
ARTICLE

A benchmark study of simulation methods for
single-cell RNA sequencing data
Yue Cao1,2, Pengyi Yang 1,2,3,4✉ & Jean Yee Hwa Yang 1,2,4✉

Single-cell RNA-seq (scRNA-seq) data simulation is critical for evaluating computational

methods for analysing scRNA-seq data especially when ground truth is experimentally

unattainable. The reliability of evaluation depends on the ability of simulation methods to

capture properties of experimental data. However, while many scRNA-seq data simulation

methods have been proposed, a systematic evaluation of these methods is lacking. We

develop a comprehensive evaluation framework, SimBench, including a kernel density esti-

mation measure to benchmark 12 simulation methods through 35 scRNA-seq experimental

datasets. We evaluate the simulation methods on a panel of data properties, ability to

maintain biological signals, scalability and applicability. Our benchmark uncovers perfor-

mance differences among the methods and highlights the varying difficulties in simulating

data characteristics. Furthermore, we identify several limitations including maintaining het-

erogeneity of distribution. These results, together with the framework and datasets made

publicly available as R packages, will guide simulation methods selection and their future

development.
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S ingle-cell RNA-sequencing (scRNA-seq) is a powerful
technique for profiling the transcriptomes at the single-cell
resolution and has gained considerable popularity since its

emergence in the last decade1. To effectively utilise scRNA-seq
data to address biological questions2, the development of com-
putational tools for analysing such data is critical and has grown
exponentially with the increasing availability of scRNA-seq
datasets. Evaluation of their performance with credible ground
truth has thus become a key task for assessing the quality and
robustness of the growing array of computational resources.
While there exist certain control strategies such as spike-ins with
known sequence and quantity, data that offer ground truth while
reflecting the complex structures of a variety of experimental
designs are either difficult or impossible to generate. Thus, in
silico simulation methods for creating scRNA-seq datasets with
desired structure and ground truth (e.g. number of cell groups)
are an effective and practical strategy for evaluating computa-
tional tools designed for scRNA-seq data analysis.

To date, numerous scRNA-seq data simulation methods have
been developed. The majority of these methods employ a two-
step process of using statistical models to estimate the char-
acteristics of real experimental single-cell data and using the
learnt information as a template to generate simulation data. The
distinctive difference between them is the choice of underlying
statistical framework. Early methods often employ negative
binomial (NB)3–5 as it has been the typical choice for modelling
gene expression count of RNA-seq6. Its variant, zero-inflated NB
(ZINB) model takes account of excessive zeros in the count data
and is chosen by other studies to better model the sparsity in
single-cell data7,8. In more recent years, alternative models have
been proposed with the aim to increase modelling flexibility
including gamma-normal mixture model9, beta-Poisson10,
gamma-multivariate hypergeometric11 and the mixture of zero-
inflated Poisson and log-normal Poisson distributions12. Other
studies argued that parametric models with strong distributional
assumption are often not appropriate to scRNA-seq data given its
variability and proposed the use of a semi-parametric approach as
the simulation framework13. Similarly, a recent deep learning-
based approach14 leverages the power of neural networks to infer
underlying data distribution and avoid prior assumptions.

A common challenge of simulation methods is the ability to
generate data that faithfully reflect experimental data15. Given
that simulation datasets are widely used for the evaluation and
comparison of computational methods16, deviations of simulated
data from properties of experimental data can greatly affect the
validity and generalisability of the evaluation results. With the
increasing number of scRNA-seq data simulation tools and the
reliance on them to guide other method development as well as
choosing the most appropriate data analytics strategy, a thorough
assessment of all currently available scRNA-seq simulation
methods is crucial and timely, especially when such an evaluation
study is still lacking in the literature.

Here, we present a comprehensive evaluation framework,
SimBench, for single-cell simulation benchmarking. Considering
that realistic simulation datasets are intended to reflect experi-
mental datasets in all data moments including both cell-wise and
gene-wise properties, as well as their higher-order interactions, it
is important to determine how well simulation methods represent
all these values. To this end, we systematically compare the
performance of 12 simulation methods across multiple sets of
criteria, including accuracy of estimates for 13 data properties, the
ability to retain biological signals and to achieve computation
scalability, as well as their applicability. To ensure robustness of
the results, we collect 35 datasets across a range of sequencing
protocols and cell types. Moreover, we implement measure based
on kernel density estimation17 in the evaluation framework to

enable the large-scale quantification and comparison of simila-
rities between simulated and experimental data across univariate
and multivariate distributions, and thus, avoid visual-based cri-
teria which are often used in other studies. To assist development
of new methods, we study potential factors affecting the simu-
lation results and identify common strength and weakness of
current simulation methods. Finally, we summarise the result into
recommendation to the users, and highlight potential areas
requiring future research.

Results
A comprehensive benchmark of scRNA-seq simulation meth-
ods on four key sets of evaluation criteria using diverse data-
sets and comparison measure. Our SimBench framework
evaluates 12 recently published simulation methods specifically
designed for single-cell data (Fig. 1a, Table 1 and Supplementary
Table 1). To ensure robustness and generalisability of the study
results and account for variability across datasets (Supplementary
Fig. 1), we curated 35 public scRNA-seq datasets (Fig. 1b and
Supplementary Data 1) that include major experimental proto-
cols, tissue types, and organisms. To assess a simulation method’s
performance on a given dataset, SimBench splits the data into
input data and test data (referred to as the real data). Simulation
data is generated based on the data properties estimated from the
input data and compared with the real data in the evaluation
process (Fig. 1c). Using four key sets of evaluation criteria
(Fig. 1c, d), we systematically compare the single-cell simulation
methods’ performance for 432 simulation data representing
12 simulation methods applied to 35 scRNA-seq datasets.

The first set of evaluation criteria, termed data property
estimation, aims to assess how realistic is a given simulated data.
To address this, we first defined the properties for a given dataset
with 13 distinct criteria and then developed a comparison process
to quantify the similarity between the simulated and real data
(Supplementary Fig. 2). The 13 criteria capture both the
distributions of genes and cells as well as higher-order
interactions, such as mean–variance relationship of genes. We
anticipated that not all simulation methods will place emphasis
on the same set of data properties and it is thus important to
incorporate a wide range of criteria. We then examined a number
of statistics for measuring distributional similarity18. Supplemen-
tary Fig. 3 shows that all statistics show similar performance with
mean correlation of 0.7 and we have chosen to use the kernel
density based global two-sample comparison test statistic17 (KDE
statistic), in our current study as it is applicable to both univariate
and multivariate distributions.

The other three sets of evaluation criteria seek to assess each
simulation method’s ability to maintain biological signals and
computational scalability and its applicability. For biological
signals, we measured the proportion of differentially expressed
(DE) genes obtained in the simulated data using DE detection
methods designed for bulk and single-cell RNA-seq data, as well
as four other types of gene signals of differentially variable (DV),
differentially distributed (DD), differential proportion (DP) and
bimodally distributed (BD) genes (see ‘Methods’). A similar
proportion to the real data would indicate an accurate estimation
of biological signals present in the data. Scalability reflects the
ability of simulation methods to efficiently generate large-scale
datasets. This is measured through computational run time and
memory usage with respect to the number of cells. Applicability
examines the practical application of each method in terms of
whether it can estimate and simulate multiple cell groups and
allow simulation of differential expression patterns. Overall, our
framework provides recommendations by taking into account all
aspects of evaluation (Fig. 1e).
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Comparison of simulation methods revealed their relative
performance on different evaluation criteria. Through ranking
the 12 methods on the above four sets of evaluation criteria, we
found that no method clearly outperformed other methods across
all criteria (Fig. 2). We therefore examined each set of criteria
individually in detail below and the variability in methods’ per-
formance within and across the four sets of evaluation criteria.

For data property estimation, we observed variability in
methods’ performance across the 13 criteria. ZINB-WaVE,
SPARSim and SymSim are the three methods that performed
better than the others across almost all 13 data properties
(Fig. 2a). For the remaining methods, a greater discrepancy was
observed between the 13 criteria, in which the rankings of
methods based on each criterion do not show any particular
relationship or correlation structure. Overall, our results highlight
the relative strengths and weaknesses of each simulation method
on capturing the data properties.

We observed that some methods (e.g. zingeR and scDesign)
that were not ranked the highest in data properties estimation
performed well in retaining biological signals (Fig. 2b). scDesign
is designed for the purpose of power calculation and sample size
estimation, while zingeR is designed to evaluate the DE detection
approach in its publication and thus both methods require an
accurate simulation and estimation of biological signals, particu-
larly differential expression. It is not unexpected that they ranked
highly in this aspect despite not being the most accurate in
estimating other data properties.

For computational scalability, the majority of methods showed
good performance with runtime of under 2 h and memory
consumption of under eight gigabytes (GB) (Supplementary
Fig. 4) when tested on the downsampled Tabula Muris dataset19

with 50–8000 cells (see ‘Methods’). However, some top perform-
ing methods, such as SPsimSeq and ZINB-WaVE revealed poor
scalability (Fig. 2c). This highlights the potential trade-off

between computational efficiency and complexity of modelling
framework. SPsimSeq, for example, involves the estimation of
correlation structure using Gaussian-copulas model and scored
well in maintaining gene- and cell-wise correlation. Its advantage
came at the cost of poor scalability, taking nearly 6 h to simulate
5000 cells. Thus, despite the ability to generate realistic scRNA-
seq data, the usefulness of such methods may be partially limited
if a large-scale simulation dataset is required. In contrast,
methods such as SPARSim, which was ranked second in
parameter estimation as well as being one of top tier methods
in scalability, may better suit needs if a large-scale simulation
dataset is required by users.

Lastly, we found that different simulation methods satisfy
different numbers of the applicability criteria (Fig. 2d). This is due,
in part, to the fact that not all simulation methods are designed as
general purpose simulation tools. For example, powsimR was
originally designed as a power analysis tool for differential
expression analysis but was included as a simulation tool by a
number of simulation studies9,10 in their performance comparison
with other simulation methods. Being a power analysis tool, its
primary usage is to simulate two cell groups from a homogenous
cell population with a user-defined amount of differential
expression. In contrast, a number of other methods such as
SPARSim, SymSim and Splat that are originally intended as
general purpose simulation tools are able to simulate multiple cell
groups with user-defined differential expression patterns. We have
outlined the primary purpose and the limitations of each method
on this front in more detail in Table 1 to guide users in making
informed decisions on methods that best suited to their needs.

Impact of data- and experimental-specific characteristics on
model estimation. Aside from comparing the overall perfor-
mance of methods to guide method selection, it is also necessary
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to identify specific factors influencing the outcome of simulation
methods. Here, we examined the impact of data- and
experimental-specific characteristics including cell numbers and
sequencing protocols on simulation model estimation.

To explore the general relationship between cell number and
accuracy of data property estimation across simulation methods,
we evaluated each method on thirteen subsamples of Tabula
Muris data with varying numbers of cells but fixed number of cell
types (see ‘Methods’). Through regression analysis, we found
certain data properties such as mean–variance relationships were
more accurately estimated under datasets with larger numbers of
cells, as shown by the positive regression coefficients (Fig. 3a and
Supplementary Fig. 5). Nevertheless, most other data properties
in the simulated data were negatively correlated with the
increasing number of cells (e.g. library size, gene correlation).
These observations suggest that overall, the increasing cell
number may be accompanied by the increasing complexity of
data and thus maintaining data properties may become more
challenging. Future method development should consider this
factor as an aspect of evaluation when assessing model
performance.

To examine the impact of sequencing protocols, we utilised
datasets consisting of multiple protocols applied to the same
human PBMC and mouse cortex samples from the same study20.
Figure 3b and Supplementary Fig. 7 reveal no substantial impact
was introduced by protocol difference on the overall simulation
results, as indicated by the flatness of the line representing the
accuracy of each data property across each protocol. Taken
together, these results indicate that the choice of reference input
being shallow sequencing or deep sequencing has no substantial
impact on the overall simulation results. Given that SymSim and
powsimR are the only two methods that require specification of
input data as either deep or shallow protocols, these results
suggest that a general simulation framework for the two major
classes of protocols may be sufficient.

Comparison across criteria revealed common areas of strength
and weakness. While the key focus of our benchmark framework
is assessing methods’ performance across multiple criteria, we can
further use these results to identify criteria where most methods
performed well or were lacking (Fig. 4a). Comparing across cri-
teria, those that display a large difference between the simulated
and real data for most methods are examples of common
weakness. This ability to identify common weakness has impli-
cations for future method development as it highlights ongoing
challenges of simulation methods.

First, we compared the accuracy of maintaining each data
property, where a larger KDE score indicates greater similarity
between simulated and real data. Figure 4b shows data properties
relating to the higher-order interactions including mean–variance
relationship of genes revealed larger differences between the
simulated and real data. In comparison, a number of gene- and
cell-wise properties such as fraction of zero per cell had relatively
higher KDE scores, suggesting they were more accurately
captured by almost all simulation methods. These observations
thus highlight the difficulty in incorporating higher-order
interactions by current simulation methods in general, and the
potential area for method development.

The ability to recapture biological signals was quantified using
the metric symmetric mean absolute percentage error (SMAPE),
where a score closer to 1 indicates greater similarity between
simulated and real data (see ‘Methods’). We found differentially
distributed (DD) and differential proportion (DP) genes exhibited
a greater difference between simulated and real data (Fig. 4b). We
also noted that four out of the 12 methods consistently had veryT
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low SMAPE score of between 0 and 0.3, indicating the biological
signals in the simulated data were at a very different proportion to
that in real data. Upon closer examination, these methods
simulated close to zero proportions of biological signals
irrespective of the true proportion in the real data (Supplemen-
tary Fig. 6). Together, these observations point to the need for
better strategies to simulate biological signals.

Discussion
We presented a comprehensive benchmark study assessing the
performance of 12 single-cell simulation methods using 35
datasets and a total of 25 criteria across four aspects of interest.
Our primary focus was on assessing accuracy of data property
estimation and various factors affecting it, ability to maintain
biological signals and computational scalability, as well as
applicability. Additionally, using these results we also identified
common areas of strength and weakness of current simulation
tools. Altogether, we highlighted recommendations for method
selection and identified areas of improvement for future method
development.

We found that various underlying models were used for dif-
ferent simulation methods (Table 1). Each of the five top per-
forming methods in category 1, for instance, uses a different
underlying statistical approach (Table 1). As another example, the

three methods ZINB-WaVE, zingeR and powsimR differ sub-
stantially in detail despite the fact that they are all inspired by
representing the observed counts using the NB family. Specifi-
cally, zingeR uses NB distribution to fit the mean and dispersion
of the count data and model the excess zero using the interaction
between gene expression and sequencing depth using additive
logistic regression model. powsimR uses the standard ZINB dis-
tribution to fit the mean and dispersion of the count data, with
the zero inflation modelled using binomial sampling. In ZINB-
WaVE, the ZINB distribution is used to fit the mean and dis-
persion of the count data, as well as the probability that a zero is
observed. Additionally, the estimation of mean and zero prob-
ability incorporates an additional parameter adapted from the
RUV framework21 to capture unknown cell-level covariates.
Therefore, while both powsimR and ZINB-WaVE use ZINB
distribution to fit the count data, the actual model differs.
Interestingly, while deep learning methods have dominated var-
ious fields and applications, cscGAN, a deep learning-based
model, for scRNA-seq data simulation only had moderate per-
formance compared to the other models. This may be due to the
large number of cells required for training the deep neural net-
work in cscGAN as was demonstrated in their original study14.

Based on the experiments conducted, we identified several
areas of exploration for future researchers. Maintaining a
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reasonable amount of biological signal is desirable and was not
well captured by a number of methods. We also observed the
genes generated by some methods (Table 1) were assigned
uninformative names such as gene 1 and exhibit no relationship
with genes from the real data. This limited us to assessing the
proportion of biological signals in the simulated data, instead of
assessing whether the same set of genes carrying biological signals
(e.g. marker gene) are maintained in the simulated data. Incor-
porating the additional functionality of preserving biologically
meaningful genes is likely to increase the usability of future
simulation tools. Furthermore, we noted that several simulation
studies only assessed their methods based on a number of gene-
and cell-wise properties and did not examine higher-order
interactions. Those studies are thus limited in the ability to
uncover limitations in their methods. In comparison, our
benchmark framework covered a comprehensive range of criteria
and identified relative weakness of maintaining certain higher-
order interactions compared to gene- and cell-wise properties.

As expected, we identified that none of the simulation methods
assessed in this study could maintain the heterogeneity in cell
population that was due to patient variability. This is potentially
related to the paradigm used by current simulation techniques, as
some methods implicitly require input to be a homogeneous
population. For instance, some simulation studies inferred
modelling parameters and performed simulation on each cell type
separately when the reference input contains multiple cell types.
However, experimental datasets with data from multiple samples,
for example multiple patients, would be characterised by sample-

to-sample variability within a cell type. This cellular heterogeneity
is an important characteristic of single-cell data and has key
applications such as identification of subpopulations. The loss of
heterogeneity can thus be a limiting factor, as in some cases the
simulation data could be an oversimplified representation of
single-cell data. Future research such as phenotype-guided
simulation22 can help to extend the use of simulation methods.

Finally, we found there exists various trade-offs between the
four aspects of criteria and having a well-rounded approach could
be more important than a framework that performs best on one
aspect but limiting in the other aspects. For example, as single-cell
field advances and datasets with hundreds of thousands of cells
become increasingly common, users may be interested in simu-
lating large-scale datasets to test the scalability of their methods.
As a result, methods that rank highly on scalability while also
performing well on other aspects (e.g. SPARSim, scDesign and
Splat) may be more favourable than other methods under these
scenarios. We also note that due to the primary intended purpose
of each method, not all methods allow users to customise the
number of cell groups and the amount of differential expression
between groups. Method that offers a well-rounded approach
across multiple aspects of interests is therefore a direction of
future research.

While we aim to provide a comprehensive assessment of
available simulation methods, our study is not without limita-
tions. For example, a few methods were excluded in this study
due to their unique properties. SERGIO23 is able to simulate
regulation of genes by transcriptional factors, and therefore
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requires gene regulatory networks as one of the inputs. Both
PROSSTT24 and dyngen25 are designed to simulate scRNA-seq
data with trajectory information and require user-defined lineage
trees. Lun’s26 was originally designed to tackle confounding plate
effects in DE analysis and it requires plate information to be
specified in the input. These simulation methods may need spe-
cial considerations and evaluation criteria that could not be
captured by the general framework in this study. Although the
choice of DE detection methods could affect the evaluation of the
simulation methods, our evaluation using both limma, a DE
method originally designed for bulk RNA-seq data, and DEsingle,
a DE method specifically designed for scRNA-seq data demon-
strate a high agreement of the rankings of simulation methods
based on the two DE methods (Fig. 2b).

In conclusion, we have illustrated the usefulness of our frame-
work by summarising each method’s performance across different

aspects to assist with method selection for users and identify areas
of further improvement for method developers. We advise users to
select the method that offers the functionality best suited to their
purpose and developers to address the limitations of current
methods. The evaluation framework has been made publicly
available as the R package SimBench (https://github.com/
SydneyBioX/SimBench). SimBench allows any new simulation
methods to be readily assessed under our framework. It requires
two inputs including the simulated data generated by any simula-
tion method and the real data that was used as the reference
input to generate the simulated data. SimBench then runs
the evaluation procedure as performed in this study. We also
provide all datasets used in this study as a Bioconductor
data package SimBenchData (https://bioconductor.org/packages/
devel/data/experiment/html/SimBenchData.html). Together these
two packages enable future simulation methods to be assessed
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and compared with the methods benchmarked in this study.
Additionally, we provide a Shiny application for interactively
exploring the results presented in this study hosted at http://
shiny.maths.usyd.edu.au/. The application allows users to select
datasets of their interest, such as within a certain range of cell
numbers, and examine methods performance based on the specified
datasets. Furthermore, we will provide updates to the website to
include the benchmark results from new simulation methods when
they become available so that our comparative study will stay up-to-
date and will support future method development.

Methods
Dataset collection. A total of 35 publicly available datasets was used for this
benchmark study. For all datasets, the cell type labels are either publicly available or
obtained from the authors upon request27. Details of each dataset including their
accession code are included in the Supplementary Data 1. The datasets contain a
range of sequencing protocols including both unique molecular identifiers (UMIs)
and read-based protocols, multiple tissue types and conditions, and from human
and mouse origin.

The raw (unnormalised) count matrix was obtained from each study and
quality control was performed by removing potentially low-quality cells or empty
droplets that expressed less than one percent of UMIs. For methods that require
normalised count, we converted the raw count into log2 counts per million reads
(CPM), with addition of pseudocount of 1 to avoid calculating log of zero.

Note the Tabula Muris dataset was only used to benchmark speed and
scalability of methods. Properties estimation was evaluated on all other datasets.
For evaluating biological signals, 25 datasets containing multiple cell types or
conditions as specified by Supplementary Data 1 were used.

Selection and implementation of simulation methods. An extensive literature
review was conducted and a total of 12 published single-cell simulation methods
with implementation available in R and Python was found. The details of each
method, including the version of the code used in this benchmark study and its
publication are outlined in Table 1 and Supplementary Table 1. Supplementary
Table 2 detailed the execution strategy of each method for data property estimation
and biological signals and is dependent on the input requirement and the doc-
umentation of each method. Where possible, default setting or suggested setting
from documentation is followed.

To ensure the simulated data is not simply a memorisation of the original data, we
randomly split each dataset into 50% training and 50% testing (referred to as the real
data in this study). The training data was used as input to estimate model parameters
and generate simulated data. The real data was used as the reference to evaluate the
quality of the simulated data, by comparing the similarity between the simulated data
and the real data. The same training and testing subset was used for all methods to
avoid the data splitting process being a confounding factor in evaluation.

All methods were executed using a research server with dual Intel(R) Xeon(R)
Gold 6148 Processor (40 total cores, 768 GB total memory). For methods that
support parallel computation, we used 8 cores and stopped the methods if the
simulation was not completed within 3 h. For methods that run on a single core, we
stopped the methods if not completed within 8 h.

Evaluation of data property estimation
Data properties measured in this study. We adapted the implementation from
countsimQC (v1.6.0)18, which is an R package developed to evaluate the similarities
between two RNA-seq datasets, either bulk or single-cell and evaluated a total of 13
data properties across univariate and bivariate distribution. They are described in
detail below:

● Library size: total counts per cell.
● TMM: weighted trimmed mean of M-values normalisation factor28.
● Effective library size: library size multiplied by TMM.
● Scaled variance: z-score standardisation of the variance of gene expression

in terms of log2 CPM.
● Mean expression: mean of gene expression in terms of log2 CPM.
● Variance expression: variance of gene expression in terms of log2 CPM.
● Fraction zero cell: fraction of zeros per cell.
● Fraction zero gene: fraction of zeros per gene.
● Cell correlation: Spearman correlation between cells.
● Gene correlation: Spearman correlation between genes.
● Mean vs variance: the relationship between mean and variance of gene

expression.
● Mean vs fraction zero: the relationship between mean expression and the

proportion of zero per gene.
● Library size vs fraction zero: the relationship between library size and the

proportion of zero per gene.

Note that properties relating to library size, including TMM and effective
library size can only be calculated using unnormalised count matrix and could not

be obtained from methods that generate normalised count. As a result, these scores
were shown as a blank space in all relevant figures.

Evaluation measures. In this study, we used a non-parametric measure termed
kernel density based global two-sample comparison test17 (KDE test) to compare
the data properties between simulated and real data. The discrepancy between two
distributions is calculated based on the difference between the probability density
functions, either univariate or multivariate, which are estimated via kernel
smoothing.

The null hypothesis of the KDE test is that the two kernel density estimates are
the same. An integrated squared error (ISE) serves as the measure of discrepancy
and is subsequently used to calculate the final test statistic under the null
hypothesis. The ISE is calculated as:

T ¼
Z

½f 1 xð Þ � f 2 xð Þ�
2

dx ð1Þ

where f1 f 1and f2 are the kernel density estimates of sample 1 and sample 2,
respectively. The implementation from the R package ks (v1.10.7) was used for the
KDE test performed in this study.

We used the test statistic from the KDE test as the measure to quantify the
extent of similarity between simulated and real distributions. We applied a
transformation rule by scaling the absolute value of the test statistic to [0,1] and
then taking 1 minus the value as shown in the equation below:

xtransformed ¼ xj j � xminimum

�� ��
xmaximum

�� ��� xminimum

�� �� ð2Þ

where x is the raw value before transformation. The transformation is applied on
the KDE scores obtained from all methods across all datasets, thus the xminimum

and xmaximum are defined based on those values. The purpose of the transformation
is to follow the principle of, the higher the value the better and enable easier
interpretation.

To assess the validity of the KDE statistic and compare it against other measures,
for example, the well-established KS test for univariate distribution, we utilised the
measures implemented in countsimQC package. It includes the implementation of the
following six measures: Average silhouette width, average local silhouette width,
nearest neighbour (NN) rejection fraction, K-S statistics, scaled area between
empirical cumulative distribution functions (eCDFs) and Runs statistics. For ease of
comparing between the six measures and with the KDE test, we applied
transformation rules where applicable such that the outputs from all measures are
within the range of 0–1, where value closer to 1 indicates greater similarity. Similarly,
the transformation is calculated from all methods across all datasets.

The measures and their transformation rules are:

1. Average silhouette width

For each feature, the Euclidean distances to all other features were calculated.
The feature was either gene or cell, depending on the data properties evaluated.
A silhouette width s(i) was then calculated using the following formula:

s ið Þ ¼ b ið Þ � a ið Þ
max a ið Þ; b ið Þð Þ ð3Þ

where b(i) is the mean distance between feature i and all other features in the
simulation data, a(i) is the mean distance between feature i and all other
features in the original dataset.
s(i) of all features is then averaged to obtain the average silhouette width.
The range of silhouette width is [−1, 1]. A positive value close to 1 means
the data point from the simulation data is similar to the original dataset.
Value close to 0 means the data point is close to the decision boundary
between the original and simulated. A negative value means the data point
from the original dataset is more similar to the simulation data. The same
transformation as described in Eq. (2) was applied.

2. Average local silhouette width
Similar to the average local silhouette width. The difference is that instead of
calculating the distance with all the features, only the k NNs were used in the
calculation. Default setting of k of 5 was used. The same transformation as
described in Eq. (2) was applied.

3. NN rejection fraction
First, for each feature the k NNs were found using Euclidean distance. A chi-
square test was then performed with the null hypothesis being the
composition of k NNs belonging to original and simulation data is similar
to the true composition of real and simulation data. The NN rejection
fraction was calculated as the fraction of features for which the test was
rejected at a significance level of 5%.
The output is the range of [0,1], where a higher value indicates greater
dissimilarity between the features from real and simulation data. The value
was thus transformed by taking 1 minus the value.

4. Kolmogorov-Smirnov (K-S) statistic
The K-S measure is based on K-S statistic obtained from performing K-S test,
which measures the absolute max distance between the eCDFs of simulated and
real dataset. The K-S statistics is in range [0, Inf]. The K-S measure was obtained
by log-transformation followed by the transformation rule defined previously.
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5. Scaled area between empirical cumulative distribution functions (eCDFs)
The difference between the eCDFs of the properties in simulated and real
dataset. The absolute value of the difference was then scaled such that the
difference between the largest and smallest value becomes 1. The area under
the curve was calculated using the Trapezoidal Rule. The final value is in the
range of [0,1], where a value closer to 1 indicates greater differences between
the data properties distributions of the real and simulation data. The value
was then reversed by taking 1 minus the value such that it follows the
general pattern of higher value being better.

6. Runs statistics. The Runs statistics is the statistic from a one-sided Wald-
Wolfowitz runs test. The values from the simulated and real dataset were
ordered and a runs test was performed. The null hypothesis is that the
sequence is a random sequence with no clear pattern of values from
simulated or real dataset next to each other in position.

Methods comparison through multi-step score aggregation. In order to sum-
marise the results from multiple datasets and multiple criteria, we implemented the
following multi-step procedure to aggregate the KDE scores.

First, we aggregated the KDE scores within each dataset. For most methods,
each cell type in a dataset containing multiple cell types was simulated and
evaluated separately for the reason mentioned in the previous section. This resulted
in multiple KDE scores for a single dataset, one for each cell type. To aggregate the
scores into a single score for a dataset, we calculated the weighted sum by using the
cell type proportion as weight, defined as the follows:

∑
n

i¼1
ðxi � wiÞ ð4Þ

where n is the number of cell types in the simulated or original datasets, xi is the
evaluation score of the ith cell type and wi is the cell type proportion of the ith
cell type.

Since each method was evaluated using multiple datasets, we then summarised
the performance of each method across all datasets by taking the median score.
This resulted in a single score for each method on each criterion, which then
enabled us to readily rank each method by comparing the score. Cases where a
method was not able to produce result on particular dataset were not considered in
the scoring process. The reasons for failing to simulate a data include not
completing the simulation in the given time limit, error arising in the simulation
methods during the simulation process, and special cases in which the simulation
method is limited to an input dataset containing two or more cell types and cannot
generate result on datasets containing a single cell type. The breakdown of the
number of datasets successfully simulated and the number of failed cases are
reported in detail in Supplementary Fig. 4.

Finally, the overall rank of each method was computed by firstly calculating its
rank for each criterion and then taking the mean rank across all criteria.

Evaluation of biological signals. The five categories of biological signals evaluated
in this study were adapted from29 and their descriptions are detailed below.

1. DE (limma)
This is the typical differentially expressed genes. Limma30 was performed to
obtain the log fold change associated with each gene. We selected genes with
log2 fold change > 1.

2. DE (DEsingle)
This finds the differentially expressed genes using a DE detection method
DEsingle31 that is specifically designed for scRNA-seq data.

3. DV
DV stands for differentially variable genes. Bartlett’s test for differential
variability was performed to obtain the P-value associated with each gene.

4. DD
DD stands for differentially distributed genes. K-S test was performed to
obtain the P-value associated with each gene.

5. DP
DP is defined as differential proportion genes. We considered genes with
log2 expression greater than 1 as being expressed and otherwise as non-
expressed. A chi-square test was then performed to compare the proportion
of expression of each gene between two cell types.

6. BD

BD is defined as bimodally distributed genes. Bimodality index defined using
the below formula was calculated for each gene:

BI ¼ m1 �m2

�� ��
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� p
� �q ð5Þ

where m1 and m2 are the mean expression of genes in the two cell types,
respectively, s is the standard deviation and p is the proportion of cells in the first
cell type.

For the first five categories, genes with P-value < 0.1 (Benjamini-Hochberg
adjusted) were selected. This higher threshold was used instead of the typical
threshold of 0.05 to result in a higher proportion of biological signals, as larger

value would enable clearer differentiation of methods’ performance. For the last
category, we used bimodality index32 >0.03 as the cut-off to yield a reasonable
proportion of BD genes (Supplementary Fig. 6).

To quantify the performance of each method, we used SMAPE33:

SMAPE ¼ 1
n
∑
n

t¼1

jFt � At j
AtþFt

2

ð6Þ

where Ft is the proportion of biological signals in simulated data and At is the
proportion in the corresponding real data, n is the number of data points, one from
each dataset evaluated. The proportion was calculated as the number of biological
signal genes divided by the total number of genes in a given dataset.

Evaluation of scalability. To reduce potential confounding effect, we measured
scalability using the Tabula Muris dataset only. The dataset was subset to the two
largest cell types and random samples of the cells without replacement were taken
to generate datasets containing 50, 100, 250, 500, 750, 1000, 1250, 1500, 2500, 3000,
4000, 6000 and 8000 cells with equal proportion of the two cell types.

Running time of each method was measured using the Sys.time function built-
in R and the time.time function built-in Python. Tasks that did not finish within
the given time limit are considered as no result generated. To record the maximal
memory for R methods we used the function Rprofmem in the built-in utils
Package in R. For Python methods we used the psutil package and measured the
maximal Resident Set Size. All measurements were repeated three times and the
average was reported.

In the majority of methods, simulation was performed in a two-step process. In
the first step, a range of properties is estimated from a given dataset. This set of
properties are then used in the second step of generating the simulation data. For
these methods, the time and memory usage of the two steps was recorded
separately and shown in Supplementary Fig. 4. For other methods where the two
processes were completed in one single function, we measured the time and
memory usage of this single step and used a dashed line to indicate these methods
in Supplementary Fig. 4.

In order to compare and rank the methods as shown in Fig. 2, we summed the
time and memory of the methods that use two-step procedure and displayed the
total time and memory usage, such that their results became comparable with
methods that involve one single step. Some methods did not complete the
simulation within the given time, and the time and memory usage were unable to
be recorded as the result. These timed out simulations would bias the result when
ranking the methods based on the total time and memory usage. To account for
this case, we assigned these simulation jobs a total time usage as the time limit and
a memory usage as the memory of the previous simulation task. For example, a
method that failed to simulate 8000 cells within the time limit of 8 h was assigned
8 h as the total time usage, and a memory usage as the memory recorded when
simulating the previous job of 6000 cells.

Evaluation of impact of data characteristics. We selected a subset of datasets to
examine the impact of the number of cells and sequencing technologies. Briefly,
each dataset was split into 50% training and 50% testing. Transformed KDE score
was then calculated from the raw score obtained from all methods across the
selected datasets, resulting in values ranging between 0 and 1.

Impact of number of cells. To assess the impact of the number of cells on the
accuracy of data property estimation, we used the Tabula Muris dataset subset to
the two largest cell types and sampled to create datasets of 100, 200, 500, 1000,
1500, 2000, 2500, 3000, 5000, 6000, 8000, 12,000 and 16,000 cells. Each dataset was
split into 50% training and 50% testing as previously described.

Linear regression was fitted using the lm function in the built-in stats package in
R for each of the 13 data properties. This resulted in a total of 13 regression models
with the formula defined as:

y ¼ β0 þ β1x1 ð7Þ

The response variable y was the KDE score corresponding to the data property
and the exploratory variables x1 was the number of cells measured in 1000.

Impact of the sequencing protocols. To assess the impact of the sequencing protocols
while avoiding potential batch effect, we utilised two sets of datasets from the same
study20 that sequenced the same tissue type using multiple protocols. It contains
human PBMC data generated using the following six protocols, 10x Genomics,
CEL-seq2, Drop-seq, inDrops, Seq-Well and Smart-seq2 and mouse cortex cells
using the following four protocols of sci-RNA-seq, 10x Genomics, DroNc-seq and
Smart-seq2.

ANOVA was fitted using the built-in stats package in R to examine whether
there was significant change in mean KDE score across the above datasets of
different sequencing technologies for each simulation method. P-values were
displayed on the figures.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available. Details on each dataset including
accession numbers and source websites are listed in Supplementary Data 1. Curated
version of the datasets is available as a Bioconductor package under the name
SimBenchData (https://bioconductor.org/packages/devel/data/experiment/html/
SimBenchData.html).

Code availability
The benchmark framework is available as an R package at https://github.com/
SydneyBioX/SimBench34. A Shiny application for interactively exploring the results is
available at http://shiny.maths.usyd.edu.au/.
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