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Time Reversal Symmetry (TRS) broken topological phases provide gapless surface states

protected by topology, regardless of additional internal symmetries, spin or valley degrees of

freedom. Despite the numerous demonstrations of 2D topological phases, few examples of

3D topological systems with TRS breaking exist. In this article, we devise a general strategy to

design 3D Chern insulating (3D CI) cubic photonic crystals in a weakly TRS broken envir-

onment with orientable and arbitrarily large Chern vectors. The designs display topologically

protected chiral and unidirectional surface states with disjoint equifrequency loops. The

resulting crystals present the following characteristics: First, by increasing the Chern number,

multiple surface states channels can be supported. Second, the Chern vector can be oriented

along any direction simply changing the magnetization axis, opening up larger 3D CI/3D CI

interfacing possibilities as compared to 2D. Third, by lowering the TRS breaking require-

ments, the system is ideal for realistic photonic applications where the magnetic response

is weak.
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Inspired by the discoveries of topological phenomena in solid
state systems, the study of topology in the propagation of light
in photonic crystals has been the subject of much recent

attention1–13. Among all topological states of matter, time-
reversal symmetry (TRS) broken topological materials, such as
Chern insulators (CI)2,3 and lasers14, have been a particular focus
due to their topologically protected unidirectional edge states
with non-reciprocal propagation properties. In these systems,
scattering processes from one boundary state into another are
strongly suppressed, due to decoupling of counter-propagating
1D chiral edge channels15,16.

Seminal works in 2D photonics have demonstrated that
transverse magnetic (TM) modes in gyro-magnetic photonic
crystals could mimic the Chern insulating state for light4,5. Due to
a non-zero value of the topologically invariant Chern number,
these systems were shown to sustain topologically protected one-
way edge states with negligible dissipation and absence of back-
scattering, even in presence of impurities and lattice defects which
break translational symmetry.

As originally pointed out by Ref. 17, extending these ideas to 3D
is in principle possible, under some more stringent conditions. As
an example, preserving the translational symmetry of the lattice, a
Chern insulating phase is predicted in 3D to host chiral anom-
alous surface states (SS) on its boundary18–23. In contrast to 2D, a
3D Chern insulator (3D CI) is a topological phase that can be
characterized by three first Chern invariants–or a Chern vector
C= (Cx, Cy, Cz) - defined on lower dimensional surfaces24–26:
such a state of matter can support chiral surface states propa-
gating on the planes with Miller indices indicated by the Chern
vector.

Previous theoretical efforts in photonics27 have engineered a
TRS broken insulator with a single nonzero Chern number of
unit value in a 3D uniaxial structure and employing a large
magnetic field. However, the Chern vector was fixed to have a
single component along a preferred axis selected by the fabrica-
tion, a situation similar to that of a stack of 2D Chern layers.
Moreover, this design required strong TRS breaking, which is
usually an arduous challenge in photonic crystals. Finally, the
Chern number value was limited to unity.

At the same time, large Chern numbers have been observed
in the band-gaps of 2D square photonic crystals28,29. Topolo-
gical photonic systems with large Chern numbers can sustain
multiple spatially separated edge states29. These edge states
allow a plethora of applications, including unidirectional mul-
timode waveguides where information can be multiplexed
through the different edge states allowing for photonic on-chip
communications with higher channel capacity29. Nevertheless,
the value of the Chern number in these 2D systems was not
determined by design, but a consequence of the particular
system under study. In this sense, finding an engineering
strategy to create photonic crystals with any given Chern
number would be highly desirable and it is still a challenge that
remains open.

In this work, we propose a method to design cubic 3D
topological photonic crystals where Chern vectors of any
magnitude, sign or direction can be implemented at will. Our
method is based on the merging and annihilation of Weyl
points through multi-fold supercell modulations in three
dimensions30. As a result, we obtain a 3D CI phase with the
following characteristics: First, since the Chern number is
additive with respect to band-folding over large supercells, the
system can support arbitrarily large Chern numbers and
thus the coexistence of multi-channel unidirectional surface
states. Second, owing to the cubic symmetry of the underlying
modulated structure, the system can exhibit any combination
of nonzero elements of a Chern vector, allowing for more 3D

CI/CI interfacing combinations as compared to 2D. Third,
through the combined use of multi-fold supercells and reduced
manipulation of Weyl points, the 3D CI phase can be realized
under weak magnetization conditions, suited for realistic pho-
tonic applications. As a final step, we verify the emergence of
chiral SS at interfaces between regions with differing Chern
vectors, confirming the existence and spatial separation of
unidirectional chiral partners. The outline of the paper is as
follows: in the Results section, we provide full topological
characterization of the bulk and the boundary of our photonic
3D CI. For the bulk, we show that the cubic system can support
any nonzero element of the first Chern vector. The direction of
the Chern vector can be tuned by changing the orientation of
the applied external static magnetic field. We also prove a
strategy for obtaining the 3D CI under a minimal magnetization
and a method to design 3D CIs with specifically desired large
Chern numbers. For the boundary, we demonstrate the emer-
gence of unidirectional gapless SS and we analyze their 3D
anomalous chiral properties. In the Methods section, we
describe the numerical implementation of the technique by
which we characterize the gap topology based on a 3D gen-
eralization of the photonic Wilson loop approach and provide a
group theoretical analysis of the mechanism through which we
create and manipulate the Weyl points and open up a topolo-
gical gap by the use of supercell modulations. Further details on
our design are given in the Supplementary Information.

Results
The starting point of our design is a photonic crystal with a unit
cell containing four dielectric rods directed along the main
diagonals of a cubic crystal (scalable lattice parameter ∣a∣). The
rods meet at the origin of the unit cell, and the structure is
invariant under the operations of the centrosymmetric and non-
symmorphic space group (SG) Pn�3m (No. 224)31. Since we
will later consider modulations of this structure, it is convenient
to simulate the dielectric rods by assembling dielectric spheres
with radius r= r0 along (x, y, z)0/∣a∣= (t, t, t), (t, 1− t, 1− t),
(1− t, t, 1− t), (1− t, 1− t, t) with 0 < t < 1/2, i.e. employing a
spherical covering approximation32. The resulting design is
shown in Fig. 1a. To obtain a TRS-preserving system, the
dielectric material is described by a diagonal (isotropic) permit-
tivity tensor, εTRS ¼ ε13, where 13 ¼ x̂ � x̂ þ ŷ � ŷ þ ẑ� ẑ and
ε∈ℝ (no losses), and by unit magnetic permeability μ ¼ 13. To
simulate the optical response of the system, we employ the MIT
Photonic Bands (MPB) software package33. As shown in Fig. 1a,
with TRS, the photonic band-structure presents a three-fold
degeneracy between the three lowest energy bands at the high
symmetry point R ¼ 2π

jaj ð1=2; 1=2; 1=2Þ; note that, in the displayed
energy window, the two lowest bands are fully degenerate.
Everywhere else in the Brillouin zone (BZ), there is a gap between
the second and third band. The dispersion reflects the three-fold
rotational symmetry of the crystal, and so is invariant under
cyclic permutations of the three ki (i= x, y, z) directions. In order
to keep the notation consistent throughout the paper and to
capture all the variety of symmetry designs, we label the high
symmetry points in the BZ according to the convention described
in the Supplementary Note (SN) 5, i.e. in a Cartesian orthor-
hombic convention.

Following a strategy introduced in31,34,35 we break TRS to split
the three-fold degeneracy at R into two Weyl points31. This can
be achieved by either applying an external magnetic field bias to a
gyro-electric crystal2,3 as we proceed here, or by exploiting the
internal remnant magnetization of ferri-magnetic materials5. TRS
breaking is implemented by introducing off-diagonal imaginary
elements in the permittivity tensor: for the specific case of
an applied magnetic field B ¼ Bz ẑ, the induced gyro-electric
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tensor is:

εηz ¼
ε? iηz 0

�iηz ε? 0

0 0 ε

0
B@

1
CA; ð1Þ

where ηz= ηz(Bz) the bias-dependent gyro-electric parameter and
ε? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 þ η2z
p

. The gyro-electric tensor corresponding to mag-
netic fields in other directions can be obtained by orthogonal
rotations of Eq. (1).

Under these conditions, the three-fold degeneracy splits into a
pair of Weyl points (or a Weyl dipole). In order to analyze the
formation and splitting of the Weyl points under TRS breaking
and to predict the direction of their displacement in the BZ, we
develop a k ⋅ p model around the three-fold degeneracy at R.
The model, based on the group theoretical method of invariants
(see Methods), allows us to conclude that Weyl points appear at
inversion-symmetric positions with respect to R along the kz

direction, with a separation that can be adjusted by choosing the
bias field Bz appropriately. Our MPB simulations, presented in
Fig. 1b, confirm this predictions accurately. More generally, for a
magnetization applied along any of the main coordinate axes xi,
the Weyl dipole is oriented along the line joining R to
R0 ¼ R� bi, where bi is the corresponding primitive reciprocal
lattice vector. For a detailed comparison of the analytic model and
the numerical simulations see Methods.

Next, we calculate the chiral topological charge q± of the Weyl
points in the k ⋅ p model using the Z2Pack numerical tool36,37,
concluding that the Weyl points have opposite valued unit
charges (q±= ±1).

We confirm these predictions by computing the topological
charges directly from the MPB eigenstate solutions. To do so, we
implement a numerical approach based on the analysis of the
winding properties of photonic hybrid Wannier energy centers
(WEC). WEC are accurately defined in the Methods section.
There, we establish a mapping from electronic Wannier charge
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Fig. 1 Photonic 3D CI by cubic supercell modulation at N=NW= 2. Each (a, b, d, e) panel shows the crystal unit cell, the irreducible Brillouin zone (IBZ)
and the band-structure (BS). Frequencies f are given in reduced units, ∣a∣ being the scale invariant lattice parameter and c the speed of light. Sectors (c) and
(f) contain the topological characterization via photonic Wilson loops (WL), in the Weyl semimetallic (WS) phase and in the 3D CI phase, respectively.
a Photonic crystal constructed from cylinders of radius r0= 0.15 and dielectric constant ε= 16 at TRS. The three lowest photonic modes display a three-
fold degeneracy at R and the two lowest bands are fully degenerate in the displayed energy window. b TRS breaking implemented via a gyro-electric
response with ηNW¼2

z ¼ 16: the bias field is adjusted in order to split the Weyl points of approximately half the BZ, i.e. at k ±z ¼ ± π
2jaj, along the SRS0 line

where S0 ¼ S� bz. c Electromagnetic section Chern number calculated on 2D kz planes normal to the magnetization (upper panel) and transverse flow of
the θy eigenvalue of the WL matrix summed over the entire subset of νocc bands lying below the local gap at kz (lower panel). The discontinuity of the
section Chern number at the wavevector of each Weyl point k ±z is used a measure its topological charge (q±= 1). d Artificial folding of the bands on a N= 2
cubic supercell: Weyl points superimpose at Z in the new BZ. e Coupling and annihilation of Weyl points through a N= 2 supercell modulation with
parameter rm= r0/20. The amplified modulation is graphically visualized via a colorbar with rmax= r0+ rm and rmin= r0− rm. A topological direct gap (fg) at
Z is opened, with gap-to-midgap (fg/fm) ratio of 1.86%. The size of gap can be appropriately tuned by choosing the value of the modulation, as in the inset.
f The section Chern Cz number displays constant unit value everywhere in the BZ, establishing the system to be in the 3D CI phase. Source data are
provided as a Source Data file.
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centers (WCC)38,39 to photonics and we perform a generalization
of the photonic Wilson loop approach of Ref. 40 (initially
implemented for 2D scalar waves) applicable to fully 3D elec-
tromagnetic (EM) vector fields. The results of this analysis are
summarized in Fig. 1c: the top panel shows the electromagnetic
Chern number Cz of the two lowest bands calculated on 2D
planes orthogonal to the magnetization axis. We observe a sharp
discontinuity ΔCz= ±1 at the wavevector of each Weyl point.
This is similarly reflected in the winding of the Wilson loop
eigenvalues on two selected planes, as shown in the bottom panel.
From the discontinuity in the section Chern number at each Weyl
point, we deduce the associated topological charge41, confirming
that q±= ±1, as predicted by the k ⋅ p model.

In order to identify a geometrical perturbation able to open a
band-gap, we analyze the coupling of the Weyl points from a
group theoretical perspective, performing a generalization of the
method of invariants now suited to capture translation breaking
perturbations (see Methods). We conclude that the only defor-
mation of the geometrical structure leading to their annihilation
and to the opening of a topological gap are lattice commensurate
supercell modulations. In particular, we find that it is possible to
independently activate the supercell modulation along the xi
Cartesian directions and couple Weyl points generated by the
corresponding magnetic field Bi. Note that, from our WEC ana-
lysis, we see that each BZ plane between the Weyl nodes carries
Chern number ∣Cz∣= 1, while each plane outside the Weyl nodes
carries Chern number ∣Cz∣= 0. When we couple the Weyl nodes
by a lattice commensurate modulation, we backfold the BZ into a
region commensurate with the Weyl node separation vector,
which is a reciprocal lattice vector in the folded BZ. The additivity
of the Chern number then ensures that every plane in the reduced
BZ carries a nonzero Chern number, resulting in a 3D CI when
the gap is opened30. This expresses the fact that the Chern
number density of our 3D system does not change as a function
of the (TR-even) supercell modulation; it simply goes from being
unquantized in the original system (necessitating the existence of
Weyl points), to being a quantized multiple of a reciprocal lattice
vector in the modulated system.

With this starting setup, in order to obtain 3D Chern insulating
phases, we will follow a general three-step strategy:

1. First, using the external magnetic field we move the Weyl
points at fractional distances of the Brillouin zone (BZ), i.e.
at positions K1;2 ¼ R± Xi

NW
where NW 2 N and NW > 1. In

this way, in a further step, we will be able to couple and gap
the Weyl points with a commensurate modulation of a
supercell structure. Notice that larger NW are associated to
smaller splittings.

2. Secondly, we fold the BZ by creating multi-fold (N > 1)
supercells; this is achieved by replicating the original unit
cell either in a cubic supercell of dimensions (N,N,N) or in
a uniaxial supercell of size N directed along the magnetic
field direction. This step of the procedure will merge the
Weyl points, originally at K1,2 in the natural BZ, to the
same k point in the new reduced BZ, forming a four-fold
degeneracy. In the SN 2, we show that fine tuning and
perfect band folding are not strictly necessary for opening a
gap at the Weyl points. This endows our system with a
robustness and tolerance against reciprocal lattice vector
mismatches.

3. As a third and last step, we couple and gap the opposite-
charge Weyl points by spatially modulating the crystal
geometry with a periodicity commensurate to the designed
supercell. More specifically, we vary the radius of the
cylinders through the entire supercell: numerically, this is
achieved by locally changing the radius of the spheres in the

covering approximation, from their original r0 radius to the
new local one r(x, y, z). Coherently to the choice made in
the previous point 2, this is either done with a cubic
modulation of the type: Δrðx; y; zÞ ¼ rðx; y; zÞ � r0 ¼
rm½cosð2πx=NjajÞ þ cosð2πy=NjajÞ þ cosð2πz=NjajÞ� when
all the Cartesian components of the modulation are turned
on or with a uniaxial modulation, where only the
component oriented along the magnetic field is activated,
e.g. Δrðx; y; zÞ ¼ rm cosð2πxi=NjajÞ for a field with Bi ≠ 0
field. More details are given in the SN 6.

Depending on the values of the parameters NW and N, it is
possible to design different tailored 3D CI phases, in particular: a
cubic 3D CI with orientable Chern vectors, a 3D CI in a reduced
magnetization environment and a 3D CI with tunable larger
Chern numbers.

We stress that the argument of gap opening by folding and
supercell modulation is very general, and can be applied as long
as the constraints of commensurability between the Weyl dipla-
cement and the supercell size are satisfied. Therefore, any other
crystal structure exhibiting a pair of Weyl points could be per-
fectly suited to their annihilation via the mechanism proposed.

Cubic 3D CI. Our first objective is to design a cubic 3D CI with
orientable Chern vectors. As we will show, this can be achieved
using a cubic supercell modulation with N=NW > 1. In order to
keep the MPB simulations computationally affordable we con-
sider the simplest case of N=NW= 2, which requires to separate
the Weyl points to half the BZ as in Fig. 1b. The effect of band
folding in such a system is visualized in Fig. 1d: for a field
oriented as Bz, the two Weyl points superimpose to form an
artificial four-fold degeneracy at X3≡ Z. More generally, on a
N=NW cubic supercell and from simple folding considerations,
we expect the opposite-charge Weyl points to merge at Xi when
N=NW is even, at Ri−Xi when N=NW is odd, where
Xi ¼ bi

2 � X;Y;Z. From this starting point, in order to realize a
cubic 3D CI phase with orientable Chern vectors, all the three
Cartesian components of the cubic commensurate modulation
need to be simultaneously turned on. The resulting photonic
band structure of the NW=N= 2 supercell modulated structure
is shown in Fig. 1e: as it can be seen, the Weyl points annihilate
and open up a gap. To numerically verify the topological prop-
erties of this bulk gap in our design we compute photonic Wilson
loops and analyze their winding in the BZ (see Methods). Our
results, summarized in Fig. 1f, determine that the obtained
insulating phase acquires a nonzero Chern number along every
plane perpendicular to the magnetization axis as predicted by the
k ⋅ p model. Therefore, by simply changing the orientation of the
magnetization axis, it is possible to select each Cartesian com-
ponent in a first Chern class vector (Cx, Cy, Cz), due to the the
cubic nature of the underlying system and modulation. Note that
the existence of three weak indices in 3D allows for more inter-
facing possibilities as compared to the 2D case, where only the
trivial/TI and the opposite (or different) Chern number combi-
nations are realizable, as discussed later.

3D CI at reduced magnetization. In our previous example we
required the Weyl points to be displaced to the half of the BZ.
Achieving such a condition requires large TRS breaking para-
meters. In our simulations, fulfilling this requirement implied
using a magnetization bias corresponding to ηNW¼2 ¼ 16. Note
that, to date, large gyrotropic parameters have been experimen-
tally achieved in photonic crystals only in the microwave fre-
quency regime via ferri-magnetic materials5,42 and that the
gyrotropic response of most currently known dielectric materials
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is weak. Therefore, in this section, we suggest a way to hugely
reduce the magnetization requirements for obtaining CI phase by
employing multi-fold supercells and by increasing the intensity of
the modulation. Instead of displacing the Weyl points to half the
BZ and applying a supercell modulation over two original unit
cells, we now move the Weyl points to a smaller fractional dis-
tance of the BZ and apply a supercell modulation over a larger
number of original supercells to merge and gap the Weyl points
appropriately. The resulting 3D CI phase still displays the same
Chern number as in the maximally TRS broken system with
N=NW= 2, but it occurs in a largely reduced magnetic field
environment due to the smaller k-space displacement of the Weyl
points.

For example, making N=NW= 3, which corresponds to a
dipole separation of one third of the BZ and spatially modulating
the structure over 3 original unit cells, one can get the same
topological phase as in the N=NW= 2 example. In order to keep
the calculations computationally feasible, we simulate a uniaxial
system of size (1, 1,N). Nevertheless, the concept is readily
generalizable to cubic supercells. Under this construction, the CI
phase is achieved at ηNW¼3

z ¼ 7:8. As it can be naturally expected,
the resulting 3D CI suffers a moderate reduction in the band-gap.
However, as shown in Table 1 and Fig. 2 where we compare the
designs at N=NW= 2 and N=NW= 3, the later design presents
a good compromise between gap size and TRS-breaking
amplitude, considering the large advantage coming from a large
drop in the required magnetization bias (from ηNW¼2 ¼ 16 down
to ηNW¼3 ¼ 7:8). This could be of particular interest for photonic
applications where the magnetic response is weak. The gyrotropic
parameter value can be further decreased, as shown in the SN 3,
by modulating over even larger supercells NW= 5, 6, 7 and by
optimizing the modulation intensity in order to partially
compensate for the band-gap decrease. However we cannot
indefinitely iterate this procedure down to zero bias since a
compromise on the band-gap is always unavoidable: indeed, in
the limit of very large N, there is no splitting of Weyl points and
thus no TRS broken gap can clearly be opened, limN!1f g ¼ 0.

Figure 2 and Table 1 show the drop in the magnetization as
compared to the decrease in the topological gap computed for
uniaxial supercells at N= 2 and N= 3 with the same supercell
modulation parameter rm.

3D CI with larger Chern numbers. Lastly, we show that our
design strategy can also be used to design photonic TIs wih larger
Chern numbers. This can be achieved by modulating over even
multi-fold supercells with N= 2n > 2, n 2 N, while keeping
NW= 2. The use of larger supercells permits folding of the BZ
multiple times. In the band-folding process the Chern number
contribution in each folded region of the BZ adds up. We thus

expect the gap resulting for such a modulated system to achieve
larger Chern numbers Ci according to the following relation:
Ci= n. To prove this, we build uniaxial supercells of size (1, 1, 2n)
with n= 1, 2, 3, 4. These crystalline supercells are magnetized
along the ẑ direction, creating Weyl points at half of the original
BZ (NW= 2). After folding, we find that the Weyl points are
superimposed at R− Z≡ S if n is even and at R if n is odd. As a
final step we activate the modulation along the z direction. In
Fig. 3 we then calculate the Chern number of the band gaps in
these systems using photonic Wilson loops (WL) by analyzing
their winding in the BZ. The modulated supercells with
n= 1, 2, 3, 4 under the appropriate TRS breaking acquire, as
predicted, Chern numbers Cz= 1, 2, 3, 4 respectively. We restrict
our calculations of uniaxial systems due to computational lim-
itations, nevertheless, the argument for the Chern number growth
holds similarly in the cubic case, when all the three components
of the modulation are turned on.

Chiral surface states. Finally, to characterize the bulk-boundary
correspondence in the designed systems, we now analyze the
emergence of SS at the interface between the cubic 3D CI and a
trivially gapped photonic crystal. Other CI/CI interfacing possi-
bilities are discussed in the SN 5. Finding a proper insulating
interface is an important requirement to prevent propagation of
edge modes in free space due to modes living in the light cone.
Furthermore, we also must avoid the formation of dangling defect
states due to lattice mismatches. This is usually a quite difficult
task in 3D, due to limited available band-gap geometries as
compared 2D (details on the trivial interface in the SN 8). To
keep the simulations numerically affordable, we stick to the case
of a cubic supercell with N=NW= 2 and analyze a topological
slab with normal vector oriented along x̂, in presence of a Bz field.
From the bulk-boundary considerations, we expect unidirectional
chiral SS to appear on the planes parallel to the magnetization
(i.e., with normal vectors perpendidcular to the magnetization
direction). Surface states are considered unidirectional in the
following sense: The component of the group velocity (or

Table 1 Reduction of the magnetic bias η and of the
topological gap-to-midgap ratio fg/fm(%), still achieving the
same Chern number C. Source data are provided as a Source
Data file.

Na= NW
b 2 3

Cc 1 1
ηd 16 7.8
fg/fm(%)e 1.5 1.2

aSupercell size.
bWeyl Dipole splitting fraction.
cChern number
dGyrotropic parameter.
eTopological gap-to-midgap ratio.
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Fig. 2 3D CI in a reduced magnetization environment. Uniaxial supercells
(1, 1,N) with modulation parameter rm= r0/20 and WLs on selected
planes for kz/2π= 0.3. a, b 3D CI with Cz= 1 at large magnetization
ηNW¼2 ¼ 16, corresponding to the maximum Weyl dipole separation and
band-gap. c, d 3D CI in a reduced magnetic environment ηNW¼3 ¼ 7:8. The
band-gap only suffers a moderate contraction, yet the Chern vector and
the topological properties are preserved. Source data are provided as a
Source Data file.
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Poynting vector) normal to the magnetization direction has a well
defined sign i.e. surface states cannot back-scatter along this
specific direction. This component will be later denoted as con-
served component.

With this setup, we characterize the hallmarks of chiral SS
propagation using a combined real-reciprocal space analysis.
Fig. 4a shows the band-structure for the (100)-surface, confirming
the emergence of chiral SS connecting the lower and upper bands
and fully crossing the band-gap. To better visualize the SS energy
dispersion, in Fig. 4b we consider a 3D surface plot, out of which
we take the midgap equifrequency cut shown in Fig. 4c. We
observe the emergence of 3D Chern Fermi loops which are the
natural evolution of the Fermi arcs of the photonic Weyl
semimetallic phase. In the SN 11, we show how the SS of the WS
phase evolve into the 3D Chern SS as an consequence of Weyl
points annihilation. As we will show now, these Fermi loops can
be separated in real space, i.e. we can associate those with positive
group velocity component normal to the magnetization to a
surface of the slab and those with negative one to the other
surface. We will therefore consider them as disjoint. In order to
establish the relation between counter-propagating modes with
respect to the direction orthogonal to the magnetization axis ẑ
and the interface normal x̂, i.e. ŷ ¼ ẑ ´ x̂, we analyze the
propagation of individual edge channels at fixed kz. As indicated
by red/blue colors in Fig. 4(b, c), modes propagating with positive
transverse group velocity vy > 0 appear on one side of the
topological slab, their flow being compensated by counter-
propagating vy < 0 partners located on the other surface of the
slab. We define as chiral partners, the pair of surface states living
on the opposite sides of the slab, moving with opposite
component of the group velocity which is normal to magnetiza-
tion axis. This feature is visualized in Fig. 4(d, f) where we select a
pair of chiral partners for explanatory purposes and display their
electric field profile in real space on cross sectional view of the
crystal slab. We conclude that each disjoint piece of the SS energy
sheet in Fig. 4c corresponds to vy > 0 and vy < 0: this spatial
separation of chiral partners, provided by the bulk, is the

protection mechanism which prevents the back-scattering of one
state into the other. Because of this, the presence of touching
points in the SS dispersion between different chiral partners (red
and blue lines in Fig. 4c), is purely accidental. As so, these
crossings occur between states that reside on opposite sides of the
slab and are physically separated in real space by the bulk.
Therefore they cannot gap out, up to exponentially small finite
size effects, and are protected by the spatial separation separation
of chiral partners on opposite surfaces.

Furthermore, in order to investigate the possibility of energy
propagation along the magnetization axis, we analyze the
Poynting vector associated to our SS. We find that, even if
individual edge channels display nonzero propagation along the
magnetization direction, e.g. as in Fig. 4f, integrating the total
contribution of entire SS yields no net energy transport along the
bias field, as expected due to equilibrium conditions (see SN 9).
Interestingly, analyzing the polarization state of each edge
channel, we observe a well defined sign of the spatially-averaged
optical chirality �c > 043–48 through the entire SS (see SN 10).

Discussions
In this work, we developed a strategy to induce annihilation of
Weyl points through cubic and multi-fold supercell modulations,
allowing us to achieve a photonic 3D CI phase with the following
characteristics:

First, arbitrarily large Chern numbers can be achieved by
design, allowing for multi-modal propagation of topological sur-
face states28[,29. On the one hand, the system with Chern number
N supports N equifrequency loops. These N equifrequency loops
are compressed into a folded BZ that is 1/N the size of the original
BZ. In this sense, if we are interested in quantities integrated over
the BZ, we cannot expect an increase in extensive quantities such
us the total field intensity. However, if we are interested in
addressing states at a particular wavevector, which is a reasonable
constraint in photonic systems, then the modulation has allowed
us to address N chiral surface modes with equivalent reciprocal
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Fig. 3 Generating larger Chern numbers. Annihilation of Weyl points at NW= 2 over multi-fold supercells of even N. a Unit Chern number 3D
CI. b, c, d Increasing Chern numbers C according to the relation C= N/2. Calculations performed on 1D supercells (1, 1,N) with modulation parameter
rm= r0/20 and WL on selected planes for kz/2π= 0.3. Source data are provided as a Source Data file.
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lattice vectors, i.e. achieve unidirectional multiple surface mode
operation. The capability of designing photonic systems with large
Chern numbers in 3D could find interesting applications in the
development of the emergent field of topological lasers14,49 with a
larger number of unidirectional SS.

Second, we showed that any element of the first Chern class
vector can be selected by simply changing the magnetization
direction, allowing for unique 3D CI/3D CI interfacing combi-
nations as compared to 2D. For example, considering that every
planar cut parallel to the magnetization direction is capable of
supporting anomalous surface states, it could be worth investi-
gating what occurs at a 3D CyI/3D CzI planar interface. Similarly,
owing to cubic symmetry of the 3D CI system, it would be possible
to tune the relative angular phase in the supercell modulation in
order to either break spatial inversion or not, which could lead to
interesting surface states at the boundary of an obstructed atomic
insulator (OAI) 3D CI and a 3D CI30. This may allow to develop
of interesting photonic analogues of axionic responses26,30 that we
are investigating as part of a future work. Another possibility
allowed just in 3D, could be to arrange different 3D CIs around an
inert core, with the 3D CI composing each panel having Chern
vector (Cx, Cy, Cz) oriented to point inwards (e.g. fixing a 3D+ CxI
on a left x̂ panel). Such a 3D interfacing arrangement, originally
proposed in Ref. 26 as a possible realization of a magneto-electrical
(ME) coupler in the field of electronics, has not yet a realization or
equivalent in photonics. Analysis of all these challenging designs is
left for further investigation.

Third, we showed the TRS breaking parameters required to
induce this 3D CI phase can be substantially diminished by the
use of larger supercells, which can enable the realization of a 3D
CI phase also in photonic systems where the magnetic response is
weak or it is not possible to manipulate largely the Weyl points in

the BZ. We also intend to emphasize that the strategy we devised
in our paper is material agnostic, and can be easily adapted to any
to-be-discovered experimental platform. In that sense, our work
provides a roadmap to future experimental exploration of topo-
logical photonic crystals by showing how to reduce the needed
magnetic response.

Finally, we showed that 3D CI photonic phase obtained dis-
plays chiral surface states on the planes orthogonal to the mag-
netization. As a remarkable signature of this, we observed the
formation of disjoint equifrequency loops structures associated to
the spatial separation of optically-chiral and counter-propagating
partners. In conclusion, our system provides a realization of a
photonic 3D CI state of matter in a fully cubic platform, with
large Chern vectors engineered by design and in a weakly mag-
netic environment.

Methods
EM section Chern number from Wilson loop approach in 3D. In order to
provide a topological characterization of the bulk of the 3D CI photonic phase, we
employ a mapping between electronic hybrid Wannier charge centers (WCC)38,39

and photonic hybrid Wannier energy centers (WEC) in 3D. Hybrid WEC of the
type θn,y, which are localized in the y-direction and flowing in the kx transverse
direction38, are computed for each fixed kz plane from the subset of n= 1, . . ,Nb

bands below the local gap at kz, as follows39:

θn;yðkxÞ ¼ �Imlog ðwnðkxÞÞ; ð2Þ

where wn are the eigenvalues of the Wilson loop (WL) operator. The real space
correspondence in terms of the i-th lattice parameter ∣ai∣ is given by 2πWECn,i≡
∣ai∣θn,i. As shown in50,51, the WL operator can be numerically implemented as a
path-ordered product of overlap matrices

ŴðkxÞ ¼ �Y
kyi 2l

M̂
kyi ;kyiþ1 ; ð3Þ
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Fig. 4 3D CI surface states. Projected band-structure on the surface BZ with Miller index (100), for the interface between Ntriv= 8 cells of trivial insulator
and NTI= 8 cells of TI, under a B ¼ Bzẑ field and with unit Chern number. Edge states cross the topological gap, highlighted in the shaded region. The
extended BZ is fully displayed from −Z to Z, since it lacks of TRS due to application of a ẑ directed bias field. b 2D dispersion of topological surface states
on the projected BZ, in the energy range of the topological band-gap. c Equifrequency loops for a cut taken at midgap: the arrows on the plot indicate the
direction of the group velocity vg=∇kf∣a∣/c= (vy, vz). Blue and red colors correspond to chiral partners with opposite vy and same optical chirality �c which
are located on opposite left/right sides of the interface (L, R). d Edge states dispersion along a direction normal to both the interface and the external
magnetic field; highlighted in circles is a pair of counterpropagating m− th edge channels with ±ky: the spatial profile of their total electric field is shown in
two following panels. e Counterpropagating chiral partners located on the two opposite left/right surfaces of the sample (L, R): wavefront propagation in
the k direction indicated by White arrows on a xy cross section. f Spatial profile of the total electric field on a yz planar cut: green and blue arrows indicate
respectively the group velocity vg and the total Poynting vector S, the last being obtained from a spatial integral of the quantity Re(E ×H*), calculated
directly from the EM field profiles. Differently from what expected from a conventional QHE edge channel, the Poynting vector displays a component
parallel to the external magnetic field (Sz≠ 0), suggesting both QHE and CME features and the possibility of energy flow along the magnetization axis: we
excluded such a possibility in the SN 9, by summing up the contributions of all the edge channels constituting the surface state. Source data are provided as
a Source Data file.
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evaluated on a ky discretized closed loop l crossing the BZ torus with

M̂
kyi ;kyiþ1
m;n ¼ hum;kyi

jun;kyiþ1
i: ð4Þ

Here um,k(r) represents the periodic part of the electromagnetic Bloch wavefunc-

tions Ψm;kðrÞ ¼
Em;kðrÞ
Hm;kðrÞ

� �
, for each mode of momentum k and band m,

according to the relation Ψm,k(r)= e−ik⋅rum,k(r). In order to perform the correct
equivalence between WCC and WEC, the scalar product needs to be weighted over
the medium permittivity ε, permeability μ and bianisotropy χ tensors52,53:

hujvi ¼
Z

d3ruy
ε χ

χy μ

� �
v ð5Þ

As detailed in Ref. 40, in order to cure the effect of a possible arbitrary phase gained
by the fields from numerical evaluation at different points on the l path, we enforce
periodic boundary conditions at the endpoints kyi and kyiþby

, where by is the

reciprocal y lattice vector. Differently from 2D, we can avoid the singularity at
ω= 0, k= 054,55 by looking only at planar cuts which do not include the Γ point;
this is sufficient for determining the Chern vector of our model. From the winding
of the hybrid WEC in the BZ, the electromagnetic Chern number can be directly
calculated as follows:

2πCEM
z ¼

Z π

�π
∑
νocc

n¼1
dθn;yðkxÞ ð6Þ

i.e. integrating along the kx closed path across the BZ and summing up the con-
tribution of transverse y WEC for the entire set of νocc bands lying below the local
gap. Notice that all the definitions remain valid under cyclic permutations (ki, θj,
Ck) of the Cartesian indexes (ijk)= (xyz). Fig. 5 displays hybrid WEC for the 3D CI
phase of Fig. 1f, comparing their individual to their total net contribution. We note
that, for our particular non-bianisotropic (χ= 0) system, it is possible to perform a
simplification in the computation, decoupling electric and magnetic fields: under
these conditions56, the Chern number calculated in terms of just the electric (CE) or
just the magnetic field (CM) is related to the total electromagnetic Chern number
(CEM) as:

CEM ¼ CE þ CM

2
¼ CE ¼ CM : ð7Þ

Analytical models. In this section, we set up two symmetry-adapted models that
describe: first, the threefold degeneracy at R and its splitting in k space when an external
magnetic field B is applied, to give rise to a pair of Weyl points; second, the merging of
the Weyl points by a lattice-commensurate modulation into a gapped topological phase.

Both analytical models are based on the standard group theoretical method of
invariants, which can be found in the literature57. This allows us to find an
expansion in powers of the wave vector k of the photonic energy bands ω, able to
replicate the photonic modes dispersion. In order to do so, we construct an
effective energy dispersion operator H(k), expressed in terms of the space group
irreducible representations bases, able to capture the photonic modes symmetry
properties. In the photonic context, H(k) can be viewed as a perturbative expansion
of the Maxwell-Bloch operator acting on the electromagnetic fields in the first order
formulation of Maxwell’s equations58. For other applications of this approach to
photonic systems, see e.g. Refs. 3,59.

In what follows, we adopt the notation convention taken in the Bilbao
Crystallographic Server (BCS)60, unless otherwise stated, and express reciprocal
lattice vectors in reduced units 2π/∣a∣= 1.

Threefold degenerate model at R. The following model describes the local behavior
of the modes which are threefold degenerate at point R= (1/2, 1/2, 1/2) (see
Fig. 6(a)). From the numerical computations, we know that this degeneracy is
related to the three dimensional small representation R�

4 of the little group of R,
given the transformation properties of these modes under the elements of the space
group Pn�3m (No. 224).

Following the method of invariants, we first note that the product R��
4 ´R�

4 is
decomposed into small irreducible representations (irreps) at Γ as:

R��
4 ´R�

4 ¼ Γþ1 þ Γþ3 þ Γþ4 þ Γþ5 ð8Þ

using the character orthogonality relations and where '*' denotes complex
conjugation.

A general state in this three-band space can be expanded in the basis f ϕi
�� �g of

the R4� representation as:

ψk

�� � ¼ ciðkÞ ϕik
�� �

; ð9Þ

adopting the Einstein summation convention. The energy expectation value is a
scalar invariant, which is computed as:

hHi ¼ ψk

� ��H ψk

�� � ¼ c�i ðkÞcjðkÞHðkÞij: ð10Þ

We seek combination of bilinears c�i cj transforming as the irreps above and take the
Hermitian scalar product with functions of k and B with the same symmetry
properties. From each term with c�i cj in this scalar product, it is easy to obtain the
matrix elements of H(k, B). The energy scalar is written in this scalar product form:

hHi ¼ ∑
α;i
Cα
i ðqαi Þ� � pαi ð11Þ

where the sum runs over the irreps in the decomposition and {qi} and {pi} are the
symmetry-adapted bases of the state coefficients and k and B, respectively. The
coupling constants Cα

i are parameters of the model.
To find the bases of bilinears in the wave coefficients transforming as the irreps

above, we use the representation ρR�
4
of the generators (omitting inversion for

b
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Fig. 6 Comparison of the numerical band-dispersion with the analytical
model. Extracting the coefficients of the analytical k ⋅ p model in the vicinity
of R. Here, we are considering an extrapolation of the model at a distance of
δk= 0.008 from R. The empty circles are for numerical computed bands
v1,2,3 while the lines for the analytical dispersion w1,2,3. a In presence of TRS,
we conclude that b0=−2.9a0 > 0. b In a weak field η= 0.5, we obtain that
α0 ~− β0 since the third band does not move in energy and α0 ~ 0 since the
vertical displacement of the two lowest degenerate modes is equal and
opposite. Weyl points appear at positions: k ±z ¼ ±

ffiffiffiffiffiffiffiffiffi
jδ0Bz j
b0

q
, which here is at

k ±
z ¼ ±0:004. The δ0Bz > 0 and δ0Bz < 0 cases are equivalent upon
reversing the two lowest photonic modes. Source data are provided as a
Source Data file.
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Fig. 5 Topological characterization via Wilson loops. Wilson loops for the
system in the Weyl semimetal phase (in blue) and in the cubic 3D CzI phase
(in red). Each θ eigenvalue of the WL is related to the WEC in terms of the
i-th lattice parameter ∣ai∣ by 2πWECn,i≡ ∣ai∣θn,i, with ∣ai∣= ∣a∣ and ∣ai∣=N∣a∣
for the WS and the 3D CI respectively. a, b Individual photonic WECs: flow
in the kx direction on a selected fixed kz plane, for each of the bands lying
below the local gap. c, d Net photonic WEC flow, obtained by summing up
the contribution of the individual WECs shown in the above panels: the net
winding appears now clearly. Source data are provided as a Source
Data file.
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brevity, as it is represented by the negative identity matrix):

ρR�
4
ð2001Þ ¼

�1 0 0

0 �1 0

0 0 1

0
B@

1
CA , ρR�

4
ð3þ111Þ ¼

0 1 0

0 0 1

1 0 0

0
B@

1
CA ,

ρR�
4
ð2110Þ ¼

0 1 0

1 0 0

0 0 �1

0
B@

1
CA;

ð12Þ

where, for convenience, we have labeled the matrices by the rotation part of the
symmetry element only. Note that these differ from the BCS data by a permutation
of the basis, chosen to rearrange H in a more convenient form. Since it is a non-
symmorphic space group, some operations have fractional translations. In Seitz
notation, these are:

2001j
1
2
;
1
2
; 0

� 	
; 2110j

1
2
;
1
2
; 0

� 	
: ð13Þ

We then find functions of k and B with the same transformation properties, up
to second order in the wave vector. In principle, the magnetic field could be strong.
Therefore, the criterium to choose the maximum power of B that is included for
each order in k is to exhaust all the possibilities in the irrep decomposition. This
way, we ensure that all the couplings allowed by symmetry are included for a given
order in the wave vector. Finally, we require H(k, B) to be Hermitian.

Following this procedure, we find that the most general expression for the
energy operator is:

H ¼ ða0k2 þ α0B
2Þ13 þ iδ0εjklBl þ b0

k2x 0 0

0 k2y 0

0 0 k2z

0
B@

1
CA

þ β0

B2
x 0 0

0 B2
y 0

0 0 B2
z

0
B@

1
CAþ c0

0 kxky kxkz
kxky 0 kykz
kxkz kykz 0

0
B@

1
CA

þ γ0

0 BxBy BxBz

BxBy 0 ByBz

BxBz ByBz 0

0
B@

1
CA;

ð14Þ

where k= (kx, ky, kz) is the wave vector measured from the point R and we employ
real coefficients (Latin when referring to k and Greek to B).

One can check that the energy operator is invariant under the little-group
symmetries as it verifies, for every operation g= {R∣t}:

ρR�
4
ðgÞHρR�

4
ðgÞ�1 ¼ HðRk;RBÞ: ð15Þ

We also have imposed that the model be invariant when both the system and
the external magnetic field B are transformed by time reversal Θ. We can express
the TR operation as Θ=Uκ, where U is a unitary matrix and κ is the complex
conjugation operator. Then, the TRS condition reads:

ΘHðk;BÞΘ�1 ¼ UH�ðk;BÞU�1 ¼ Hð�k;�BÞ ð16Þ
where the unitary 3 × 3 matrix part has the simple form U ¼ 13. Evaluating the
model at the point R, in the presence of TRS, allows us to fix some of the
coefficients by comparing with the numerical simulations, as described in Fig. 6.
This yields b0 ~ 2.9a0.

When a magnetic field is applied along one of the coordinate axes B ¼ Bix̂i , the
energy dispersion of the three photonic modes along the line parallel to the field is:

ω1 ¼ ða0 þ b0Þk2i þ ðα0 þ β0ÞB2
i

ω2 ¼ a0k
2
i þ α0B

2
i � δ0Bi

ω3 ¼ a0k
2
i þ α0B

2
i þ δ0Bi:

8><
>: ð17Þ

This further fixes α0 ~−β0 ~ 0 and shows that the magnetic field fully lifts the
threefold degeneracy. We see in Fig. 6(b) that the band curved upwards in energy
will cross with one of the remaining two, giving rise to a Weyl point. The strength
of the magnetic field tunes where this crossing happens along this line, according to
the expression:

k ±
i ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jδ0 Bij
b0

s
: ð18Þ

The same happens in the opposite direction along the same line, hence the ± sign.
This shows that a Weyl dipole appears along the line parametrized by ki and that
the position of the nodes can be tuned by the magnetic field strength Bi.

Coupling of Weyl points by supercell modulation. Because the validity of the pre-
vious analysis is limited to the neighborhood of the point R, we construct another
model that expands directly around the Weyl points. In particular, we can fix the
magnetic field to B ¼ Bz ẑ and tune the strength Bz to create a pair of Weyl points
at K1,2= (1/2, 1/2, ±1/4). The Weyl nodes can then be coupled by a supercell
modulation that doubles the real-space unit cell in the ẑ direction. This

corresponds to the uniaxial NW=N= 2 case in the main text, i.e. a (1, 1, 2)
supercell. A generalization to cubic (N,N,N) supercells is straightforward, since
each Cartesian component of the modulation can be turned on independently.

The compatibility relations from R into the T= (1/2, 1/2, u) line yield:

R�
4 ð3Þ ! T1ð1Þ þ T5ð2Þ; ð19Þ

where the dimensions of the small irreps are in parentheses. The magnetic field
splits the states of T5 and one of them is degenerate with the T1 state at K1,2. We set
up a model that describes these six photonic modes and its coupling by a cell
modulation commensurate with the lattice.

Both K1 and K2 belong to the same star and are related by inversion. The
representation that acts on the six photonic states is obtained from the space group
representation induced from the direct sum T1+ T5. We then restrict this
representation only to the K1,2 arms and consider the elements which either leave
Ki invariant or relate one to the other. The subspace of these two arms is invariant
under all these elements, which form a group that we denote by GW.

Let us call D the representation of GW so obtained. D is divided into blocks
arising from the T1 and T5 irreps, hence we write D=D1+D5. The direct product
of the full space group irrep can be used to find the reduction of the product D* ×D
into small irreps of the little groups at Γ and X3 ¼ bz

2 ¼ ð0; 0; 1=2Þ. The result is
shown in Table 2. Note that the label for the X point differs from that in the main
text (where it is called X2) and was chosen for consistency with the BCS notation.

We may divide the 6 × 6 energy operator matrix into 3 × 3 blocks. Then, the
diagonal blocks are identified with the Weyl points and the off-diagonal ones with
the modulation that couples the states at both nodes. In view of Table 2, we can
also anticipate that the Γ irreps will yield the elements of the diagonal blocks, and
the Xm (m= 1, 2, 3, 4) irreps the off-diagonal ones. This is consistent with lattice
translations having non-trivial representation for the Xm irreps, which means that
they couple non-equivalent points in the BZ.

The matrices of D that are needed to find the symmetry-adapted bases are the
following (again, we omit the representation matrix of inversion for brevity):

ρD1
ð2001Þ ¼ 1 0

0 1

� �
; ρD1

ðm010Þ ¼
e�iπ=4 0

0 eiπ=4

 !
;

ρD1
4þ001

 � ¼ ei

π
4 0

0 e�iπ=4

 ! ð20Þ

and

ρD5
ð2001Þ ¼

�12 0

0 �12

� �
,

ρD5
ðm010Þ ¼

0 e�i3π=4 0 0

eiπ=4 0 0 0

0 0 0 e�iπ=4

0 0 ei3π=4 0

0
BBB@

1
CCCA ,

ρD5
ð4þ001Þ ¼

0 e�i3π=4 0 0

e�i3π=4 0 0 0

0 0 0 e�iπ=4

0 0 e�iπ=4 0

0
BBB@

1
CCCA:

ð21Þ

Table 2 Decomposition of the product of representations
D* ×D. Each row labels the decomposition of the term-wise
product, considering that D=D1+D5 is derived from a
space group irrep induced from the sum of small irreps
T1+ T5, which is then restricted to the arms K1,2. The terms
in the reduction are small irreps of the little groups at Γ and
X3= (0, 0, 1/2). The labels for the X irreps are those from

the point X � X2 ¼ by
2 ¼ ð0; 1=2;0Þ, since X3 is in the star of

X.

D* ×Da Γb X3
c

D�
1 ´D1 Γþ1 þ Γþ3 þ Γ�4 X1

D�
1 ´D5 Γþ4 þ Γ�4 þ Γþ5 þ Γ�5 X3+ X4

D�
5 ´D1 Γþ4 þ Γ�4 þ Γþ5 þ Γ�5 X3+ X4

Γþ1 þ Γ�1 þ Γþ2 þ Γ�2
D�
5 ´D5 þ2Γþ3 þ 2Γ�3 þ Γþ4 2X1+ 2X2

þΓ�4 þ Γþ5 þ Γ�5

aProduct of representations of the GW little group.
bIrreps of the little group at the Gamma point.
cIrreps of the little group at the point (0, 0, 1/2).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27168-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7330 | https://doi.org/10.1038/s41467-021-27168-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Following the same procedure as in the Methods section, we obtain the matrix
representation of the energy operator. As a last step, we impose TRS. The unitary
part of the TR operation Θ=Uκ is in this case

U ¼ 0 1

1 0

� �
�

1 0 0

0 �1 0

0 0 1

0
B@

1
CA: ð22Þ

We are interested in modulations implemented by physically altering the
dielectric structure of the crystal. Therefore, the modulation itself is considered to
transform trivially under Θ.

TRS forbids one of the couplings for each one of the X2, X3 and X4 modulations.
Furthermore, analyzing the effect of these three by numerically diagonalizing the H
matrix shows that only modulations transforming in the X1 representation can gap
out the Weyl points. For examples of modulations that do not open a gap,
see SN 12.

The representation matrices used to obtain the X1 modulation terms are the
following:

ρX1
ð2001Þ ¼ 1 0

0 1

� �
, ρX1

ðm010Þ ¼
0 �1

1 0

� �
,

ρX1
ð4þ001Þ ¼

0 �1

1 0

� �
:

ð23Þ

We present the expression along the T line of H(kz, Bz) with only the X1 couplings
included:

Hðkz ;BzÞ ¼
Wþ X1

Xy
1 W�

 !
; ð24Þ

W ± ¼
ak2z ± bkz þ αB2

z 0 0

0 ck2z ± dkz þ βB2
z Bzδ ± γkzBz

0 Bzδ ± γkzBz ck2z ± dkz þ βB2
z

0
B@

1
CA; ð25Þ

X1ðp1; q1Þ ¼
C1ðp1 � iq1Þ 0 0

0 C2p1 � iC3q1 0

0 0 �iC2q1 þ C3p1

0
B@

1
CA; ð26Þ

where the coordinates (p1, q1) transform as X1 and parametrize the modulation
strength, and C1,2,3 are real coupling constants, while the rest of parameters are also
real. The kz component is taken from the point where the Weyl points merge after
the cell folding.

The effect of this modulation is visualized in Fig. 7. The band-gap opened via
supercell modulation in the TRS broken system is shown to be a Chern gap in the
main text, by numerical means.

From the analytical model, we also observe that, to exactly superimpose the
Weyl points, we need to tune the magnetic field to the folding condition:

Bz ¼
δ

α� β
; ð27Þ

as can be seen by diagonalizing the matrix H(0, Bz).
As stated before, this model addresses the case where N=NW= 2. When

NW= 2 is fixed but N= 2n with n integer (see Fig. 3), the modulation belongs to
point (0, 0, 1/N) and must enter at order n in H. Therefore, unless NW=N= 2, the
modulation will belong to the high-symmetry line Δ. The expression for the
modulation for every N=NW > 2 is given in the SN 13.

Example of cell modulation. We use the projectors onto the i-th basis element in the
space of the irrep X1:

Pii / ∑
g2G

X�
1ðgÞiig ð28Þ

where g runs over the little co-group at X3= (0, 0, 1/2) and we disregard any
normalization factors. Applying these to an arbitrary function f(z), we find:

X1 :
P11f / f ðzÞ þ f ð�zÞ
P22f / f ðzÞ � f ð�zÞ

�
X2;X3;X4 : Piif ¼ 0; i ¼ 1; 2:

ð29Þ

Therefore, given functions of z that under lattice translations obey Tf ¼ eiX3 �Tf ,
those that provide a basis for this irrep are one even and one odd, respectively. This
proves that a modulation of the radius of the rods Δr ¼ rðzÞ � r0 ¼ rm cosð2πz=NjajÞ
with N= 2 belongs to X1. In particular, it is parametrized by (p, q)= (p, 0) in the model
given in Methods section. We also note that, when the modulation is cubic, i.e.
Δr ¼ rðx; y; zÞ � r0 ¼ rm½cosðπx=jajÞ þ cosðπy=jajÞ þ cosðπz=jajÞ�, it is only the z
dependent part that is responsible for gapping the Weyl points generated in a Bz field.

We also note that our derivation was performed employing Hermitian
perturbations. However, via the introduction of non-Hermitian perturbations in
the model, it could be possible to incorporate the effect of losses (or gain) in the
system. Non-Hermitian terms usually lead to a spread of the Chern bands along the
imaginary axis, which therefore transform into band regions in the complex plane.
As long as the effect is limited enough not to lead to merging of the two bands, it is
generally possible to separate the two bands by a line-gap. Indeed, as shown in
Ref. 61, in presence of a line-gap, Chern insulators are stable with respect to non-
Hermitian lossy effects.

Data availability
Source data are provided with this paper. The data for Figs. 1–6 and Table 1 generated in
this study are provided in the Supplementary Information/Source Data file. Source data
are provided with this paper.

Code availability
Code source data for the computation of photonic Wilson loops are available from the
corresponding authors upon reasonable request. We are working on making the codes
user friendly and we aim to present them as the object of a future publication devoted to
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