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Temporal variability in quantitative human gut
microbiome profiles and implications for clinical
research
Doris Vandeputte 1,2, Lindsey De Commer1, Raul Y. Tito 1,2, Gunter Kathagen1,2, João Sabino3,

Séverine Vermeire3, Karoline Faust 1 & Jeroen Raes 1,2✉

While clinical gut microbiota research is ever-expanding, extending reference knowledge of

healthy between- and within-subject gut microbiota variation and its drivers remains

essential; in particular, temporal variability is under-explored, and a comparison with cross-

sectional variation is missing. Here, we perform daily quantitative microbiome profiling on 713

fecal samples from 20 Belgian women over six weeks, combined with extensive anthropo-

metric measurements, blood panels, dietary data, and stool characteristics. We show sub-

stantial temporal variation for most major gut genera; we find that for 78% of microbial

genera, day-to-day absolute abundance variation is substantially larger within than between

individuals, with up to 100-fold shifts over the study period. Diversity, and especially even-

ness indicators also fluctuate substantially. Relative abundance profiles show similar but less

pronounced temporal variation. Stool moisture, and to a lesser extent diet, are the only

significant host covariates of temporal microbiota variation, while menstrual cycle parameters

did not show significant effects. We find that the dysbiotic Bact2 enterotype shows increased

between- and within-subject compositional variability. Our results suggest that to increase

diagnostic as well as target discovery power, studies could adopt a repeated measurement

design and/or focus analysis on community-wide microbiome descriptors and indices.
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Fecal microbiota signals have been put forward as promising
biomarkers for disease and clinical progression, and diag-
nostic applications have already been proposed for several

conditions (e.g., Inflammatory Bowel Diseases (IBD) and color-
ectal cancer)1–5. Furthermore, recent cross-sectional results sug-
gest that whole-microbiota typing, and notably the Bacteroides 2
(Bact2) enterotype, could be used for identifying (disease-asso-
ciated) dysbiosis4,6,7. While several cross-sectional studies have
provided a good understanding of the inter-individual variability
in microbiota composition and its drivers8–15, longitudinal, intra-
individual microbiota variation understudied. Furthermore, none
of the few longitudinal studies available used absolute abun-
dances, which, in contrast to relative approaches, can provide
information on the extent and directionality of changes in taxa
abundance, are more easily linked to other quantitative data, and
do not introduce compositionality effects in correlation analysis.7

In addition, no knowledge exists on absolute (vs. relative) tem-
poral microbiota abundance variation16–21. To address this, we
present a densely sampled time series of quantitative, fecal bac-
terial microbiome profiles of healthy women living in an indus-
trialized country. We show substantial temporal variation for
most major gut genera, as well as diversity indicators for both
relative and quantitative abundance profiles. Stool moisture, and
to a lesser extent diet, are the only significant host covariates of
temporal microbiota variation, while menstrual cycle parameters
did not show significant effects. We further find that the dysbiotic
Bact2 enterotype shows increased between- and within-subject
compositional variability.

Results
20 dense fecal microbial time series of Belgian women. We
collected 713 fecal samples from 20 Belgian women (age [33 ± 8;
25:51], Body Mass Index (BMI) [22.6 ± 3.5; 18.6:33.5]), in a daily
sampling effort covering six weeks, together with a rich panel of
participant metadata, blood values, and fecal calprotectin (Supple-
mentary Data S1), comprising among others daily carbohydrate,
protein and fat intake, medication, and stool characteristics. Given
the paucity of data on menstruation cycle-microbiome interactions
yet indications of hormone effects8, data on menstrual cycle was
collected and corresponding hormone levels were inferred. Both
stool consistency (Bristol Stool Score (BSS) [3.5 ± 1.2; 1:7] and
moisture content [73 ± 8%; 52%:93%]) of the fecal samples fell
within normal ranges (Supplementary Data S1)8. No participant
had major gastro-intestinal disease, took antibiotics in the three
months before the study, or used hormonal contraceptives. A few
deviations from healthy ranges were noted for the measured
molecular markers and anthropometric measurements at the start
and end of the study, yet all participants were in good health during
the trial. An exception was participant 808 who had an intestinal
infection. Daily recorded dietary data show participants mostly had
a Western-style dietary pattern with on average 50% (28–62%), 34%
(24–44%) and 15% (11–26%) of total energy intake (EI) coming
from carbohydrates, fats, and proteins, respectively, and a daily
intake of 13 g of fiber (7:30) (Supplementary Data S1, Supple-
mentary Fig. 1)22. Intestinal inflammation markers outside of the
expected range could be linked to NSAID intake or infection
(Calprotectin [17 ± 74; 0:384], clinical reference value= 200 µg/g)23.
Quantitative Microbiome Profiles (QMPs) were determined
through combined 16 S sequencing and flow cytometry7. Study
sample microbiomes include all four enterotypes24 and both rich-
ness and microbial load ranges are consistent with previous reports
on the Belgian population (Supplementary Fig. 1)7,8. Sample quality

control based on community-wide methods, comparing between
same- and other-person sample dissimilarities16,25 in combination
with person-specific clustering26 (see methods) revealed two sample
swapping events. All analyses were performed on a corrected
dataset in which those samples were relabeled to the indicated
originals.

High intra- versus inter-individual variation. First, we assessed
variation in absolute abundance of specific microbial groups, as
well as global ecosystem readouts covering overall diversity and/
or richness (alpha diversity), between sample overall composi-
tional variation (beta diversity), and large community state shifts
(enterotypes). All analyses were carried out using amplicon
sequence variants grouped at genus-level.

We show extensive temporal variation in genus abundance
(coefficient of variation in genus abundance [1.0 ± 0.7; 0.6:4.0],
N= 73, genera with abundance>0.5%, present in >5 individuals
in >3 samples, QMP, Supplementary Fig. 2). Interestingly,
Prevotella abundances, known to vary greatly between indivi-
duals, also show remarkable within-subject variation. Using Intra
Class Correlation coefficients (ICC) on genus abundances
stratifying for individual, we assess the proportion of the within-
and between-subject variance27. We show more than 78% of the
genera varied more within than between persons over the study
period (genera with abundance >0.5%, ICC < 0.5, Fig. 1, Supple-
mentary Data S2). We noted large day-to-day abundance shifts:
72% of all genera show over 10-fold abundance shifts between
consecutive samples (genera with abundance >0.5%, consecutive
samples). In a few weeks, even more extensive changes in
abundance can take place: 100-fold changes are no exception
(100-fold changes were detected for 40% of the genera with
abundance >0.5%, N= 20, n= 694, Supplementary Data S2).
Shifts in taxonomic ranks are frequent and extensive: genera
cover on average 19 [11–29] ranks over the study period
(Supplementary Data S2). This said, most genera fluctuate, albeit
strongly, around an equilibrium level (>97 ± 7.5% [72:100%] of all
genera of a person with abundance >0.5%, Augmented Dicky
Fuller test, two-sided, P < 0.05, N= 20, n= 694). All genera show
a power-law relationship between variance and mean abundance
over time (Taylor’s law28; Q < 0.001, adjusted R2 > 0.75
[0.92 ± 0.05], genera with abundance >0.5%, present in >5
individuals in >3 samples, Table 1). Most genera are more stable
in subjects in which they are more abundant, yet some show an
inverse relation (e.g., Parabacteroides, Paraprevotella, and Metha-
nobrevibacter). In general, high-ranked genera are more stable
with increasing mean abundance than low-ranked genera (t-test
of Taylor slopes between high and low ranked genera, two-sided,
P < 0.05 from rank 5 until 69, N= 73, Fig. 2).

Alpha-diversity, capturing both the number of taxa detected
within a sample (richness) and their abundance distribution
(evenness), varies substantially over different samples of the same
person. In this cohort, 33% of the total variation in the Shannon
diversity index can be attributed to temporal variation (ICC:
0.67). Richness shows less temporal variation (ICC: 0.77), but
evenness varies even more within than between persons (ICC:
0.46, genera with abundance >0.5%, N= 20, n= 694, Fig. 1,
Supplementary Data S2). Relative abundance variation shows a
similar but less pronounced picture. Genus abundances vary
substantially in time (Coefficient of variation [0.8 ± 0.6; 0.3:3.5],
genera), N= 73, genera with abundance>0.5%, present in >5
individuals in >3 samples) but within- versus between-subject
variation in genus abundance is less using relative data (36% of all
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genera note an ICC below 0.5 using RMPs—compared to 78%
with QMPs). For RMPs, ICC values for richness, evenness, and
alpha diversity, are 0.85, 0.46, and 0.64, respectively (Supple-
mentary Fig. 3).

Implications of high intra-individual variation in genus
abundances for clinical research. As a whole, these results show
that genus abundances show substantial day-to-day variation
around an equilibrium state. Compared to RMPs, longitudinal
QMPs show even more temporal variation. Indeed, absolute
numbers also reflect the substantial day-to-day fluctuations in
biomass, aggravating their temporal variance7. While previous
reports (based on RMPs) stressed the equilibrium properties of
the human gut microbiome, we here draw attention to its
variability. Cross-sectionally determined biomarkers and targets
are based on average differences between patients and controls
(lumping together within and between person variability). Our
results suggest that a single measurement does not estimate a
person’s temporal average well, both using relative and quanti-
tative profiling. Consequently, single-time-point diagnostics have
a high risk of misclassification, as differences between patients
and controls might fall within normal temporal variation, and
target discovery suffers from high noise. Table 1 therefore pro-
vides the coefficient of variation in genus abundance for both
RMP and QMP, which can serve as a reference for variation
under normal conditions. The use of summary measures is
recommended in cases where within-subject variation is high
compared with between-group differences.

Reducing abundance variation by averaging multiple time-
points is also expected to improve the identification of cross-
sectional correlations. Poyet et al. showed that calculating median
abundances over several timepoints enhanced the detection rate
of cross-sectional taxon-taxon correlations in RMPs (10 long-
itudinal RMPs, 32 samples).19 To get a better idea of the
improvements in the estimation of equilibrium abundances
through increased sampling, we predicted the variance in our
estimate of genus median abundance for a given sample size by
randomly subsampling the time series at different levels of
temporal resolution for both QMPs and RMPs (20 people,
21 samples, Fig. 3). As expected, we find that the variance in our
estimate is reduced by collecting more time points and most is
gained in the first additional samples. Similar to Poyet et al., the
optimum in the trade-off between accuracy and sampling effort,
lies around 5 samples for both RMP and QMP. However, the cut-
off value is less clear, meaning that improvements in accuracy are
more equally divided over the samples. In addition, although the
recommendation by Poyet et al. (sampling 5 or more samples)
will yield improved accuracy, it does not take into account the
substantial financial and operational cost of increased sampling.
To introduce temporal replicates while limiting expenses, we feel
that collecting minimally three longitudinal samples allows
calculating equilibrium abundances with substantially higher
accuracy, as well as estimating temporal variation with a
minimum number of samples. Depending on the study objective,
size, design, and population, the trade-off between additional
information and increased longitudinal sampling will differ and
adjustments should be made accordingly. For now, these
decisions would be mostly guided by general statistics and first
insights into temporal microbiome variation, yet a wider adoption
of a longitudinal sampling design will extend our ability to make
practical recommendations.

Interestingly, the lower temporal variance of RMP versus QMP
might make this kind of profiling, although further from reality,
potentially more suited for diagnostic biomarker identification,
especially if only single-time point measurements are available.

Indeed, the reduction of information going from absolute to
relative numbers would work to its advantage. However, when
identifying clinical targets and understanding pathomechanisms,
only absolute abundances are the relevant measure, as they
determine the total biomass and production capacity of
transcripts, proteins, and other compounds. All associations with
host factors, ranging from immune markers to metabolomics
(which are all expressed in absolute numbers), and ecological
interpretations would benefit from having the absolute instead of
relative numbers7.

We next assessed the temporal and cross-sectional core genera
within our dataset8,17,29. Based on all samples within a QMP time
series, about 39 ± 7% [16:50%] of a person’s genera are detected in
more than 95% of the samples (=Temporal core genera; genera
with an abundance>0.5%, N= 20, n= 694, Table 1, Supplemen-
tary Fig. 4, Supplementary Data S3). Temporal core size [30 ± 7;
16:42 genera] falls within 90% of the estimate based on the total
time series from 11 samples onwards for all non-perturbed time
series (Supplementary Fig. 4). Genera shared between all
individuals (=cross-sectional core genera) constitute 10% of all
detected genera in this dataset (17/176, genera with an
abundance>0.5%, N= 20, n= 694, Supplementary Data S3).
Nine taxa belong to both the cross-sectional and temporal core,
namely Alistipes, Bacteroides, Blautia, Clostridium cluster XIVa,
Faecalibacterium, Roseburia, Ruminococcus, and two groups of
unclassified sequence variants within the families Lachnospir-
aceae and Ruminococcaceae. About three quarters of the
individuals (14/20) carried between one and four person-
specific genera, representing about 16% of all detected genera
(28/176). Some of these person-specific genera are only detected
once (11/28), but most are present in several samples and some
even belong to the temporal core of an individual (3/28).

Comparison of intra- and inter-individual variability in beta-
diversity, or the dissimilarity between samples, shows day-to-day
variation is more pronounced than expected based on previous
research.16,19,29–31 Yet, as expected, whole-community dissim-
ilarity remains generally larger between than within individuals
(ANOVA on multivariate homogeneity of group dispersions on
BC dissimilarities between individuals (first sample) and within
each individual (full time-series), two-sided, N= 20, Q= 0.33
(participant 808) and Q < 0.05 (all other participants), Fig. 1c,
Supplementary Data S4) but at several occasions, equally large
shifts can be noted within as between persons. Notably, such large
day-to-day shifts (illustrated using PCoA; Fig. 4) mostly occurred
in the absence of major perturbations (with the exception of one
infection event).

Assessing similarity between samples over increasing time
spans32, we show time does not have an incremental effect on gut
microbiota composition over 36 days (non-significant Similarity
Decay Analysis, N= 19, n= 3780, R2=−0.00028, P= 0.84,
Fig. 5, Supplementary Data S4). This means that fecal microbial
communities differ as much from baseline after a day, as they do
after one week or one month. Consequently, these results suggest
that it does not matter at what time interval one takes multiple
samples to estimate variation or calculate summary measures, at
least for the 36-day time interval tested here.

Next, we assessed community variation with the concept of
enterotypes, using the Dirichlet Multinomial Mixtures approach33,
which classifies samples in categories based on similarities between
gut microbiota composition in different individuals. Previous
cross-sectional population studies identified four such states in
healthy individuals8,24,26,34,35. One of these, the Bact2 enterotype
has been shown to be more prevalent among people with Crohn’s
disease, ulcerative colitis, primary sclerosing cholangitis, depres-
sion, obesity, and certain multiple sclerosis subtypes4,6,36,37. These
states were previously shown to be relatively stable over longer
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time intervals: 84% of the people did not change enterotypes in an
analysis using two single timepoints as collected during the
Human Microbiome Project (sampling interval between 30 and
451 days, median 224 days, N= 100)24,34, but their daily variation
remains unassessed. Here we enterotyped each sample on the
background of >1000 samples from the Flemish Gut Flora Project
(FGPF) to include population-level information8. Individual
trajectories all show movement around one center supporting
the interpretation of microbiota being in a stable state38 (Fig. 4).
Yet, transitory enterotype switches, which represent some of the
major compositional changes within a person (BC dissimilarity
between same- vs. different-enterotyped consecutive samples, two-
sided Wilcoxon test subsampled to the same number of
observations in both groups, n= 123, P= 0.028, Supplementary
Data S4), do occur occasionally. We next asked whether the
observed enterotype transitions were in accordance with the extent
of the compositional shifts needed to bring them about. In other
words, are transitions that require large compositional shifts also
less frequent (and vice versa)? We studied the discrepancies
between expected transition rates, based on enterotype prevalence,
and observed, and contrasted these with the compositional
dissimilarity within or between enterotypes (Fig. 2, Supplementary
Data S4). For each transition, within or between enterotypes, we
calculated the expected probability of an A–B transition as the
number of A–B transitions possible within the dataset divided by
the total number possible transitions within the dataset, and
compared it with the observed number of enterotype transitions.

As expected, within enterotype transitions are more frequent
than one would predict based on a random process, hence
confirming enterotype stability (Chi square test goodness of fit
with 10 categories for all possible enterotype switches,
P= 2 × 10−16, Fig. 6a, y-axis, Supplementary Data S4). We next
contrasted switches with the median compositional dissimilarity.
As expected, for Bact1, Prev, and Rum enterotypes, within-
enterotype transitions are linked with the least compositional
difference between corresponding samples. However, the Bact2
enterotype shows a distinct pattern: it is as stable as the other
enterotypes (the difference between the observed and expected
transition rate of Bact2–Bact2 transitions is similar to those of
other same-enterotype transitions), yet its compositional varia-
bility is much larger and even exceeds that of inter-enterotype
constellations (Dunn test, BC dissimilarity of Bact2–Bact2 versus

Rum–Bact1, Prev–Bact1, Prev–Rum, Bact2–Bact1 constellations,
N= 20, P < 10−5 for all mentioned comparisons, Fig. 6a).
Compositional variability within the Bact2 enterotype as tested
here is the result of both compositional dissimilarity between and
within persons. We therefore also quantified both components
separately, using cross-sectional data of the Flemish Gut Flora
Project (FGFP) and this studies longitudinal data to estimate
between- and within-subject variability, respectively. The
population-level data of the FGFP shows compositional dissim-
ilarity across Bact2-enterotyped individuals is significantly higher
than in all other enterotypes (ANOVA on multivariate homo-
geneity of group dispersions on BC dissimilarities between
individuals across enterotypes, N= 1103, Q < 10−29 for all
comparisons with Bact2, Fig. 6b). Our longitudinal study data
shows the same is true for within-subject variability: composi-
tional variation in time is significantly higher for those
individuals with the majority of their samples in the Bact2
enterotype than for those in the Bact1 and Rum enterotype
(Dunn test of median BC dissimilarity within individuals across
enterotypes, two-sided, N= 19, P= 0.0392 and P= 0.0096,
respectively, Fig. 6c). This observation suggests a dynamic
component to the so-called ‘Anna Karenina principle’, which
states that dysbiotic communities (Bact2) tend to vary more
strongly than non-dysbiotic communities, as was observed in
cross-sectional sense in IBD patients26,39,40. Consequently,
repeated measurements are likely even more important to
estimate equilibrium abundances in disease cohorts. Finally, we
find Prev–Rum switches to be more likely than all other inter-
enterotype switches, even those between more similar constella-
tions (Chi square test goodness of fit, P= 2 × 10−16, Fig. 6a, y-
axis, Supplementary Data S4).

Next, we assessed the reasons behind the observed patterns of
temporal variation and determined to what extent differences in
host-associated variables can explain microbiota shifts. To link
the dietary data and microbiome profiles for each individual we
calculated a personal lag time, adjusting a standard 24 h lag with
information on cross-correlation of the dietary data with
moisture content (see methods). Next to dietary data, such as
protein, carbohydrate, fat, and fiber intake, we included data on
medication, energy expenditure, time of sampling, estimated
levels of ovarian hormones, and stool moisture content. Despite
considerable intra-personal variation, none of these factors show
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Fig. 1 Extensive within- compared to between-subject variance in genus abundances are reflected partly in alpha-diversity but not in beta-diversity
measures. a Within- versus between-subject variance in absolute genus abundance (Wilcoxon test, two-sided, n= 96, P= 1.75 × 10−7) (left) and within-
subject and between-subject variance as part of the total variance in genus abundance (right) for all genera over the abundance threshold. b Within- and
between-subject variance as part of the total variance in alpha diversity measures, for observed richness, Pielou evenness, and Shannon diversity index
based on QMPs. c Beta-diversity, as assessed through Bray Curtis dissimilarity, between samples of the same individual (800–821), and between the first
sample of each individual (Bet) based on QMPs. Significance of the differences within and between individuals were tested through an ANOVA on
multivariate homogeneity of group dispersions (N= 20, n= 694). The body of the box plots represents the first and third quartiles of the distribution, and
the median line. Whiskers extend from the quartiles to the last data point within 1.5×IQR, with outliers beyond. Significance levels: ***: 0.001, **: 0.01, *:
0.05. The same figure based on RMPs can be found in Supplementary Fig. 2.
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significant effects, except for stool moisture content and, to a
lesser extent, dietary parameters. We here show stool moisture-
associated microbiota changes observed within individuals are
qualitatively similar to those between individuals, suggesting the
observed intra-individual variation might partly be responsible
for the reported inter-individual differences.

Assessing explanatory power of all variables with a stepwise
distance-based redundancy analysis (dbRDA) shows the only
factor significantly explaining total variation in gut microbiota
composition beyond individual (50%), yet to a limited extent, is
stool moisture content (0.4%, forward stepwise dbRDA on a BC
dissimilarity matrix of QMPs,N= 19, n= 661, P= 0.002, Fig. 7a).
This high explanatory power of individual and low contribution
of metadata variables is in line with results of population-level
cross-sectional studies8–15.

We investigated possible causes of enterotype shifts by
evaluating the collected metadata and community characteristics
upon switches using a multi-state Markov model. Such models
describe a process in which an individual moves through a series
of states in time and allows time-dependent covariates to be fitted
to transition intensities41. Covariates with independent significant
effects included all dietary metadata and transit time-related

parameters, as well as time of sampling and medication intake
(Log likelihood ratio test, Q < 0.05, N= 19, n= 661, Supplemen-
tary Fig. 5). However, also here, only transit time and some dietary
data could be linked to specific enterotype shifts (Fig. 7b, c). Given
the Bact2 disease association, knowing which parameters induce
shifts away from this enterotype would be of interest, yet none of
the investigated parameters were significantly associated to such
transitions. Previous cross-sectional studies showed that the
differences between Prev/Bact and Rum enterotyped individuals
are associated with differences in passage rates: Rum enterotypes
are high richness, high load constellations with a high proteolytic/
saccharolytic functional profile, which are more prevalent in
individuals with hard stools and/or slow transit, while Prev/Bact
enterotypes show the opposite trend7,8,42,43. These differences
have been postulated to arise, at least in part, through time-
dependent gut ecosystem maturation44. With time, microbial
density and richness increase due to prolonged growth possibi-
lities, water is re-absorbed—resulting in firmer stools—, and a
functional shift from saccharolytic to proteolytic fermentation
takes place upon the depletion of readily fermentable
substrates44,45. Here, transit time-associated parameters confirm
this postulated shift towards a Rum constellation with increased
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Fig. 2 High-ranked genera are more stable with increasing mean abundance than low-ranked genera. Mean-variance relationships can be characterized
by a linear relationship known as Taylor’s Law (TL). According to TL log(variance)g= b × log(mean)g, where b is a species-specific constant and g indicates
the group of measurements. For a given unit change in the log(mean) of population abundance, the TL’s slope equals the change in log(variance), which
measures heterogeneity or scatter in the distribution of population abundance. A greater slope in the temporal TL means a greater degree of change in the
temporal variance of genus population abundance with respect to its temporal mean. Genera for which the TL slope is 2 have about the same coefficient of
variation in all subjects. Genera for which the TL slope is less than 2 show more temporal variation in subjects in which they are more abundant. The
reverse for genera for which the TL slope is greater than 2. Here, we show Taylor slopes of high ranked genera (over all individuals) are generally higher,
indicating more variation with increasing mean abundance, compared to low ranked genera. a Mean-variance relationships for all genera satisfying the
abundance and prevalence criteria (genera with abundance >0.5%, present in >5 individuals in >3 samples). Regression lines are colored according to
Taylor’s slope from less steep (blue) to steep (red). b TL slope of high versus low-ranked genera, for the top 10, 20, and 50 genera (t-test between TL
slopes of top 10, 20, and 50 versus lower-ranked genera, two-sided, P= 0.00318, P= 0.0000285, P= 0.000188, respectively, N= 73). c Intra-individual
variation in alpha diversity measurements, (top) observed richness with an indication of the total number of genera detected over all samples (squares),
(middle) Pielou’s evenness index ‘J’, and (below) Shannon alpha diversity index for each individual (ID-number 800–821) (N= 20, n= 694). The body of
the box plots represents the first and third quartiles of the distribution, and the median line. Whiskers extend from the quartiles to the last data point within
1.5×IQR, with outliers beyond. Significance levels: ***: 0.001, **: 0.01, *: 0.05.
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passage rates and vice versa: one-way Bact1-to-Rum shifts are 8%
less likely with every percent increase in stool moisture, while one-
way Rum-to-Bact2 shifts are 74% more likely (relative risk with
each unit increase (risk ratio) for moisture content: 0.92 and 1.74,

respectively, P < 0.05, based on a multi-state Markov model.
Similar results for BSS score). Interestingly, softer stools did not
associate with a movement towards a Prev constellation8,43,46.
Consistent with the increased proteolytic/saccharolytic potential of
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Fig. 3 Gains in accuracy in the estimation of the equilibrium abundance are highest for the first five samples for both RMP and QMP. The availability of
multiple timepoints allows improved estimation of the equilibrium genus abundance through summary measures (e.g., median). However, gains in
accuracy decrease with additional timepoints. We calculated the error on the median genus abundances (y-axis) depending on the number of timepoints
(100 most abundant genera, all participants, timepoints randomly chosen out of the full time series, 10.000 iterations). The elbow of the curve, a point that
signifies an optimum in the trade-off between accuracy and sampling effort, lies roughly around 5 samples for both RMP (a) and QMP (b). Gains in
accuracy level off afterwards as evidenced by the flatter curves.
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the Rum enterotype compared with the Prev enterotype47, a high
intake of proteins seems to prevent shifts from Rum to Prev
constellations (risk ratio= 0.85, P < 0.05). High sodium intake,
which might increase colonic water reabsorption and lead to lower
stool moisture content48, seems to have a similar effect (risk ratio
0.19, P < 0.05). Other noteworthy associations between dietary
parameters and enterotype shifts include the one-way Rum-to-
Bact2 and Rum-to-Bact1 transitions, which are more likely to
occur with high protein and low carbohydrate consumption (risk
ratio= 1.30 and 0.84, 1.10, and 0.93, respectively, P < 0.05). At the
same time, we observe that the inverse, one-way Bact1-to-Rum
shifts are also significantly associated with higher protein
consumption (risk ratio= 1.07), suggesting that Bact1-Rum
switches, in any direction, are triggered by other factors under
high-protein consumption, or that major dietary disturbances
per se can cause switches between these two states.

We further evaluated the temporal effect of the metadata on
microbiota community characteristics and specific genus abun-
dances using (Generalized) Linear Mixed Models ((G)LMMs).
Again, we discovered a temporal effect in addition to the between-
subject effect, for the earlier reported negative correlations
between richness and microbial load with stool moisture. We
find a negative correlation between richness as well as microbial
load with stool moisture over all persons including temporal
variation (Linear Mixed Model (LMM) with varying intercept and
slope, N= 20, n= 694, P= 0.012 and 1.99 × 10−5, Stand. Est.=
−1.14 and −2.2 × 1010, respectively), while a between-person
analysis on a cross-sectional subset of the study cohort failed to
pick up the trend for richness but not microbial load (LMM,
N= 20, n= 20, t= 1, P= 0.69 and 0.015, Stand. Est.= 0.85 and
−3.3 × 1010, respectively, Supplementary Data S5). Within sub-
jects, the same relationships hold for the majority of individuals
(Spearman test, two-sided, rho<0 for 16/20 and 19/20 participants,
P < 0.05 for 3/16 and 11/19 of those, for richness and microbial
load respectively, Supplementary Data S5). Other metadata
variables did not significantly correlate with richness or microbial
load, except for the time of sampling (morning/noon/evening/
night) which correlated positively with microbial load (LMM,

N= 20, n= 694, Q= 0.0077, Stand. Est= 8.42 × 109). This might
indicate a circadian rhythm effect49,50, but more likely also reflects
transit time differences.

Validation of previously discovered genus abundance—stool
moisture associations in a population-level cross-sectional study8,
confirmed 5/13 associations, namely decreased Roseburia abun-
dance and increased abundance of Oscillibacter, Akkermansia,
Ruminococcus, and a group of unclassified members of the
Ruminococcaceae, with lower moisture contents (LMM, Q < 0.05)
in this longitudinal data set, suggesting a within-subject effect in
these correlations. Although gut microbes might affect moisture
content, the reverse is much more likely. These results therefore
further support the relative importance of transit time in shaping
gut microbiota composition. In order to identify taxon-metadata
associations beyond stool consistency effects, we used GLMMs
correcting for individual as well as moisture content. This data-
driven approach identified no significant correlations (Supple-
mentary Data S5). Within-subject coefficients of variation in
genus abundance were not associated with within-subject
coefficients of variation nor median values of collected metadata
(Pearson correlation, genera with abundance>0.5%, present in >5
individuals in >3 samples, Q > 0.05, n= 803= 73 × 11, respec-
tively, genera and metadata variables).

Discussion
Our observations challenge the current prevailing idea of inter-
personal variation dwarfing intra-personal variation in gut
microbiomes12,16,30,51–54. The 20 densely sampled time series
together with the previously gathered population level data,
allowed observation of substantial variation in within- versus
between-subject genus abundances. This has important clinical
implications. First, the ability to detect differences between
individuals are reduced when within-subject variability is large in
comparison to between-subject variability55,56. Consequently, gut
microbiome discovery cohorts require large sample sizes to detect
effects, as has become clear in recent years8,10. To resolve power
issues, much could be gained from the calculation of summary
measures57–59. Second, we show that single measurements do not
estimate the equilibrium abundance well, therefore, repeated
measurements will often be needed for diagnostic purposes.
Third, we here show that community descriptors/indices such as
beta diversity, enterotypes or stable states (centroids) are more
stable than individual markers, and therefore—when clinically
relevant to the pathology at hand—might have better diagnostic
properties. Furthermore, a dynamic Anna Karenina principle
might apply to human gut microbiomes, in other words,
increased within-subject variability in microbiome composition
might be a hallmark of (disease-associated) dysbiosis38. Conse-
quently, it might be clinically relevant to not only characterize
enterotypes or stable states, but also the variation in gut micro-
biome composition over time itself. Our results show that sub-
stantial temporal variation is also present in relative abundance-
based profiling, yet much more pronounced with absolute
abundance profiling. This indicates that microbiome temporal
variation has, until now, been gravely underestimated and
emphasizes the importance of using QMP approaches for target
identification in clinical microbiome analyses. However, if the
sole purpose of the study is the diagnostics-oriented detection of
differences between groups (e.g., healthy and disease), RMPs
might be the better option because of the reduced temporal
variation.

Except for stool moisture and some dietary parameters, effect
sizes of the extensively collected other metadata variables on gut
microbiota composition over time was limited. The absence of
general dynamic microbiota-metadata associations within this

Fig. 5 Longitudinal sampling can be done over the course of several
weeks in normal situations without perturbations. There is no similarity
decay in microbiota composition over 4 weeks. Linear model of log-
transformed similarities (= 1 - community dissimilarities (BC)) between
time points of interpolated QMP time series against the number of days
elapsed (R2= 0.013, P > 0.05). Data points of each day were randomly
subsampled to the lowest amount of observations for a day. Length of the
evaluated time span was limited to include data of all 20 participants at
each value (1–36 days).
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cohort are in line with a recent longitudinal study of RMPs, which
observed highly personal dynamic profiles in which some diet-
microbiome associations had opposite signals depending on the
individual60. Although this could be partly due to the size
(N= 20, n= 713) and characteristics of the study cohort, as well
as data collection (e.g., dietary data records are only partly
trustworthy61, and conventional nutrient profiles are less infor-
mative than food choices60), it might also suggest highly indivi-
dual responses or the influence of additional, currently unknown
covariates and/or intrinsic dynamics38,62. It seems likely that
intrinsic factors like interactions between community members,
growth rates, or immigration outweigh the effects of most of the
currently explored metadata variables62,63.

Furthermore, the dynamics of microbial community compo-
sition trajectories in ordination plots suggests the existence of
stable states, which is a prerequisite for the interpretation of
enterotypes as alternative stable states in a multi-stable
system38,62. However, while normal day-to-day events seem to
be sufficient to trigger transient enterotype switches, we did not
observe stable, long-term state transitions, in line with the idea
that stronger perturbations are required to trigger a switch to an
alternative stable state. That said, part of the observed temporal
variation can be explained using the concept of ecosystem
maturation with increased residence time44. Moreover, fluctua-
tions in protein, carbohydrate/fiber, and sodium intake also seem
to affect microbiome profiles over time. This is in line with results
of other longitudinal and intervention studies, which report
effects of (animal) protein19,64 as well as a range of different fiber
sources18,64–66. We thus find that previously identified between-
subject metadata-microbiota associations are also valid for long-
itudinal variation. These results again underscore the importance
of including transit-time measurements/proxies as well as dietary
information in clinical studies to disentangle microbiota-disease
signals.

In conclusion, this study shows substantial temporal abun-
dance variation of the gut microbiota around an equilibrium.
Variation can be partly explained by moisture content and diet,

yet a large part is unexplained and likely linked to intrinsic
dynamics and ecology of the gut microbial ecosystem. Enter-
otypes differ in between- and within-subject compositional
variability. These results are relevant for clinical study design,
target identification, and diagnostics.

Methods
Ethical compliance. All experimental protocols were approved by the Commissie
Medische Ethiek, UZ KU Leuven. Ethical approval of the study protocol was
obtained (B322201525874). Study design complied with all relevant ethical reg-
ulations, aligning with the Declaration of Helsinki and in accordance with Belgian
privacy.

Study cohort. The study cohort consisted of twenty women recruited in the
Flemish region near the university hospital (Leuven, Belgium) through a newsletter
directed at FGFP participants as well as flyers distributed throughout the hospital.
All participants gave their informed consent. Women were eligible to participate if
they were aged between 16 and 55 years. Exclusion criteria were the use of any type
of hormonal contraception three months prior to or during the study, the use of a
copper intrauterine device, antibiotic treatment three months prior to study onset,
pregnancy, the presence of inflammatory bowel disease or any type of bowel
cancer. Volunteers received the provided smart phone as compensation for par-
ticipation after completion of the study. Selection bias could have been induced
through the recruitment channels (people interested in gut microbiome research
tend to have gut problems or be related to people with gastrointestinal diseases),
strict exclusion criteria, and smart phone use. Of twenty-two recruited volunteers,
two did not complete the study protocol and were excluded from analyses.

Sample and metadata collection. At enrollment and closure of the study medical
staff recorded participants’ gender, age, height, and weight and took a blood sample
(Supplementary Data S1). On the first day of menses following enrollment parti-
cipants started collecting fecal samples at each defecation, with a maximum of one
sample per day. They recorded sampling data such as stool consistency, time of
sampling, and time between defecations, using a study smartphone. This device
was further used to track physical activity, and record dietary intake through the
application MyFitnessPal67 and menstrual cycle data through the application
Glow68.

Stool moisture. Stool moisture content was determined on 0.2 g of frozen homo-
genized fecal material (−80 °C) as the percentage of mass loss after lyophilization.
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Fig. 6 Bact2 enterotype assignment is as stable over time as other enterotypes despite higher between- and within- subject community variation. a For
all enterotype switches, discrepancies between expected and observed switching rates (standardized residuals of a Chi Square goodness of fit test with 10
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Bacteroides1 (B1), Ruminococcaceae (R), Bacteroides2 (B2), and Prevotella (P) enterotypes, respectively). Between-subject community variation is
significantly higher in Bact2 versus all other enterotypes (ANOVA on multivariate homogeneity of group dispersions on BC dissimilarities between
individuals across enterotypes, N= 1103, Q < 10−29 for all comparisons with Bact2). c Within-subject community variation per enterotype, calculated as
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Calprotectin. The Bühlmann® Smart Prep Faecal Sample Preparation Kit and
Bühlmann® FCALTM ELISA kit were used for, respectively, FCal extraction and
quantitative determination of human calprotectin from selected fecal samples. The
test measures a calprotectin antigen by sandwich ELISA and was used according to
the kit’s guidelines.

Hormones. Progesteron and estrogen levels were inferred by combining the
information on the day of menstrual cycle with a standard profile over a 28-day
menstrual cycle. The standard profile was based on measurements of endogenous
progesteron and estrogen concentration throughout the menstrual cycle as col-
lected for 300 cycles stemming from 12 studies, aligned by lutenizing hormone
peak and including fourteen days prior and post lutenizing hormone peak (data
shared by Jennie Lovett and Beverly Strassman)69. The standard profile was
extrapolated or shortened to fit the cycle length of each individual in the study
cohort. As the time between ovulation and menses (14 days) fluctuates a lot less
than the time between menses and ovulation (10–21 days) we only added or
substracted values at the beginning of the cycle in order to obtain the personal
profile. Values beyond the standard 28-days were estimated by the value of day 1
increased by the value obtained by multiplying the difference between levels of day
1 and 28 with an exponentially decreasing function e-x, where x stands for each
additional day beyond 28 days.

Microbial load determination through flow cytometry. For cell counting, 0.2 g of
frozen fecal aliquots were diluted 100,000 times in physiological solution (8.5 g/l
NaCl; VWR International). In order to remove debris from the fecal solutions,
samples were filtered using a sterile syringe filter (pore size 5 μm; Sartorius Stedim
Biotech GmbH). Next, 1 ml of the microbial cell suspension obtained was stained
with 1 μl SYBR Green I (1:100 dilution in dimethylsulfoxide; shaded 15 min

incubation at 37 °C; 10,000 concentrate, Thermo Fisher Scientific). The flow
cytometry analysis of the microbial cells present in the suspension was performed
using a C6 Accuri flow cytometer (BD Biosciences), according to previously
published methods7.

Fluorescence events were monitored using the FL1 533/30 nm and
FL3 > 670 nm optical detectors. Forward and sideways-scattered light was also
collected. The BD Accuri CFlow software was used to gate and separate the
microbial fluorescence events on the FL1–FL3 density plot from the fecal sample
background. A threshold value of 2000 was applied on the FL1 channel. The gated
fluorescence events were evaluated on the forward–sideways density plot, to
exclude remaining background events and to obtain an accurate microbial cell
count. Instrument and gating settings were identical for all samples (fixed
staining–gating strategy, Supplementary Fig. 8).

Microbiota phylogenetic profiling of the study cohort
Sequencing data pre-processing. Fecal microbiome profiling of the study cohort was
performed as described previously8. Briefly, DNA was extracted from about 200 mg
fecal material using the MoBio PowerMicrobiome RNA isolation kit. Study samples
were randomized and extraction blanks were included for every batch. The V4
region of the 16 S rRNA gene was amplified with primer pair 515 F/806 R
(GTGYCAGCMGCCGCGGTAA/GGACTACNVGGGTWTCTAAT, respectively)
modified to contain a barcode sequence between each primer and the Illumina
adaptor sequences to produce dual-barcoded libraries70. Size selection, before
Illumina sequencing, was performed using Agencourt AMPure to remove frag-
ments below 200 bases. Sequencing was performed on the Illumina HiSeq 2500
platform (HiSeq-Rapid SBS kit v2 500 cycles, 2*250 PE) at the VIB Nucleomics
core laboratory (Leuven, Belgium). After de-multiplexing with sdm as part of the
LotuS pipeline71 without allowing for mismatches, fastq sequences were further
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analyzed per sample using the DADA2 pipeline (v. 1.6) rendering amplicon
sequence variants72. In brief, after inspecting quality, sequences were trimmed to
remove the primers and the first 10 bases after the primer, keeping only 200 bases
and 130 for the R1 and R2 files, respectively. After merging paired sequences and
removing chimeras, taxonomy was assigned using the formatted RDP training set
‘rdp_train_set_16’. The dataset contained 2393 amplicon sequence variants, which
were grouped into 223 genus-level bins. Of these, 183 (84%) could be assigned to a
known genus in the database (signified by a ‘g’ prefix in the taxon name), while the
rest was named using the closest known taxonomic level (signified by a ‘uc’—for
unclassified- prefix, followed by the taxonomic level: f–family, c–class, o–order,
k–kingdom). Because of the subsampling procedures applied for relative and
quantitative microbiome profiles, these contained 188 and 178 genus-level bins,
respectively, of which 81% could be assigned at genus-level in both cases.

Relative microbiome profiles (RMPs). For relative microbiome analyses, each sample
was downsized to 10,000 reads by random selection of reads.

Quantitative microbiome profiles (QMPs). For quantitative microbiome analyses,
samples were downsized to even sampling depth, defined as the ratio between
sample size (16 S rRNA gene copy number corrected sequencing depth) and
microbial load (average total cell count per gram of frozen fecal material; Sup-
plementary Data S1). 16 S rRNA gene copy numbers were retrieved from the
ribosomal RNA operon copy number database rrnDB73. The copy number cor-
rected sequencing depth of each sample was rarefied to the level necessary to equate
the minimum observed sampling depth in the cohort, while assuring a minimum
number of 500 reads in each sample and optimizing the chosen sampling depth to
exclude as few samples as possible. In case of no copy number correction, this
minimum threshold would represent about 2000 reads (average copy number of
3.88). A total of 13 samples were excluded for further analysis, 5 because of upfront
exclusion due to low sequencing read numbers and 8 because they did not make
the subsampling threshold. A QMP script to rarefy to an optimum even sampling
depth is available on https://github.com/raeslab/temporal_variability_microbiome_
qmp.

Quality control & technical variation. All samples were sequenced in 4 different
runs. Each run included a positive control (a fecal sample processed as all other
samples), negative control (only reagents), and mastermix (PCR reagents). Nega-
tive controls only had a few reads (1–58, median: 23) for in total 15 genera
(Supplementary Data S1). Reads belonging to chloroplasts and mitochondria were
removed from the RMPs and QMPs before analyses. Technical variation was
determined based on the RMPs of positive control samples (1-3/run) at 10,000
reads (Supplementary Data S1). Positive control samples had similar abundance
profiles and clustered tightly together in a PCoA together with the RMPs of >1000
Flemish individuals. BC dissimilarity between runs was not larger than within runs
(Supplementary Fig. 5). The variation observed within technical replicates was
several times lower than the variation observed within individuals, for Shannon
diversity index (standard deviation (sd): 0.09 versus median sd: 0.17) and Pieloux
evenness (sd: 0.01 versus median sd: 0.04), but not richness (sd: 6, versus median
sd: 5). The variable richness measurements within the technical replicates are not
due to the subsampling process (genus richness could be considered stable from
5000 reads onwards and controls were subsampled to 10,000 reads) but to
inconsistent detection of very low-abundant genera (<0.32%, Supplementary
Fig. 6). To assess variation in taxon abundance or presence, we therefore applied an
abundance threshold of 0.5%.

Statistical analyses. All analyses were performed in R. All statistical tests used
were two-sided, unless specified otherwise. Microbiome data was analyzed using
amplicon sequence variants grouped at genus-level. Multiple testing was performed
with the Benjamini–Hochberg procedure (FDR) whenever applicable (q-values).

Summary statistics. We calculated median, standard deviation, and minimum
and maximum values over all data points for Age, BMI, BSS, moisture content, and
cycle length. Summary statistics, namely the minimum, median, and maximum
values, for dietary data, such as the energy derived from fat, proteins, and carbo-
hydrates, as well as the amount of fibers, were calculated based on the respective
values for the time series data of each participant. In order to obtain the total
energy intake (EI), the amount of fat, proteins and carbohydrates (g), was multi-
plied by 9, 4, and 4 kcal/g, respectively. Two outliers are present, one regarding a
high fiber consumption (30 g/day, participant 805) and one regarding a deviating
carbohydrate/fat/protein EI (with 28%, 44%, and 26% respectively, a high-fat, high-
protein diet, participant 807).

Dietary lag. In order to link the dietary and microbiome profiles, we calculated the
most likely dietary lag in days for each individual. We started from a standard
dietary lag of one day, the average transit time in healthy individuals74. Based on
the relation between passage rate and moisture content, we checked which nutrient
variable or combination thereof (Carbohydrates (%) (C), Proteins (%) (P), Fat (%)
(F), P/C, P/F, C/F) correlated best with moisture content (mc) over all samples. We
found that of all measures, the P/C ratio correlated best with mc (Pearson test,

r= 0.23, p-value <10−8). Next, we adjusted our initial estimated lag time for each
individual based on cross-correlations between this dietary measure, P/C, and mc
for each individual’s time series. Therefore we determined at which lag (−1 to
−5 days) the correlation between P/C and mc was highest (function ccf, R package
tseries) for each individual. In case a significant correlation between P/C and mc
was found with lags between 2 and 5 days, which was stronger than that observed
for a 1 day lag, we adjusted the lag period accordingly (2/20 persons). In case a
shorter lag period (same day) was indicated through this method, we checked if the
majority of the samples were taken in the late afternoon or evening, and if so,
adjusted the lag accordingly (1/20). An overview of the cross correlation analyses,
relevant metadata and assigned lag period, can be found in Supplementary
Table S1. All analyses regarding dietary data were performed with the lagged
values.

Fecal microbiome derived features
Alpha diversity. Alpha diversity measures were calculated with function estima-
te_richness of the R package phyloseq75. Pielou’s evenness index J was defined as the
Shannon diversity index/log(observed richness). As the number of genera detected
depends on the sequencing depth, we verified at which amount of observations
richness was constant. Observed richness could be considered stable from 3 × 1010

bacteria/g onwards in the QMPs of the study samples, which is well below the
actual number of bacteria/g within samples, which ranged from 6 × 1010 to
22 × 1010 (Supplementary Fig. 6).

Beta diversity. Dissimilarity between samples was calculated as Bray Curtis dis-
similarity (function vegdist, R package vegan)76. Intra-individual dissimilarities
were calculated between all samples within a time-series. Inter-individual dissim-
ilarities were calculated using one sample of each individual, namely the one closest
to the first day of menses. Within- and between-subject variability in beta-diversity
were compared for each individual separately through an ANOVA test on the
group dispersions through the R functions anova and betadisper (R package vegan).
Dissimilarity over time was calculated for each pair of samples in an individual’s
QMP time series belonging to the specified time category (1:36 days).

Enterotyping. We here define enterotypes as the states samples get assigned to when
binning samples of different individuals into classes that share some similarity in
microbiota composition. To bin samples into classes based on their microbiota
composition several methods have been used in the past. Here, we used the
Dirichlet Multinomial Mixtures (DMM) approach, as described by Holmes et al.26

and applied in the R package DirichletMultinomial77. This method was envisioned
to be used on relative data matrices. Enterotyping was performed iteratively on a
genus-abundance matrix (RMP) of 20 study samples complemented with 1103
RMPs originating from the FGFP8. Sample collection and sequencing protocols of
both studies were similar. An iterative approach was adopted to avoid clustering
two samples of the same individual at once. Each iteration included a single time
point of a participant in random order.

Mislabeling. To identify potential cases of sample mislabeling that may have
occurred during preprocessing we checked whether the pairwise BC dissimilarities
between a sample and all other samples attributed to the same person were lower
than the pairwise BC dissimilarities between this sample and samples from every
other participant in the study, with a one-sided Wilcoxon test. In our original data,
15 samples showed more similarity with samples from one or several other par-
ticipants (Supplementary Data S6). In addition, we clustered the complete dataset
into 20 clusters—as much as there are participants—with the DMM algorithm26,78,
to infer the specificity of the microbiota composition of each sample. We visualized
this information together with the enterotyping assignment and sample sequence
(Supplementary Fig. 7). Based on all information, we identified two swapping
events, one between participants 801 and 815, and another one between participant
805 and 806. We corrected these mistakes. The 11 remaining samples did not show
additional indications for mislabeling and no subsequent action was undertaken.
All analyses were performed on the corrected data.

Intraclass correlation coefficient. The intraclass correlation coefficient (ICC)
estimation uses the variance components from a one-way ANOVA (among-group
variance and within-group variance; ICC= varamong/[varamong+ varwithin]). Here,
the ICC was calculated based on the longitudinal QMPs, defining each individual
as a distinct class, using a one-way ANOVA fixed effects model, as applied in the
function ICCest of the ICC R package. Inter- and intra-personal variation was
estimated using all individuals and, in the case of genus abundance, for all genera
with a relative abundance>0.5% in one or more QMPs.

Core, persistent, transient, and person-specific genera. Temporal core genera
were defined as those present in more than 95% of the samples of an individual.
Persistent genera were defined as those present in more than 20% of the samples
with at least 90% of these observations being consecutive. Transient genera were
defined as present in more than 60% of the samples while less than 75% of these
observations were consecutive. Cross-sectional core genera were defined as those
present in at least one sample of every individual. Person-specific genera were

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27098-7

10 NATURE COMMUNICATIONS |         (2021) 12:6740 | https://doi.org/10.1038/s41467-021-27098-7 | www.nature.com/naturecommunications

https://github.com/raeslab/temporal_variability_microbiome_qmp
https://github.com/raeslab/temporal_variability_microbiome_qmp
www.nature.com/naturecommunications


defined as those present in at least one sample of a person while absent in all other
individuals, excluding those detected within the negative controls. Analyses were
carried out based on QMPs for all genera with a relative abundance>0.5% in
the QMPs.

Fold changes in genus abundance. Here, an x-fold change should be interpreted
as x times. Maximum fold changes over the complete study period or between
consecutive samples were calculated per individual, for every detected genus above
the abundance threshold, on QMPs.

Stationarity. To test whether genera varied around an equilibrium level in a
participant or showed non-stationary behavior, we used the Augmented
Dickey–Fuller test (ADF)79. A significant ADF test suggests non-stationary beha-
vior as it rejects the existence of a unit root process. We applied the ADF test on the
QMPs of an individual through function adf.test of the R package aTSA80. We
limited the investigated genera to those present in more than 60% of the samples.

Mean–variance relationships (Taylor’s law, TL). TL states that log(var-
iance)g= b × log(mean)g, where b is a species-specific constant and g indicates the
group of measurements. For a given unit change in the log(mean) of population
abundance, the TL’s slope equals the change in log(variance), which measures
heterogeneity or scatter in the distribution of population abundance. A greater
slope in the temporal TL means a greater degree of change in the temporal variance
of genus population abundance with respect to its temporal mean. Genera for
which the TL slope is 2 have about the same coefficient of variation in all subjects.
Genera for which the TL slope is less than 2 show more temporal variation in
subjects in which they are more abundant. The reverse for genera for which the TL
slope is greater than 2. For each genus, the linearity of the relationship between
log(variance) and log(mean) over time was tested using function lm, calculating
slopes, p-values and adjusted R2 (Supplementary Table S2). In accordance with
literature28, we removed time series with fewer than three measurements of the
genus, to ensure that the variance was properly defined. We excluded genera which
were present in fewer than 5 individuals, to avoid slope determination based on
only a few data points.

Error on median genus abundances with increasing timepoints. Standard error
on median genus abundance for a given sample size was calculated by randomly
subsampling the time series at different levels of temporal resolution (1–21 time-
points), for the 100 most-abundant genera of each participant, over all participants,
with 10.000 repetitions.

Principal coordinates analysis (PCoA). Microbiome inter and intra-individual
variation and individual trajectories were visualized by PCoA using Bray–Curtis
dissimilarity on a combined matrix including all genus-level RMPs of this study
(709 samples) together with those of the FGFP (1103 samples) (R package vegan).

Similarity decay analysis. According to similarity decay analysis81, the slope of a
log-linear model fitted between the change in community structure and the time
elapsed represents the rate of community change over time. We performed the
analysis for of all non-perturbed time series (N= 19, individual 808 excluded) and
limited it to 36 days, to include data of each individual at every day, randomly
picking time points so that each day contained an equal number of data points
(n= 3780, 105/time point). Community dissimilarities (BC) between samples of
QMP time series were converted to similarities by subtracting from one. Log-
transformed similarities were set out against the number of days elapsed. To
visualize the model, we applied lowess smoothing over windows the length of 5% of
the total series.

Estimation of the community variation explained by metadata variables.
Variation partitioning by distance-based redundancy analysis (dbRDA) was per-
formed to determine how much of the microbial community profiles variation
could be explained independently of other covariates by (i) the individual, with
model M-null= BC ≈ ID-number and (ii) the metadata, with null model M-null
and alternative model M-alt= BC ≈ ID-number+metadata variable. A stepwise
dbRDA was performed to estimate the cumulative effect of the metadata variables
correcting for individual, with null model M-null= BC ≈ ID-number and alter-
native model M-alt-step= BC ≈ ID-number+ all metadata variables; with BC the
Bray Curtis dissimilarity matrix on QMPs, using functions vegdist, capscale and
ordiR2step of R package vegan. We performed the analysis for of all non-perturbed
time series (N= 19, individual 808 excluded).

Enterotype shifts and compositional dissimilarity. We used a Chi square test
goodness of fit with 10 categories, one for each enterotype switch (B2-B2, R-R, B1-
B1, B2-B1, R-B1, P-P, P-R, B2-R, P-B1, B2-P), in order to test whether the observed
number of enterotype switches was in line with what could be expected based on
enterotype prevalence. For each transition, within or between enterotypes, we
calculated the expected probability of an A-to-B transition as: the number of A-to-

B transitions possible within the study dataset / total number possible transitions
within the study dataset. In this way we took into account that samples were
differently distributed over the enterotypes. Standardized residuals of the Chi
square test were used as a measure for the discrepancy between observed numbers
and expected transition rates.

The average compositional dissimilarity between states was calculated as the
median BC dissimilarity between samples of the respective states, considering all
samples of the study cohort. Significant differences in compositional dissimilarity
between states were assessed using a Dunn test. Given the longitudinal nature of
the study data, the thus for described compositional dissimilarities include within-
and between-subject variability. In order to disentangle both components we
calculated the between- and within-subject compositional dissimilarity separately
for each enterotype. Between-subject compositional variabilities of an enterotype
were calculated using the cross-sectional data of the FGFP cohort (N= 1103), as
the BC dissimilarity between samples of different individuals within the same
enterotype. Differences in dispersion across enterotypes were assessed through an
ANOVA test on the group dispersions through the R functions anova and
betadisper (R package vegan) Within-subject compositional variabilities were
calculated using the longitudinal study cohort data, excluding participant 808, due
to an unstable microbial community after an infection event (N= 19), as the
median BC dissimilarity between samples of the same individual. These within-
subject compositional dissimilarity measures were grouped according to
enterotype, based on the enterotype label of the majority of an individual’s samples.
Significant differences in within-subject compositional dissimilarity between
enterotypes were assessed using a Dunn test (function dunn.test from R package
dunn.test).

Enterotype shifts and associations with metadata. To find possible metadata
triggers for enterotype switches we applied multi-state transition modeling (non-
hidden Markov Model) with covariates using the R package msm41. We defined the
transition model using the function msm, with enterotypes as states, days as time-
information and ID-number as subject information, with the option qmatrix set to
the crude transition matrix based on the observed data and equal transition
probabilities for all shifts, and the option deathexact set to FALSE. The significance
of the independent contribution of the metadata variable to the transition model
was tested using a log likelihood ratio test (function lrtest.msm) comparing the
model with and without the metadata variable. Risk ratios and 95% confidence
intervals were calculated for each metadata variable (function hazard.msm) and
visualized in a forest plot (R package ggplot2). The effect of a metadata variable on a
specific enterotype transition was considered significant (P < 0.05) if the 95% CI of
the hazard ratio did not include 1.

Characterization of within and between-subject effects of metadata on
community characteristics or genus abundance
Over all individuals. Linear models were used to assess metadata-community
characteristics or metadata-genus abundance correlations over all individuals.
Analyses on genus abundance were limited to those genera satisfying the abun-
dance and prevalence thresholds (genus present in >5 participants and >10 samples
per participant, with median relative abundance over all QMPs in which it was
detected>0.5%). A General Linear Model (GLM) is a flexible generalization of
ordinary linear regression model (LM) for response variables with error distribu-
tion models other than the normal distribution, which was necessary as genus
abundance data were best fitted by a negative binomial distribution. We used
GLMs to assess the between-subject correlation between variables and taxon
abundance, using the first data point of each time series (model 1). A GLMM is a
GLM with the possibility to vary the intercept and slope of the regression according
to a specified random effect. A model treating ID as a random effect for the
intercept allows the intercept to take a different value per person according to its
mean genus abundance and thus takes into account the temporal variation between
subjects (model 2). A model treating ID as a random effect for both the intercept
and slope in addition allows correlation coefficients to vary according to individual
and thus takes into account not only the temporal variation between subjects but
also within subjects (model 3). We included all collected data points within the
GLMMs (models 2 and 3). We defined the different GL(M)Ms, as follows: [model
1] glm1 = Gi ≈ variable, [model 2] glmm2 = Gi ≈ variable+ (1|ID), and [model 3]
glmm2 = Gi ≈ variable+ (1+variable|ID), where ID is the person identifier, and
Gi is the quantitative genus abundance matrix, with ‘i’ being the genus index, using
function glm.nb and glmer.nb of the lme4 R package with default values82. We
checked correlation (Pearson test) between all metadata variables and excluded
redundant variables for pairs where r > 0.2. We standardized metadata variables
and expressed genus abundances in percentage prior to modeling in order to be
able to compare relative contribution of each variable by the estimates. To assess
the temporal effect of the metadata on microbiota measurements, such as microbial
load and alpha diversity measurements, a similar approach was used. We defined
the L(M)Ms as follows: [model 1] lm1 = MM ≈ variable, [model 2] lmm2 =
MM ≈ variable+ (1|ID), and [model 3] lmm3 =MM ≈ variable+ (1+variable|ID),
where MM is the microbiota measurement of interest, using functions lm and lmer
of the lme4 R package with default values82. In order to assess the effect of metadata
variables on taxon abundance beyond the effect of moisture content, we defined the
GLMM as follows: [model 4] glmm4 = Gi ≈ variable+ (1+variable|ID)+ (1+
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variable|MC), where ID is the person identifier, MC is the moisture content, and Gi
is the quantitative genus abundance matrix, with ‘i’ being the genus index.

Per individual. Correlations between continuous variables were analyzed using
non-parametric Spearman tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Supplementary Information is available in the online version of the paper.
Supplementary Data S1 contains the QMP, RMP, and non-rarefied profiles of the
samples and controls, the taxonomic table, and the microbiome derived data. Raw
amplicon sequencing data that support the findings of this study have been deposited in
the European Genome-Phenome Archive with accession code EGAS00001005686 with
public access. Source data for all figures are provided with the paper. Additional data
requests can be directed to the corresponding author. Source data are provided with
this paper.

Code availability
An updated open source QMP R-script is available on http://www.raeslab.org/software/
QMP temporal and the Github repository (https://github.com/raeslab/temporal_
variability_microbiome_qmp) with public access.

Received: 22 July 2021; Accepted: 26 October 2021;

References
1. Mancabelli, L. et al. Identification of universal gut microbial biomarkers of

common human intestinal diseases by meta-analysis. FEMS Microbiol. Ecol.
93, 1–10 (2017).

2. Dubinsky, M. & Braun, J. Biomarkers from blood and stool: diagnostic and
prognostic microbial biomarkers in inflammatory bowel diseases.
Gastroenterology 149, 1265–1274 (2015).

3. Pascal, V. et al. A microbial signature for Crohn’ s disease. Gut 66, 813–822
(2017).

4. Vieira-silva, S. et al. Quantitative microbiome profiling disentangles
inflammation- and bile duct obstruction-associated microbiota alterations
across PSC / IBD diagnoses. Nat. Microbiol. https://doi.org/10.1038/s41564-
019-0483-9 (2019).

5. Konstantinov, S. R., Kuipers, E. J. & Peppelenbosch, M. P. Functional genomic
analyses of the gut microbiota for CRC screening. Nat. Publ. Gr. 10, 741–745
(2013).

6. Valles-colomer, M. et al. The neuroactive potential of the human gut
microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019).

7. Vandeputte, D. et al. Quantitative microbiome profiling links gut community
variation to microbial load. Nature 551, 507 (2017).

8. Falony, G. et al. Population-level analysis of gut microbiome variation. Science
352, 560–564 (2016).

9. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers
for gut microbiome composition and diversity. Science 352, 565-9 (2016).

10. Mcdonald, D. et al. American gut: an open platform for citizen science
microbiome research. mSystems 3, 1–28 (2018).

11. Jackson, M. A. et al. Gut microbiota associations with common diseases and
prescription medications in a population-based cohort. Nat. Commun. 9, 2655
(2018).

12. Yatsunenko, T. et al. Human gut microbiome viewed across age and
geography. Nature 486, 222–227 (2012).

13. Qin, J. et al. A human gut microbial gene catalogue established by
metagenomic sequencing. Nature 464, 59–65 (2010).

14. The human microbiome Consortium. Structure, function and diversity of the
healthy human microbiome. Nature 486, 207–214 (2012).

15. Zhang, W. et al. Gut microbiota community characteristics and disease-
related microorganism pattern in a population of healthy Chinese people. Sci.
Rep. 1–10 https://doi.org/10.1038/s41598-018-36318-y (2019).

16. David, L. A. et al. Host lifestyle affects human microbiota on daily timescales.
GenomeBiology 15, 1–15 (2014).

17. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol.
12, 1–8 (2011).

18. Johnson, A. J. et al. Daily sampling reveals personalized diet- microbiome
associations in humans. Cell Host Microbe 25, 789–802 (2019).

19. Poyet, M. et al. A library of human gut bacterial isolates paired with
longitudinal multiomics data enables mechanistic microbiome research. Nat.
Med. 25, 1442–1452 (2019).

20. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human
Microbiome Project. Nature 550, 61–66 (2017).

21. Levy, R. et al. Longitudinal analysis reveals transition barriers between
dominant ecological states in the gut microbiome. Proc. Natl Acad. Sci. U.S.A.
117, 13839–13845 (2020).

22. Bouchard-mercier, A., Rudkowska, I., Lemieux, S., Couture, P. & Vohl, M. The
metabolic signature associated with the Western dietary pattern: a cross-
sectional study. Nutr. J. 12, 1–9 (2013).

23. Bjarnason, I. The use of fecal calprotectin in inflammatory bowel disease.
Gastroenterol. Hepatol. 13, 53–56 (2017).

24. Costea, P. I. et al. Enterotypes in the landscape of gut microbial community
composition. Nat. Microbiol. 3, 18–16 (2018).

25. Knights, D. et al. Supervised classification of microbiota mitigates mislabeling
errors. ISME J. 5, 570–573 (2011).

26. Holmes, I., Harris, K. & Quince, C. Dirichlet multinomial mixtures: generative
models for microbial metagenomics. PLoS ONE 7, e30126 (2012).

27. Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163
(2016).

28. Xiao, X., Locey, K. J. & White, E. P. A process-independent explanation for the
general form of Taylor’ s Law. Am. Nat. 186, (2015).

29. Martínez, I., Muller, C. E. & Walter, J. Long-term temporal analysis of the
human fecal microbiota revealed a stable core of dominant bacterial species.
PLoS ONE 8, e69621–e69621 (2013).

30. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol.
12, R50 (2011).

31. Turroni, S. et al. Temporal dynamics of the gut microbiota in people sharing a
confined environment, a 520-day ground-based space simulation, MARS500.
Microbiome 5, 39 (2017).

32. Shade, A., Caporaso, J. G., Handelsman, J., Knight, R. & Fierer, N. A meta-
analysis of changes in bacterial and archaeal communities with time. ISME J.
https://doi.org/10.1038/ismej.2013.54 (2013).

33. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473,
174–180 (2011).

34. Ding, T. & Schloss, P. D. Dynamics and associations of microbial community
types across the human body. Nature https://doi.org/10.1038/nature13178
(2014).

35. Koren, O. et al. A guide to enterotypes across the human body: meta-analysis
of microbial community structures in human microbiome datasets. PLoS
Comput. Biol. 9, e1002863 (2013).

36. Reynders, T. et al. Gut microbiome variation is associated to Multiple Sclerosis
phenotypic subtypes. Ann. Clin. Transl. Neurol. published, (2020).

37. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut
microbiota dysbiosis. Nature 581, 310–315 (2020).

38. Gonze, D., Lahti, L., Raes, J. & Faust, K. Multi-stability and the origin of
microbial community types. ISME J. 11, 2159–2166 (2017).

39. Mcminds, R. & Thurber, R. V. Stress and stability: applying the Anna
Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).

40. Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. ScienceDirect microbial
communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018).

41. Jackson, C. H. Multi-state models for panel data: the msm package for R. J.
Stat. Softw. 38, 1–29 (2011).

42. Vandeputte, D. et al. Stool consistency is strongly associated with gut
microbiota richness and composition, enterotypes and bacterial growth rates.
Gut https://doi.org/10.1136/gutjnl-2015-309618 (2015).

43. Tigchelaar, E. F. et al. Gut microbiota composition associated with stool
consistency. Gut https://doi.org/10.1136/gutjnl-2015-310328 (2015).

44. Falony, G., Vieira-silva, S. & Raes, J. Richness and ecosystem development
across faecal snapshots of the gut microbiota. Nat. Microbiol. 3, 526–528
(2018).

45. Vieira-Silva, S. et al. Species-function relationships shape ecological properties
of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016).

46. Vandeputte, D. et al. Stool consistency is strongly associated with gut
microbiota richness and composition, enterotypes and bacterial growth rates.
Gut 65, 57–62 (2016).

47. Vieira-Silva, S. et al. Species–function relationships shape ecological properties
of the human gut microbiome. Nat. Microbiol. 124, 16088 (2016).

48. Sandle, G. I. Salt and water absorption in the human colon: a modern
appraisal. Gut 43, 294–LP – 299 (1998).

49. Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern
affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017
(2014).

50. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host
transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).

51. Turnbaugh, P. J. et al. A core gut microbiome in Lean and Obese Twins. 457,
480–484 (2009).

52. Costello, E. K. et al. Bacterial community variation in human body habitats
across space and time. Science 326, 1694–1697 (2009).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27098-7

12 NATURE COMMUNICATIONS |         (2021) 12:6740 | https://doi.org/10.1038/s41467-021-27098-7 | www.nature.com/naturecommunications

http://www.raeslab.org/software/QMP
http://www.raeslab.org/software/QMP
https://github.com/raeslab/temporal_variability_microbiome_qmp
https://github.com/raeslab/temporal_variability_microbiome_qmp
https://doi.org/10.1038/s41564-019-0483-9
https://doi.org/10.1038/s41564-019-0483-9
https://doi.org/10.1038/s41598-018-36318-y
https://doi.org/10.1038/ismej.2013.54
https://doi.org/10.1038/nature13178
https://doi.org/10.1136/gutjnl-2015-309618
https://doi.org/10.1136/gutjnl-2015-310328
www.nature.com/naturecommunications


53. The human microbiome Project Consortium. Structure, function and diversity
of the healthy human microbiome. Nature 486, 207–214 (2012).

54. Gilbert, J. A. et al. Microbiome-wide association studies link dynamic
microbial consortia to disease. Nature 535, 94–103 (2016).

55. Bartlett, J. W. & Frost, C. Reliability, repeatability and reproducibility: analysis
of measurement errors in continuous variables. Ultrasound Obstet. Gynecol.
31, 466–475 (2008).

56. Goodwin, L. D. & Leech, N. L. Understanding correlation: factors that affect
the size of r. J. Exp. Educ. 74, 249–266 (2010).

57. Van Peer, A. Variability and impact on design of bioequivalence studies. Basic
Clin. Pharmacol. Toxicol. 106, 146–153 (2010).

58. Patterson, S. D., Zariffa, N. M.-D., Montague, T. H. & Howland, K. Non-
traditional study designs to demonstrate average bioequivalence for highly
variable drug products. Eur. J. Clin. Pharmacol. 57, 663–670 (2001).

59. Lane, S. P. & Hennes, E. P. Power struggles: estimating sample size for
multilevel relationships research. J. Soc. Pers. Relat. 35, 7–31 (2017).

60. Johnson, A. J. et al. Daily sampling reveals personalized diet- microbiome
associations in humans article daily sampling reveals personalized diet-
microbiome associations in humans. Cell Host Microbe https://doi.org/
10.1016/j.chom.2019.05.005 (2019).

61. Holly, D. X., Lauren, D. X. X., Shook, P., Anna, D. X. & X, D. X. Dietary intake
and physical activity assessment: current tools, techniques, and technologies
for use in adult populations. Am. J. Prev. Med. 55, e93–e104 (2018).

62. Pepper, J. W. & Rosenfeld, S. The emerging medical ecology of the human gut
microbiome. Trends Ecol. Evol. 27, 381–384 (2012).

63. Lima-Mendez, G. et al. Determinants of community structure in the global
plankton interactome. Science 348, 1262073 (2015).

64. David, L. A. et al. Diet rapidly and reproducibly alters the human gut
microbiome. Nature 505, 559–563 (2014).

65. Baxter, N. T. et al. Dynamics of human gut microbiota and short-chain fatty
acids in response to dietary interventions with three fermentable fibers. MBio
10, 1–13 (2019).

66. Lin, D. et al. Association of dietary fibre intake and gut microbiota in adults.
Br. J. Nutr. 120, 1014–1022 (2018).

67. Under Armour. myfitnesspal. (2019). Available at: https://www.myfitnesspal.
com/.

68. Glow-Inc. Glow. (2019). Available at: https://glowing.com/.
69. Lovett, J. L. et al. Oral contraceptives cause evolutionarily novel increases in

hormone exposure A risk factor for breast cancer. Evol. Med. Public Health 4,
97–108 (2017).

70. Tito, R. Y. et al. Dialister as a microbial marker of disease activity in
spondyloarthritis. Arthritis Rheumatol. 69, 114–121 (2017).

71. Hildebrand, F., Tadeo, R., Voigt, A. Y., Bork, P. & Raes, J. LotuS: an efficient
and user-friendly OTU processing pipeline. Microbiome 2, 1–7 (2014).

72. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina
amplicon data. Nat. Methods 13, 581–583 (2016).

73. Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB:
improved tools for interpreting rRNA gene abundance in bacteria and archaea
and a new foundation for future development. Nucleic Acids Res. 43,
D593–D598 (2015).

74. Heaton, K. W. et al. Defecation frequency and timing, and stool form in the
general population: a prospective study. Gut 33, 818–824 (1992).

75. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive
analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

76. Oksanen, J. et al. vegan: community ecology package. R package version 2.2-1.
(2015).

77. Morgan, M. DirichletMultinomial: Dirichlet-Multinomial Mixture Model
machine learning for microbiome data. R package version 1.14.0. (2016).

78. Morgan, A. M. & Morgan, M. M. Package ‘DirichletMultinomial’. (2014).
https://doi.org/10.1371/journal.pone.0030126.Author(s)Maintainer

79. Said, S. & Dicky, D. Testing for unit roots in autoregressive-moving average
models of unknown order. Biometrika Trust 71, 599–607 (2019).

80. Qiu, D. Package ‘ aTSA’. CRAN (2015).
81. Nekola, J. C. et al. The distance decay of similarity in biogeography and

ecology. J. Biogeogr. 26, 867–878 (1999).

82. Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-
effects models using lme4. J. Stat. Softw. 67, (2015).

Acknowledgements
We would like to thank all study participants, Leen Rymenans and Chloë Verspecht for
fecal DNA extraction and library preparation, Dr. Kristin Verbeke for facilitating
moisture content determinations, Dr. Jennie Lovett and Dr. Beverly Strassman for
sharing data on endogenous hormone levels, Dr. Youssef Darzi for assistance with
sequence preprocessing before DADA2 implementation, Dr. Sara Vieira-Silva for help
with metadata pre-processing, Dr. Gwen Falony and Dr. Sara Vieira-Silva for advice on
study design and analysis, Dr. Astrid Vermeulen for advice on dietary data, Dr. Mireia
Valles-Colomer for discussions on GLMs, Dr. Dan Reuman for advice on Taylor’s law,
and Martial Luyts for statistical advice. DV was funded by a post-doctoral fellowship
from the Research Foundation Flanders (FWO-Vlaanderen, grant numbers 12Q8919N
and 12K5116N). GK has received funding from IWT (grant number: IWT: 151547). This
work is further supported through funding by VIB, the Rega institute for Medical
Research, KU Leuven, FWO (EOS grant ‘MiQuant’, G0G4118N and Research Project
G095516N) and H2020 SYSCID (grant number 733100).

Author contributions
This study was conceived by D.V. and J.R. Experiments were designed by D.V. Sampling
of the cohort was set up by D.V. and carried out by D.V., L.D., and J.S. Experimental
work was performed by D.V. (moisture content & preparation of calprotectin mea-
surements), L.D. (DNA extractions & library preparation), and G.K. (flow cytometry
analysis). Calprotectin measurements were performed in the laboratory of S.V. Pre-
processing was carried out by D.V. and L.D. (metadata), and D.V. and R.T. (sequencing
data). Statistical analyses were planned by D.V., K.F., and J.R. and executed by D.V. D.V.
and J.R. drafted the manuscript and wrote the paper. All authors revised the article and
approved the final version for publication.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-27098-7.

Correspondence and requests for materials should be addressed to Jeroen Raes.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27098-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6740 | https://doi.org/10.1038/s41467-021-27098-7 | www.nature.com/naturecommunications 13

https://doi.org/10.1016/j.chom.2019.05.005
https://doi.org/10.1016/j.chom.2019.05.005
https://www.myfitnesspal.com/
https://www.myfitnesspal.com/
https://glowing.com/
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1038/s41467-021-27098-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Temporal variability in quantitative human gut microbiome profiles and implications for clinical research
	Results
	20 dense fecal microbial time series of Belgian women
	High intra- versus inter-individual variation
	Implications of high intra-individual variation in genus abundances for clinical research

	Discussion
	Methods
	Ethical compliance
	Study cohort
	Sample and metadata collection
	Stool moisture
	Calprotectin
	Hormones
	Microbial load determination through flow cytometry
	Microbiota phylogenetic profiling of the study cohort
	Sequencing data pre-processing
	Relative microbiome profiles (RMPs)
	Quantitative microbiome profiles (QMPs)
	Quality control & technical variation
	Statistical analyses
	Summary statistics
	Dietary lag
	Fecal microbiome derived features
	Alpha diversity
	Beta diversity
	Enterotyping
	Mislabeling
	Intraclass correlation coefficient
	Core, persistent, transient, and person-specific genera
	Fold changes in genus abundance
	Stationarity
	Mean&#x02013;nobreakvariance relationships (Taylor’s law, TL)
	Error on median genus abundances with increasing timepoints
	Principal coordinates analysis (PCoA)
	Similarity decay analysis
	Estimation of the community variation explained by metadata variables
	Enterotype shifts and compositional dissimilarity
	Enterotype shifts and associations with metadata
	Characterization of within and between-subject effects of metadata on community characteristics or genus abundance
	Over all individuals
	Per individual

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




