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Topological acoustic triple point
Sungjoon Park1,2,3,4, Yoonseok Hwang 1,2,3,4, Hong Chul Choi1,2 & Bohm-Jung Yang 1,2,3✉

Acoustic phonon is a classic example of triple degeneracy point in band structure. This triple

point always appears in phonon spectrum because of the Nambu–Goldstone theorem. Here,

we show that this triple point can carry a topological charge q that is a property of three-band

systems with space-time-inversion symmetry. The charge q can equivalently be character-

ized by the skyrmion number of the longitudinal mode, or by the Euler number of the

transverse modes. We call triple points with nontrivial q the topological acoustic triple point

(TATP). TATP can also appear at high-symmetry momenta in phonon and spinless electron

spectrums when Oh or Th groups protect it. The charge q constrains the nodal structure and

wavefunction texture around TATP, and can induce anomalous thermal transport of phonons

and orbital Hall effect of electrons. Gapless points protected by the Nambu–Goldstone

theorem form a new platform to study the topology of band degeneracies.
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C lassification of topological phases of matters has been a
topic of intensive research1–3. An important conclusion
drawn from these investigations is that gap closing points in

the band structure are often characterized by a topological charge. A
famous example is the Weyl point, whose gaplessness is protected
by the Chern number4. However, in nature, there is a different class
of gap closing points that are enforced by the Nambu–Goldstone
(NG) theorem, whose topological characteristics have been largely
unexplored yet5–7. A familiar example is the acoustic phonons,
which are NG bosons resulting from breaking the translational
symmetries, and exist even in classical systems. Because three
translational symmetries are broken, there are three gapless acoustic
phonons forming a triple point at the Brillouin zone (BZ) center,
which we refer to as the acoustic triple point (ATP).

Here, we show that an ATP in elastic crystals with time-reversal
symmetry can carry a topological charge q. q is a topological charge
that can be defined for a real-symmetric three-band Hamiltonian,
and consists of a pair of well-known topological charges: the sky-
rmion number nsk and the Euler number e. Hence, an ATP with
nontrivial q is dubbed the “topological ATP” (TATP). The topo-
logical charge q is strictly defined only when the total number of
energy bands is fixed to three, so that it falls under the recently
proposed category of “delicate” (topological) charge8, which is
distinct from the stable charge9,10 such as the Chern number or the
fragile charge11–17 such as the Euler number18. In general, the
delicate charge is defined for small number of bands and thus it is
not well defined in electronic system, where the total number of
electron bands easily exceeds the relevant number. In contrast, the
number of phonon energy bands is fixed by the number of atoms in
the unit cell, so that there is a possibility that phonons can be
exactly characterized by the delicate charge.

Although only phonons in monatomic lattices have precisely
three bands, the theory of elasticity naturally yields an effective
three-band description of the ATP, which are the three NG
modes. In this sense, we find that TATP protected by the NG
theorem is ubiquitous in elastic materials. Interestingly, the triple
points with nontrivial q can also be symmetry-protected at high-
symmetry momentum in PT symmetric elastic systems, and even
in PT symmetric electronic systems with negligible spin-orbit
coupling, where P and T are inversion and time-reversal sym-
metries, respectively. The TATP protected by the NG theorem
has a linear dispersion, while the symmetry-protected triple point
has a quadratic dispersion around the triple point. However, since
both share the same topological charge, we refer to both types of
triple points as the TATP.

A characteristic feature of both the linearly and quadratically
dispersing TATPs is the energy gap between the highest energy
band (Lmode) and the two lower energy bands (Tmodes), except
at the triple point, see Fig. 1a. This gap is necessary to define the
topological charge q, and this feature distinguishes the TATPs
from the triple points created by band inversion19–26 and the
spin-1 Weyl point27–32, see Fig. 1b.

Because having a nontrivial q implies nontrivial nsk and e for
the longitudinal and the transverse modes, respectively, it has
interesting consequences for the nodal structure. For example,
there must be at least four nodal lines formed between the T
modes emanating from the TATP. Also, because the nonzero q is
accompanied by nontrivial winding texture of the wavefunctions
around the TATPs, systems with TATPs can show anomalous
transport of phonon angular momentum or electronic orbital.

Results
Topological charge. Let Hk denote either the dynamical matrix of
phonon or the Hamiltonian matrix of electron, and let ϵk,n and
Ek;n be the eigenvector and eigenvalue of Hk, respectively. Note

that when Hk is the dynamical matrix of phonon, Ek;n ¼ ω2
k;n

where ωk,n is the phonon energy, and when Hk is the Hamiltonian
matrix of electron, Ek;n is the electron energy. This means that
insofar as the topology of ATP is concerned, there is no difference
between the dynamical matrix of phonon and the Hamiltonian
matrix of electron. Henceforward, we blur the difference between
phonon and electron and refer to Hk as the Hamiltonian, and
clarify the difference when a possibility of confusion arises.

To define q, we require that Hk be a 3 × 3 real-symmetric
matrix. The three-band condition is satisfied by the phonons in a
monatomic lattice, which have only three phonon bands. Even
when there is more than one atom per unit cell, and therefore
more than three phonon energy bands, this condition is satisfied
near the ATP, which can be described by the elastic continuum
Hamiltonian33 (see Theory of elastic continuum in Methods and
Supplementary Note 3). The condition that Hk be real is satisfied
if there is PT symmetry that satisfies ðPT Þ2 ¼ 1, in which case it
is possible to choose PT ¼ K , where K is the complex
conjugation operator. It is useful to note that even if P is absent
in the crystal, it is restored in the elastic continuum limit. Thus,
the elastic continuum Hamiltonian in time-reversal symmetric
crystals always satisfies the three-band and the reality conditions
(see Theory of elastic continuum in Methods).

The dynamical matrix of the isotropic elastic continuum offers
a simple picture of the main characteristics of q:

Hk

� �
αβ

¼ v2Tk
2δαβ þ ðv2L � v2T Þkαkβ; ð1Þ

where vL and vT are the longitudinal and transverse velocities,

respectively. Defining k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
and ~k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, the

eigenstates are ϵk;L ¼ 1
k ðkx; ky; kzÞ, ϵk;T1

¼ 1
~k
ð�ky; kx; 0Þ,

ϵk;T2
¼ 1

~kk
ð�kxkz;�kykz; k

2
x þ k2yÞ, whose eigenvalues are given by

v2Lk
2, v2Tk

2, and v2Tk
2 respectively. To define q, we consider a sphere

surrounding the triple point at k= 0. On this sphere, notice that the
L mode has the skyrmion number nsk ¼ 1, see Fig. 1c. Furthermore,
the T modes span the tangent space of the sphere in the momentum
space, so that they have Euler number e ¼ 2 as is well known.
Alternatively, the Euler number can be computed by counting the
winding number of the Wilson loop spectrum34,35, see Fig. 1d (see
also Computation of Euler number using Wilson loop in Methods).
Therefore, we define the topological charge q ¼ ðnsk; eÞ, where it can
be shown that the constraint e ¼ 2nsk must be satisfied. This
discussion can be generalized to any 3 × 3 real-symmetric Hamilto-
nian as long as there is a gap between the L and the T modes, see
Homotopy description of q in Methods and Supplementary Note 1.

Phonons in CsCl. Although the topological charge q was defined
for a three-band system, the topological charge is still meaningful
in multiband systems. To demonstrate this, let us study the
phonon spectrum of CsCl lattice, which has two atoms per unit
cell (see Fig. 2a), and therefore six phonon bands. We show the
phonon spectrum (ωk) obtained from first-principles calculations
(see Details of ab initio calculations in Methods) in Fig. 2b. Near
Γ with k ≠ 0, we see that the two lowest acoustic modes are
gapped from the others. Therefore, we can compute the Wilson
loop spectrum for these two acoustic phonons, which we show in
Fig. 2c. From the winding structure of the Wilson loop spectrum,
we see that jej ¼ 2. It is important to note that although the CsCl
lattice has six phonon bands, we can still define the Euler number
for the T modes. This is because e can be defined for any two
bands that are isolated from the others by a gap, so that it is not
sensitive to the total number of energy bands present in the
system. In contrast, nsk and q are properties of a 3 × 3 Hamil-
tonian, so that they are not well defined here in a strict sense.
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Therefore, q ¼ ðnsk; eÞ reduces to e when the number of phonon
bands is larger than 3. However, we can recover the topological
charge q by using the continuum theory or the Löwdin parti-
tioning (see Continuum theory in Results).

We note that the triply degenerate optical modes at Γ is also a
TATP (see Details of ab initio calculations in Methods), whereas
q cannot be defined for the triple degeneracy at the R point,
because it is not possible to consistently separate one of the
energy bands from the other two on a sphere surrounding the
triple degeneracy (see Fig. 2b).

Continuum theory. Here, we discuss how the continuum theory
constrained by the crystalline symmetries allows us to extend the
discussion of TATP to general multiband systems. Let us first
consider the gapless acoustic phonons, which are conventionally

described by the elastic continuum theory. This naturally yields a
3 × 3 elastic continuum Hamiltonian (dynamical matrix)
description of the acoustic phonons, whose specific form is
constrained by the 32 point group symmetries allowed by the
crystal36. Because the triple point is always present due to the
gaplessness of phonons, all 32 point group symmetries are
meaningful, as long as the T symmetry is present (see Theory of
elastic continuum in Methods).

For simplicity, let us focus on the elastic continuum
Hamiltonian constrained by the cubic symmetries. Because we
are interested in the topological properties, it is sufficient to
examine only the traceless part of the Hamiltonian, which takes
the form

Hk ¼ ∑
n
f nðkÞλn; ð2Þ
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Fig. 1 Topological acoustic triple point (TATP). a TATP with q � ðnsk; eÞ ¼ ð1; 2Þ can appear with either a linear dispersion or a quadratic dispersion. Note
that there is a gap between the L and the T modes away from the triply degenerate point. b TATP is distinct from spin-1 Weyl point, which is protected by
Chern numbers. TATP is also distinct from the triple point formed by band inversion, where it is not possible to separate the highest energy band from two
lower energy bands away from the triple point. c Skyrmion texture of longitudinal phonon on the sphere wrapping a TATP. The transverse modes span the
tangent plane of the sphere. dWilson loop spectrum for the transverse modes as a function of the polar angle θ computed on a sphere wrapping the TATP.
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Fig. 2 TATP in CsCl. a CsCl lattice structure. b Phonon spectrum (ωk) of CsCl along the high-symmetry lines obtained by first-principles calculations.
Acoustic phonons at Γ carry q ¼ ð1; 2Þ. q cannot be defined for the triple degeneracy at the R point, because lower two bands cannot be fully separated
from the highest energy band owing to the degeneracy between upper two bands along the RM direction. c Wilson loop spectrum of the two lowest
acoustic phonons near the Γ point.
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where n= 1, 3, 4, 6, 8 and λn are the Gell–Mann matrices. For
cubic groups, we find f1(k)= akxky, f 3ðkÞ ¼ bðk2x � k2yÞ, f4(k)=
akxkz, f6(k)= akykz, f 8ðkÞ ¼ bffiffi

3
p ðk2x þ k2yÞ � 2bffiffi

3
p k2z . Here, a and b

are constants that can be related to the three elastic constants of a
cubic crystal, C11, C12, and C44, by the following relations:
a= C12+ C44 and b ¼ C11

2 � C44
2 . When a ≠ 0, the topological

properties of the Hamiltonian are determined by only one
parameter, b/a, so that we can draw a phase diagram as shown in
Fig. 3a. We find that b/a > 0 corresponds to the band structure
shown in Fig. 1a, so that the L mode is gapped from the T modes
for k > 0, and the topological charge is q ¼ ð1; 2Þ. When b/a < 0, q
is not defined because it is no longer possible to properly partition
the energy bands for k > 0 (see Fig. 3b, c).

The criterion b/a > 0 allows us to easily search for materials
with TATP. Applying this criterion to some monatomic lattices,
we find that the acoustic phonons in Au, Ag, and Cu are
topological with q ¼ ð1; 2Þ. Since monatomic lattices have only
three phonon modes, the nonzero topological charge q diagnosed
from the elastic continuum approximation does not reduce to e
even if we consider the full Hamiltonian.

It turns out that the above condition b/a > 0 that the phonons
carry q amounts to the condition that the longitudinal velocity
exceeds the transverse velocity along the high-symmetry lines (see
Supplementary note 6). For isotropic systems, the transverse
velocity cannot exceed the longitudinal velocity because of the
Born stability condition for isotropic systems that v2T=v

2
L < 3=4.

However, the Born stability criteria of cubic crystals37,38 do not
forbid vT > vL along the high-symmetry lines so that it is possible
to observe acoustic phonons that do not carry q. The necessary
and sufficient conditions for stability of cubic crystals are39

C44 > 0, C11− C12 > 0, C11+ 2C12 > 0, which allows vT > vL.
Indeed, such situations are known to occur40 in certain Tm-Se

and Sm-Y-S intermediate valence compounds41,42 and certain
Mn-Ni-C alloys43,44.

Although TATP can appear for any crystal symmetry for
acoustic phonons, the symmetry-protected TATPs of phonons, or
of electrons, require stricter symmetry constraints. Of the 32
point group symmetries, only the Oh and the Th groups contain
the inversion symmetry and support three-dimensional repre-
sentations. In the case of the Oh group (see Supplementary Note 4
for Th group), four representations (T1u, T2u, T1g, T2g) allow a
triple point, and the k.p Hamiltonian near the triple point takes
the form in Eq. (2) after appropriate transformations. Therefore,
the phase diagram in Fig. 3 applies here as well.

Finally, let us note that although we have used the approximate
continuum Hamiltonian in the above discussion, it is possible to
obtain a three-band Hamiltonian for the three bands constituting
the TATP in multiband systems up to any desired accuracy by
using the Löwdin partitioning (for details, see TATP in multiband
systems in Methods). This allows us to define the TATP without
relying on the approximate continuum Hamiltonian even in
multiband systems.

Nodal structure. The charge q ¼ ðnsk; eÞ strongly constrains the
nodal structure. As before, we consider a sphere on which q is
nontrivial. First, because the skyrmion number of the L mode
cannot change under a continuous deformation of the Hamilto-
nian without closing the gap, the L mode must cross the T modes
inside the sphere, which occurs at the ATP. Second, the Euler
number constrains the number of nodal lines formed between the
T modes that pass through the ATP. This is because nodal lines
emanating from the TATP can be considered as Dirac points on
the 2D sphere surrounding the TATP, and nonzero e constrains
the total vorticity Nt (signed count of the number of Dirac points)

a

a=2.2, b=−0.5

a=1.0, b=0.3

 is not
defined

=(1,2)

Isotropic
phonon

b/a

1/2

Oh group

perturbation

perturbation

0

b

c e

d

=(1,2)

kx

ky

kz

kx

ky

kz

kx

ky

kz

kx

ky

kz

Fig. 3 Acoustic triple points in cubic systems. a Phase diagram for the elastic continuum Hamiltonian in Eq. (2) for acoustic phonons in cubic systems. b, c
Nodal structure for b/a > 0 (b) and b/a < 0 (c). The black (red) lines are band degeneracies between the upper (lower) two bands. Notice that there are
two types of nodal lines, one along the kx, ky, and kz axes and another along the lines that satisfy ∣kx∣= ∣ky∣= ∣kz∣. For b/a > 0, the band degeneracies occur
only between the lower two bands. However, the eigenvalues of the degenerate bands along the kx, ky, and kz axes increase as b/a decreases, so that when
b/a < 0, these degeneracies occur between the upper two bands instead of the lower two bands. When we perturb the Hamiltonian in b such that the
conditions required to obtain the symmetry-protected TATP are broken, while the conditions needed to define q are kept, we obtain d. Notice that the
nodal ring (black) formed between the upper two bands are penetrated by two nodal lines formed between the lower two bands. This should be compared
with e, in which we do not obtain a linked nodal ring structure as in d, although we similarly perturb the Hamiltonian in c.
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to be Nt ¼ �2e18. Thus, when e ¼ 2 for the T modes, Nt=−4,
so that there must be at least four nodal lines emanating from the
TATP (see Vorticity and nodal lines in Methods).

At this point, it is interesting to note that the presence of
symmetry-protected TATPs requires more constraints than it is
needed to define q. This is because the definition of q only
requires that the Hamiltonian be a 3 × 3 real-symmetric matrix
with a spectral gap between the L and the T modes, while the
symmetry-protected TATP requires further constraints such as
the Oh symmetry. Thus, it is natural to ask how the topological
charge q ¼ ð1; 2Þ constrains the nodal structure of symmetry-
protected TATPs when we perturb the Hamiltonian so that the
relevant symmetry is relaxed, while the conditions required to
define q are maintained. Let us note that we allow the possibility
for the perturbation to break the P and the T symmetries, but
the perturbation must preserve the combined PT symmetry to
keep the Hamiltonian real. In Fig. 3d, we show the nodal
structure that results from adding such perturbations to the
Hamiltonian used in Fig. 3b. As explained further in Linked
nodal structure protected by q in Methods, we find a nodal ring
formed between the L and the T modes (black ring) that is
threaded by two nodal lines formed between the T modes (red
lines). For comparison, we similarly perturb the Hamiltonian for
the case where q is ill defined, used in Fig. 3c. The resulting nodal
structure is shown in Fig. 3e. Although the nodal structure is
complicated, we see that there is no linking structure similar to
that observed in Fig. 3d.

Let us note that although we discussed how q constrains the
nodal structure by focusing on three-band systems here, our
conclusion can be generalized to multiband systems as in (see
Continuum theory in Results) by using the Löwdin partitioning45

(see TATP in multiband systems in Methods for details).

Avoiding the doubling theorem. It is well known that Weyl
points must appear in pairs because of the Nielsen–Ninomiya
theorem46, which is simply the result of the periodicity of the BZ
and the topological charge (Chern number) that protects the
Weyl points. In the case of TATP, we can expect that the Euler
number e, which characterizes the two T modes of TATP, can
play a similar role as the Chern number. That is, we can expect
that the e computed on a 2D slice of the BZ will change by ±2
across a TATP, so that the TATP should occur in pairs to keep
the periodicity of the BZ. However, the doubling theorem can be
avoided in various ways. Here, we give two representative
examples to avoid the doubling of TATP. Since e is the quantity
that is needed in the above argument for the doubling, let us recall
that e on a 2D BZ can be defined only if the two bands that
characterize the TATP are separated from all the other bands by
an energy gap on the 2D BZ, and only if the Zak phases for these
two bands vanish for all non-contractible loops. In the two
examples we give below, the doubling theorem is avoided because
one of the two conditions needed to define e on a 2D slice of the
BZ is not satisfied.

As the first example, let us consider the phonon spectrum of
CsCl in Fig. 2b. First, let us note that there is a gap between the
lowest three phonon modes (acoustic phonons) and the rest of
the phonon modes (optical phonons). Focusing on the acoustic
phonons, we see that there are two triple points at Γ and R.
However, the triple point at Γ is topological while that at R is not.
This is allowed because there is no energy gap between the L and
the T modes along RM. Because this nodal line stretches across
each of the kx, ky, and kz directions, it is not possible to choose a
2D plane in the BZ such that the L and the T modes are gapped
consistently. Therefore, it is not possible to define e for the lowest
two bands on any 2D plane.

Interestingly, the doubling theorem can be avoided even when
there is a gap between the L and the T modes in the whole BZ
except at a TATP. This is because e is defined only for an
orientable vector bundle. The obstruction to orientability is given
by the π quantized Zak phase computed along a non-contractible
loop in the BZ18, which is just the 1D topological invariant in
PT -symmetric systems. In other words, if the Zak phase is
nontrivial along a non-contractible loop in the 2D slice of the BZ,
the Euler number cannot be defined. Therefore, a single TATP
can appear in the presence of π quantized Zak phase for the T
modes because the periodicity argument cannot be carried out.

We demonstrate this with the second example. Here, we
consider the electronic spectrum of the 3D generalization of the
Lieb lattice47,48, whose lattice structure is shown in Fig. 4a (see
Supplementary Note 7 for the details). From the resulting band
structure and the Wilson loop spectrum in Fig. 4b, c, we see that
there is a single TATP at R, although the L and the T modes are
fully gapped except at R. We numerically confirmed that there is
π quantized Zak phase for the T modes along each of the kx, ky,
and kz direction, which allows a single TATP.

Discussion
For phonons in cubic crystals, either q ¼ ð1; 2Þ or q is undefined.
However, when the symmetry of the crystal is sufficiently low, it
is also possible to obtain q ¼ ð0; 0Þ. The acoustic phonon of
tellurium with space group P3121 is one such example, as we
illustrate in Fig. 5. Here, let us note that tellurium lacks the
inversion symmetry, so that strictly speaking, q is not defined.
However, in the elastic continuum approximation, the inversion
symmetry is restored as explained in Theory of elastic continuum
in Methods, and this does not nullify our discussion. We show the
gap closing points in the acoustic phonon spectrum in Fig. 5b.
Notice that the gap closing points occur only between the T
modes, so that we can define q. From the winding structure of the
Wilson loop spectrum shown in Fig. 5c, we see that e ¼ 0, which
is consistent with the trivial skyrmion texture of ϵk,L, see Fig. 5d.
Since the TATP in the tellurium has q ¼ ð0; 0Þ, there are no
nontrivial links in the nodal structure when a perturbation that
eliminates the TATP but preserves the PT symmetry is added to
the dynamical matrix (Fig. 5e).

Because topological charge is often associated with surface
states, it is natural to ask whether there are relevant surface states.
Since surface acoustic wave is well-known surface states related to
acoustic phonons, one may suspect that it is related to q. For an
isotropic medium, the stability of the material imposes the con-
dition v2T=v

2
L < 3=4, while the condition for the appearance of

surface acoustic waves is v2T=v
2
L < 1. Therefore, isotropic elastic

materials satisfying the stability condition always have surface
acoustic waves33. However, because isotropic phonon is topolo-
gical even for v2T=v

2
L > 1, topology does not seem to be directly

related to the surface-localized states. To further confirm this, we
study the finite size 3D Lieb lattice model. As we discuss in detail
in Supplementary Note 8, we find that even when the parameters
are chosen so that the k.p theory for the TATP at R becomes the
same as the elastic continuum theory for the isotropic phonon,
there are no surface-localized states. Because the same continuum
theory does not lead to the same boundary states, we conclude
that surface acoustic waves result from the boundary condition
specific to elastic systems.

Although nontrivial q is not directly related to surface states, it
can induce anomalous transport phenomena, such as the phonon
angular momentum Hall effect. In Ref. 49, it was observed that the
winding structure of isotropic phonon has a characteristic pho-
non angular momentum Hall response. Here, phonon angular
momentum refers to the angular momentum generated by an
atom in a lattice as it orbits about its equilibrium position, and the
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phonon angular momentum Hall effect refers to the flow of
phonon angular momentum in the direction perpendicular to the
temperature gradient. As a consequence of the phonon angular
momentum Hall effect, there is an edge accumulation of phonon
angular momentum, which can have significant contributions
from both the bulk and surface-localized phonons (see Supple-
mentary Note 9 for details). In ionic crystals, such surface-
localized phonon angular momentum can induce surface mag-
netization, which is a measurable quantity. Here we find that the
winding structure of the phonon polarization, which drives the
phonon angular momentum Hall effect in Ref. 49, arises from the
topological charge q ¼ ð1; 2Þ. Because the phonon angular
momentum Hall effect and the orbital Hall effects are analogous,
the TATPs at high-symmetry points consisting of p or d electron
orbitals are also a significant source of the orbital Hall effect. The
relation between the orbital Hall effect and the orbital texture
characterized by q ¼ ð1; 2Þ was discussed in detail in Refs. 50,51,
although the relation between q and the orbital texture was
overlooked. Further investigating the physical consequences of
having different topological characterizations of TATPs will be an
interesting topic for future study.

Methods
Note on terminology. Here, we clarify some of the terminology used in this work.
By ATP, we refer to the triple degeneracy of acoustic phonons that arises due to the
NG theorem. When an ATP carries the nontrivial topological charge q, we refer to
it as a TATP. In this case, the TATP occurs because of the NG theorem, but it is
also possible to obtain a triple degeneracy at high-symmetry points due to the point
group symmetry. When such a triple degeneracy carries the nontrivial topological
charge q, it is also referred to as a TATP, as discussed in the main text (see
Continuum theory in Results).

The term continuum Hamiltonian is used to refer to the approximate low-
energy Hamiltonian for a set of bands of interest. To avoid confusion, when we
discuss the continuum Hamiltonian for the acoustic phonons, we use the term
elastic continuum Hamiltonian, see Theory of elastic continuum in Methods. Note
also that when we consider the isotropic elastic continuum, we always specify the
isotropicity. When we discuss the continuum Hamiltonian for the symmetry-
protected triple degeneracy, we use the term k.p Hamiltonian. Note that it is

important to distinguish the k.p Hamiltonian from the elastic continuum
Hamiltonian because the symmetry constraints are not the same, see the discussion
on Th group in Supplementary Note 4.

Homotopy description of q. Here, we give a homotopy description of the topo-
logical charge q. As in the main text, we consider the 3 × 3 real-symmetric Hk at a
fixed k > 0, with the TATP situated at k= 0. Because there is a spectral gap between
the Lmode and the Tmodes for k > 0 (note that there are two Tmodes, T1 and T2),
the Hamiltonian can be written as

Hk ¼ ET
k

1 0 0

0 �1 0

0 0 �1

0
B@

1
CAEk ; Ek ¼

ϵk;L
ϵk;T1

ϵk;T2

0
B@

1
CA; ð3Þ

after a spectral flattening in which the eigenvalues of the L and the T modes are
sent to 1 and −1, respectively. Since Ek∈O(3) and the Hamiltonian is invariant
under Ek→ FkEk with Fk∈O(1) ×O(2), the topological charge of the triple point at
k= 0 can be characterized by the second homotopy group34 of the classifying space
B=O(3)/[O(1) ×O(2)], which is π2ðBÞ ¼ 2Z. In Supplementary Note 1, we use the
exact sequence of homotopy groups for fibration to show explicitly that this
topological charge is 2 for isotropic phonons. As further discussed in Supple-
mentary Note 1, this charge can be shown to be equivalent to the topological
charge q ¼ ðnsk; eÞ defined in the main text, where e ¼ 2nsk , see also Refs. 52–54.

Computation of Euler number using Wilson loop. The absolute value of the Euler
number jej can be computed by the using the Wilson loop spectrum on a sphere
surrounding the TATP. To compute the Wilson loop spectrum, let us define the
2 × 2 overlap matrix ½Fj�mn

¼ ϵkj ;m � ϵkj ;n , where m, n∈ {T1, T2}, and kj ¼
kðsin θ cos ϕj; sin θ sin ϕj; cos θÞ where ϕ= 2πj/N for some integer N. The Wilson
loop operator at θ is defined asWϕðθÞ ¼ lim

N!1
FN�1FN :::F1F0. Defining wϕ(θ) to be

the imaginary part the eigenvalues of lnWϕðθÞ, we can compute jej by counting the
number of times wϕ(θ) crosses π.

In the case of isotropic phonons, the transverse modes are tangent to the sphere
on which q is defined, so that e ¼ 2, and the Wilson loop spectrum shows the
double winding structure. For isotropic phonons, there is an alternative
explanation to this double winding structure in the Wilson loop spectrum. Because
Hk is invariant under the SO(2) rotation symmetry about the axis k̂, we can split
the eigenstates according to the eigenvalues of the helicity operator k̂ � L, where
L= (Lx, Ly, Lz) is the spin-1 matrix representation of angular momentum. Because
the helicity is ±1 for the transverse modes, we can define the Chern numbers for
the transverse modes in the helicity sectors, which are ∓2 (see Supplementary
Note 2). Since the Wilson loop spectrum for a band with Chern number n shows n
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Fig. 4 Avoiding the doubling theorem in 3D electronic Lieb model. a 3D Lieb lattice structure with four sites in a unit cell. b The electronic band structure
with a single TATP at R. Here Γ= (0, 0, 0), X= (π, 0, 0), M= (π, π, 0), and R= (π, π, π). We refer to the highest energy mode forming the TATP as the L
mode, and the lower two energy modes forming the TATP as the Tmodes. cWilson loop spectrum for the second and third lowest bands, corresponding to
T mode of the TATP, computed over a sphere with radius 0.1π centered at R. The winding structure shows that jej ¼ 2. d With a single TATP at R (black
dots), it is not possible to define e in the (ky, kz) plane since it conflicts with the periodicity of the Brillouin zone. This contradiction is resolved by noticing
the π Zak phases along the kx, ky, kz directions, so that e is ill defined.
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chiral windings, we see that there should be two branches with opposite winding in
the Wilson loop spectrum, corresponding to the two helicity sectors with opposite
Chern numbers.

Vorticity and nodal lines. We can define the vorticity of a Dirac point when the
Hamiltonian has the PT symmetry. The effective Hamiltonian around a Dirac
point can be written as a 2 × 2 real-symmetric matrix,
HD ¼ rðkÞ cos θðkÞσx þ rðkÞ sin θðkÞσz . The vorticity is defined as the winding
number of ðcos θðkÞ; sin θðkÞÞ around the Dirac point. Although the vorticity can
easily be defined locally around the Dirac point, its global definition is nontrivial. A
careful analysis18 shows that a two-band insulator with Euler number e has even
number of Dirac points such that the total sum of their vorticity Nt satisfies the
relation � Nt

2 ¼ e.
This can be directly applied to the TATP: because the Euler number for the

transverse acoustic phonons is 2, there must be a minimum of four Dirac points on
a sphere surrounding the ATP, such that the total sum of their vorticity is �2e. As
we change the radius of this sphere, the trajectories of the Dirac points form nodal
lines, so that there must be a minimum of four nodal lines emanating from the
TATP. Because two nodal lines emanating from the TATP can smoothly be
connected, there must be a minimum of two nodal lines passing through the TATP
(i.e., a nodal line emanating from the TATP is one half of a full nodal line passing
through the TATP).

Linked nodal structure protected by q. Let us explain why the symmetry-
protected TATP evolves into a nodal ring threaded by two nodal lines when the
symmetry that protects the triple degeneracy is relaxed. First, nsk requires the gap
between the L mode and the T modes to close inside the sphere on which q is
defined. However, because the triple point is no longer protected, and the generic
nodal structure in a real-symmetric Hamiltonian in 3D is the nodal line, the gap
closing points between the L mode and the T modes evolve into a nodal ring, see
Fig. 3d (see Supplementary Note 5 for the details of the Hamiltonian). Second, e

requires at least four Dirac points to form between the T modes on the sphere on
which q is defined. Equivalently, at least two nodal lines formed between the T
modes must pass through this sphere. As can be seen in Fig. 3d, these two nodal
lines formed between the T modes (red lines) penetrate the nodal ring formed
between the L and the T modes (black ring). Such a structure is required because
otherwise, it is possible for the nodal ring to be gapped out after deforming to a
point, which is not compatible with the charge nsk ¼ 1 of the L mode. We provide
a simple geometric proof of this property in Supplementary Note 5, and we note
that a similar observation was also made in Ref. 55 using quaternion charges.

Details of ab initio calculations. For the computation of the band structure and
Wilson loop spectrum of the phonons in CsCl, we employed the Vienna ab initio
simulation package (VASP)56 with the projector augmented-wave method57. The
generalized gradient approximation (PBE-GGA) is employed for exchange-
correlation potential58. We used the default VASP potentials (Cssv and Cl), and a
500 eV cutoff. To get the force constant, a 6 × 6 × 6 supercell and a 6 × 6 × 6
Monkhorst-pack k-point mesh were used. The phonon eigenvalues and the
eigenstates were calculated using the PHONOPY package59. The dynamical matrix
and the force constants were obtained from the frozen phonon method, based on
the Hellmann–Feynman theorem.

Let us note that this calculation does not take into account the non-analytic
correction terms to the dynamical matrix60. Since the optical phonons in ionic
insulators such as CsCl can be strongly renormalized by the non-analytic
correction terms61–63, the stability of the symmetry-protected ATPs requires a
more thorough analysis.

Theory of elastic continuum. Acoustic waves in crystals can be well described by
the elastic continuum theory. The elastic continuum theory33,36 is an excellent
approximation in the long wavelength limit, where the variation in the displace-
ment u occurs over a length scale of 10−6 cm or larger for typical crystals. When a
crystal is time-reversal symmetric, the elastic continuum is described by the
Lagrangian density, L½u; _u� ¼ T½ _u� � U½u�, where T½ _u� and U[u] denote the kinetic
energy density and elastic energy density, respectively. The kinetic energy is given
by T½ _u� ¼ 1

2 ρ _u
2 where ρ is the mass density. The elastic energy density is pro-

portional to the square of strain tensor uij ¼ 1
2 ð∂iuj þ ∂juiÞ where ∂i= ∂/∂xi:

U ½u� ¼ 1
2 λijlkuijukl , where λijl is the elastic modulus tensor. Then, the equation of

motion is given by ρ€ui ¼ ∂jðλijkluklÞ. Fourier transformation of this equation yields
DðkÞijujðkÞ ¼ ω2

kuiðkÞ, which is nothing but the eigenvalue equation for the pho-
non spectrum ωk. (Further details on the elastic continuum can be found in
Supplementary Note 3.) Here, the dynamical matrix D(k)ij is defined as D(k)ij= ρ
−1λiljmklkm and it is referred to as the “Hamiltonian” Hk in the main text.

From this dynamical matrix, we see that for ATPs formed by acoustic phonons
in a crystal with time-reversal symmetry, the topological charge q can be defined
for both centrosymmetric and non-centrosymmetric elastic crystals as long as the
elastic continuum limit is considered. Recall that a necessary condition to define q
is that the Hamiltonian must be a real-symmetric 3 × 3 matrix, where the reality
condition can be satisfied if there is PT symmetry. Since we are assuming that T is
a symmetry of the crystal, the above statement holds if P is a symmetry of the
elastic continuum Hamiltonian, and this is precisely the case even for non-
centrosymmetric crystals.

Now, let us explain why this statement is true, since it is essential for
characterizing the acoustic phonons with q. First, notice that under P, we have
u(k)→−u(−k). Then, the constraint on the D(k) from P is D(k)=D(−k), which
is obviously true because D(k) is quadratic in k, even in non-centrosymmetric
crystals. Consequently, PT is a symmetry of the elastic continuum theory, and this
allows us to define q. Notice that this argument is true whether or not the crystal is
centrosymmetric or non-centrosymmetric. On the other hand, P-breaking terms
are allowed when we consider terms that are higher-order in k. Nevertheless, such
higher-order terms are negligible for the description of acoustic phonons with long
wavelengths. To conclude, the topological charge q can be defined as local property
of acoustic phonons in time-reversal symmetric crystals.

Next, let us comment if T is broken in the phonon Hamiltonian, it may not be
restored in the elastic continuum limit, which is in contrast to the behavior of P.
Typically, the time-reversal breaking terms in the phonon Hamiltonian is modeled
by terms such as the Raman spin-phonon coupling64, whose leading contribution is
constant in k, and the Mead–Truhlar term in the Born–Oppenheimer
approximation65,66, whose leading contribution is quadratic in k. Because these
terms do not vanish in the elastic continuum limit, T is not restored in the elastic
continuum limit.

To summarize, P (and therefore PT ) is a symmetry of the elastic continuum
Hamiltonian in T -symmetric crystals, but T symmetry is generally not restored as
a symmetry in the elastic continuum Hamiltonian in T -broken crystals.

TATP in multiband systems. The Löwdin partitioning45 is a method used to
divide a system into two mutually non-interacting subsystems. Based on the
Löwdin partitioning, let us first show how q can be defined for TATPs in PT
symmetric multiband systems by extracting a 3 × 3 Hamiltonian for the TATP by
decoupling it from the rest of the energy bands. We will then show how our results
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Fig. 5 Acoustic phonon of tellurium. a The lattice structure of tellurium
with space group P3121. b By using the values of the stiffness tensor in
Materials Project68, we find that away from the triple point, the red nodal
lines occur only between the two lowest energy bands so that q can be
defined. c The Wilson loop spectrum shows trivial winding structure, and
therefore, e ¼ 0. d The wavefunction texture of the highest energy band
shows trivial skyrmion texture, which is consistent with the constraint that
2nsk ¼ e. e, We perturb the dynamical matrix such that the degeneracy of
TATP in b is lifted (note, however, that these perturbations break the
continuous translation symmetry, since the triply degenerate Goldstone
mode disappears.). The black nodal lines formed by the two highest energy
bands are created. As opposed to the case with nontrivial q in Fig. 3d, the
nodal structure in e does not have link between the red and black nodal
lines because q is zero.
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on the linked nodal structure (see Nodal structure in Results), which was a con-
sequence of nonzero q in a three-band system, can also be extended to multiband
systems.

Let us begin by considering an N ×N Hamiltonian H(k)=H(0)+ δH(k). We
can assume that the TATP occurs at k= 0 and that H(0) is block diagonal,

Hð0Þ ¼ HAð0Þ 0ð3;N�3Þ
0ðN�3;3Þ HBð0Þ

 !
; ð4Þ

where 0(n,m) denotes the n ×m zero matrix. The subsystem A contains the TATP
and is described by the 3 × 3 matrix HA(0), and the subsystem B, which is separated
from the subsystem A by an energy gap, is described by the (N− 3) × (N− 3)
matrix HB(0). By treating δH(k) perturbatively, the Löwdin partitioning block
diagonalizes H(k) into an effective 3 × 3 Hamiltonian for the subsystem A and an
effective (N− 3) × (N− 3) Hamiltonian for the subsystem B up to any order in k
through a unitary transformation e−S(k)H(k)eS(k), see Ref. 67 for the explicit form of
S(k). This partitioning can be carried out for k such that the gap ΔE between A and
B is large, i.e., δH(k)≪ ΔE, which can always be satisfied for small enough k. We
thus see that even in multiband systems, we can systematically extract a 3 × 3
Hamiltonian that describes the three bands that comprise the TATP.

Now, let us consider the effect of a perturbation that breaks the triple
degeneracy of TATP while maintaining the PT symmetry. Such a perturbation was
used when we studied the nodal structure constrained by q in the main text. With
the goal of carrying out the Löwdin partitioning, we can express the perturbation as
λV(k)= λV(0)+ λδV(k) where λ is a parameter that controls the strength of the
perturbation. The full Hamiltonian is then given by Hλ(k)=H(k)+ λV(k), and we
can apply the Löwdin partitioning in a similar way to the unperturbed case. In this
way, we can systematically obtain a 3 × 3 Hamiltonian HA,λ(k) for the subsystem A
as a function of λ as long as δH(k)+ λδV(k)≪ ΔE. We thus see that the evolution
of the nodal structure as we turn on the perturbation can be described exactly as if
we were working with a strictly three-band system.
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author upon reasonable request.
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