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Magic in twisted transition metal dichalcogenide
bilayers
Trithep Devakul 1,2✉, Valentin Crépel1, Yang Zhang 1,2 & Liang Fu 1✉

The long-wavelength moiré superlattices in twisted 2D structures have emerged as a highly

tunable platform for strongly correlated electron physics. We study the moiré bands in

twisted transition metal dichalcogenide homobilayers, focusing on WSe2, at small twist

angles using a combination of first principles density functional theory, continuum modeling,

and Hartree-Fock approximation. We reveal the rich physics at small twist angles θ < 4∘, and

identify a particular magic angle at which the top valence moiré band achieves almost perfect

flatness. In the vicinity of this magic angle, we predict the realization of a generalized Kane-

Mele model with a topological flat band, interaction-driven Haldane insulator, and Mott

insulators at the filling of one hole per moiré unit cell. The combination of flat dispersion and

uniformity of Berry curvature near the magic angle holds promise for realizing fractional

quantum anomalous Hall effect at fractional filling. We also identify twist angles favorable for

quantum spin Hall insulators and interaction-induced quantum anomalous Hall insulators at

other integer fillings.
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In condensed matter physics, simple and elegant models have
often brought new ideas and started new paradigms. Cele-
brated examples include the Hubbard model for strongly

correlated electron system1, the Tomonaga-Luttinger model for
one-dimensional electron liquid2,3, and the Kitaev model for non-
Abelian quantum spin liquid4, to name a few. As toy models are
designed to illustrate key concepts in the simplest form, they are
rarely realized directly in real materials, whose atomic-scale
electronic structures are inevitably more complex. The recent
advent of long-wavelength moiré superlattices based on 2D van
der Waals structures provides a new and promising venue for
physical realization and quantum simulation of model Hamilto-
nians. In magic-angle twisted bilayer graphene5 (TBG), experi-
ments have discovered a variety of correlated electron states6–12

facilitated by flat moiré bands.
More recently, moiré superlattices of semiconducting transi-

tion metal dichalcogenides (TMD) have attracted interest as a
potentially simpler and more robust platform for simulating the
Hubbard model on an emergent lattice13–32. Each lattice site
represents a low-energy electronic orbital in the moiré unit cell
that spreads over many atoms. These semiconductor moiré sys-
tems can thus be viewed as artificial 2D solids—a periodic array
of “magnified atoms”19. The atomic potential depth and intera-
tomic bonding are highly tunable by the choice of TMD mate-
rials, the twist angle13 and the displacement field20,23. Thus,
TMD-based moiré materials provide a favorable platform for
simulating idealized models in two dimensions.

In this work, we predict the realization of generalized Kane
−Mele models with topological flat band, interaction-driven
Haldane insulator and Mott insulators in twisted TMD homo-
bilayers at small twist angles. Contrary to current thoughts, we
show by band structure calculation and analytical derivation that
a magic twist angle exists in twisted TMD homobilayers, where
the topmost valence miniband from the ±K-valleys is almost
perfectly flat and well separated from other bands. This band
carries a spin/valley Chern number and is well described by a
generalized Kane−Mele model33.

At half filling of this topological flat band, we show that
repulsive interactions drives spontaneous spin/valley polarization
leading to Haldane’s quantum anomalous Hall insulator34. We
further find an out-of-plane displacement field drives a transition
from the Haldane insulator into a Mott insulator. Depending on
the twist angle, this Mott state is either a spin/valley polarized
ferromagnet or features intervalley coherence that spontaneously
breaks the spin/valley U(1) symmetry. Thus our work reveals a
rich phase diagram of topological, correlated and broken-
symmetry insulators enabled by the flat band in TMD homo-
bilayers at small twist angles below the 4∘–5∘ range in current
experimental studies23,35.

Due to spin-valley locking36, monolayer TMDs such as WSe2
and MoTe2 feature top valence bands with spin-↑ at +K valley and
spin-↓ at−K. We study TMD homobilayers with a small twist angle
θ starting from AA stacking, where every metal (M) or chalcogen
(X) atom on the top layer is aligned with the same type of atom on
the bottom layer. In such twisted structure, the K points of the two
layers are slightly displaced and form the two corners of the moiré
Brillouin zone, denoted as κ±. A set of spin-↑ (↓) moiré bands is
formed from hybridized +K (−K) valley bands of the two layers.
The complete filling of a single moiré band including spin degen-
eracy thus requires 2 holes per moiré unit cell.

Results
In order to obtain accurate moiré band structures, we perform
large-scale density functional theory calculations with the SCAN
+rVV10 van der Waals density functional37, which captures the

intermediate-range vdW interaction through its semilocal
exchange term. Focusing on twisted bilayer WSe2, we find that
lattice relaxation has a dramatic effect on moiré bands. Our DFT
calculations at θ= 5.08∘ with 762 atoms per unit cell show a
significant variation of the layer distance d in different regions on
the moiré superlattice, as shown in Fig. 1b. d= 6.7Å is smallest in
MX and XM stacking regions, where the metal atom on top layer
is aligned with chalcogen atom on the bottom layer and vice
versa, while d= 7.1Å is largest in MM region where metal atoms
of both layers are aligned. With the fully relaxed structure, the
low-energy moiré valence bands of twisted bilayer WSe2 are
found to come from the ±K valley (shown in Fig. 1c), as opposed
to the Γ valley in previous computational studies38 and consistent
with recent works35,39,40.

At small twist angles, the large size of moiré unit cell makes it
difficult to perform DFT calculations directly on twisted TMD
homobilayers. An alternative and complementary approach,
introduced by Wu et al.14, is the continuum model based on an
effective mass description, which models the formation of moiré
bands using spatially modulated interlayer tunneling ΔT(r) and
layer-dependent potential Δ1,2(r). The continuum model Hamil-
tonian for ±K valley bands is given by

H" ¼ � _2ðk�κþÞ2
2m� þ Δ1ðrÞ ΔTðrÞ
Δy
TðrÞ � _2ðk�κ�Þ2

2m� þ Δ2ðrÞ

0
@

1
A ð1Þ

and H# as its time-reversal conjugate.
The continuum model approach is valid at small twist angle

where the moiré wavelength is large enough. In this case, the
atom configuration within any local region of a twisted bilayer is
identical to that of an untwisted bilayer with one layer laterally
shifted relative to the other by a corresponding displacement
vector d0. For example, d0 ¼ 0;� a1 þ a2

� �
=3; a1 þ a2
� �

=3, with
a1,2 the primitive lattice vector of a monolayer, correspond to the
MM, MX and XM regions respectively. Therefore, the moiré
potentials for twisted TMD bilayers ΔT(r) and Δ1,2(r) as a func-
tion of coordinate on the moiré superlattice can be determined
from the valence band edges of the untwisted bilayer as a function
of the corresponding shift vector20. In the lowest harmonic
approximation, ΔT(r) and Δ1,2(r) are sinusoids that interpolate
between MM, MX and XM regions14:

Δ1;2ðrÞ ¼ 2V ∑
j¼1;3;5

cosðgj � r±ψÞ ð2Þ

ΔTðrÞ ¼ wð1þ e�ig2�r þ e�ig3�rÞ ð3Þ
where gj are (j− 1)π/3 counter-clockwise rotations of the moiré
reciprocal lattice vector g1 ¼ ð4πθ= ffiffiffi

3
p

a0; 0Þ, and a0 is the
monolayer lattice constant. Up to an overall energy scale, the
continuum model depends only on the dimensionless parameters
α � Vθ2=ðm�a20Þ, w/V and ψ.

From our DFT calculation for untwisted bilayers with relaxed
layer distance and using the vacuum level as an absolute reference
energy for the band edge, we obtain the continuum model
parameters V= 9.0 meV, ψ= 128∘, and w= 18 meV. Impor-
tantly, the interlayer tunneling strength w is twice larger than
previously reported14. To demonstrate the accuracy of the con-
tinuum model method, we compare in Fig. 1c the band structures
computed by large-scale DFT directly at θ= 5.08∘ and by the
continuum model with the above parameters, finding excellent
agreement. Details on the DFT calculation can be found in
Supplementary Note 1 (see supplemental material for details on
DFT calculations and continuum model).

We remark that different approaches31,32,40 can lead to dif-
ferent conclusions on topology. Thus, we utilize a method to
determine band topology directly from our large-scale DFT band
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structure based on symmetry eigenvalues. As detailed in Sup-
plementary Note 2 (see supplemental material for details of
topology of DFT wavefunctions), we are able to isolate bands
from the ±K valley and compute their C3z eigenvalue at the high
symmetry momenta γ, κ±, which determine their Chern number
(mod 3)41. The C3z eigenvalues for the first two bands, sum-
marized in Table 1, are consistent with the first two bands having
non-trivial valley Chern number CK;1 ¼ CK;2 ¼ 1.

Using the new continuum model parameters established above,
along with the lattice constant a0= 3.317Å42 and the effective
mass m*= 0.43me

43,44, we calculate the band structure of twisted
bilayer WSe2, Ei(k), at various twist angles, as shown in Fig. 2a.
The bandwidth of the first band, W ¼ maxk E1ðkÞ �mink E1ðkÞ,
as well as the (direct or indirect) band gaps εij between pairs of
bands (i, j)= (1, 2) and (2, 3), εij ¼ mink EiðkÞ �maxk EjðkÞ, is
shown in Fig. 3. Focusing on topological features of the first two
valence bands, we can divide the moiré band structure into three
main regimes divided by θ1 ≈ 1.5∘ and θ2 ≈ 3.3∘.

First, for θ < θ1, the top two bands are well separated from the
rest of the spectrum, and carry opposite Chern number
½CK;1; CK;2� ¼ ½þ1;�1�. The bandwidth of the first band W < 1
meV remains very small throughout. In this regime of very small

twist angles, the character of the top two valence bands can be
understood from an effective tight binding model on a moiré
honeycomb lattice that takes the form of a Kane−Mele model, as
suggested in the insightful work of Wu et al.14 As we will later
show, the original Kane−Mele description with up to second
nearest neighbor hopping terms only describes the band structure
well for very small angles θ≲ 1∘. As θ increases towards θ1, longer
range hopping terms become more important.

At θ= θ1, the band gap ε23 closes and the Chern number of the
top two bands changes to [+1,+1]. In this second regime,
θ1 < θ < θ2, both top bands have same Chern number [+1,+1]
and are still all separated by a sizable gap ε12, ε23 > 0. The band-
width of the first band increases rapidly with θ, reaching around
W ≈ 20 meV at θ2 (not shown). Finally, in the third regime,
θ2 < θ≲ 5.4∘, the indirect gap ε12 vanishes, but the direct gap
remains open. The Chern number of the top two bands remains
well defined at [+1,+1], but the bands now overlap in energy
and are highly dispersive. In both the second and third regimes,
ε23 > 0; thus, the top two bands together form a gapped C ¼ 2
manifold. Beyond θ≳ 5.4∘, the gap ε23 also vanishes and the top
two bands are no longer isolated (Supplementary Note 3; see
supplemental material for derivation of the analytic magic angle).
Topology of the continuum model at θ ≈ 5∘ is consistent with that
determined directly from large-scale DFT in Table 1, further
strengthening our confidence in the continuum model descrip-
tion even up to larger angles.

For θ < θ2, especially near θ2 where the first band is more
dispersive, the spin Chern number C ¼ 1 and ε12 > 0 is favorable
for a quantum spin Hall insulator at a filling of n= 2 holes per
moiré unit cell. Also, for the wide range of angles θ1 < θ≲ 5.4∘,
ε23 > 0 and the top two bands both carry spin Chern number
C ¼ 1, giving rise to a double quantum spin Hall state with two
sets of counter-propagating spin-polarized edge modes at n= 4.

Fig. 1 Comparison with large-scale DFT calculations. a The κ± points of the moiré Brillouin zone are formed from the K points of the monolayer Brillouin
zones, which are rotated by ±θ/2. b The interlayer distance of the twisted WSe2 structure obtained from DFT is shown, demonstrating a large variation
between the MM and XM/MX regions. c The continuum band structure (blue lines) is plotted in comparison with large-scale DFT calculations (black dots)
at twist angle θ= 5.08∘, showing excellent agreement.

Table 1 C3z eigenvalues of the first two bands from each
valley, computed from large-scale DFT wavefunctions at
high symmetry momentum points.

Band, Valley κ+ κ− γ

1, K eiπ/3 eiπ/3 eiπ

1, K0 e−iπ/3 e−iπ/3 eiπ

2, K e−iπ/3 e−iπ/3 eiπ/3

2, K0 eiπ/3 eiπ/3 e−iπ/3
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We now address the bandwidth W, which shows a sharp
minimum at θ= θm ≈ 1.43∘ reminiscent of the magic angle in
TBG. To understand this, notice that the top band, shown in
Fig. 2a, has two qualitatively different behaviors in the small and
large θ limit. For θ≳ 2.5∘, E1(k) reaches its maximum at κ± and
minimum at γ, which can be understood from the weak moiré

effects at small α. For small θ≲ 1∘, the opposite holds and E1(k) is
maximum is at γ and minimum at κ±, which can be understood
from the effective Kane−Mele model, which we will derive
explicitly. At the crossover between these two limits, the band
maxima and minima must switch locations in the moiré Brillouin
zone, potentially leading to a flat band. As can be clearly seen, W
achieves a minimum at a particular magic angle θm during this
crossover. At θm the gap to the next state ε12 ≈ 3.7meV is much
larger than the bandwidth W ≈ 0.1meV. The band structure at θm
is shown in Fig. 2a, which shows that the first band is almost
completely flat and separated from the next band. For even
smaller θ, both ε12 and W vanish, but the ratio W/ε12 diverges.
Thus, we may view θm as the angle at which the top band is flattest
while still being well isolated from the rest of the spectrum.

Analytic progress can be made in estimating the magic angle by
considering the dispersion near γ. Assuming that the bandwidth
will be minimized near the angle at which E1(γ) changes from
minima to maxima, expanding E1ðγþ kÞ � E1ðγÞ þ k2

2mγ
þOðk3Þ,

the effective mass mγ should diverge near the crossover. Let ~θm to
be the angle at which m�1

γ ¼ 0. Then, considering only the six
most relevant states at γ, we have (Supplementary Note 4; see
supplemental material for continuum model band structure at
higher twist angles)

~θ
�2
m ¼ 8π2

9m�a20

1
En0

� En0þ1
þ 1

En0
� En0�1

 !
ð4Þ

Fig. 2 Continuum model band structure and Berry curvature at various twist angles. a The band structure Ei(k) along with the Chern numbers of the first
two bands and (b) the (scaled) Berry curvature jκþj2F ðkÞ of the first band is shown for the continuum model at θ= 1∘, 1.43∘, 1.67∘, and 2.5∘. At θ= 2.5∘, the
first band maxima is located at the κ± points and the Berry curvature is peaked at γ. At θ= 1∘, the band maximum is instead at γ and F is peaked at κ±.
During the crossover region between these angles, E1(k) and F ðkÞ both become very flat. We find that the band dispersion E1(k) is flattest at θ≈ 1.43∘ and
the Berry curvature F ðkÞ is most uniform at θ≈ 1.67∘, both shown.

Fig. 3 The bandwidth of the first band W, and indirect band gap between
the first two pairs of bands ε12 and ε23. The bandwidth is minimized at θm,
while being well separated from the remaining bands. The Chern numbers
of the first two bands, ½CK;1; CK;2�, is shown before and after the ε23 gap
closing at θ= θ1. For θ≥ θ2, ε12 vanishes.
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where En ¼ 2w cosðπn=3Þ þ 2V cosð2πn=3� ψÞ, and n0 is the
integer (mod 6) which maximizes En (n0= 1 for WSe2 para-
meters). We find that Eq. (4) provides a decent estimate for θm in
the cases considered. In WSe2, we have ~θm ¼ 1:47�, compared to
θm= 1.43∘ at which the bandwidth is minimized.

Next, we turn to the Berry curvature F ðkÞ of the top band,
shown in Fig. 2b. In all cases, the first band has Chern number
CK;1 ¼ 1

2π

R
BZFdk ¼ 1; however, the distribution changes very

drastically as θ is varied. At θ ≳ 2∘, F is peaked around the
band minimum at γ. At θ ≲ 1∘, F is instead sharply peaked at
the κ± points. Near the crossover region, the distribution of F
shifts from γ to κ±, and can become very evenly distributed.
We find that F is most evenly distributed near θ= 1.67∘,
shown in Fig. 2b, where F becomes almost uniform in the
Brillouin zone. The uniform distribution of F is reminiscent to
that of Landau levels. Time-reversal symmetry forces the cor-
responding spin-↓ bands from the −K valley to have opposite
Chern number.

We emphasize that the physics of the magic angle arises due to
the crossover between two qualitatively different behaviors of the
first band at low and high angles. Additional factors unaccounted
for by the continuum model may result in, for example, angle-
dependent model parameters. However, as long as the qualitative
behaviors at small and large angles are unchanged, there will still
be crossover regime at which the band becomes flat. Even when
the bands are not perfectly flat, a diverging mass can still give rise
to a diverging higher-order van Hove singularity23.

Recall that for θ < θ1, the top two bands carry opposite Chern
number and are separated from the rest of the spectrum, sug-
gesting a description in terms of an effective tight binding model.
We now focus on θ < θ1 and directly derive an effective tight
binding model for the first two moiré bands by explicitly con-
structing a basis of localized Wannier states. These Wannier
states are constructed via a simple procedure which manifestly
preserves the symmetries of the twisted homobilayer. Given the
single-particle eigenstates fjϕn;kig of the continuum Hamiltonian
(1) for each k in the mBZ, we first construct a superposition of
the first two (n= 1, 2) eigenstates, j~ϕn;ki ¼ ∑m¼1;2U

ðkÞ
nm ϕmk

�� �
using a 2 × 2 unitary matrix U ðkÞ

nm, which maximizes the layer

polarization at every k:

Pk ¼ ∑
n¼1;2

ð�1Þn ~ϕn;kjðP� � PþÞj~ϕn;k
D E

; ð5Þ

where P ± is the projector on to the top/bottom layer, so that
j~ϕ1;ki is chosen to mostly consist of states in the top layer, and
similarly for j~ϕ2;ki on the bottom layer. This uniquely specifies
j~ϕn;ki up to a phase, which we choose to be real and positive at
the XM (n= 1) or MX (n= 2) stacking regions (Supplementary
Note 5; see supplemental material for details on the derivation of
localized Wannier functions and tight binding model). The
Wannier states at moiré lattice vector R is then defined
Wn

R

�� � ¼ 1ffiffiffiffi
Nk

p ∑ke
�ik�R ~ϕnk

�� �
. They are localized about their cen-

ters with a root-mean-square distance aW ≈ 5 nm, and are also
mostly composed of states in one layer: W1

RjPþjW1
R

� � � 0:83 is
mostly in the top layer, and vice versa for W2

R

�� �
.

It is straightforward to obtain the hopping matrix elements of
the effective tight binding model in the Wannier basis for the top
two bands as a function of θ. Figure 4b shows the nth nearest
neighbor hopping matrix elements tn obtained in this way, up to
n= 5. As anticipated, the effective tight binding model at θ < θ1,
including the spin/valley degrees of freedom, is a generalized
Kane−Mele model with sites centered on the honeycomb lattice
formed by MX and XM stacking regions14.

The tight binding Hamiltonian is found to be

HTB ¼ t1 ∑
hi;ji;σ

cyiσcjσ þ jt2j ∑
hhi;jii;σ

eiϕσνij cyiσcjσ þ � � � ð6Þ

where cyiσ ; ciσ are fermionic creation/annihilation operators, σ= ±
is the spin/valley degree of freedom, the sum 〈i, j〉 (〈〈i, j〉〉) is over
(next) nearest neighboring sites i, j of the honeycomb lattice, and
νij= ±1 depending on whether the path i→ j turns right (+) or
left (−). The parameter t1 is real, while t2≡ ∣t2∣eiϕ is complex, and
⋯ contain longer range hopping terms. We find that ∣tn∣ quickly
reduce in magnitude with hopping distance n, and only the
second neighbor hopping has a significant imaginary component.
In Fig. 4c, we show the bandwidth of the top band, W, in the
effective tight binding model TBn including up to tn hopping

Fig. 4 Wannier functions and tight binding model parameters. aWannier functions at the magic angle, b tight binding parameters as a function of θ, and c
the bandwidth of the top band in the effective tight binding model TBn keeping up to nth nearest neighbor hopping terms, compared to that of the
continuum model.
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terms, compared to that of the continuum model. For θ≲ 1∘, TB2
already captures the band structure very well. Near the magic
angle, higher range hoppings become more important in cap-
turing the flatness of the band.

For the small twist angles θ < θ1 considered, since the size of the
Wannier orbitals are small compared to the moiré unit cell, the
dominant interaction is a simple on-site Hubbard term
HU ¼ U∑ini"ni#. We also estimate U ~ e2/(ϵaW) ≈ 70 meV at θm,
using a realistic relative dielectric constant ϵ= 4 and aW= 5nm,
which is significantly larger than the tight binding parameters tn.
Therefore at such small twist angle, twisted WSe2 homobilayers
are in the strong-coupling regime, in contrast with θ ~ 4∘–5∘

where the bandwidth is comparable to the interaction
strength23,35.

In the following, we shall focus on the strongly correlated
regime θ < θ1 at a filling of n= 1 holes per moiré unit cell, where
we expect the flat bands will favor the quantum anomalous Hall
(QAH) insulator due to spontaneous spin/valley polarization. The
reason is as follows. First, spin/valley polarized states filling the
top band of HTB with σ= ± are exact eigenstates of our inter-
acting model, because the spin-orbit coupling in HTB conserves
the z-spin/valley component. Then, these spin/valley polarized
states avoid the Hubbard interaction, and also minimize the
kinetic energy in the case of a completely flat top band. Mini-
mizing both parts of the Hamiltonian, they necessarily are many
body ground states of the model at n= 1 filling. The complete
polarization of HTB exactly corresponds to Haldane’s model for
QAH insulator.

To include corrections coming from the finite bandwidthW of the
flat band, we solve our interacting problem within the Hartree−Fock
(HF) approximation, where the Hubbard interaction is decoupled as
ni"ni# ’ hni"ini# þ hni#ini" � hcyi"ci#icyi#ci" � hcyi#ci"icyi"ci#, up to
a constant term, and where the expectation values for the spin and
density at each site are determined self-consistently by iteration. Our
numerical solutions of the HF equations are shown in Fig. 5a as a
function of twist angle and interaction strength. As expected, we
observe a transition from a metallic state to a ferromagnetic QAH
insulator polarized along z when U increases. Within HF, this
transition can be understood as follows. The fully polarized states
yield a rigid shift of the bands by σU/2. When U is larger than the
non-interacting bandwidthW, a full gap opens and the ferromagnetic
state fully fills one of Chern bands of HTB, which leads to a QAH
phase. We remark that the appearance of the QAH phase relies on

both the non-trivial Chern number as well as the fact that the band is
flat and isolated, features which are maximized at the magic angle, as
illustrated by a dip of the insulating phase above θ≃ 1.4∘.

To precisely locate the transition between QAH insulator and
the metallic phase, we compute the magnon excitation spectrum
above the fully ferromagnetic state by exact diagonalization (ED)
of the interacting Hamiltonian projected on the spin-1 excitation
subspace45. For large U, this spectrum is gapped and the QAH is
robust against spin flips. Decreasing U eventually brings one
magnon at zero energy, which destabilizes the ferromagnetic
states and drives the transition to a metal. As shown in Fig. 5a, the
ED results almost perfectly agrees with the HF boundaries, put-
ting them on firmer grounds.

For the large values of U relevant to WSe2, the magnons have a
large gap, and the lowest excitation corresponds to an interband
transition between two bands with same spin. The QAH phase is
thus protected by a gap ε12 ≈ 3.7 meV near the magic angle,
leading to quantum Hall effect at elevated temperature.

We also highlight that the QAH may also be observed for
larger twist angles, where the first band still carries a non-zero
Chern number (Fig. 2), and its bandwidth remain small com-
pared to the estimated U (Fig. 3). Likewise, the second band is
topological and quite flat for θ ~ 2∘–3∘ (Supplementary Note 3),
and therefore QAH may also be observed at a filling of n= 3.
Twisted TMD bilayers with ±K-valley bands are thus expected to
be an intrinsically robust platform for interaction-induced QAH
phases.

It is interesting and worthwhile to compare the QAH phase in
twisted TMD and graphene bilayers. Anomalous Hall effect and
its quantization have been experimentally observed in magic-
angle TBG11,12, where the alignment with hBN substrate is likely
the origin of valley Chern number46 and both spin and valley
degeneracy are lifted due to repulsive interaction in the flat
band47–51. Due to the presence of SU(2)-invariant spin degrees of
freedom, QAH in TBG is subject to the adverse effect of gapless
thermal fluctuation, which forbids long-range order at finite
temperature in the thermodynamic limit. In contrast, spin-valley
locking in TMD systems enables robust Ising-type spin/valley
order that leads to QAH effect at lower temperature.

Another great advantage of twisted TMD bilayer is their high
degree of tunability, in particular with respect to applied electric
fields19,35,52. Due to the layer polarization of the Wannier basis
states, the displacement field can be modeled as a sublattice

QAH

Metal

FMZ

QAH

FMXY

AFMXY

120∘

a bΔ = 0 = 10| |

/
|
|

Δ
/
|
|

(deg) (deg)

Gap/| | Gap/| |

Fig. 5 Numerical solution of the self-consistent Hartree−Fock approximation. The phase diagram is shown as a function of the twist angle and (a)
interaction strength at fixed displacement field Δ= 0, or b displacement field at fixed interaction strength U= 10∣t1∣, including up to fifth nearest neighbor
hopping terms. The insulating phases denoted by QAH, FMz, 120∘ AFMxy, and FMxy are described in the main text. The dashed blue line shows the
boundary of the FMz phases determined by the first magnon instability. The colors indicate the charge gap. Hartree−Fock calculations were done with affiffiffi
3

p
´
ffiffiffi
3

p
unit cell of 6 atom sites, and a 30 × 30 grid of (k) points.
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symmetry breaking term HΔ ¼ Δ
2 ∑isic

y
iσciσ , where si is (−)1 for i

in the A (B) sublattice. Including this term in our HF treatment,
we can investigate which phases should neighbor the QAH fer-
romagnet in experiments. We present our solutions of the HF
equations as a function of twist angle and displacement field in
Fig. 5b. There, we fix U= 10∣t1∣, a tradeoff between the large U of
the homobilayer system and the convergence rate of the HF self-
consistent iteration algorithm. We find it necessary to consider an
enlarged

ffiffiffi
3

p
´
ffiffiffi
3

p
unit cell in order to describe all ordered phases

of the model.
At small displacement fields, the topmost moiré band remain

relatively flat and our earlier arguments for spin/valley polariza-
tion still apply. This is confirmed by our HF solutions for Δ≲ 2t1
(Fig. 5b), which exhibit full spin polarization along the z axis. In
this region, a transition nevertheless occurs at Δ ¼ 6

ffiffiffi
3

p jt2j sinϕ
(up to tn≥3 terms), where the single-particle gap between the two
moiré bands closes, and their Chern numbers change from
[+1,−1] to [0, 0]. This gap closing line marks the transition
between a QAH insulator and a topologically trivial ferromagnet
with spin/valley polarization (FMz)34. As the displacement field
further increases, the bandwidth W also grows, which decreases
the magnon gap (see discussion above). The spin/valley polarized
phases eventually become unstable when the magnon gap closes,
which can be seen with the very good agreement between the
phase boundaries determined with HF and ED (Fig. 5b).

Beyond this spin-wave instability line, our results show the
emergence of two new Mott insulating phases, where holes are
mostly localized on the A sublattice, and their spin either form an
antiferromagnetic pattern (120∘ AFMxy), or ferromagnetically
align in the xy plane (FMxy). Their appearance is most easily
understood for large displacement fields, where the physics
becomes analogous to that of localized moments on the triangular
A sublattice. In the regime t2≲ t1≪ Δ,U relevant for our system,
their coupling is described by an effective XXZ model with
Dzyaloshinskii−Moriya (DM) interactions

HS ¼ ∑
hi;jiB

Jks
z
i s

z
j þ J?ðsxi sxj þ syi s

y
j Þ þ D ðsi ´ sjÞ � z

h i
; ð7Þ

which is derived in Supplementary Note 6 (see supplemental
material for the derivation of the effective spin Hamiltonian). The
parameters of this effective spin model are given by

Jk ¼
4j~tj2
U

þ Re
4t21t2
Δ2

� 	
; ð8aÞ

J? ¼ Re
4~t2

U
þ 4t21t2

Δ2

 !
; ð8bÞ

D ¼ Im
4~t2

U
þ 4t21t2

Δ2

 !
; ð8cÞ

with ~t ¼ t2 þ t21=Δ. In Eq. 8, we have separated exchange terms
coming from different physical processes. The first ones / ~t2=U
arise from nearest neighbor tunneling on the triangular A sub-
lattice, while the others / t2ðt1=ΔÞ2 originate from loop-exchange
on the honeycomb lattice that do not involve any double
occupancy.

For twist angles θ≲ 1∘, t2≪ t1 and Eq. (7) reduces to an
antiferromagnetic (AFM) Heisenberg model, where J∥= J⊥ > 0
are dominated by the nearest neighbor tunneling on the trian-
gular lattice. This simplified triangular lattice description, valid
for very small twist angles, has been proposed in earlier studies of
Mott insulators in twisted TMDs24,26,53. It was shown to yield an
antiferromagnetic phase that the small residual DM interaction

pins in the xy plane. This is the origin of the AFMxy phase
observed in Fig. 5b. We also note that the weak-coupling version
of AFMxy phase—an intervalley-coherent

ffiffiffi
3

p
´
ffiffiffi
3

p
density

wave23—has been proposed for the correlated insulating state at
n= 1 in twisted bilayer WSe2 at θ ~ 4∘–5∘35.

For larger twist angles, t2 becomes substantial and we observe
that J⊥ becomes negative for the realistic parameter U≫ Δ,
dominated by a third-order exchange process / t21t2 on the
honeycomb lattice without double occupancy. Then, the FMxy

phase is favored as shown in Fig. 5b. The competition between
AFMxy and FMxy phases can be analyzed by solving Eq. (7) for
classical spins. This approach, detailed in the Supplementary
Note 6 (see supplemental material for the derivation of the
effective spin Hamiltonian), gives a transition between the two
phases when jDj ¼ � ffiffiffi

3
p

J?. For Δ= 5t1, this criterion yields a
critical twist angle θ= 0.95∘, which roughly agrees with our HF
results. We note that the ferromagnetic phase due to J⊥ < 0 does
not appear in twisted TMDs based on simplified triangular lattice
descriptions.

Finally, we comment on the effect of nearest neighbor repul-
sion V∑〈i, j〉ninj to our HF phase diagram. This term favors the
layer polarized phases, such as the FMxy and AFMxy which appear
at large ∣Δ∣. Small V therefore narrows the range in Δ at which the
QAH phase appears. For large V, there is a sharp transition at
Δ= 0 between layer polarized Mott insulating phases, which can
lead to the strong hysteretic behavior of Mott ferroelectricity20,54.
The long-range component of interactions can be controlled by
screening from nearby metallic layers. Multiple recent
experiments55,56 on twisted WSe2 homobilayers in the presence
of a nearby WSe2 monolayer report strong screening effects when
the monolayer is doped. This raises the interesting possibility of a
screening-induced transition between the QAH and Mott insu-
lating phases.

Discussion
Our phase diagram demonstrates the high experimental tun-
ability of TMD twisted homobilayers, where the applied dis-
placement field can tune between quantum anomalous Hall phase
and Mott insulators involving three types of magnetic orders:
FMz, FMxy, and AFMxy. Despite being electrically insulating, the
xy-ordered Mott insulators support coherent magnon transport23,
which can be detected by optical spin injection and spatial-
temporal mapping recently developed for TMD bilayers57. The
experimental feasibility of tuning and distinguishing between
topologically different insulators at the same filling adds to the
attractiveness and desirability of TMD-based moiré systems.

In parallel to our work on twisted TMD homobilayers, a
breakthrough experiment led by Kin Fai Mak and Jie Shan dis-
covered unexpectedly a QAH phase with spontaneous spin/valley
polarization in a TMD heterobilayer MoTe2/WSe2 at the filling of
n= 1 tuned by displacement field58,59. Large-scale DFT calcula-
tion and wavefunction analysis reveal two dispersive moiré bands
forming the Kane−Mele model, suggestive of a similar origin of
QAH as described here.

Looking forward, the remarkable flat Chern band we found,
combined with the uniformity of Berry curvature, suggests that
twisted TMD homobilayers near magic angle may be an ideal
setting for observing a fractional quantum anomalous Hall state
at zero magnetic field.

Data availability
The data needed to evaluate the conclusions in the paper are present in the paper and the
Supplementary Material. The full dataset generated during this study, including relaxed
lattice structure and band structure obtained from DFT, tight binding model parameters,
and self-consistent HF solutions, has been deposited in the Zenodo database60. Additional
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request.

Received: 23 June 2021; Accepted: 1 November 2021;

References
1. Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond.

Ser. A, Math. Phys. Sci. 276, 238–257 (1933).
2. Tomonaga, S.-I. Remarks on Bloch’s method of sound waves applied to many-

Fermion problems. Prog. Theor. Phys. 5, 544–569 (1950).
3. Luttinger, J. M. An exactly soluble model of a many fermion system. J. Math.

Phys. 4, 1154–1162 (1963).
4. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321,

2–111 (2006).
5. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer

graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
6. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle

graphene superlattices. Nature 556, 80–84 (2018).
7. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene

superlattices. Nature 556, 43–50 (2018).
8. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene.

Science 363, 1059–1064 (2019).
9. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-

angle bilayer graphene. Nature 574, 653–657 (2019).
10. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted

bilayer–bilayer graphene. Nature 583, 215–220 (2020).
11. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in

twisted bilayer graphene. Science 365, 605–608 (2019).
12. Serlin, M. et al. Intrinsic quantized anomalous hall effect in a moiré

heterostructure. Science 367, 900–903 (2020).
13. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in

transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402
(2018).

14. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological
insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev.
Lett. 122, 086402 (2019).

15. Tang, Y. et al. Simulation of hubbard model physics in wse2/ws2 moiré
superlattices. Nature 579, 353–358 (2020).

16. Regan, E. C. et al. Mott and generalized wigner crystal states in wse2/ws2
moiré superlattices. Nature 579, 359–363 (2020).

17. Shabani, S. et al. Deep moiré potentials in twisted transition metal
dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).

18. Jin, C. et al. Stripe phases in wse2/ws2 moiré superlattices. Nat. Mater. 20,
940–944 (2021).

19. Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: charge transfer
in transition metal dichalcogenide superlattices. Phys. Rev. B 102, 201115
(2020).

20. Zhang, Y., Liu, T. & Fu, L. Electronic structures, charge transfer, and charge
order in twisted transition metal dichalcogenide bilayers. Phys. Rev. B 103,
155142 (2021).

21. Slagle, K. & Fu, L. Charge transfer excitations, pair density waves, and
superconductivity in moiré materials. Phys. Rev. B 102, 235423 (2020).

22. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré
superlattices. Nature 587, 214–218 (2020).

23. Bi, Z. & Fu, L. Excitonic density wave and spin-valley superfluid in bilayer
transition metal dichalcogenide. Nat. Commun. 12, 642 (2021).

24. Pan, H., Wu, F. & Das Sarma, S. Band topology, hubbard model, heisenberg
model, and dzyaloshinskii-moriya interaction in twisted bilayer wse2. Phys.
Rev. Res. 2, 033087 (2020).

25. Morales-Durán, N., Potasz, P. & MacDonald, A. H. Metal-insulator transition
in transition metal dichalcogenide heterobilayer moiré superlattices. Phys. Rev.
B 103, 241110 (2021).

26. Zang, J., Wang, J., Cano, J. & Millis, A. J. Hartree-fock study of the moiré
hubbard model for twisted bilayer transition metal dichalcogenides. Phys. Rev.
B 104, 075150 (2021).

27. Padhi, B., Chitra, R. & Phillips, P. W. Generalized wigner crystallization in
moiré materials. Phys. Rev. B 103, 125146 (2021).

28. Zhai, D. & Yao, W. Theory of tunable flux lattices in the homobilayer moiré of
twisted and uniformly strained transition metal dichalcogenides. Phys. Rev.
Mater. 4, 094002 (2020).

29. Cazalilla, M. A., Ochoa, H. & Guinea, F. Quantum spin hall effect in two-
dimensional crystals of transition-metal dichalcogenides. Phys. Rev. Lett. 113,
077201 (2014).

30. Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides.
Nat. Phys. 16, 1093–1096 (2020).

31. Magorrian, S. J. et al. Multifaceted moiré superlattice physics in twisted wse2
bilayers. Phys. Rev. B 104, 125440 (2021).

32. Tang, H., Carr, S. & Kaxiras, E. Geometric origins of topological insulation in
twisted layered semiconductors. Phys. Rev. B 104, 155415 (2021).

33. Kane, C. L. & Mele, E. J. Quantum spin hall effect in graphene. Phys. Rev. Lett.
95, 226801 (2005).

34. Haldane, F. D. M. Model for a quantum hall effect without Landau levels:
condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61,
2015–2018 (1988).

35. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal
dichalcogenides. Nat. Mater. 19, 861–866 (2020).

36. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley
physics in monolayers of mos2 and other group-vi dichalcogenides. Phys. Rev.
Lett. 108, 196802 (2012).

37. Peng, H., Yang, Z.-H., Perdew, J. P. & Sun, J. Versatile van der waals density
functional based on a meta-generalized gradient approximation. Phys. Rev. X
6, 041005 (2016).

38. Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of
twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401
(2018).

39. Vitale, V., Atalar, K., Mostofi, A. A. & Lischner, J. Flat band properties of
twisted transition metal dichalcogenide homo-and heterobilayers of mos _2,
mose _2, ws _2 and wse _2. 2D Materials 8, 045010 (2021).

40. Kundu, S., Naik, M. H., Krishnamurthy, H.R. & Jain, M. Flat bands in twisted
bilayer wse _2 with strong spin−orbit interaction. Preprint at https://
arxiv.org/abs/2103.07447 (2021).

41. Fang, C., Gilbert, M. J. & Bernevig, B. A. Bulk topological invariants in
noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112
(2012).

42. Mounet, N. et al. Two-dimensional materials from high-throughput
computational exfoliation of experimentally known compounds. Nat.
Nanotechnol. 13, 246–252 (2018).

43. Fallahazad, B. et al. Shubnikov–de haas oscillations of high-mobility holes in
monolayer and bilayer wse 2: Landau level degeneracy, effective mass, and
negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

44. Rasmussen, F. A. & Thygesen, K. S. Computational 2d materials database:
electronic structure of transition-metal dichalcogenides and oxides. J. Phys.
Chem. C 119, 13169–13183 (2015).

45. Su, X.-F., Gu, Z.-L., Dong, Z.-Y. & Li, J.-X. Topological magnons in a one-
dimensional itinerant flatband ferromagnet. Phys. Rev. B 97, 245111 (2018).

46. Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological bloch bands in
graphene superlattices. Proc. Natl Acad. Sci. USA 112, 10879–10883 (2015).

47. Zhang, Y.-H., Mao, D. & Senthil, T. Twisted bilayer graphene aligned with
hexagonal boron nitride: anomalous hall effect and a lattice model. Phys. Rev.
Res. 1, 033126 (2019).

48. Xie, M. & MacDonald, A. H. Nature of the correlated insulator states in
twisted bilayer graphene. Phys. Rev. Lett. 124, 097601 (2020).

49. Liu, S., Khalaf, E., Lee, J. Y. & Vishwanath, A. Nematic topological semimetal
and insulator in magic-angle bilayer graphene at charge neutrality. Phys. Rev.
Res. 3, 013033 (2021).

50. Liu, J. & Dai, X. Theories for the correlated insulating states and quantum
anomalous hall effect phenomena in twisted bilayer graphene. Phys. Rev. B
103, 035427 (2021).

51. Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous hall
ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).

52. Scuri, G. et al. Electrically tunable valley dynamics in twisted wse 2/wse 2
bilayers. Phys. Rev. Lett. 124, 217403 (2020).

53. Schrade, C. & Fu, L. Spin-valley density wave in moiré materials. Phys. Rev. B
100, 035413 (2019).

54. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures.
Nature 588, 71–76 (2020).

55. Gu, J. et al. Dipolar excitonic insulator in a moire lattice. Preprint at https://
arxiv.org/abs/2108.06588 (2021).

56. Zhang, Z. et al. Correlated interlayer exciton insulator in double layers of
monolayer wse2 and moiré ws2/wse2. Preprint at https://arxiv.org/abs/
2108.07131 (2021).

57. Jin, C. et al. Imaging of pure spin-valley diffusion current in ws2-wse2
heterostructures. Science 360, 893–896 (2018).

58. Li, T. et al. Quantum anomalous hall effect from intertwined moiré bands.
Preprint at https://arxiv.org/abs/2107.01796 (2021).

59. Zhsng, Y., Devakul, T. & Fu, L. Spin-textured chern bands in ab-stacked
transition metal dichalcogenide bilayers. Proc. Natl Acad. Sci. USA 118,
e2112673118 (2021).

60. Devakul, T., Crepel, V., Zhang, Y. & Fu, L. Dataset: Magic in transition metal
dichalcogenide bilayers. Zenodo https://doi.org/10.5281/zenodo.5607764
(2021).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27042-9

8 NATURE COMMUNICATIONS |         (2021) 12:6730 | https://doi.org/10.1038/s41467-021-27042-9 | www.nature.com/naturecommunications

https://arxiv.org/abs/2103.07447
https://arxiv.org/abs/2103.07447
https://arxiv.org/abs/2108.06588
https://arxiv.org/abs/2108.06588
https://arxiv.org/abs/2108.07131
https://arxiv.org/abs/2108.07131
https://arxiv.org/abs/2107.01796
https://doi.org/10.5281/zenodo.5607764
www.nature.com/naturecommunications


Acknowledgements
We thank Kin Fai Mak, Jie Shan, Tingxin Li, and Shengwei Jiang for ongoing colla-
borations on MoTe2/WSe2, Bi Zhen and Constantin Schrade for previous collaborations
on related topics. We thank Pablo Jarillo-Herrero, Kenji Yasuda, Cory Dean, Abhay
Pasupathy, Qianhui Shi, Augusto Ghiotto, and En-Min Shih for helpful discussions. This
work is primarily supported by the DOE Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering under Award DE-SC0020149 (band structure cal-
culation), DE-SC0018945 (theoretical modeling), and Simons Investigator award from
the Simons Foundation (numerical analysis). L.F. is partly supported by the David and
Lucile Packard Foundation.

Author contributions
T.D., V.C., Y.Z. and L.F. performed research, analyzed data, and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-27042-9.

Correspondence and requests for materials should be addressed to Trithep Devakul or
Liang Fu.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27042-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6730 | https://doi.org/10.1038/s41467-021-27042-9 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-021-27042-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Magic in twisted transition metal dichalcogenide bilayers
	Results
	Discussion
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




