nematic (head-tail
symmetric)63,64. The finite deformability of the vesicle is essential
to stabilize this configuration—active forces due to the polar band
force the vesicle into an oblate shape, which in turn provides a

restoring force to stabilize transverse fluctuations to filament
alignment within the band. In support of this conclusion, simu-
lations on infinitely rigid vesicles did not exhibit stable polar
bands (see below). Thus, this configuration provides a concrete
example of how feedback between passive stresses and self-
organization of active stresses can generate steady states that
would be otherwise disallowed by symmetry. To further elucidate
this interplay between passive and active stresses, we present a
theoretical analysis in Supplementary Note 6 and Supplementary
Figure 6 that relates the extent of vesicle deformation to the forces
exerted by the filaments within the band.

(III-V): For intermediate volume fractions and aspect ratios,
the vesicle deforms into a prolate spheroid. These prolate vesicle
conformations can be further classified by the net alignment of
the enclosed filaments as either polar (III) or apolar (IV). We note
that states with net polarity can exhibit center-of-mass motion,
but more comprehensive models that account for momentum
conservation would be important to study such effects. Therefore,
in what follows we focus on the internal motions and shape
transformations of the vesicle. Further increasing the volume
fraction or decreasing the aspect ratio leads to polyhedral con-
formations, (V). States (III-V) all result from filaments assembling
into crystalline caps in which the rods are highly aligned and
perpendicular to the vesicle surface. Interestingly, the caps are
‘self-limited’ in that their typical size decreases with decreasing
aspect ratio, but is roughly independent of the total number of
filaments Nfil in the vesicle. Increasing Nfil at fixed aspect ratio
increases the number of caps; we observe up to 12 caps for the
finite vesicle size that we consider (see below). Further, caps drive
local curvature of the vesicle, leading to elasticity-mediated cap-
cap repulsions, which favor symmetric arrangements of caps.
Thus, the vesicle morphology can be sensitively tuned by con-
trolling filament aspect ratio and density to achieve a specific
number of caps. The polar-prolate (III), apolar-prolate (IV), and
polyhedral states (V) respectively have 1, 2, and ≥3 caps. For
states with small numbers (1-3) of caps, the filament organization
is highly stable once the system reaches steady state. However, for
enough caps in the vesicle (typically more than 3), the caps can
become motile, and collide with, merge with, and split from other
caps (see below). Note that the formation of these caps is quali-
tatively similar to the buds that were observed in simulations of
surface-bound proteins, which have attractive interaction-
induced aggregation and exert forces in the normal direction of
a highly deformable membrane39. In contrast, in our system the
filaments interact only through excluded volume and are not
constrained to the membrane; thus, caps are an emergent prop-
erty arising from activity, excluded volume, and passive forces
from the membrane.

Mechanisms underlying stress organization and deformation.
To understand how these conformations are governed by the
interplay between propulsion-induced aligning forces, vesicle
deformability, and vesicle curvature, we develop simple scaling
estimates for the timescales and forces that govern filament
alignment and interactions with the vesicle. First, we consider the
transition between undeformed spherical vesicle states char-
acterized by unaligned or weakly aligned filaments as in state (I),
to the highly deformed oblate, prolate, and polyhedral vesicle
shapes of states (II-V). Our simulations demonstrate that such
significant vesicle shape deformations occur when filament-
filament interactions mediate the organization of ordered struc-
tures either in the plane of the vesicle or orthogonal to it. (The
ability of collisions of self-propelled particles on a surface to drive
formation of smectic layers is supported by a recent observation
in bacterial colonies growing on flat surfaces, in which bacteria

Fig. 1 Steady-state configurations as a function of filament volume
fraction ϕ and aspect ratio a. Snapshots illustrating steady-state
configurations of the vesicle and enclosed active filaments as a function of
filament aspect ratio a and initial volume fraction ϕ. See Supplementary
Movie 1 for animations of the corresponding simulations (See Supplemental
Material for model details and additional figures). The marked regions of
parameter space indicate the typical vesicle conformation: (I) spherical, (II)
oblate, (III) polar-prolate, (IV) apolar-prolate, and (V) polyhedral. The
symbols associate the conformation with the internal filament organization:
homogeneous throughout the bulk or on the surface, with no vesicle
deformation (•); transient clusters and/or bands, with oblate vesicle shapes
(⋆); stable polar rings (∘); stable caps (circle around a number of
intersecting lines equal to the median number of caps); and dynamic caps
(♢). The dashed line shows the transition to aligned states predicted from
the competition between the characteristic collision and reorientation
timescales (ϕ= (π/4)2/a) described in the text, and the horizontal dotted
line indicates the approximate threshold aspect ratio for the filaments to be
in the strong confinement limit. Other parameters are the Péclet number
Pe= 8, filament bending modulus χfil= 104 and vesicle rigidity
χves= 5 × 103.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27310-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7247 | https://doi.org/10.1038/s41467-021-27310-8 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


form ‘rosettes’ with the rod-like bacteria oriented perpendicular
to the surface65. However, in contrast to the self-limited caps in
our system, the bacterial rosettes do not exhibit a preferred
size because they are on a flat boundary). In the following dis-
cussion we assume the strong confinement limit; in particular, we
assume that the timescale governing the rotational diffusion of
the filaments, τcorr, is long compared to the other relevant
timescales.

The onset of filament assembly. The onset of this transition can
be understood by considering a competition between two char-
acteristic timescales that respectively govern collision-induced
filament-vesicle alignment and filament-filament alignment (see
Fig. 2). Filament-vesicle collisions, which tend to reorient fila-
ments parallel to the surface66,67, have a characteristic timescale
τrot ~ L/va with va= Pev0 the filament self-propulsion velocity and
v0= kBT/mγσ a characteristic velocity of the system. We can
estimate the timescale for filament interactions by considering
filament-filament pairwise collisions whose timescale is given
by τcoll ~ σ/vaϕ (see Supplementary Note 2, see Supplemental
Material for model details and additional figures). Thus,
deformed vesicle states will arise when τcoll < τrot or equivalently
aϕ > c, where c≅ (π/4)2 is independent of activity and filament
length (See Supplemental Material for model details and addi-
tional figures). This defines a boundary separating highly
deformed states of the vesicle from the undeformed spherical
states (the dashed line in Fig. 1).

Notably, the active force drops out of this argument because
both collision and reorientation times are∝ Pe. Thus, the theory
predicts that the emergence of deformed vesicle states is
independent of activity of the enclosed filaments (above a
threshold activity). As a test of this prediction, Fig. 3 shows the
steady-states as a function of ϕ and Pe for fixed aspect ratio
a= 10.5. Indeed, formation of large deformations does not
depend on activity, with non-spherical shapes forming for ϕ ≥
c/a ≈ 0.06 (as predicted by the above timescale argument) for all
Pe > 0 that we considered.

This simple theoretical picture gives a predictive principle, in
terms of properties of the active filaments, for when vesicle shape
transformations occur. However, the theory assumes the strong
activity, long filament limit and thus neglects thermal noise.
Below a threshold activity (Pe≲ 1) the vesicle will not deform
because filament organization is destroyed by thermal

fluctuations. Also, cap formation (and thus vesicle shape
transformation) does not occur when the filaments are below
the strong confinement limit discussed earlier (a≲ 4.2 for the
parameters of Fig. 1, shown as a dotted line). This observation is
consistent with the assumption made during the preceding
analysis, that the rotational diffusion timescale of the filaments,
τcorr, is much larger than both τrot and τcoll.

Cap morphologies. We can derive further insight into shape
transformations by considering the system in the strongly
deformed regime with polyhedral shapes. The defining character-
istic underlying these states is filament assembly into well-ordered
caps. Most cap states are relatively static, with occasional associa-
tion/dissociation of individual rods (See Supplementary Movie 4),
except for the parameters that lead to the highly dynamic, recon-
figuring caps discussed below. In a static steady state, the active and
elastic forces must balance. In particular, the dense crystalline
nature of caps arises because the active force and the presence of
the vesicle surface leads to an effective attractive interaction
between nearby filaments. This attraction drives radial growth of a
cap, since filaments on the cap periphery have fewer neighbors,
leading to an effective interfacial tension. This effect is both rein-
forced by and competes with vesicle elasticity. The active force of
small caps drives vesicle deformations whose local curvature
enhances effective filament-filament attractions. However, as the
cap grows in radius, vesicle curvature drives an effective shear of
filaments (see Fig. 2b) that reduces rod-rod overlaps and thus
opposes the active force.

We describe this competition by constructing an effective ‘free
energy’ whose gradients correspond to the active and passive forces
(Fig. 2b). Since the active force favors rods to align in a smectic layer,
the shear due to vesicle curvature imposes an ‘energy’ cost of
U shearðθÞ ¼ ncap2πR

2
ves

G
2 cos θ þ sec θ � 2½ �, with θ the angle sub-

tended by the cap on the vesicle surface, ncap the number of caps,
and a ‘shear modulus’ G∽ Pe (but independent of Lrod) (See
Supplemental Material for model details and additional figures). In
the strongly deformed region the caps are roughly circular, so the
interfacial energy is given by U intðθÞ ¼ ncap2πRvesλ sin θ, with the
‘interfacial tension’ λ∽ LrodPe accounting for the diminished
interactions at the cap boundary. This results in a free energy as a
function of cap size (See Supplemental Material for model details

Fig. 2 Mechanisms of filament assembly into rings and caps. a The onset
of ring and cap formation is determined by a competition of timescales: the
timescale associated with rotations parallel to the vesicle (left) and the
timescale associated with collisions that tend to orient the filaments
perpendicular to the vesicle (right). b Schematic of the theory for the
number of caps (Eqs. (1) and (2)). We assume an activity-induced effective
attractive interaction that is quadratic in the rod-rod contact length Δl
(left). The cap is assumed circular, with size parameterized by the angle θ
between the cap center and edge. Vesicle curvature leads to a shearing of
rods within the cap (right).

Fig. 3 Steady-state configurations as a function of volume fraction ϕ and
Péclet number Pe. The marked regions are defined as in Fig. 1. The dashed line
shows the transition to aligned states predicted by the timescale competition,
which is independent of Pe. Other parameters are a= 10.5, χfil= 104, and
χves= 5 × 103. Note that the figure has a change in scale on the activity axis for
Pe < 1. See Supplementary Movie 2 for corresponding animations.
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and additional figures):

f ðθÞ ¼ 1
1� cos θ

1
2
ðcos θ þ sec θ � 2Þ þ ζ sin θ

� �
ð1Þ

where ζ=G/λRves ~ L/Rves is given by the balance between the
effective interfacial tension and shear modulus, and should be linear
in filament length but roughly independent of Pe since both of these
effects are driven by activity.

Minimizing this per-filament free energy yields an optimal
θ68,69 corresponding to the self-limited cap size. Assuming that
we are well above the onset of cap formation so that essentially all
filaments are in caps,

ncap / N fil½1þ a=a�
� ��2=3� ð2Þ

where a*∝Rves/σ is an adjustable parameter that depends on the
local vesicle curvature at the cap, which results from a balance
between active forces from the filaments and passive forces from
vesicle bending (see Supplementary Note 3). Thus a* may depend
on the moduli of the vesicle and filaments as well as activity in some
limits. This expression holds provided a≪ a*. For the data in Fig. 1,
we obtain a* ≈ 130, leading to the dashed line shown in Fig. 4.

Except for states with many (ncap≳ 7) motile caps, there is close
agreement between the observed and predicted ncap. Above this
threshold our cap-counting algorithm likely under counts ncap, since
different caps are often adjacent and interacting. Further, the
prediction of Eqs. (1) and (2) that the self-limited cap size is
independent of activity is consistent with observations at different Pe
(see Fig. 3). The motile cap states appear to arise when the curved
vesicle geometry forces interactions between the inward-facing ends
of adjacent caps. Such interactions occur above a threshold number
and aspect ratio of filaments, given by N fil ≳Cð1� aσ=RvesÞ2, where
C / R2

ves is a constant (see Supplementary Note 4, see Supplemental
Material for model details and additional figures).

We note that the geometric factors governing the self-limited cap
size parallel those in a recently studied equilibrium system of rigid
filaments end-adsorbed onto a rigid spherical nanoparticle, which
self-assemble due to direct pairwise inter-filament attractions69.
However, in the present system, the effective filament-filament
interactions and vesicle geometry are many-body and emergent in

that they arise due to feedback between nonequilibrium active forces
and vesicle deformations.

Effect of filament and vesicle rigidity. Thus far, we have focused
on the interplay between activity and vesicle deformability by
performing simulations in the limit of rigid rods, χfil= 104, and
high (but finite) vesicle rigidity χves= 5 × 103. We now briefly
discuss the effect of allowing for finite filament and vesicle
flexibility.

Figure 5 shows the vesicle conformation and filament
organization states as a function of filament bending modulus
and activity, for fixed filament volume fraction ϕ= 0.2. We see
that for finite filament flexibility, the transition to aligned ring
and cap states is suppressed above a threshold activity, which
decreases with decreasing χfil.

This result can be understood as follows. On generic grounds,
decreasing the filament rigidity will reduce the tendency for

Fig. 4 The number of caps formed in simulations compared to theory.
Symbols represent mean numbers of caps measured from simulations, with
diamonds indicating dynamic cap states and the error bars showing the
standard deviation. The dashed line is the expectation from theory given by
Eq. (2). Note that the number of caps in the simulation results is likely
under-counted for the dynamic states due to the caps’ motility. The
simulation data is taken from Fig. 1 and consists of all states that form rings
or caps. For the theory, A ¼ 1=2πρR2ves and a� ≈ 130 (from fitting to data
points with ncap≤ 7; points with more caps were not included in the fit due
to the unreliable counting). Active filaments are colored by which cap they
belong to for visual clarity. Note that both filament aspect ratio and volume
fraction are changed between snapshots.

Fig. 5 Increasing activity decreases the effective filament bend modulus,
causing the system to leave the strong confinement limit. a Vesicle
conformations and filament organizations as a function of filament rigidity
χfil and active force strength Pe, for fixed volume fraction ϕ= 0.2 and
filament aspect ratio a= 10.5. For a given filament stiffness, increasing
activity reduces the number of caps until an upper-threshold activity value
PeSC, beyond which the system transitions into an undeformed state. As
described in Supplementary Note 5, this transition occurs because activity
renormalizes the filament bending modulus to smaller values70, thus
reducing filament alignment interactions and causing the system to leave
the strong confinement limit. The dashed line shows the prediction for PeSC
given by Supplementary Eq. 35. Note that there is no adjustable parameter.
In the rigid rod limit (χfil > 103) all nonzero active force values that we
simulated led to cap formation. b Selected snapshots of states shown in (a).
Animations of these states can be found in Supplementary Movie 3.
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filaments to align and thus impede the formation of aligned rings
and caps. For filament stiffness values well below the rigid rod
limit, the process by which caps and rings form is more
complicated than considered previously. The upper-threshold
activity for filament organization can be, at least in part, explained
by the observation that activity renormalizes filament rigidity to
smaller values according to χefffil ffi χfil= 1þ Pe2

� �
70. Interactions

between flexible active agents are such that the active energy
preferentially dissipates into bend modes, effectively increasing
filament flexibility and therefore suppressing filament alignment.
In particular, the upper-threshold activity corresponds to the point
when the activity-renormalized flexibility of filaments causes the
system to leave the strong confinement limit. This occurs for

Pe≳Cχ3=5fil , where C ¼ ð24Rves=σÞ�1=5 (see Supplementary Note 5
for details), which is shown as the dashed line in Fig. 5.
Accounting for this activity-renormalized filament flexibility can
also be used in Eq. (2) to explain the reduction in the number of
caps as activity is increased at a fixed filament rigidity.

Figure 6 a shows the conformations obtained by varying the
vesicle rigidity χves and filament volume fraction ϕ, while fixing

the filament rigidity χfil= 104 and activity Pe= 8. The most
striking effect of reducing the vesicle rigidity is that it drives a
faceting transition when the Föppl-von Kármán number, FvK ¼
YR2

ves =κ where Y ¼ 2kves=
ffiffiffi
3

p
is the Young’s modulus of the

vesicle and κ ¼ ffiffiffi
3

p
kBTχves=2 is the bending modulus71–73, is

increased above a critical value, FvK≳ 154. This is an equilibrium
property of an elastic vesicle, independent of the active
filaments74. Our results indicate that faceting does not qualita-
tively change the formation of caps, but that caps form at slightly
lower filament volume fraction for reduced vesicle bending
modulus. This could be anticipated from the theoretical
arguments described above, since reducing the bending modulus
allows filaments’ active forces to further deform the vesicle,
leading to a smaller local radius of curvature in the vicinity of a
cap. More interestingly, the facets appear to destabilize the polar
bands and rings. For round vesicles (with bending modulus such
that FvK < 154), a stable ring forms along a geodesic. In contrast,
in faceted vesicles at the same activity and filament volume
fraction, rings or bands tend to form paths that connect facet
vertices. The bending of the ring path imposed by the facet
connectivity destabilizes the ring, causing it to transiently break
and reform (similar to the transient band state described above).
This behavior suggests that it will be interesting to explore the
possibility of coupling between vesicle faceting and filament
organization in a future work.

Figure 6b compares configurations observed with a flexible
vesicle (χves= 5 × 103) and a rigid vesicle (χves→∞) for
a∈ [15.5, 25.5], ϕ= 0.10, Pe= 8, and χfil= 104. While the flexible
vesicle exhibits stable polar rings and single caps at these
parameters (Fig. 1), the rigid vesicle system is unable to form the
single-cap state, and only exhibits transient polar rings, which
continuously break apart and reform as the simulation progresses.
These results emphasize the importance of the feedback between
active stress organization and vesicle deformation, which allows
for stable states that are otherwise inaccessible under rigid
confinement.

Discussion
This work demonstrates that confining active filaments within a
deformable vesicle leads to multiple transformations of the vesicle
shape and motility, which can be precisely tuned by control
parameters. The feedback enabled by coupling deformable
boundaries with anisotropic particles significantly enriches the
available modes of self-organization. While the self-limited caps
are the most striking class of such behaviors, the stable polar
bands for particles with nematic interactions provides a clear
example of how boundary deformations can stabilize novel states.
Notably, both of these classes of behaviors arise due to a spon-
taneous symmetry breaking of the initially spherical boundary.

While we emphasize that our minimal model is not intended to
represent specific biomolecular systems, it is interesting to note
that the lateral coalescence of filaments and the resulting mem-
brane protrusions of cap states in our system bear resemblance to
the organization of cortical actin within lamellipodia in biological
cells9,13–16. Although the filament activity in our model has the
same polar symmetry as in the actin cortex, there are also key
differences. In the cortex, activity derives from asymmetric
polymerization of actin rather than filament self-propulsion, and
bundling of actin filaments is driven by cross-linking proteins and
branching agents, in addition to forces deriving from membrane
curvature. Since we do not include lateral attractive interactions
between filaments in our minimal model, the lateral coalescence
of filaments within caps is driven entirely by their persistent
motion and membrane curvature. The fact that we observe
similar filament arrangements and coupling to the membrane in a

Fig. 6 Vesicle deformability is critical for stable ring and cap formation.
a Simulation snapshots illustrating vesicle conformations and filament
organizations as a function of filament volume fraction and vesicle rigidity.
As the vesicle rigidity is reduced below a critical value (corresponding to
the critical Föppl-von Kármán number FvK≈ 15475, indicated by the dashed
line), the vesicle undergoes a buckling transition leading to the formation of
facets. While we observe most of the same classes of filament self-
organization in faceted and round vesicles, polar bands trace a dynamic
path between vertices in faceted vesicles, while they trace a stable geodesic
in round vesicles. Animations of these states can be found in
Supplementary Movie 5. b Comparisons between flexible (χves= 5 × 104)
and rigid (χves→∞) vesicles as a function of filament aspect ratio, with
other parameters set to Pe= 8, ϕ= 0.1, and χfil= 104. In contrast to flexible
vesicles, rigid vesicles do not allow for the formation of stable caps or rings.
When polar rings do form in rigid vesicles, they are transient---continuously
breaking and reforming over the course of the trajectory. Animations of this
comparison can be found in Supplementary Movie 6.
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minimal model thus suggests that this may be a generic
mechanism for driving membrane protrusions.

These results have implications for future experiments on
active materials constructed from anisotropic particles confined
within deformable boundaries. In particular, the transitions can
be controlled by tuning parameters that are readily accessible in
experiments—filament length, flexibility, and volume fraction. In
contrast, activity is a complicated function of motor properties
and ATP in bio-derived systems75,76. Thus, our computational
results suggest strategies to engineer active vesicles with desig-
nable shapes and dynamics, and other capabilities resembling
those of living cells. Furthermore, our theoretical analysis iden-
tifies the mechanisms that underlie these emergent morphologies
by revealing how filament-filament interactions and vesicle
deformations couple to spatiotemporally organize stress. This
provides a model-independent roadmap for exploring additional
classes of emergent functionalities in parameter regimes beyond
the scope of the present work, including highly deformable flui-
dized vesicles and other symmetries of activity.

Methods
We consider a minimal model to study stress organization at a deformable
boundary through contact interactions. We simulate a system of Nfil active fila-
ments confined within an elastic vesicle, which has radius Rves in its undeformed
state. We represent active filaments using the model in Joshi, et al. 70—modified so
that the active forcing is polar rather than nematic—in which each filament is a
nearly-inextensible, semiflexible chain of M beads of diameter σ24. Bonded beads
interact through an expanded FENE potential77, while non-bonded beads interact
through a purely repulsive expanded Weeks-Chandler-Andersen (eWCA)
potential78 with strength ϵ. The equilibrium bond length is set to bfil= σ/2 to
minimize surface roughness between interacting filaments, thereby preventing
filaments from interlocking at high density23,25,79–81. The filaments are made
semiflexible with bending rigidity κfil through a harmonic angle potential applied to
each set of three consecutive beads along the chain.

To focus on the interplay between active stresses in deformable boundaries, our
model is not intended to describe any specific biofilament system and incorporates
activity in a minimal manner—a polar active force of magnitude fa acts on each
bead, in a direction tangent to the filament and toward the filament head. This
active force is meant to account for propulsive forces on filaments that arise from a
combination of molecular motor forces and interparticle interactions with other
contents of the vesicle. In this regard, we consider that momentum conservation in
the center-of-mass frame does not play a role in vesicle shape transformations. For
example, common models of microorganisms assume a stroke-averaged force
dipole model82,83 or a squirmer model84,85. Moreover, to capture the details of
individual trajectories at walls, hydrodynamic interactions are important86,87.
However, based on previous works88,89, we assume that organization at boundaries
with high filament densities can be robustly described by self-propelled particle
models. Thus, although our polar active force leads to center-of-mass motion of the
vesicle in some states, we do not analyze this behavior in this work.

The vesicle is constructed as a triangulated mesh of Nves= 2432 monomers. It has
a nominal radius of Rves ≈ 25σ, measured as the distance from the center of mass of
the vesicle to the center of any given vesicle monomer in the undeformed state. The
diameter of the vesicle monomers is set to σves= aσ with a ≈ 1.934. As with the
filament monomers, the vesicle monomers are bonded through a stiff expanded
FENE potential with coefficient kves, with the equilibrium bond length determined
by whether the bond is part of a pentameric or hexameric bond. In combination
with the increased size of the vesicle monomers, this ensures that active filaments
are unable to escape the vesicle. Vesicle curvature is penalized through a harmonic
dihedral potential acting on neighboring triangles of the vesicle mesh.

The filament volume fraction in the undeformed state is given by ϕ=NfilVfil/
Vves, where Vfil= πσ3/6+ (M− 1)πbσ2/4 is the approximate volume of a single
filament—accounting for the overlap of bonded monomers—and Vves ¼ 4πR3

ves =3
is the nominal volume of the vesicle. Note that the volume fraction is defined with
respect to the nominal volume of the undeformed vesicle, without considering the
finite size of the filament and vesicle monomers. Additionally, since the mesh
topology is conserved in our simulations, we model an elastic vesicle; in subsequent
work we plan to consider the effects of fluidizing the vesicle and imposing area or
volume constraints.

We simulate the coupled Langevin equations for the filament and vesicle bead
dynamics using LAMMPS90, modified to include the active force. We neglect long-
ranged hydrodynamic interactions for this system of high filament density; we will
investigate their effect in a future study. We present simulation parameters with
units such that the mass of all beads is m= 1, and energies, lengths, and time are
respectively in units of kBT, σ, and τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
. The friction constant is set

to γ= 1/τ. For additional model details, see the Supplementary Method 1 (See
Supplemental Material for model details and additional figures).

Data availability
The post-processed simulation data generated in this study have been deposited in the
Open Science Framework database91, and is available at osf.io/7s9jp. The raw simulation
trajectories data are available from the corresponding authors upon request.

Code availability
The modified LAMMPs source code used in this study is available through the Open
Science Framework database91, and is available at osf.io/7s9jp.
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