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Modular and stereoselective synthesis of
tetrasubstituted vinyl sulfides leading to a library of
AIEgens
Xun-Shen Liu 1,2, Zhiqiong Tang1, Zhiming Li 3✉, Mingjia Li1, Lin Xu1 & Lu Liu 1,2✉

Tetraarylethylenes exhibit intriguing photophysical properties and sulfur atom frequently play

a vital role in organic photoelectric materials and biologically active compounds. Tetra-

substituted vinyl sulfides, which include both sulfur atom and tetrasubstituted alkenes motifs,

might be a suitable skeleton for the discovery of the new material molecules and drug with

unique functions and properties. However, how to modular synthesis these kinds of com-

pounds is still challenging. Herein, a chemo- and stereo-selective Rh(II)-catalyzed [1,4]-acyl

rearrangements of α-diazo carbonyl compounds and thioesters has been developed, pro-

viding a modular strategy to a library of 63 tetrasubstituted vinyl sulfides. In this transfor-

mation, the yield is up to 95% and the turnover number is up to 3650. The mechanism of this

reaction is investigated by combining experiments and density functional theory calculation.

Moreover, the “aggregation-induced emission” effect of tetrasubstituted vinyl sulfides were

also investigated, which might useful in functional material, biological imaging and chemi-

calnsing via structural modification.
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Organosulfur chemistry has attracted more and more
attention and brought increasing significance because
carbon–sulfur bonds widely exist in nature, including

biologically active molecules1–4, pharmaceuticals5,
agrochemicals6, materials7, flavors, and fragrances8, and even
food ingredients9. Sulfur-containing motifs frequently play a vital
role in organic photoelectric materials and biologically active
compounds because S atom possesses strong polarizability and
hyperpolarizability. Meanwhile, since the concept of “aggrega-
tion-induced emission” (AIE) was disclosed by Tang and co-
workers10–21 in 2001, the development of new AIE luminogens
(AIEgens) has attracted significant attention during the past few
years because of the enormous application potential in organic
light-emitting diodes (OLEDs)22,23, biological imaging24,25, che-
mical sensors26,27, cancer ablation28,29, and theranostics30,31.
Thus, the introducing of S atom into tetrasubstituted alkenes, one
type of the classical AIE gens, might be an efficient way for the
development of new material molecules with unique functions
and properties (Fig. 1a).

Diazo compounds, especially α-diazocarbonyl compounds
which are easily prepared and handled, are highly important
reagents in synthetic chemistry, because they have high and
versatile reactivity which have been used in a series of carbene

transfer reactions including X-H (X=O, N, S, C, etc.) insertion,
cyclopropanation, and ylide formation under the catalysis of
transition metals32–37. They are also used frequently for the
synthesis of sulfides via the construction of C–S bond38–42. In
this regard, rearrangements via sulfonium ylides offer a
straightforward and versatile way of accessing sulfide with car-
bonyl groups, which include [1,2]-rearrangement (Stevens
rearrangement43–46) and [2,3]-rearrangement (Doyle-Kirmse
rearrangement47–52, and Sommelet-Hauser rearrangement53–55).
However, these reactions could only afford the products with
C(sp3)–S bond (Fig. 1b). Although Wang et al. reported an
aromatic indolyl C(sp2)–S bond formation from the reaction of
3-diazoindol-2-imines with thioesters56, the formation of vinyl
C(sp2)–S bond via the sulfonium ylides rearrangement of the
reaction of sulfur-containing compounds with diazo compounds
is still unknown.

In this work, based on our continuous interest in transition-
metal catalyzed carbene transfer reaction of α-diazo carbonyl
compounds57–59, we describe herein that structurally diverse
tetrasubstituted vinyl sulfides (TVSs) are modularly assembled
for the first time by a rhodium-catalyzed ylide formation/[1,4]-
acyl transfer reaction of S-acyl thiol and diazo compounds
(Fig. 1c).

Fig. 1 The reactions of sulfur nucleophiles and diazo carbonyl compounds. a The design of new AIEgens. b Three classical rearrangement reactions via
sulfur ylide. c 1,4-acyl transfer strategy of diazoketone and thioester. TPE: 1,1,2,2-tetraphenylethylene, BTBT: benzthieno[3,2-b]benzothiophene; TVS:
tetrasubstituted vinyl sulfides.
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Results
Substrate scope of [1,4]-acyl transfer reaction. Initially, the
reaction of acetyl phenthiol 1a and phenyl diazo ketone 2a was
chosen as the model reaction. After screening the condition,
Rh2(OAc)4 was proven the best catalyst for this transformation
(see Supplementary Table 1). We then tested the substrate scope
of this [1,4]-acyl transfer reaction. As shown, a diverse range of S-
aryl ethanethioate, with different substitutes on para-, meta-, and
ortho-positions of phenyl ring, were suitable substrates for [1,4]-
acetyl transfer reaction, affording the corresponding tetra-
substituted Z-olefins 3aa-3ka in good to excellent yields with
excellent chemo- and stereo-selectivity (Fig. 2). To our delight,
the alkyl groups, including benzyl, cyclohexyl, ester-containing
alkyl, on the sulfur atom were tolerated (Fig. 2, 3ma-3pa). It was
noteworthy that the well-known Stevens rearrangement had not

been observed in this transformation. When aryl thiol with var-
ious acyl groups with steric hindrance and carbamoyl group on
sulfur atom were tested in this transformation, the same [1,4]-
acyl and carbamoyl transfer took place, affording the corre-
sponding Z-olefins in good efficiency (Fig. 2, 3qa-3wa). Inter-
estingly, attempts using the ethanethioate with allyl and propargyl
on S atom exclusively delivered the acyl transfer products without
any [2,3]-rearrangement products being detected (Fig. 2, 3xg-
3yg). Next, we began to study the substrate scope of various diazo
carbonyl compounds 2. Diazo ketones 2b-2o containing various
substituents, including aryl, alkyl, alkynyl, and hydrogen were
compatible, delivering the expected products 3ab-3ao in good
yields. Notably, diazoesters were compatible and delivered the
alkene products in good yields with single Z-selectivity (Fig. 2,
3ap-3aw). Furthermore, this protocol was also applicable to
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Fig. 2 Substrate scope. Reaction conditions: to the solution of 1 (0.5 mmol) and Rh2(OAc)4 (0.01 mmol, 2 mol%) in 1.0 mL DCM, the mixture of 2
(0.75mmol) and DCM (1.0 mL) was added dropwise in 5 min at room temperature. Isolated yields for all TVSs. Ar1= p-CO2MePh, Ar2=m-CO2EtPh.
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pharmaceutically relevant molecules due to the mild reaction
conditions and convenient operation. To our delight, Cholesterol,
Estradiol, Racecadotril, Gemfibrozil, Aspirin, and Indometacin
derivatives gave the [1,4]-acyl migration products 4–9 in mod-
erate to good yields. The structures of 3aa and 3aw were further
confirmed by single-crystal X-ray crystallography analysis.

Then, we envisaged that the analogous [1,4]-acyl migration
reaction should be applicable to the cyclic thioester substrate,
which would undergo the ring expanding reaction by three atoms
and afford medium-sized lactones containing an alkenyl sulfide
moiety. When the spiro four-membered ring thiolactone 10a
reacted with diazoketones 2a under the standard condition, the
seven-membered lactone 11a was generated in 73% isolated yield
via the sequential ylide formation/[1,4]-acyl migration as we
expected. Thus, various thiolactones 10 equipped with the rings
from four-member to seven-member were tested (Fig. 3). All the
reactions of 10 with diazoketone 2 were carried out smoothly,
affording the corresponding lactone 11b-11i with seven-
membered to ten-membered rings in moderate to good yields.
It was noteworthy that the reaction of thiolactone with amide
group gave the ring expansion product 11c without the N–H

insertion product. This result indicates this tandem ylide
formation/acyl migration reaction exhibited excellent chemos-
electivity, which occurred preferentially over the N–H insertion
reaction. The structures of 11c and 11e were further confirmed by
single-crystal X-ray crystallography analysis (Fig. 3).

Gram-scale reaction and the transformations of products. As
shown in Fig. 4, this [1,4]-acyl migration reaction of thioester and
diazoketones was easy to scale-up. The 5 mmol scale reaction of
2a and 1a was carried out under 0.1 mol% Rh2(OAc)4, furnishing
1.44 g of the desired product 3aa in 83% yield. Gratifyingly, the
catalyst loading could be further decreased to 0.02 mol% without
effect on the yield, and the TON was up to 3650. The 22.5 mmol
scale reaction of 2a and 1d could give 6.988 g of the corre-
sponding product 3da in 73% yield. It should be noted that 3da
could be obtained after simple recrystallization instead of column
chromatography (see Supplementary Fig. 1 for details), demon-
strating the promising synthetic practicality of this reaction. To
examine the synthetic value of this protocol further, several
transformations of 3aa and 3da were also performed (Fig. 4).
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When the 3aa was treated with m-CPBA, vinyl sulfoxide (12) and
vinyl sulfone (13) could be obtained in 81% and 65% yields,
respectively (Fig. 4a, b). Meanwhile, the cross-coupling of
3da with terminal alkyne and aryl boronic acid afforded
the corresponding products 14–16 in moderate to excellent
yields (Fig. 4c, d).

Crossover experiment. In order to understand the reaction
mechanism, a crossover experiment was conducted (Fig. 5). As a
result, the expected non-crossover products 3za and 3ca were
obtained in excellent yields and no crossover products (3ha or
3ca′) was observed in the crude 1H NMR. This results proved this
[1,4]-migration was a concerted rearrangement pathway.

DFT calculations. To further understand the mechanism of this
reaction, density functional theory (DFT) calculations were then
carried out with the Gaussian 09 software package60–63. The
calculation details were provided in the Supplementary Infor-
mation. The reaction of 2a and 1a was selected as the model
reaction. As illustrated in Fig. 6, the reaction path included the
formation of rhodium carbene intermediate Int-1, then the
generation of free sulfur ylide Int-3 via a metal-bound ylide
intermediate Int-2, and finally [1,4]-shift of acetyl group to form
product 3aa, in which the formation of rhodium carbene A was
the determining step. The barrier was 23.5 kcal/mol, which meant
this reaction can proceed smoothly at room temperature. This
was in good line with the experiment. The [1,4]-shift of acetyl
process is almost barrierless, with a barrier of only 1.1 kcal/mol.

Fig. 4 Gram-scale reaction and the transformations of products. a m-CPBA (1.2 equiv), NaHCO3 (1.0 equiv), DCM, 0 °C. b m-CPBA (5.0 equiv), NaHCO3

(1.0 equiv), DCM, 0 °C. c Pd(PPh3)2Cl2 (5mol%), CuI (5 mol%), trimethylsilylacetylene (2 equiv), Et3N, 80 °C, 3 h. d Pd(PPh3)4 (10mol%), Na2CO3

(2.0 equiv), ArB(OH)2 (1.5 equiv), toluene: H2O= 1:1, 100 °C, 3 h.

Fig. 5 Crossover experiment. Reaction conditions: 1z (0.5 mmol), 1c (0.5 mmol), and Rh2(OAc)4 (0.025mmol, 2.5 mol%) in 2.0 mL DCM, 2a (1.5 mmol),
and DCM (2.0 mL) was added dropwise in 10min at room temperature. Isolated yields for 3za and 3ca.
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The rhodium carbene intermediate to coordinate with the car-
bonyl oxygen of the thioester Int-2′ was located, while the relative
free energy is 3.3 kcal/mol higher than that with sulfur. Fur-
thermore, we also located a more stable rhodium-stabilized
acylsulfur ylide Int-3′ by −6.5 kcal/mol, compared to Int-2 (see
Supplementary Fig. 2 for more details). While the corresponding
1,4-acyl migration process is less favored than the free ylide, the
free energy difference between two TSs (TS-3 and TS-3′) is up to
6 kcal/mol. So the free ylide should be the intermediate in this
reaction.

This barrier was lower than that of [2,3]-rearrangement of allyl
and propargyl, which could explain the excellent chemoselectivity
of this reaction (see Supplementary Figs. 3 and 4 for more
details). Furthermore, this calculation demonstrated that this
[1,4]-acyl migration presumably proceeds via a free ylide
intermediate, which was consistent with the known [1,4]-acyl
migration from O to C64.

Photophysical properties of TVSs. Having established this pro-
tocol to conveniently construct the library of tetrasubstituted
vinyl sulfides (TVSs), we then tested the photophysical properties
of these molecules. Classic AIE was observed by dissolving 3ca in
the mixture solution of 1,4-dixoane and water with different
fractions of water. Compound 3ca showed almost no fluorescence
in 1,4-dixoane. With the gradual addition of water into the
solution of 3ca in 1,4-dixoane, the emission intensity increased
slightly when water fraction was less than 70%. However, when
water fraction exceeded 70%, the emission intensity of 3ca
increased significantly since the restriction of intramolecular
rotation (Fig. 7a, b, d). All the TVSs with cis-1,2-diaryl sub-
stituents exhibit this phenomenon, and the fluorescence emission
spectra of representative vinyl sulfides were also measured and
the emission maxima of all the AIE-gens altered from 418 to
442 nm (Fig. 7c, and see Supplementary Information for details).
The results indicated the substituents on diazo compounds 2 were
vital for the AIE-activity of the producing vinyl sulfides. The
TVSs with two aryls or one aryl and one alkynyl exhibited AIE-

activity, while the olefins containing H, alkyl, and alkoxyl did not
have AIE effect. Moreover, some AIEgens, such as 3aa, 3ca, 3da,
3sa, 3dn, and 15, exhibted interesting luminescence in solid state
(Fig. 7c, and see Supplementary Table 7 for more details). Thus,
these compounds might be useful for OLEDs and living animal
imaging via structural modification.

Discussion
In summary, we have developed a rhodium-catalyzed rearran-
gement reaction of thioesters and diazoketones via sulfur ylide,
which provides a modular strategy to construct a library of tet-
rasubstituted vinyl sulfides (TVSs) in good to excellent yields.
This protocol features broad substrate scope (63 examples), mild
condition, low catalytic loading, convenient operation, and easy
scale-up. The TON of this reaction is up to 3650 and the product
can be isolated without column, indicating that this reaction
might be promising tools in industry. The mechanistic studies
combining experiments and DFT calculation exhibit this [1,4]-
acyl shift from S to O is intramolecular pathway and has lower
energy bar than known [2,3]-rearrangement via a free ylide
intermediate. Furthermore, the spectroscopic properties of these
molecules were studied in solution as well as solid state, and TVS
is proved to be a new type of AIEgens. Some of them might be
useful for OLEDs and living animal imaging via structural
modification. This work would inspire the development of new
sulfur-containing AIEgens and broaden the application of cata-
lytic reactions in synthesis of materials.

Methods
General procedure for TVSs. Thioester 1 or 10 (0.5 mmol, 1.0 equiv), and
Rh2(OAc)4 (0.01 mmol, 2.0 mol%) were introduced into a dried glass tube under
N2 protection, and add 1 mL dry DCM as solvent, then the diazoketone 2
(0.75 mmol, 1.5 equiv) was dissolved in 1 ml of DCM and add dropwise in 5 min at
room temperature. After the addition, continue to react for 1 min consumed diazo
completely determined by TLC analysis. The mixture was purified by column
chromatography on silica gel using PE/EtOAc as the eluent and concentrated to
obtain the product 3 or 11. All new compounds were fully characterized (see
the Supplementary Information).
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Data availability
All other data in support of the findings of this study are available within the Article and its
Supplementary Information or from the corresponding author upon request. X-ray
crystallographic data for compound 3aa (CCDC 2033240), 3aw (CCDC 2033239), 11c
(CCDC 2033243), and 11e (CCDC 2033242) are freely available from the Cambridge
Crystallographic Data Center. Copies of the data can be obtained free of charge from the
Cambridge Crystallographic Data Center via https://www.ccdc.cam.ac.uk/data_request/cif.
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