
ARTICLE

A meritocratic network formation model for the
rise of social media influencers
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Many of today’s most used online social networks such as Instagram, YouTube, Twitter, or

Twitch are based on User-Generated Content (UGC). Thanks to the integrated search

engines, users of these platforms can discover and follow their peers based on the UGC and

its quality. Here, we propose an untouched meritocratic approach for directed network for-

mation, inspired by empirical evidence on Twitter data: actors continuously search for the

best UGC provider. We theoretically and numerically analyze the network equilibria prop-

erties under different meeting probabilities: while featuring common real-world networks

properties, e.g., scaling law or small-world effect, our model predicts that the expected in-

degree follows a Zipf’s law with respect to the quality ranking. Notably, the results are robust

against the effect of recommendation systems mimicked through preferential attachment

based meeting approaches. Our theoretical results are empirically validated against large

data sets collected from Twitch, a fast-growing platform for online gamers.
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Especially since the explosion of online services in the past
couple of decades, the impact of social networks on our lives
has become more and more multifaceted: they play central

roles, e.g., in the dissemination of information1, in the adoption
of new technologies2, in the diffusion of healthy behavior3, in the
formation and polarization of public opinion4,5. To advance our
understanding of the phenomena that take place within these
platforms, there has been a recent coming-together of multiple
disciplines in the study of social networks. Much of the attention
has been devoted to measuring the macroscopic properties of
these networks, e.g., degree, density, or connectivity, as well as to
understanding the microscopic formation mechanisms6.

Along with the rapid research progress, nowadays online social
networks are also evolving into new forms. Compared with those
that flourished in the first decade of the 21st century, e.g., Face-
book and LinkedIn, today’s most popular platforms, such as
Twitter, Instagram, or TikTok, exhibit some noticeably distin-
guishing features. One of the most prominent differences is that
these new online social platforms are directed networks that do
not require mutual consent for a friendship. As such, the lifeblood
of these virtual friendships is the User-Generated Content
(UGC)7,8: in 2020, every day 500 million tweets were sent
(www.dsayce.com/social-media/tweets-day/), and >80 million
Instagram pictures were posted (www.omnicoreagency.com/
instagram-statistics/). Thanks to the use of hashtags and inte-
grated search engines, these new social platforms encourage their
users to explore the UGC based on their interests. Thereby, users
tend to follow real-life strangers and create interest-based
communities.

The statistical features of the aforementioned directed UGC-
based online social platforms are not the same as of real-life social
networks. Yet, these directed UGC-based online platforms largely
affect our societies in terms of, e.g., public opinion polarization9,
or spreading of (mis)information10. Moreover, since these
directed platforms increase the possibility to reach wide audiences
(way beyond real-life friends), users can now rapidly gain
popularity11 through their UGC, and become the so-called new
influencers12. This trend has deeply influenced consumers’ and
companies’ behavior in markets13 to the point that >70% of US
businesses engaged Instagram influencers to promote their pro-
ducts in 2017 (www.emarketer.com).

Given the potentially profound impacts of the UGC-based
online social platforms on public opinions and economic beha-
vior, as well as the spreading potential of highly influential nodes,
it is important to understand (i) how the UGC relates to the
emergence of tremendously fast-growing social media influencers,
and (ii) what are the properties of the resulting networks.

Intuitively, better quality UGC is more likely to attract users
because of its higher emotional value14,15. Thus, the network
formation process on these platforms depends on a fundamental
ingredient, the quality of the UGC. However, except for the fit-
ness model16 in which users are connected with probability
proportional to the individuals’ fitness attributes, the large mul-
tidisciplinary interest in the study of network formation has so far
privileged topological and socio-economic aspects observed in
offline social networks (or in online social networks which mimic
them, e.g., Facebook) and neglected the effect of the UGC. For
example, Stochastic Actor-Oriented Models17, in sociology, and
strategic network formation models18, in economics, assume
actors decide their ties according to a utilitarian principle based
on sociological elements, such as reciprocity or network closure19,
or topological measures, e.g., in-degree or closeness centrality20,
or a combination of them21. These models typically lead to net-
works characterized by bilateral social connections and high
transitivity. However, on Instagram, only 14% of the relationships
are reciprocated and the average clustering coefficient is smaller

than 10% (for comparison, on Facebook reciprocity and cluster-
ing score, respectively, 100% and 30%)22. Among the random
graph models (see the seminal work by Erdös and Rényi23 and see
refs. 24–26 for extensive surveys), the preferential attachment
model, proposed by Barábasi and Albert27, in which newborn
nodes choose connections proportional to the degree, has been
widely acknowledged. While this mechanism leads to the scale-
free effect observed in many real-world networks28, this rich-get-
richer philosophy does not justify the rise of new Instagram
celebrities, i.e., the so-called Instafamous29, whose success is built
without prior fame.

The prevalence of directed, UGC-based social networks and the
absence of proper mathematical models inspire us to think about
their formation processes from an untouched perspective. In this
paper, we propose a simple yet predictive network formation
mechanism that incorporates both the utilitarian principle and
the UGC quality. We assume users have a common interest and
we associate them with an attribute defining the quality of their
UGC. To define a UGC-based formation process, we collected a
longitudinal Twitter data set on network scientists30. Analyzing
the temporal sequence of connections, we found evidence that the
formation process on directed social networks results from the
individuals’ continuous search for better quality UGC, measured
by the alignment with the follower’s interests, i.e., homophily31,
and its goodness32. Based on this sociological evidence, in our
model agents meet with uniform or in-degree-based probability,
and strategically create their ties according to a meritocratic
principle, i.e., based on the UGC quality. Depending on the
application, the model can incorporate users that do not actively
contribute with their UGC, e.g., viewers on YouTube.

We analytically and numerically study the proposed network
formation dynamics as well as the network properties at equili-
brium under different meeting probability functions. First, we
found that the out-degree distribution has characteristics similar
to a gamma distribution, with expectations equal to the harmonic
number of the network size. Furthermore, the resulting networks
feature real-world social networks’ properties, e.g., small diameter
and small, but not vanishing, clustering coefficient, and a sig-
nificant overlap in the followers’ sets as a result of the homophily
that characterizes agents with similar interests. Moreover, the in-
degree distribution satisfies the well-known scaling property27,
but we also discover a specific pattern: the highest quality node
expects to have twice (respectively, three times) as many followers
as the second (respectively, third) highest, and so on. This
empirical regularity has been found in many systems33 and goes
under the name of Zipf’s law34. Notably, this result is robust
against the effect of recommendation systems (which increase the
visibility of popular nodes). We emphasize that, despite being
widely assumed to be ubiquitous for systems where objects grow
in size35, the principle underlying the origin of Zipf’s law is an
open research question (see ref. 33 for a survey), and our quality-
based rule reveals an intuitive, meritocratic mechanism for it.
Finally, to empirically validate our model, we collected three
data sets36 from Twitch, a popular platform for online gamers
(https://www.twitch.tv/p/press-center/). The successful compar-
ison with our theoretical predictions indicates that our model,
despite its simple and parsimonious form, already captures sev-
eral real-world properties.

Results
The majority of today’s online social networks offer the users the
possibility to actively contribute to the platform’s growth by
sharing different forms of UGC, according to their interests,
competencies, and willingness. Looking from a different per-
spective, users are also exposed to the content generated by others
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on the platform. Thanks to the integrated search engines and the
use of hashtags they can explore this content, discover users with
similar interests, and ultimately decide to become followers.
Given the limited time, they can spend on social media platforms,
intuitively users seek to optimize the list of followees so as to
receive high-quality content.

Meritocratic principle. In order to support our intuition, we
collected a longitudinal Twitter data set30 on a network composed
of >6000 scientists working in the area of complex social net-
works. Compared with other data sets, one of the advantages is
that we can expect most of the complex network scientists to be
active on Twitter, given that they consistently study social net-
works effects. Moreover, the most popular nodes can be easily
associated with renowned researchers in the field. Arguably, the
number of followers can be considered as a proxy for the quality
of the content generated by a user. We support this hypothesis by
manually inspecting and labeling the top in-degree nodes.

Then, we enumerate the agents in decreasing in-degree order,
so that agent 1 (presumably providing the best UGC) is the most
followed, agent 2 is the second most, and so on. For each agent i,
we reconstruct the temporal sequence of the outgoing connec-
tions ði1; i2; ¼ ; idouti

Þ, where ik is the index (rank) of the

destination of the k-th outgoing connection of agent i, and douti
is her final out-degree. Then, for each agent i we compute the
probability

pi ¼
fj 2 2; ¼ ; douti

� �
; s.t.ij >median fi1; ¼ ; ij�1gg

��� ���
douti � 1

; ð1Þ

that estimates the likelihood that a new connection of agent i is
higher (in ranking) than the median of the previous connections.
At one extreme, for pi= 0 the sequence ði1; i2; ¼ ; idouti

Þ is such
that every new followee has a rank smaller than (or equal to) the
median of the current list of followees’ ranks, i.e.,
ij ≤ median fi1; ¼ ; ij�1g. As such, the rolling median, i.e., the
median computed among the first k elements, is always non-
increasing in k, and the user is continuously seeking better UGC.
Conversely, for pi= 1 the rolling median is always increasing.

In Fig. 1 we compare the histogram of the empirical
distribution of pi (in purple) with the null hypothesis, plotted

in blue, in which we remove the temporal-ordered pattern of the
sequence. The elements in agent i’s followees set F out

i :¼
fi1; i2; ¼ ; idouti

g are randomly re-ordered: in the new sequence
ð�i1;�i2; ¼ ;�idouti

Þ, the k-th element of the list is drawn uniformly at

random from F out
i n �i1; ¼ ;�ik�1

� �
. The null hypothesis has a

median value of ~0.5, which is easy to interpret: if the sequence is
completely random, adding an extra element to the partial
sequence has a 50% probability of being above the median, and
50% probability of being below it. Comparing the two distribu-
tions, we notice that empirical data tend to have a decreasing
quality-ranking sequence of followees. As the difference is
statistically significant, we can reject the hypothesis that the
temporal sequence is random.

Ultimately, this empirical evidence confirms our intuition, i.e.,
users tend to continuously increase the quality threshold of the
new followees. This characteristic, though, is missing in the
network formation literature, as there is typically no quality
associated with the users. For instance, in the preferential
attachment model27, each user selects m followees proportional
to their in-degree. If the network is large enough, the probability
of selecting a node k in the d-th draw does not depend on d.
Therefore, the temporal sequence of connections of the
preferential attachment model is similar to the null hypothesis.
Moreover, even in the fitness model16 where the quality (fitness)
is considered, users tend to connect to high-quality nodes first,
rather than later.

Quality-based model. To formalize our quality-based model, we
consider the unweighted directed network among N ≥ 2 agents
whose UGC revolves around a specific common interest, e.g., a
particular traveling destination. We denote the directed tie from i
to j with aij 2 0; 1f g, where aij= 1 means i follows j. Then, we
assume there are no self-loops and that each agent i can only
control her followees aij but not her followers aji. Similarly to the
approach in the fitness model16, we endow each actor i with an
attribute qi, drawn from a probability distribution, e.g., uniform,
normal, exponential distribution, that describes the average
quality of i’s content32, e.g., a picture taken at that traveling
destination. As will be manifested later, our model predictions are
independent of the numerical representation of these qualities,
which could be somehow subjective and arbitrary. Instead, in our
model, only the ordering of the individual qualities matters.
Therefore, the choice of the underlying probability distribution
does not affect any of the following results, contrary to the fitness
model16.

The quality qi can be seen as the expectation of a Bernoulli
random variable Qi describing the probability of followers liking
agent i’s content. Higher values of qi are then associated with
better UGC. A value of zero, instead, can be used to model users
that do not produce any UGC. With this setup, the model can be
directly applied to the platforms, e.g., YouTube or Twitch, in
which users can be partitioned into two classes, i.e., the content
creators and their followers (or viewers, see Supplementary
Note 1).

We then consider a sequential dynamical process starting from
the empty network, where at each time-step t 2 1; 2; ¼f g each
actor i picks another distinct actor j chosen randomly from a
probability distribution on 1; ¼ ; i� 1; iþ 1; ¼ ;Nf g. In the
following theoretical analysis, we consider the uniform distribu-
tion. However, we also integrate into our discussion the
numerical comparison between uniform distribution and the
in-degree-based preferential attachment meeting process.

To reflect the meritocratic principle, we base the tie formation
decision on the comparison between i’s current followees’ and j’s

Fig. 1 Median-rule violation on the Twitter data set. In purple, we plot the
histogram of the probability pi as defined in eq. (1). The data refer to
N= 6474 agents out of the original 6757 by considering those with an out-
degree of at least two. The median of the distribution is 0.436 (mean and
std: 0.450, 0.189). In light blue, we compute the same distribution upon
reshuffling the temporal sequences of the connections (null hypothesis).
The median of this distribution is 0.5 (mean and std: 0.489, 0.173). The
two distributions are statistically significantly different (p value of
Kolmogorov–Smirnov test ≪ 10−8).
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qualities. Let the payoff function of agent imeasure the maximum
quality received by i, i.e.,

ViðtÞ :¼ max
j2F out

i ðtÞ
qj; ð2Þ

where F out
i ðtÞ :¼ fj; s.t. aijðtÞ ¼ 1g denotes the set of i’s followees

at time t. According to a utility maximization principle, we define
the update process through the following rule:

aijðt þ 1Þ ¼
1; if qj >ViðtÞ;
aijðtÞ; otherwise ;

(
ð3Þ

meaning that i will add j in her followees’ set if j provides better
quality content compared to i’s current followees. Note that, if i
finds a node that already belongs to her set of followees, the
connection will not be re-discussed. While, intuitively, this may
lead to a large out-degree, we will show that this is not the case
because the cost of good-quality connections is infinitely low, but
the cost of poor-quality ones is infinitely high.

We emphasize that the choice of the payoff function eq. (2)
reflects the natural continuous chase for the maximum quality37

(exploitation) while minimizing the effort owing to non-
improving connections. Alternatively, one could consider
smoother payoffs such as the followees’ average quality

ViðtÞ :¼
∑j2F out

i ðtÞqj
jF out

i ðtÞj ;

as in ref. 32, which allows for more exploration, at the expense of
the least-effort principle. Both definitions, though, share the same
meritocratic principle previously discussed.

Convergence. A natural question that arises when defining a
dynamical process is whether it reaches or not an equilibrium. In
what follows we show that an equilibrium state is reached almost
surely. To do so, from now on we assume that there exist no two
agents with equal quality. Yet, we emphasize that the model and
our analysis can be generalized to the case where two or more
agents have the same quality (see Supplementary Fig. 6).

Then, without loss of generality, we can re-order the agents by
decreasing quality qi, i.e.,

q1 > q2 > ¼ > qN :

In this way, agent 1 is the top-quality agent, agent 2 is the second-
best, and so on. According to our dynamics, any node i > 1 creates
new links towards increasingly quality agents, until finding the
top-quality node 1. Likewise, node 1 creates new links until
finding the second-highest quality agent, node 2. Convergence is
guaranteed by the following theorem, proven in the Methods
section.

Theorem 1. (Convergence) For any set of qualities q1; ¼ ; qN
� �

,
the network reaches an equilibrium almost surely. Moreover, the
probability of reaching equilibrium within t time-steps reads as
follows:

P½An equilibrium is reached within t time steps �
¼ P½a12ðtÞ ¼ 1; a21ðtÞ ¼ 1; ¼ ; aN1ðtÞ ¼ 1�
¼ P½a12ðtÞ ¼ 1� ´P½a21ðtÞ ¼ 1� ´ ¼ ´P½aN1ðtÞ ¼ 1�

¼ 1� N � 2
N � 1

� �t� �N

:

From the above theoretical cumulative distribution function,
we derive the expected number of time-steps to reach
equilibrium. The result, shown in Fig. 2 (in blue), indicates that
the number of time-steps grows almost exponentially in the
network size N.

For comparison, we consider two alternative scenarios for the
meeting probability distribution. In orange, we use a preferential
attachment approach: at each time-step, each agent i meets a
distinct agent j according to a probability that is proportional to
the current in-degree of the agent j. By doing so, the quality-based
dynamics (in the follow/not follow decision) are combined
with a meeting process that coarsely resembles the effect of
recommendation systems (increasing the visibility of high in-
degree nodes). In purple, the meeting agent is chosen with 50%
probability, from the uniform distribution, and with the
remaining 50% probability, according to the preferential attach-
ment mechanism. As the numerical results indicate, the
preferential attachment-based meeting process significantly
reduces the number of required time-steps, even when mixed
with a uniform distribution.

In-degree distribution. The network structure at equilibrium is a
consequence of the probability distribution ruling the meeting
process, and of the meeting order itself. Even though there can be
multiple equilibria, some network macroscopic properties can be
statistically described. A preliminary observation is that, at
equilibrium, every other node follows node 1, and node 1 follows
node 2. Before studying the stationary state, we statistically
describe the transient in-degree distribution as a function of the
quality ranking i. In particular, we provide an analytical formula
for the expected in-degree of each node as a function of i, as
stated in the following theorem.

Theorem 2. (In-degree distribution) The probability that node i is
followed by node j ≠ i after t > 0 time-steps is:

P½ajiðtÞ ¼ 1� ¼
�piðtÞ :¼ 1

i�1 1� N�i
N�1

� �t	 

; if j < i;

p
i
ðtÞ :¼ 1

i 1� N�i�1
N�1

� �t	 

; if j > i:

8><
>: ð4Þ

Moreover, the probability of node i having in-degree dini ðtÞ ¼
d 2 ½0; N � 1� after t time-steps is given by

P dini ðtÞ ¼ d
� �
¼ ∑

d

k¼0

i� 1
k

� �
�pki 1� �pi
� �i�1�k N � i

d � k

� �
pd�k
i

1� p
i

	 
N�i�ðd�kÞ
;

ð5Þ

Fig. 2 Numerical analysis of the number of time-steps until convergence.
For each value of N, we run 1000 simulations, in three different settings for
the meeting process probability distribution: in blue, we use a uniform
distribution (the dashed line also shows the theoretical results), in orange,
we use a preferential attachment mechanism, and, in purple, we use a
mixed distribution (50% chance of uniform distribution and 50%
chance of preferential attachment, for each meeting). The data points
indicate the median value. The shaded area indicates the first and third
quantile.
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where we omitted the time-step dependency on �pi and p
i
. Finally,

the expected in-degree of node i after t time-steps reads as:

E dini ðtÞ
� � ¼ N

i
� N � i

N � 1

� �t

þ N � i
i

N � i� 1
N � 1

� �t� �
: ð6Þ

The proof of the theorem is provided in Supplementary Note 1,
whereas in Fig. 3a we show the probability density function,
together with its expectation, for a network of 1000 agents, after
t= 200 time-steps (non-stationary state). The following corollary,
instead, studies the probability density functions upon reaching
the network dynamics equilibrium.

Corollary 1. At equilibrium, the probability that node i is fol-
lowed by node j ≠ i is:

P½aji ¼ 1� :¼ lim
t!1

P½ajiðtÞ ¼ 1� ¼
�p?i :¼ 1

i�1 ; if j < i;

p?
i
:¼ 1

i ; if j > i;

(
ð7Þ

and the expected in-degree of node i reads as:

E din;?i

� � ¼ N � 1; if i ¼ 1;
N
i ; otherwise:

(
ð8Þ

Proof. First, we derive the probability of node i being followed by
node j at equilibrium by taking the limit t→∞ in eq. (4):

lim
t!1

P½ajiðtÞ ¼ 1� ¼
�p?i :¼ 1

i�1 ; if j < i;

p?
i
:¼ 1

i ; if j > i:

(

Similarly, taking the limit for t→∞ of eq. (6) yields exactly to

E din;?i

� � ¼ N � 1; if i ¼ 1;
N
i ; otherwise :

(

According to the above result, at equilibrium the best content
provider, node 1, receives N− 1 connections, node 2 has N/2
expected followers, node 3 has N/3, and so on. The result can be
intuitively reached with the following plausible reasoning: any
user that has not yet found node 1 nor node 2, has the same
probability of finding any of the two in the coming time-step. In
expectation, in half of the cases, the user will become a follower of
node 2 before finding and following (necessarily) node 1. In the
other half of the case, she will find node 1 before having seen
node 2. Thus, the expected number of followers of node 2 is half
of the expected number of followers of node 1. The reasoning can
be extended for any node j > 2.

Such a regular scaling property is called Zipf’s law34 and it is
illustrated in Fig. 3b, where we plot the expected in-degree of each
node as a function of its quality ranking, together with the probability
density functions. In the log–log scale, the expected in-degree
perfectly matches a line with coefficient −1. Real-world evidence of
Zipf’s law has been reported in many systems, including firm sizes38,
city sizes33, connections between web-pages39.

To empirically validate our results in the context of online social
networks, we collected and analyzed data from Twitch, an online
social media platform focusing on video streaming, including
broadcasts of gameplay, e-sports competitions, and real-life content.
Over the past decade, Twitch gradually became one of the most
popular social media platforms, reaching up to four million unique
creators streaming each month and 17 million average daily visitors
(https://www.twitch.tv/p/press-center/), and serving as a virtual
third place for online entertainment and social interactions40. Our
data sets consist of the followership networks in three different
categories, i.e., poker, chess, and art, where users can live-watch
broadcasters playing or discussing these arguments. Among them,
we only retain the first two categories, as the third one did not
satisfy the criterion of having a baseline community of interested
users. The description of our crawling method and of the collected
data are provided in the Methods section and in Supplementary
Note 3. In Fig. 4, we show the in-degree of the 15 most followed
users in chess and poker as a function of the rank. The empirical
data are fitted via linear regression (in the log–log plot) and look
strikingly similar to Zipf’s law.

Zipf’s law is more than a power-law. The peculiarity and
apparent ubiquity of Zipf’s law have triggered numerous efforts to
explain its origins33. Despite being a discrete distribution, Zipf’s
law is often associated with the continuous Pareto distribution,
better known as power-law41. For this reason, it is frequently seen
as the result of a linear preferential attachment process27 based on
Gibrat’s rule of proportional growth42 which leads to Yule-Simon
(power-law) distributions43. However, as noticed in35, there is
more than a power-law in Zipf: although a power-law distribution
is certainly necessary to reproduce the asymptotic behavior of
Zipf’s law at large values of rank i, any random sampling of data
does not lead to Zipf’s law and the deviations are dramatic for the
largest objects. In particular, Zipf’s law emphasizes the relation
among the top-ranking elements, which essentially correspond to
the most important nodes, i.e., the network influencers. The
typical Zipf’s sequence N,N/2,N/3,… can be observed only if
data constitutes a coherent set35. Thus, Zipf’s law is more
insightful than just a power-law.

Fig. 3 In-degree, theoretical analysis. Given a network of N= 1000 agents, the plots show the probability density functions of the in-degree (derived
through eq. (5) from eq. (4) and eq. (7)) as a function of the rank i. In orange, we also plot their expected value (equations eq. (6) and eq. (8)). The plot in
a refers to the theoretical results at t= 200, in b to the equilibrium. The plots are shown in log–log scale, to emphasize Zipf’s law: E½din;?i � ¼ N=i.
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The difference with a Pareto distribution becomes evident
when considering our in-degree probability density function,
which can be analytically derived by using the result of the
previous theorem and computing the average of each user’s
probability density function

P½din;? ¼ d� ¼ 1
N

∑
N

i¼1
P½din;?i ¼ d�:

As shown in Fig. 5, the theoretical in-degree probability density
function follows a power-law of coefficient α̂ ¼ �2:06 ± 0:003
(p value < 10−8), which is not surprising since the expected in-
degree is distributed according to a Zipf’s law (see again the
discussion in ref. 41). However, notice that the power-law fit does
not hold in the region of low-in-degree nodes (dmin= 7,

according to the Clauset algorithm44). In this region, the log-
normal distribution is a better fit compared to the power-law45.
On the other hand, the fit with a log-normal distribution is worse
(compared to the power-law) in the heavy tail of our distribution,
i.e., in the region of high-quality nodes. However, the most
noticeable difference is that, contrary to both the power-law and
the log-normal curve, our theoretical distribution is not
monotonically decreasing, especially in its right tail. The
probability of having a node of in-degree N/2 is slightly larger
than the probability of having a node of in-degree N/2 ± α, for
some range of α ≥ 1. Moreover, the probability of having a node
of in-degree in a neighborhood of N/2 is larger compared with the
power-law fit (chosen as baseline). Conversely, our theoretical
probability of having a node of in-degree slightly smaller than
N− 1 is negligible (<10−8), stating that the second-best node
cannot be too close to the best node. This is in sharp contrast with
the monotonic Pareto and log-normal distributions.

In synthesis, our probability distribution differs from Pareto and
log-normal distributions when focusing on the network influencers.
In this range, i.e., in the extreme right tail, our theoretical distribution
is similar to its power-law fit, only after logarithmically (and thus
coarsely) binning the data (as common practice when empirical data
are scattered and the distributions are continuous). Yet, without such
arguably coarse binning of the data, our theoretical distribution can
predict more accurately the Zipf’s regularity found on the top
influencers of real-world networks, as in the Twitch data set shown in
Fig. 4. We finally refer to Supplementary Note 4 (see in particular,
Supplementary Figs. 12, 13) for a detailed analysis of the empirical in-
degree distribution.

Preferential attachment meeting process. The theoretical results
on the nodes’ in-degree distributions are derived based on a uniform
distribution meeting process. In this scenario, every user has the same
probability of being found. However, most social media platforms
personalize the content users are exposed to, thus it is fundamental to
understand what can be the impact if some users have more visibility
than others. In order to do so, we numerically studied the results of a
preferential attachment in-degree-based meeting process, which
mimics the idea that popular users might get promoted (in terms of
visibility) by the platform’s recommendation system. Compared with
the preferential attachment model27, though, here we only alter the
probability of being found, but the connection will still depend on the
meritocratic principle of eq. (3). In Fig. 6, we report the results of a
mixed scenario in which the potential followee is chosen with 50%
probability from the uniform distribution, and with the remaining
50% probability from an in-degree based distribution. We refer to
Supplementary Note 2 (see in particular Supplementary Fig. 1) for
more details on the numerical comparison between uniform dis-
tribution, mixed preferential attachment, and pure preferential
attachment. Compared to the uniform distribution scenario in Figs. 3
and 5, the introduction of a mixed preferential attachment-based
meeting process slightly increases the variance of the in-degree
probability distribution of each agent. In this scenario, it becomes
possible that some low-quality agents get an initial (i.e., in the early
stage of the network formation process) advantage (purely by
chance), which gets reinforced by the (mixed) preferential attachment
mechanism. Yet, this effect quickly fades away, because potential
followers still undergo the quality threshold rule of eq. (3). On the
other hand, the (mixed) preferential attachment may penalize some
other agents, which receive fewer followers than what they would
expect with the uniform distribution process. It is remarkable that,
even after introducing the mixed preferential attachment process, the
correlation between quality and followers persists (on average): the
higher the quality, the higher the average number of followers. Even
more importantly, Zipf’s relation is robust under mixed preferential

Fig. 4 Zipf’s law on empirical Twitch data. The log–log plot shows
empirical evidence of Zipf’s law in our Twitch data sets. In blue, we report
the data on the number of followers of the top 15 users (broadcasters) in
the chess category, as well as their linear regression fit of coefficient −1.04
(Pearson coefficient, −0.98, R2= 0.96, RMSE= 0.16). In purple, the poker
data set shows a similar fitting coefficient of −0.98 (Pearson coefficient:
−0.97, R2= 0.95, RMSE= 0.17). Both fits are very close to the theoretically
expected Zipf’s law (of coefficient −1) shown in orange.

Fig. 5 In-degree probability density function. In gray, the theoretical result
for N= 1000 agents is shown. In orange, we plot the numerical distribution
resulting from 1000 simulations upon reaching equilibrium. In black, the
numerical distribution is shown after using the standard logarithmic binning
of data. Finally, we fit the numerical data with a power-law using the
algorithm in Clauset et al.44 (blue) and with a log-normal distribution
(purple).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27089-8

6 NATURE COMMUNICATIONS |         (2021) 12:6865 | https://doi.org/10.1038/s41467-021-27089-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


attachment-based meeting processes (e.g., recommendation systems).
Similarly, on the right column of Fig. 6, the average in-degree
probability distribution function is strikingly similar to the one
obtained with the uniform distribution scenario.

Out-degree distribution. Similarly to the in-degree, we can study
the statistical distribution of the nodes’ out-degree at equilibrium.
First, notice that, contrary to the in-degree, the out-degree distribu-
tion does not depend on the rank, but is uniform for all the nodes in
the network. In fact, according to the dynamics, each node creates
connections to increasing quality nodes, until reaching its own
equilibrium. Let dout;?N be the random variable describing the out-
degree (at equilibrium) of a general node i in a network of N agents.
First, note that the probability of node i > 1 finding node 1 (or node 1
finding node 2) at her first choice is simply:

P dout;?N ¼ 1
� � ¼ 1

N � 1
:

Conversely, the probability of having maximum out-degree corre-
sponds to the probability of meeting all the other nodes in increasing
quality ordering, i.e.,

P dout;?N ¼ N � 1
� � ¼ 1

ðN � 1Þ! :

Obviously, a node cannot have an out-degree larger than N−1 in a
network of N agents, thus P dout;?N ¼ d

� � ¼ 0, for all d≥N. Similarly,
P dout;?N ¼ d
� � ¼ 0, for all d < 1, every node must have out-degree of

at least 1. Then, we denote as C1 the random variable describing the
first meeting of i. C1 can take any value j 2 1; ¼ ; i� 1; iþ 1;Nf g,
with uniform probability 1/(N− 1). Then, the probability
P dout;?N ¼ d
� �

, for N ≥ 2 and 1 ≤ d ≤N− 1, can be described recur-
sively as follows:

P dout;?N ¼ d
� � ¼ ∑

i�1

j¼1
P½C1 ¼ j�P dout;?j ¼ d � 1

h i

þ ∑
N

j¼iþ1
P½C1 ¼ j�P dout;?j�1 ¼ d � 1

h i

¼ 1
N � 1

∑
N�1

j¼1
P dout;?j ¼ d � 1
h i

:

ð9Þ

In other words, P dout;?N ¼ d
� �

is equal to the sum of the probability
of agent i choosing j 2 1; ¼ ; i� 1; iþ 1; ¼ ;Nf g as first choice
times the probability of having out-degree d− 1 in a network with j
remaining nodes (the node itself and the j− 1 nodes to which she
can still connect to).

Thanks to eq. (9), we can describe the out-degree probability
functions by means of recursion on the network size N. The result
for different values of N is pictured in Fig. 7a. The out-degree
distribution exhibits non-monotonic properties (first increasing,
then decreasing) and quickly vanishing tail: extremely large values
are particularly rare. Even though the theoretical out-degree
distribution cannot be directly associated with any known
distribution, it is very close to a gamma distribution (or to a
Poisson distribution), as shown in Supplementary Fig. 2 (see also
the discussion in Supplementary Note 2). Thanks to its non-
monotonic nature and its fast decay, there are also some
similarities with the log-normal distributions (whose decrease is
more than linear in the log–log plot). On the other hand, it differs
more significantly from a power-law distribution. Despite being
observed in the in-degree distributions of many real-world social
networks, power-laws do not always properly describe their out-
degree distributions. Empirical evidence on the asymmetry
between the in- and out-degree distributions is found on
Twitter46 and YouTube47. In particular, several empirical studies
on the out-degree distributions of online social networks
highlight a much faster decrease in the probability of seeing very
high out-degree nodes48–50. Albeit some influencers on YouTube,
Instagram, or Twitch, might have one million followers, it is hard
to imagine that some users follow several thousand or even a
million of other users, since every single action of the following
someone involves a decision-making process and at least a click
on the Follow button. As a result, the out-degree distributions of
these platforms feature a clear cut-off (sometimes even artificially
imposed to prevent fake-user accounts) on the order of roughly a
thousand connections (for network samples, this clearly reduces
even further), instead of a heavy tail as featured by the power-law.

In our Twitch data sets, we find evidence of this fast drop in the
frequency of the high out-degree nodes. As shown in Fig. 8, the out-
degree probability density function is concentrated in the range
d∈ [1, 10], with the 99-percentile being at d= 15 (d= 19) in the
chess (poker) data set. As a comparison, our theoretical distribution
would predict the 99-percentile to be at d~ 10, while a power-law of
classical exponent −2 predicts it at d= 100. The maximum out-
degrees are found to be, respectively, d= 151 and d= 142, which are
higher than the maximum out-degree of the theoretical distribution
d ~ 20, but at least three orders of magnitude smaller than the
maximum predicted by a power-law of exponent −2, i.e., from the
maximum in-degree of the empirical distribution. At first glance, the
theoretical and empirical results in Figs. 7a and 8 show some
differences. In particular, compared with the data the empirical
distribution exhibits a larger frequency of low out-degree nodes. The

Fig. 6 Numerical analysis of the preferential attachment effect on the in-degree distribution. Numerical results of 1000 simulations with 1000 nodes for
a mixed process (with 50% probability, the potential followee is chosen from a uniform distribution, and with the remaining 50% from a preferential
attachment mechanism). a The color map shows the in-degree probability density function, as a function of the quality rank. In orange, the average in-
degree. In blue, Zipf’s law equals the expected in-degree in the uniform distribution scenario. b The numerical probability density functions (orange) and
their power-laws (blue) and log-normal (purple) fits are shown.
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difference can be due to the fact that the network is still in the
formation process, and many users only joined it recently. Therefore
these most recent users have just started their search and there is an
abundance of low out-degree nodes. We conjecture that another
possible reason may be the recommendation systems behind the
Twitch platform (we explored this effect by studying the numerical
out-degree distribution under preferential attachment-based meeting
process, see Supplementary Fig. 3). To better understand this
inconsistency, in Supplementary Fig. 15, we studied the stacked
frequencies of the out-degree of the followers of the 15 most followed
nodes in each data set.

From the recursive description of the probability density
function in eq. (9), it is possible to compute the expected nodes’
out-degree, as stated in the following theorem.

Theorem 3. (Out-degree distribution) At equilibrium, the nodes’
expected out-degree E dout;?N

� �
in a network of N ≥ 2 agents equals

the (N− 1)-th harmonic number:

E dout;?N

� � ¼ ∑
N�1

k¼1

1
k
:

According to the theorem, the expected out-degrees as a function
of N are given by the harmonic sequence: 1, 3/2, 11/6, 25/12, ….

The proof provided in Supplementary Note 1 is built on the
derivation of the out-degree probability distribution, however, the
result can be intuitively derived from the following observations: the
expected out-degree is uniform across all the nodes, and the sum of
the expected out-degree equals the sum of the expected in-degree of
all the nodes. From the result on the in-degree distribution (see eq.
(8)), the sum of the expected in-degree is equal to (N− 1)+N/
2+N/3+…+ 1. Thus, the expected out-degree is equal to
(N− 1)/N+N/(2N)+N/(3N)+…+ 1/N, which in fact corre-
sponds to the N− 1-th harmonic number. As shown in Fig. 7b, the
expected out-degree has a similar growth compared with the base-2
logarithm of the network size N.

Diameter and clustering. Since each node is connected, on aver-
age, to roughly log 2ðNÞ other nodes, intuitively, the network should
feature the small-world property. In Fig. 9a we provide some
numerical results on the average network diameter and average
nodes’ distance for different network sizes. According to the results,
also the network diameter has a growth rate similar to the base-2
logarithm of the network size. Moreover, the average node’s dis-
tance has even slower growth, with a value of 5 for networks of 104

nodes. These results match the empirical observations on the small-
world property of real-world networks, according to which the
distance between two randomly chosen nodes grows proportionally
to the logarithm of network size51. Moreover, they are quantita-
tively similar to previous findings on, e.g., an Instagram network
sample52 (of size equal to 44 thousand nodes) where the diameter is
found to be 11, and the average distance 3.16.

As such, our theoretical model already captures some of the most
widely observed features of real-world networks, i.e., the in-degree
scaling and the small-world properties. A third common feature is
the high clustering coefficient. Even though it has been shown that
the average value on directed social networks such as Instagram or
Twitter, is smaller than on other undirected social networks, e.g.,
Facebook, it remains on the order of 10%22. To compute the
clustering coefficient for directed networks, we adopted the class out
in the taxonomy of53 in which a triad around node i is closed when
i follows two distinct agents j and k, and there exists a tie from j to k
or from k to j. Accordingly, the clustering coefficient of i reads as

ci ¼
∑j≠i∑k≠i;jaijaikajk
∑j≠i∑k≠i;jaijaik

:

The numerical results pictured in Fig. 9b indicate that the
average clustering coefficient is monotonically decreasing in the

Fig. 7 Theoretical analysis of the out-degree distribution. a Shows the out-degree complementary cumulative distribution function for different size N of
the network. Note that the support of the distributions is [1, N−1] but with very quickly vanishing right tails. b Shows, in bold blue, the expected out-degree
as a function of the number of agents N in the network. In gray, the function log 2ðNÞ shows a similar growth. The shaded area represents the confidence
interval obtained with one standard deviation computed from the out-degree distribution using the definition,
Var dout;?N

� � ¼ ∑N�1
d¼0 d�E dout;?N

� �� �2
P dout;?N ¼ d
� �

, and the recursive formula eq. (9).

Fig. 8 Empirical analysis of the out-degree distribution. The plot shows
the complementary cumulative distribution function of the out-degree of
the Twitch data sets concerning the users in the categories chess (blue)
and poker (purple). For comparison, we plot the results of our theoretical
distribution with N= 350 (gray), and of a power-law of exponent −2
(orange).
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network size N, yet it remains above 10% on networks composed
of 106 nodes. Only a marginal increase is observed when
introducing the preferential attachment on the meeting process
(see the comparison in Supplementary Fig. 4).

Audience overlap. The previous analysis on the clustering coef-
ficient studied the probability that two user’s followees are friends
with each other. Similarly, it is interesting to analyze the prob-
ability that two (highly followed) users are followed by the same
third user. In other words, we aim at studying the similarity
between the followers’ sets of the different agents. The similarity
between agents reveals the existence of common interest, and it
can be used for link prediction54 or to improve the recommen-
dation systems55. Inspired by the Jaccard index introduced for
species similarities56, and already used to measure followers’
overlap57, we propose the following real-valued matrix O to
measure the overlap between the audiences of two agents:

Oði; jÞ :¼
F in

i \ F in
j

��� ���
F in

i

�� �� 2 0; 1½ �; ð10Þ

if F in
i

�� ��> 0, and 0 otherwise, where F in
i denotes the set of fol-

lowers of agent i. In other words, this coefficient measures the
number of common followers of i and j, normalized by the
number of followers of i. Note that, when agent i is lower in the

ranking list with respect to agent j, i.e., i > j, we typically have
jF in

i j<jF in
j j, and eq. (10) corresponds to the Szymkiewicz-

Simpson coefficient, also known as the overlap coefficient58,
where the denominator is replaced by minfjF in

i j; jF in
j jg. Com-

pared with it and to the Jaccard index56, whose denominator is
jF in

i ∪F in
j j, our measure leads to a non-symmetric matrix.

In Fig. 10a, we plot the numerical results on the overlap index
for networks of 105 nodes, upon reaching the equilibrium. The
results are averaged over 10 simulations. According to the
previous results, all the nodes should follow node 1 at
equilibrium, thus any follower of a node i should also be a
follower of node 1 and the overlap in the first column is simply
(O(i, 1)= 1). Moreover, consistent with our result in eq. (8), we
observe the Zipf’s sequence 1, 1/2, 1/3, …, in the first row
(O(1, j)= 1/j). Perhaps surprisingly, a similar pattern appears in
all the rows, upon averaging on a sufficiently large number of
simulations. We emphasize that the results are independent of the
number of nodes N. An intuition for these observations is
provided in Supplementary Fig. 5.

To further validate our theoretical model, we perform the same
analysis on the overlap among the 15 most followed nodes of our
Twitch data sets, reported in Fig. 10b (for the chess data set) and
in Supplementary Fig. 14 (for the poker data set). Our numerical
results are qualitatively well aligned with the real-world data with

Fig. 10 Followers’ overlap analysis. Followers' overlap results among the top 15 nodes. a The average numerical results were obtained from 10 simulations
with 105 agents, upon reaching equilibrium. b The results from the Twitch data set related to the chess category. An equivalent result for the poker data set
is reported in Supplementary Fig. 14.

Fig. 9 Diameter and clustering analysis. Numerical analysis of a the average diameter and average nodes' distance, and b average clustering coefficient for
different network sizes. The shaded area indicates one standard deviation from the average value. For the plot on the left, we run 100 simulations for each
value of N (except for the last data-point for which we run 25 simulations). For the plot on the right, we run 100 simulations if N≤ 104, and one simulation
otherwise.
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respect to the horizontal decrease of the overlap index. Yet, the
Twitch data sets show that the overlap index is not always
uniform across the different rows. For instance, in the chess data
set, low-ranking nodes exhibit a slightly higher overlap index with
respect to the numerical results. Conversely, high-ranking nodes
show the opposite behavior. This phenomenon might be related
to the statistical dependency of individuals’ followee sets on their
out-degrees, as discussed in Supplementary Note 4.

Discussion
Many of today’s most popular online social networks are heavily
based on UGC. Based on empirical evidence from longitudinal
Twitter data, we proposed a meritocratic quality-based network
formation model in which actors aim at optimizing the quality of the
received content by strategically choosing their followees. We then
analytically and numerically studied the properties of the resulting
networks, in terms of in-degree and out-degree distributions, dia-
meter, average clustering coefficient, and overlap among the fol-
lowers’ sets. In particular, we found that the meritocratic principle
leads to Zipf’s law of the expected in-degree as a function of the
quality ranking. Remarkably, the result is robust against the effect of a
preferential attachment-based meeting process (which mimics the
recommendation systems). The theoretical predictions have been
validated against empirical network data collected from Twitch.

Despite being of simple and parsimonious form, our model
already captured several macroscopic features of today’s UGC-based
online social networks, e.g., scaling-free or small-world properties.
Furthermore, thanks to its simplicity, the model can be extended in
different directions, e.g., by considering different update rules or
enriching it with well-known sociological incentives, e.g., network
closure. Another possibility is to introduce multi-dimensional quality
attributes, to cope with the possibility of multiple interests. This may
lead to an interesting analysis of the competitive structural advantage
of nodes with a diversified audience. The model can also be adapted
to a growing network formation model, in which users join at dif-
ferent times, which will allow studying the rise (and eventually fall) of
some network influencers. Another direction consists in the analysis
of the network spreading characteristics, with particular emphasis on
the influencers59. Ideally, this should be coupled with empirical
analysis on different platforms, e.g., Instagram or Tik Tok, which are
predominant among the new generations. In addition, longitudinal
data could be used to make interesting predictions on the rise of new
influencers. Last but not least, future work could extend our pre-
liminary results on the role of the recommendation systems acting on
the social media platforms as well as their effect on the users’
behavior. The interplay between users’ behavior and platforms
mechanisms represents a widely unexplored research direction that
may shed light on the effect of digitalization on our societies.

Methods
Theoretical analysis. The goal of our theoretical analysis is to derive the mac-
roscopic statistical properties of the network resulting from the quality-based
network formation model. Our first result concerns the convergence to an equi-
librium state, as in the following theorem.

Theorem 4. (Convergence) For any set of qualities q1; ¼ ; qN
� �

, the network
reaches an equilibrium almost surely. Moreover, the probability of reaching
equilibrium within t time-steps reads as follows:

P½An equilibrium is reached within t time steps �
¼ P½a12ðtÞ ¼ 1; a21ðtÞ ¼ 1; ¼ ; aN1ðtÞ ¼ 1�
¼ P½a12ðtÞ ¼ 1� ´P½a21ðtÞ ¼ 1� ´ ¼ ´P½aN1ðtÞ ¼ 1�

¼ 1� N � 2
N � 1

� �t� �N

:

Proof. Let t > 0 and U(t) be a Bernoulli random variable such that U(t)= 1 if the
network formation dynamics has reached equilibrium within t time-steps, and 0
otherwise. As potential connections are uniformly randomly selected, the

probability that an agent i ≠ 1 has not found agent 1 (or that agent 1 has not found
agent 2) within t time-steps is equal to N�2

N�1

� �t
. Then, the probability that an agent

has found her target within t time-steps is complementary of the above, i.e.,
1� N�2

N�1

� �t
. Finally, since the dynamics of the individuals are independent of each

other,

P UðtÞ ¼ 1½ � ¼ 1� N � 2
N � 1

� �t� �N

! 1; as t ! 1:

The proofs of the results on the in-degree and out-degree probability
distributions are discussed in Supplementary Note 1.

Experimental setup. In order to validate the statistical results of our quality-based
model, we collected three data sets on Twitch, an online social media platform
focusing on video streaming that recently became extremely popular among
gamers. Twitch users can create their dedicated channels to stream their gameplay.
Their UGC, in the form of live-streaming, can be browsed in appropriate categories
corresponding to specific games. Thus, users can watch the streamed content of
others, and eventually become followers.

Dealing with complex real-world networks poses several problems. In particular,
systems are continuously changing not just in terms of network ties, but also with new
nodes (users) joining and leaving the networks. To specifically validate our model
results, we need (i) first to identify a suitable category of common interest, and (ii)
second to reconstruct the social network among the users that show interest in this
category. According to our modeling assumptions, the system is closed with respect to
the set of users, and the network formation process is a consequence of users’ interest in
a specific topic. In the context of Twitch, this requires that the set of users interested in
one (and only one) specific game, or topic, is fixed over time.

In order to minimize the chance of user’s interest lability, we restricted our
crawling setup to the users streaming and watching in one of the following three
categories: chess, poker, and art (see Supplementary Fig. 8 for the analysis on the
historical trend). Furthermore, we filtered our data by language, retaining only the
English-speaking users that constitute the vast majority (see Supplementary Fig. 9).
In this way, we avoid the possibility of multiple overlapping coherent sets (see
Supplementary Note 3). Finally, we used an interest index to retain only those users
that consistently stream in one of the chosen categories and to filter out those that
may have accumulated audience because of streaming in other categories (see
Supplementary Fig. 11). Based on the results of this criterion, we decided to exclude
the data set related to the category art (see Supplementary Fig. 10 and related
discussion in Supplementary Note 3).

We then set up the two Twitch data crawling on the categories chess and poker.
On Twitch, not all the users provide their UGC, therefore nodes can be partitioned
into two classes: broadcasters, i.e., users that provide UGC, and viewers. As the two
partitions are heavily unbalanced, the network can approximately be considered as
a quasi bipartite network, in which there are almost no ties among the viewers, very
few ties (in absolute number) among the broadcasters, and most of the ties are
directed from the viewers to the broadcasters. Note that this specific network
structure, which we refer to as bipartite-like network, is compatible with our model
predictions, see the analysis presented in Supplementary Note 1.

Due to the characteristics of the Twitch platform, the data crawling is
necessarily limited to the users that are currently live-streaming. To overcome
this limitation we repeated our crawling every hour for a period of 1 week
(starting on 20 September 2020), until reaching a stable and consistent ranking
in the list of the top 30 broadcasters. By doing so, though, our data may suffer
from a sampling bias because we naturally tend to underestimate broadcasters
that are not frequently active on the platform. Likely, these broadcasters are also
not the most popular users. Fortunately, this sampling bias only affects the left
tail of the in-degree distribution, but not the right tail in which we have the most
influential nodes. We found 305 unique users streaming in the chess category,
and 358 in the poker one. We then crawled the followers of these broadcasters
obtaining a total of 6900917 (7080443) unique users and 104500403 (107390712)
ties directed towards the broadcasters in the chess (poker) category. Finally, we
reconstructed the bipartite-like networks of broadcasters and viewers as shown
in Supplementary Fig. 7. Overall, the time-span of the network formation
processes underlying the data sets is comprised between April 2010 and
September 2020.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Twitter and Twitch data sets collected in this study have been deposited at the ETH
Research collection database. They are publicly available at the following repositories:
https://doi.org/10.3929/ethz-b-000511049 (Twitter data set)30 and https://doi.org/
10.3929/ethz-b-000511065 (Twitch data sets)36.

Code availability
The code that performs the simulations and the analysis of the data sets is available at the
following public repository https://doi.org/10.3929/ethz-b-00051249760.
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