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Machine learning of genomic features in
organotropic metastases stratifies progression
risk of primary tumors
Biaobin Jiang 1,16, Quanhua Mu1, Fufang Qiu2, Xuefeng Li3,4,5, Weiqi Xu6,7, Jun Yu 8,9,10,11,12, Weilun Fu13,

Yong Cao13 & Jiguang Wang 1,2,14,15✉

Metastatic cancer is associated with poor patient prognosis but its spatiotemporal behavior

remains unpredictable at early stage. Here we develop MetaNet, a computational framework

that integrates clinical and sequencing data from 32,176 primary and metastatic cancer cases,

to assess metastatic risks of primary tumors. MetaNet achieves high accuracy in distin-

guishing the metastasis from the primary in breast and prostate cancers. From the prediction,

we identify Metastasis-Featuring Primary (MFP) tumors, a subset of primary tumors with

genomic features enriched in metastasis and demonstrate their higher metastatic risk and

shorter disease-free survival. In addition, we identify genomic alterations associated with

organ-specific metastases and employ them to stratify patients into various risk groups with

propensities toward different metastatic organs. This organotropic stratification method

achieves better prognostic value than the standard histological grading system in prostate

cancer, especially in the identification of Bone-MFP and Liver-MFP subtypes, with potential in

informing organ-specific examinations in follow-ups.
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Metastasis, the dissemination of tumor cells to distant
organs, is attributed to the majority of cancer-related
deaths1. This is in part due to late diagnosis of metas-

tasis when the dissemination is out of clinical control. Early
diagnosis of metastasis remains challenging via the current
standard TNM system that grades patients according to the pri-
mary tumor size (T), lymph node spread (N), and detection of
overt metastasis (M). One reason is that metastatic cancer might
seed in distant organs much earlier than it becomes the overt
metastasis at a clinically measurable size. Previous studies have
observed that metastatic tumor cells can enter a dormant state
without outgrowth once reaching the distant organs2,3. By far,
given the standard TNM metrics, few solutions are available to
quantitatively assess metastatic risk (e.g., when and where to
spread) of a primary tumor before overt metastasis.

High-throughput technologies enable the identification of
molecular signatures predictive of cancer metastasis and pro-
gression. In 2003, Ramaswamy et al. identified a gene expression
signature associated with metastasis from microarray data by
comparing 12 metastatic and 64 primary samples, and validated
that the patients with this signature in an independent cohort of
279 primary solid tumors were associated with metastasis and
poor clinical outcome4. Clinical tumor DNA-sequencing meth-
ods, such as MSK-IMPACT5 and FoundationONE6, have
demonstrated its clinical utility in guiding treatment selection in
both primary and metastatic cancers7,8. Moreover, copy-number
alteration burden, a common genomic feature of cancer cells,
proved to be highly predictive of the relapse of prostate cancer9.
We, therefore, hypothesize that genomic variation of primary
tumors could be used as the indicators for metastatic risk
assessment.

To reliably estimate the potential time of overt metastasis, the
risk assessment model ideally learns underlying patterns of tumor
progression and migration from longitudinal sequencing data
before and after metastasis10. However, currently available
genomic databases have only a small number of such paired
samples, which are insufficient to sort out reliable prognostic
biomarkers applicable in a larger cancer population. Alternatively,
there are many large-scale clinical DNA-sequencing data of cross-
sectional primary and metastatic tumor samples, which could
mitigate the shortage of longitudinal data. For example, recent
analyses of MSK-IMPACT data in breast11 and colorectal12

cancers uncovered significant prognostic biomarkers indicative of
treatment response and patient survival. Through learning the
genomic difference before and after metastasis from those
unpaired samples, computational models can then automatically
assess the metastatic risk of a primary tumor by seeking meta-
static features in its genome. Therefore, the unpaired sample data,
even derived from different patients, may still be valuable
resources to characterize tumor behaviors during clonal evolution
and cancer progression.

Epidemiological studies have discovered that depending on the
tissue of origins and other factors, metastatic tumor cells have a
preference to seeding at certain distant organs, known as
organotropism13,14. For example, the epidemiological data from
2010 to 2015 have shown that approximately 80% of synchronous
brain metastases originated from lung primaries15. Metastases
from the same tissue but colonizing at different organs may result
in different patient prognosis16,17. For example, hepatitis metas-
tases commonly lead to the significantly worse clinical outcome
than other metastases in most cancer types18.

In this work, we aim to develop a Metastatic Network model
(MetaNet) to assess metastatic risk and potential destination
organs through collecting and analyzing a total of 32,176 pan-
cancer DNA-sequencing samples. Using this big-data cohort, we
identify genomic biomarkers associated with common and

organotropic metastases and validate their utility in metastatic
risk assessment at an early stage using a machine-learning model
to sort out a distinguishing subtype, namely Metastasis-Featuring
Primary, with shorter disease-free survival than Conventional
Primary patients. From the biomarkers associated with brain
metastasis of lung cancer, we discover a significant enrichment of
PI3K-pathway aberration and verify using our pharmacogenomic
database that targeting MTOR is highly effective in treating lung
cancer brain metastasis. Using the organotropic biomarkers, we
establish a computational model that stratifies patients of primary
prostate cancer into subgroups with propensities of bone or liver
metastases to inform organ-specific examinations in follow-ups.
To facilitate the metastatic risk assessment and other organo-
tropic biomarkers validation, we develop a web application of
MetaNet which is available at https://wanglab.shinyapps.io/
metanet.

Results
Spreading pattern of pan-cancer metastasis. To comprehen-
sively profile the spreading pattern of metastatic cancers and
enhance statistical power to identify underlying prognostic
genomic biomarkers, we integrated the clinical and genomic data
of 32,176 primary and metastatic cancer samples from four stu-
dies (Supplementary Fig. 1a): 10,946 samples from MSK-
IMPACT (MSK), 18,004 samples from Foundation Medicine
Inc. (FMI), 500 metastatic samples from the University of
Michigan (MET500) and 3,336 primary samples of lung, breast,
colon, and prostate cancers from The Cancer Genome Atlas
(TCGA). We grouped tissues of origin (Supplementary Data 1)
and sampling locations (Supplementary Data 2) of these tumor
samples into general anatomic organ sites, and rule out the minor
and unexplicit tissues from downstream analysis (Supplementary
Fig. 1b). Next, we constructed a spreading diagram of pan-cancer
metastasis (Fig. 1a), originating from 16 distinct primary sites and
migrating toward 8 metastatic sites. Except for lymph nodes as
the locoregional metastatic sites, the top-ranking distant meta-
static organs are liver, bone, lung, and brain, all of which were
intensively studied in organ-specific metastasis19.

To investigate common cancer spreading patterns, we
constructed a primary cancer network (PCN, Fig. 1b) based on
the similarity of fractional distribution at metastatic sites among
the 16 primary cancers. Through network clustering analysis, we
identified two clusters of primary cancers, within which the
primary-cancer organs exhibiting similar preference of metastatic
direction are from the same functional system. One cluster is
liver-tropic, including breast cancer and all the cancers in the
digestive system from the esophagus, stomach, gallbladder,
pancreas, and colon. The other cluster is mainly lung-tropic,
including skin, thyroid, liver, head and neck, and the cancers
from the urinary system (kidney, bladder, and prostate).
Similarly, we constructed a metastatic site network (MSN) by
clustering the 8 metastatic sites based on their similarities of
metastatic cancer types they receive (Fig. 1c), and discovered that
the four common metastatic organs, liver, lung, bone, and brain,
received distinct types of primary cancer.

To investigate what are the genetic factors mediating this
complex spreading pattern and to explore the underlying clinical
implications, we developed MetaNet, a computational framework to
predict whether and where a tumor will spread based on its
genomic profile and clinical data at the primary stage (Fig. 1d). In
general, MetaNet consists of two models: Model 1 to predict
whether a primary tumor will metastasize via learning the genomic
difference between primary and metastatic tumors, and Model 2 to
predict where a primary tumor will colonize via capturing the
genomic features among organ-specific metastases (Fig. 1d).
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Through scoring metastatic competence and organ-specificity of
each tumor based on its genomic profile by the models, we further
evaluate the prediction accuracy of the metastasis from the primary,
and interrogate what are the associated genetic factors that
contribute to the prediction. We finally validate our models
through prognostic analysis using independent cohorts of primary
tumors that are classified into different risk groups by MetaNet.

Identification and characterization of metastasis-featuring
primary tumors. To identify genomic variants associated with
metastasis, we compared the proportion of each mutation, copy-
number alteration (CNA), chromosome-arm alteration, and the
ten oncogenic pathway aberrations20 in the 16 cancers in primary

and metastatic stages (Supplementary Fig. 2a). In general, there
are more variants significantly enriched in the metastasis than
those in the primary (Fig. 2a, b), indicating that metastasis evol-
ving from primary cancer is a selective process along which the
tumor gains metastatic competence through additional variations.
Notably, the most significantly enriched variants in the metastasis
include ESR1 (estrogen receptor 1) mutation in metastatic breast
cancer (FDR < 1e−6, z-test, Benjamini–Hochberg (BH) correc-
tion) and AR (androgen receptor) mutation and copy-number
amplification in metastatic prostate cancer (FDR < 1e−6, z-test,
BH correction). Previous studies reported that the ESR1mutations
were commonly observed in recurrent breast cancer with resis-
tance to hormonal therapy21,22. Similarly, AR variations have also
proven to be the molecular mechanism of resistance to androgen-
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Fig. 1 Spreading pattern of pan-cancer metastasis. a Sankey diagram displays metastatic spreading directions from 16 primary cancer types toward 8
metastatic sites. Bandwidth is proportional to the number of metastatic tumor samples from one primary site to one metastatic site. Circle border thickness
is proportional to the number of metastatic samples in that site. The color code representing the corresponding organ sites is used throughout the entire
study. b, c Primary cancer network (PCN) represents the Pearson correlation coefficients (PCC) of fractional distribution of metastatic sites between each
pair of primary cancers (b). Metastatic-site network (MSN) represents the PCC of fractional distribution of primary sites between each pair of metastatic
sites (c). The correlations of p-value < 0.05 in PCN and p-value < 0.1 in MSN are shown. The significance is derived from a two-sided t-test without
adjustment for multiple comparisons. The edge width is proportional to the absolute PCC. Red edge color denotes a positive correlation and blue color
represents a negative correlation. Node size is proportional to the sample size of the primary tumor site (b) and metastatic site (c), respectively.
d Schematic illustration of design, evaluation, and application of MetaNet. Each row of the grids represents the features of one patient consisting of the
clinical (Clin.), histological (Hist.) and genomic features, together with the sample type: Primary (P) or Metastatic (M), and metastatic site, e.g., bone
metastasis (Met.) or liver metastasis (Met.). Model 1 aims to learn the difference between primary and metastatic samples (green background), and Model
2 aims to learn the difference between different organotropic metastases (blue background). In the Evaluation and Application module (yellow
background), Receiver operating characteristic (ROC) curve is used to evaluate the prediction performance. SHapley Additive exPlanations (SHAP) value is
used to interpret the predictive contribution of each feature in each sample. And Kaplan–Meier plot (KM plot) is used to illustrate survival differences
among different stratified groups.
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depletion therapy23,24. In addition, we also observed an increased
number of copy-number and chromosome-arm alterations in the
metastatic tumor genomes (Fig. 2b), which is consistent with a
previous study reporting a highly unstable genomic structure in
metastatic tumors25. Within those significant CNAs, we found
that MYC amplification is the only variant across two different
cancer types: metastatic prostate and pancreas cancers (Supple-
mentary Fig. 2a), suggesting its common role in promoting cancer
metastasis26.

Given the observed differences in the genomic profile between
primary and metastasis (Fig. 2a, b and Supplementary Fig 2a), we
established MetaNet Model 1, a machine-learning module based
on xgboost27, a gradient boosting tree model to stratify patients
with primary tumor into different metastatic risk groups using
the tumor genomic profiles (Fig. 1d). In particular, we first
trained the model to identify metastatic tumors from primary
tumors in four common cancer types (breast, lung, colon, and
prostate) using clinical, histological, and genomic features of the
tumors. Learning the distinct features between primary and
metastatic tumors, the model was then able to estimate the
likelihood of one tumor being metastatic, termed Metascore.
Using cross validation, we showed that compared to the baseline
models trained only by the clinical and histological features
without the genomic data, the genomics-based model can
accurately identify the metastatic tumors from the primary in
the breast and prostate cancers (Area Under the Receiver
Operating Characteristic curve, AUROC > 0.8), rather than in

the lung and colon cancers (Fig. 2c and Supplementary Fig. 2b).
This result demonstrated that the primary and metastatic breast
and prostate tumors are genomically different, while in lung and
colon cancer the genomes are alike, which is similar to our
observation in the comparison of the genomic profiles (Fig. 2b).
From an evolutionary perspective, it suggests that unlike lung and
colon cancers, breast and prostate cancers may follow certain
evolutionary modes in which only novel clones resistant to
hormone treatments can thrive in the metastasis. In terms of
clinical implication, disease-free survivals of breast and prostate
cancer patients are generally longer than those with lung and
colon cancers28, during which the metastases of breast and
prostate cancers have longer time to evolve and acquire more
variants than those of lung and colon cancers under the
assumption of constant mutation rate.

To further understand what genomic variants are used in the
model for metastatic risk prediction, we used SHapley Additive
exPlanations (SHAP) value29 to untangle the tree-based model by
visualizing gene-wise contribution to the metastatic risk of breast
cancer (Fig. 2d). A positive SHAP value indicates that the
genomic feature has a positive contribution to the metastatic risk,
while a negative value represents a negative impact on the risk.
Consistent with our genomic comparison between primary and
metastasis (Supplementary Fig. 2a), the ESR1 mutation is found
by the mean SHAP value as the most predictive feature of
metastatic breast cancer, followed by FGFR4 mutation, SOX2
amplification, ERBB2 mutation, and FGFR1 mutation (Fig. 2d).

Fig. 2 Identification and characterization of metastasis-featuring primary tumors. a, b Number of significant (Sig.) variants enriched in primary (a) and
metastatic (b) tumor samples. c Area under the ROC (AUROC) curves quantifies the performances of metastasis prediction from primary samples of
breast, prostate, lung, and colon cancers in five-fold cross validation. d SHAP values represent selected predictive variants in primary versus metastasis
prediction of breast cancer. Numbers on the right side denote the number of mutant or positive variants (red dots). e Metascore distributions in primary
and metastatic tumor samples of breast cancer. Each dot represents the Metascore of one sample. f Schematic illustration of newly defined tumor
category, termed metastasis-featuring primary (MFP) tumors, based on Metascore. g Fraction of selected variants in conventional primary (CP),
metastasis-featuring primary (MFP), and metastasis (M) categories in breast cancer.
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ERBB2 mutation has been found to be associated with resistance
to hormone therapy through a distinct mechanism from the ESR1
mutation30. In contrast, the top predictive variants of low
metastatic risk in breast cancer are DAXX, MCL, and GATA3
amplification. Interestingly, a previous study has uncovered that
GATA3 plays a suppressive role in breast cancer metastasis by
inducing microRNA-29b expression which targets a set of pro-
metastatic regulators31.

Even though the genomics-based model achieved AUROC of
0.82 and 0.8 in distinguishing metastatic versus primary breast
cancers and prostate cancer, respectively (Supplementary
Fig. 2b1–2), the misclassification rate is not ignorable. Examining
the Metascore distributions in the true primary and metastatic
sample categories, we showed that the misclassification rate is
mainly contributed by a high false-positive rate in breast cancer
(Fig. 2e) and prostate cancer (Supplementary Fig. 2c), suggesting
that the model overrates a subset of primary tumors as metastatic
ones. This overrated subset of primary tumors, even though
labeled as primary, might carry metastasis-enriched features,
which makes them genomically more similar to the metastatic
tumors other than the primary tumors. We, therefore, deemed
this subset of primary tumors as Metastasis-Featuring Primary
(MFP) tumors (n= 382, Fig. 2f) and the other primary as
Conventional Primary (CP) tumors (n= 1,255, Fig. 2f) based on
a Metascore cutoff of 0.5 (Fig. 2e). To illustrate whether the MFP
tumors in fact carry the metastasis-enriched features, we
calculated the fraction of the top predictive variants (Fig. 2d) in
the MFP, CP, and metastatic (M) breast cancers. Consistently, we
found that the MFP tumors harbor more metastasis-enriched
features, such as the ESR1 and ERBB2 mutations than the CP
tumors (Fig. 2g). Conversely, the MFP tumors carry less primary-
enriched features, such as MCL1 and GATA3 amplifications than
the CP tumors (Fig. 2g), which indicates that more metastasis-
enriched features and less primary-enriched features together
shift the MFP tumors away from the conventional primary
toward real metastasis on the genomic scale defined by our
Metascore (Fig. 2f).

Transcriptomic characteristics and prognostic value of
metastasis-featuring primary tumors. To explore the biological
and clinical implications of the MFP tumors, we collected the
genomic, transcriptomic, and clinical data of TCGA breast cancer
cohort32,33 consisting of 1,079 primary breast cancer samples.
Feeding the identical features from the clinical, histological, and
genomic data of TCGA samples into the trained model, we
estimated the metastatic risk of each TCGA sample by computing
their Metascore. The top predictive genomic features identified in
the training phase (Fig. 2d) contributed similar predictive power
to the metastatic risk estimation of each TCGA sample (Fig. 3a),
highlighting the robustness of these predictive features regardless
of the variation caused by batch effect and other covariates. In
particular, the seven TCGA primary breast cancer samples car-
rying ESR1 mutation are all deemed as MFP tumors, highlighting
ESR1 mutation is a remarkable feature that can provide early
warning signal of high metastatic risk in the patients with primary
tumors, but their metastatic lesions are not detectable yet. Indeed,
ESR1 mutation has been used to monitor the resistance of hor-
mone treatment via liquid biopsy, the measurement of cell-free
DNA in the blood of cancer patients34.

To understand the functional consequence of primary tumors
harboring metastatic features we subsequently studied gene
expression data. As different receptor-defined subtypes of breast
cancers exhibit distinct expression patterns, we split TCGA breast
cancer samples into the four classical subtypes32,33: luminal A,
luminal B, HER2-enriched, and basal-like, and then compared the

transcriptomic profiles between the MFP and the CP tumors
within each subtype. Notably, we found that the upregulated
genes in the MFP tumors are significantly enriched in the
epithelial–mesenchymal transition (EMT) in both HER2-
enriched and basal-like subtypes, while the downregulated genes
are significantly enriched in the functions related to cell-cycle
proliferation, such as G2M checkpoint and E2F targets (FDR <
0.0001, Gene Set Enrichment Analysis (GSEA), Fig. 3b, c). This
pattern was not found in the GSEA of the other two hormone-
related subtypes and breast cancer in general (Supplementary
Fig. 3a–c). A previous study observed the same reverse pattern
between EMT and cell proliferation through modulating CDH1
expression in MDA-MB-468, a triple-negative breast cancer cell
line35, which in part supports our observation.

To validate whether the MFP tumors have a high risk of
metastasis, we compared the clinical outcomes of the patients
classified into the MFP and the CP groups. Filtering the samples
with the survival data available in TCGA, we showed that the
patients with MFP tumors have significantly shorter disease-free
survival (DFS) than those with CP tumors (p-value < 0.0001, log-
rank test, Fig. 3d). Similarly, worse clinical outcomes with shorter
DFS were found in the patients with the MFP prostate
(Supplementary Fig. 3d) and the MFP lung cancers (Supplemen-
tary Fig. 3e), which collectively demonstrates that the MFP
tumors are more progressive than the CP tumors. To validate that
the Metascore, our genomic estimation of metastatic risk, is an
independent predictor of disease progression, we compared the
DFS between the patients with MFP tumors and those with CP
tumors within each breast cancer subtype and found consistently
worse DFS in the MFP group within each of the four subtypes
(Fig. 3e and Supplementary Fig. 3f). Moreover, we used
multivariate Cox regression to collectively evaluate the predictive
power of the breast cancer subtypes and the Metascore-defined
MFP/CP stratification. Strikingly, the hazard ratio of MFP over
CP is 3.9 (2.2–7.0, 95% confidence interval), which is significantly
higher than the base value of 1, and is independent of the
subtypes (Fig. 3f). Even though the previous study has
demonstrated significantly worse overall survival of basal-like
breast cancer than those of hormone-positive subtypes36,
the subtypes, however, did not exhibit strong predictive power
to the disease progression when standing with our genomics-
based stratification (Fig. 3f). Taken together, we demonstrated
that our genomic stratification of metastatic risk is significantly
powerful and independent of conventional hormone-based
subtyping in breast cancer.

Profile of metastatic organotropism. To explore the spreading
preference of cancer metastasis, we curated two large-scale and
independent metastatic cancer data sets from MSK (n= 2,919)
and FMI (n= 4,100) cohorts, in order to investigate whether this
organ-specific metastasis, namely metastatic organotropism, is a
statistically robust phenotype. Comparing the fractional differ-
ences of metastatic cancers located in the 8 metastatic sites from
the 16 tissue of origins between the two independent cohorts
(Supplementary Fig. 4a), we discovered a remarkably significant
correlation (Pearson Correlation Coefficient, PCC= 0.913,
p < 0.0001, Fig. 4a) in a pan-cancer scale. The most correlated
metastatic cancer type is the liver metastasis of pancreatic cancer
(143 out of 180 in MSK versus 263 out of 329 in FMI, p= 0.89,
proportion test). Collectively, given that 15 out of the 16 cancer
types (except the prostate cancer) exhibit a significant correlation
of metastatic site distributions between MSK and FMI cohorts
(PCC > 0.5, p < 0.05, Supplementary Fig. 4a), we concluded from
a big-data perspective that dissemination direction in the majority
of metastatic cancers is strongly organotropic in a statistically
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robust manner, which implies that organotropic metastasis is
highly non-random and in part driven by certain potential factors
including tissue of origin, vascular pattern, genetic background,
and congenial microenvironment19,37,38.

To further visualize which organ is the predominant metastatic
destination in each cancer type, we compared the fractions of
cancer samples at the four common distant metastatic organs:
bone, brain, liver, and lung (Supplementary Fig. 4b), by projecting
the normalized fractions into a tetrahedron space (Fig. 4b).
Interestingly, we uncovered two cancer groups: one is liver-tropic
and the other is lung-tropic, which is consistent with the
discovery in the primary cancer network (Fig. 1b). The liver-
tropic group consists of five cancer types all from the digestive
system (gallbladder, pancreas, stomach, colon, and esophagus),
which is in part due to vascular structure and anatomic
proximity. The lung-tropic group consists of the cancer types
from head and neck, thyroid, uterus, skin, and kidney, most of
which are located close to the lung. These two groups indeed
explained that the cluster formation in the primary cancer
network (Fig. 1b) is due to the predominant single-organ

tropisms in the liver and lung. In addition, we observed widely
reported organotropisms, including bone metastasis of prostate
cancer and brain metastasis of lung cancer39,40. The other cancer
types consisting of bladder, ovary, and liver cancers, were not
located close to any single corner, indicating their metastatic
organotropisms are not dominated by one single organ
(Supplementary Fig. 4b).

Given that metastatic organotropism is a stable biological
phenomenon (Fig. 4a), we further investigate its underlying
clinical value, i.e., whether the metastases at different organs
impact patient survival. Using the overall survival (OS) data
available in the MSK cohort, we compared the OS differences of
the four common cancers spreading to the four common
metastatic organs based on the metric of the area under the
Kaplan–Meier plot (equivalently as mean survival) instead of
median survival which cannot be computed in long-surviving
cancers, such as prostate cancer. Generally, in all the four cancer
types the patients with metastatic cancer have remarkably shorter
survival than those with primary cancer (Fig. 4c and Supple-
mentary Fig. 4c1–4). Particularly, the patients with metastatic

Fig. 3 Transcriptional characteristics and prognostic value of metastasis-featuring primary tumors. a SHAP values represent selected predictive
variants in the TCGA breast cancer cohort. Numbers on the right side denote the number of mutant or positive variants (red dots). b, c Normalized
enrichment scores of significant hallmark functions (FDR < 0.0001) in Gene Set Enrichment Analysis (GSEA) which compares MFP tumors versus CP
tumors in HER2-enriched subtype (b) and basal-like subtype (c) of TCGA primary breast cancer cohort. Bars in red/blue represent activated hallmarks in
MFP/CP tumors. d KM plot displays disease-free survival (DFS) difference between MFP tumors versus CP tumors of TCGA primary breast cancer. The
censored data are denoted as + sign. The significance is derived from the two-sided log-rank test. e Table displays DFS differences between MFP tumors
versus CP tumors in four different breast cancer subtypes of the TCGA cohort. f Hazard ratios and 95% confidence intervals derived from multivariate cox
regression using breast cancer subtypes and genomics-based stratification: MFP versus CP. The sample sizes are denoted in the brackets.
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prostate cancer at the liver have significantly worse survival than
those at the bone (Fig. 4c), which implies that predicting potential
metastatic sites can provide prognostic value for prostate cancer
patients. Unexpectedly, brain metastasis does not always indicate
worse survival than the other metastases: in breast and colon
cancers the brain metastases have worse survival than the liver
metastases, while this observation is opposite in metastatic lung
cancer (Fig. 4c).

We next investigate whether genetic variation contributes to
metastatic organotropism. Given the abundance of copy-number
and chromosome-arm alterations significantly enriched in
metastatic cancers (Fig. 2b), we further investigate whether those
alterations are uniformly distributed in all metastatic sites or
specifically enriched in a certain one. Using the fraction of
genome altered (FGA) estimated in the MSK-IMPACT study7, we
found a dramatic increase of FGA in the brain metastases
compared to the non-brain metastases and the primary tumors in
10 out of the 16 cancer types (Fig. 4d and Supplementary Fig. 4d),

especially in the lung, breast, and colon cancers (Fig. 4d), all of
which are the top-ranking origins in brain metastasis (Supple-
mentary Fig. 4e)41. The previous study has demonstrated that
chromosomal instability, featured by high FGA, is a driver of
metastasis through a cytosolic DNA response25. A recent study
discovered MYC amplification, in particular, is required in the
brain metastasis of lung cancer using patient-derived xenograft
mouse models42, which enlightened us to further characterize
each organ-specific metastasis from a gene-wise perspective.

Genomic characterization of metastatic organotropism. To
comprehensively identify variants associated with metastatic
organotropism in our curated large-scale dataset, we selected the
metastatic samples located at bone, brain, liver, and lung, and
screened for the variants whose fractions in the four metastatic
sites have a significant deviation from the average fraction in the
metastases. Using false discovery rate control, we identified 93
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organotropic variants and features in total with fractional bias in
certain metastatic sites significantly deviating from the average
(Chi-squared test, FDR < 0.1, variant fraction in the metastases
>1%, Supplementary Fig. 5a and Supplementary Data 3), most of
which are found in the metastatic cancers originating from the
colon (n= 19), the breast (n= 15) and the lung (n= 13). Almost
two-thirds of the organotropic variants (59 out of 93) have
fractional enrichments in the brain metastasis, whereas only 6
variants are enriched in the lung metastasis and 5 in the liver
metastasis (Supplementary Fig. 5a). Within those 59 brain-tropic
variants, 15 are CNAs, suggesting those altered genes might be
the key factors among the abundant CNAs enriched in the brain
metastasis (Fig. 4d).

Among the 15 organotropic variants in breast cancer, 10 are
most abundant in brain metastasis, 3 in liver metastasis, and 2 in
bone metastasis (Supplementary Data 3). To visualize the organ-
specific enrichment of each variant, we calculated the odds ratio of
the variant fraction in one metastatic site over that not in the site,
termed organotropic odds ratio (OGTOR), and projected the
normalized OGTORs into a tetrahedron with the four corners
representing the four metastatic sites (Supplementary Fig. 5b).
None of the variants are shown to locate close to the lung
metastasis corner, and the most abundant variants and features in
the lung metastasis, such as p53, Ras, and Myc pathways (67%,
56%, and 20%), are found to be more abundant in the brain
metastasis (80%, 73%, and 37%). Projecting the OGTORs into a
triangular space (Fig. 5a) instead and highlighting the variants
with variant fraction larger than 5% and FDR less than 0.05, we
clearly showed that the top liver-tropic variant of the breast cancer
is ESR1 mutation, the bone-tropic variant is CDH1 mutation, and
the brain-tropic variants include TP53 mutation, CDK12, and
ERBB2 amplifications. Particularly, the ESR1 mutation dramati-
cally shifts the distribution of metastatic breast cancer destinations
with a sharp increase in the liver (from 52% to 75%) accompanied
by fractional decreases in brain and lung (p < 0.0001, Chi-squared
test, Fig. 5b). Further examining each ESR1 mutation in the breast
cancer samples (n= 405, 129 from MSK, 262 from FMI, and 14
from MET500), we found that the liver metastasis enrichment is
in fact primarily contributed by four hotspot positions located at
the ligand-binding domain (LBD): D538, Y537, L538 and E380
(n > 20, Fig. 5c), all of which are spatially close to each other and
have been demonstrated to give rise to estrogen-independent
activation of downstream signaling and promote cellular
proliferation43. The CDH1 mutation enriched in the bone
metastasis, was identified as a featuring loss-of-function mutation
in the invasive lobular carcinoma33 that leads to dysregulation of
cell-cell adhesion with a discohesive phenotype44. The brain-
tropic variants TP53 mutations and ERBB2 amplification are in
fact enriched in triple-negative and HER2-enriched breast cancers,
respectively32. A previous epidemiological study showed that bone
metastasis of breast cancer is common across all the subtypes
except the basal-like one45, whereas liver metastasis is enriched in
hormone-positive subtypes46 and brain metastasis is enriched in
HER2-enriched47 and triple-negative subtypes48, all of which are
highly consistent with our organotropic variation enrichment
analysis.

Among the 13 organotropic variants in lung cancer, 10 are
most abundant in brain metastasis and 3 in bone metastasis
(Supplementary Data 3). No variant is significantly enriched in
the liver metastasis, and we ruled out the lung metastasis due to
its small sample numbers (n= 32) and missing annotation
regarding regional relapse or distant metastasis from one site of
the lung to the other. A significantly high mutation burden (larger
than 20 mutations per megabase) was identified in the brain
metastasis (p < 0.0001, Chi-squared test, Supplementary Fig. 5c),
featured by the enriched CREBBP and EPHA5mutations (Fig. 5d).

The STK11 mutation was significantly enriched in the bone
metastasis (p= 0.0002, Chi-squared test, Supplementary Fig. 5d),
and the aberration of its involved PI3K pathway was found to
significantly increase the fraction of brain metastasis (p= 0.0379,
Chi-squared test, Fig. 5e). Interestingly, the STK11mutation, even
though more enriched in the bone metastasis, are found to be the
most abundant variant in the brain metastatic samples of lung
cancer harboring the aberration of PI3K pathway (n= 146,
Supplementary Fig. 5e). The previous study has demonstrated
that STK11 is a tumor suppressor and its loss-of-function
mutation is involved in the morphological change from
adenocarcinoma to squamous cell carcinoma, which further
promotes lung cancer metastasis49. Through analyzing our
previous pharmacogenomic dataset that screened 60 anti-cancer
drugs in 462 patient-derived cell lines (PDCs)50, we showed that
five PI3K-pathway inhibitors rank within the top seven most
efficacious drugs for the 23 PDCs of lung cancer brain metastasis
(LUBM). Three of the five PI3K-pathway inhibitors (gedatolisib,
everolimus, and vistusertib) target MTOR51, a downstream
effector of the PI3K pathway. Further comparison of the drug
efficacies in the 23 LUBM PDCs versus those in the other 439
PDCs showed that the three MTOR inhibitors exhibit signifi-
cantly high specificity (FDR < 0.01, t-test, Fig. 5f and Supple-
mentary Fig. 5f). Collectively, this result verified an enrichment of
the aberrantly activated PI3K pathway and its clinical action-
ability in the brain metastasis of lung cancer.

Among the 19 organotropic variants in colon cancer, 11 are
most abundant in brain metastasis, 7 in bone metastasis, and 1 in
liver metastasis (Supplementary Data 3). No significant variants
are found in the lung metastasis (Supplementary Fig. 6a). Besides
the aberration of the TGF-β pathway enriched in the liver
metastasis, featured by SMAD4 mutation and deletion, the other
significant variants are mainly amplifications located at chromo-
some 13q, together with Ras pathway activation featured by KRAS
mutation (Fig. 5g). Among those brain-tropic amplifications, the
most significant one is CDK8 amplification which gives rise to a
fractional increase of the brain metastasis from 2% to 11%
(p= 0.0004, Chi-squared test, Fig. 5h). Even though CDK8 is
amplified together with its chromosomal neighbors FLT1 and
FLT3, we collected the transcriptomic data from TCGA52 and
showed that only the amplification of CDK8, rather than those of
FLT1 and FLT3, are functional through elevation of the
corresponding expression (Supplementary Fig. 6b). The previous
study has demonstrated the oncogenic role of CDK8 amplification
in colon cancer cell proliferation as a positive mediator of β-
catenin-driven transformation in the WNT pathway53. Using
paired samples of primary and brain metastasis colon cancer from
the same patients in two recent studies10,54, we demonstrated that
the CDK8 amplification is not a newly emerged event in the brain
metastasis but inherited from the primary tumors (12 out of 14,
Supplementary Fig. 6c). Comparing the transcriptomic profile of
CDK8-amplification primary colon cancer in TCGA versus the
non-amplified cases, we showed that CDK8 amplification is in fact
associated with the promotion of epithelial–mesenchymal transi-
tion (GSEA, FDR < 0.0001, Supplementary Fig. 6d) and down-
regulation of cell proliferation (GSEA, FDR < 0.05, Supplementary
Fig. 6e), implying a role of CDK8 amplification in distant
metastasis of colon cancer. Furthermore, we used the clinical data
of TCGA to show that the colon cancer patients with CDK8
amplification were diagnosed with more lymph node spread
(p= 0.006, proportion test, Supplementary Fig. 6f) and have
significantly shorter DFS (p= 0.003, log-rank test, Fig. 5i).
Collectively, all of the evidences pinpointed that the colon cancers
with CDK8 amplification are more progressive with strong
potential in distant migration toward the brain. Given that colon
cancer metastasis follows a sequential cascade from the colon to
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the liver, and lung19, we inferred that brain metastasis of colon
cancer also follows this cascade driven by the blood vasculature
and keeps migrating from the lung into the heart and eventually
into the brain through the neck artery. The CDK8-amplification
fractions in the primary, liver, lung, and brain metastases exhibit a
significant increased trend (p= 0.003, trend test, Supplementary
Fig. 6g), which suggests that CDK8 amplification is positively
selected during the cascade.

Organotropic stratification of primary tumors. Even though we
only identify one organotropic variant, the MSH6 mutation in
lung metastasis of prostate cancer (FDR= 0.07, Supplementary
Data 3), we observed from the survival analysis (Fig. 4c) that the
patients with primary prostate cancer, the bone metastasis, and
the liver metastasis suffer a dramatic decrease of the mean sur-
vival time as 33, 24, and 13 months, respectively, given a 40-
month follow-up (Figs. 4c and 6a). The pairwise comparisons
between these three groups all yielded significant differences
(p < 0.001, log-rank test, Fig. 6a), which is consistent with pre-
vious epidemiological statistics17. Enlightened by this fact, we,
therefore, developed MetaNet Model 2 (Fig. 1d), an
organotropism-based prognostic system that stratifies patients
into different risk groups depending on the propensity of meta-
static destination. Using an ordinal regression model framework,
we trained the MetaNet Prognosis module using the combined
dataset of the MSK and FMI prostate cancer cohorts (Fig. 6b),
and achieved an accuracy of 64.3% in the three-class prediction
task. Next, we applied our MetaNet prognosis module to an
independent cohort of primary prostate patients from TCGA55,
and stratified them into three risk groups (Fig. 6b): conventional
primary (CP, n= 237), bone metastasis-featuring primary (Bone-
MFP, n= 174), and liver metastasis-featuring primary (Liver-
MFP, n= 83). Strikingly, the three risk groups have a similar
decreasing trend in DFS, and pairwise comparison of the DFS
between the three groups yield significant differences: p= 0.04 in
CP vs. Bone-MFP, p= 9e−4 in Bone-MFP vs. Liver-MFP, and
p= 6e−8 in CP vs. Liver-MFP (Fig. 6c). This suggests that the
organotropism stratification can inform clinicians to perform an
organ-specific examination during the follow-ups of high-risk
patients.

To display the mechanism of our genomics-based stratification
model, we showed the corresponding fractions of the predictive
variants in each stratified group (Fig. 6d). In general, the fractions
of these predictive variants in each risk group exhibits an
increased trend from CP to the bone- and liver-MFP groups,
featured by the aberration of cell-cycle, p53, and PI3K pathways,
indicating a sequential process of malignancy that is concordant
with the survival pattern (Fig. 6c). In particular, we noticed that
the FGA over 5% is a highly distinguishable feature for CP (31%)
versus bone- (88%) and liver-MFP (99%) patients, together with
two featuring CNAs: CDKN1B deletion and AR amplification
(Fig. 6d), which is consistent with previous study solely using
FGA to predict patient survival of prostate cancer9. The predictive
and significantly more abundant variant of bone-MFP group than
that in liver-MFP group is SPOP mutation (p= 0.0007, propor-
tion test), which has been found to represent a distinct subtype of
prostate cancer that is mutually exclusive to the common E26
transformation-specific (ETS) transcription family fusions56,57.
The CDK12 mutation, even though has low fractions in all the
three groups (0% in CP, 2.8% in bone-MFP, and 5.9% in liver-
MFP), has also been demonstrated to increase genomic
instability58 and aggressiveness59 in prostate cancer.

The current standard grading system of prostate cancer
primarily relies on the Gleason score based on the morphological
features of two lesions in histological images. We compared our

genomics-based organotropic stratification with the Gleason
grading in the TCGA cohort and found a strictly increasing
median score of our genomics stratification within each Gleason
grade, indicating a high consistency between the two independent
systems using genomics and histology (Fig. 6e). In particular, our
genomics-based system stratifies more CP patients into the low
Gleason-grade group and more liver-MFP patients into the high
Gleason-grade group. This suggests that integrating genomic
profiles of metastatic prostate cancers to stratify metastatic risks
of primary prostate cancer patients can provide an additional
dimension for more precise diagnosis and prognosis.

Discussion
We developed MetaNet, a computational framework that cap-
tures metastatic features within primary tumor genomes to
stratify metastatic risk. These features learned from the metastatic
tumors can empower MetaNet to sort out the primary cancer
patients at high metastatic risk before detection of overt metas-
tasis. Compared to the low-risk group, the high-risk group of
patients has turned out to suffer significantly shorter disease-free
survival with elevated migratory program significantly enriched
in the transcriptome of their tumors. Different from previous
studies that identified prognostic genomic biomarkers to predict
patient survival9, MetaNet focused on the biology of metastasis
and identified 30 prevalent (fraction > 5%) and significant
(FDR < 0.05) variants enriched in organotropic metastasis from a
big-data perspective (Fig. 7a). This molecular portrait of orga-
notropic metastasis exhibits strong potential to inform treatment
selection (Fig. 5d–f), and surveillance of drug resistance
(Fig. 5a–c) and distant metastasis (Fig. 5g–i). In addition, unlike
traditional multi-class models that consider the classes to
be independent of each other, we proposed the ordinal regression
with self-adaptive thresholding to model metastatic dissemination
from tissues of origin to proximal sites and distant organs. We
demonstrated in prostate cancer that the ordinal regression model
with the organotropism-associated variants can predict potential
metastatic sites of primary tumors, which stratified the patients
into different risk groups with significant differences in survival
and histological grades.

Previous studies have proven that tumor molecular features are
highly predictive of disease progression and drug response of
cancer patients. One longstanding strategy is to develop machine-
learning models that learn the likelihood of tumor recurrence or
metastasis from a small set of signature genes4. This strategy has
been commercialized into widely used diagnostic products in
breast cancer, such as OncotypeDX60 and MammaPrint61. Unlike
this strategy, the contribution of MetaNet lies in the use of
somatic variants from a large-scale pan-cancer cohort including
32,176 primary and metastatic samples, the development of
machine-learning models using a non-linear classifier with highly
informative interpretability, and the clinical application in risk
stratification of organ-specific metastases. While direct compar-
ison has not been performed between the two methodologies in a
large-scale dataset with genomic and transcriptomic information
available, we believe that MetaNet, a genomics-based method, can
provide a different perspective complementary to the expression-
based assays. And it is anticipatable that a better method might
emerge through integrating genomic and transcriptomic data, or
even data from digital pathology using complex classifiers like
deep learning.

One limitation of our study is that we focused mainly on a
small panel of genomic variants (241 genes, Supplementary
Data 4). We successfully identified the MFP subtype with worse
survival in breast and prostate cancer other than lung and colon
cancers. We reasoned that unlike breast cancer and prostate
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cancer, lung and colon cancers exhibit less genomic difference
before and after metastasis (Fig. 2b), leading to poor classification
performance (Fig. 2c). To gain a better understanding of the
molecular mechanism in these cancers, more efforts should be
devoted to investigate evolutionary dynamics of epigenomic

factors and/or tumor microenvironment in the process of cancer
cell migration. Many previous studies have shown that tran-
scriptomic and proteomic analyses could reveal the biomarkers
directly mediating organotropic metastasis. For example, over-
expression of IL11 and CTGF were found to mediate breast
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organotropic score within each Gleason-grade category. A tiny random number is added into the score for clear visualization of patients with nearly
identical scores.
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Fig. 7 Summary of organotropic variants and MetaNet web application. a 30 abundant (mutant fraction >5% in metastases) and significant (FDR < 0.05,
two-sided Chi-squared test, BH correction) organotropic variants/features are shown on human anatomic map. b Main page of MetaNet web application
displays four functional modules: interactive illustration of metastatic spreading pattern, metastatic risk assessment, organotropic variant exploration, and
organotropic stratification. The primary-metastasis identification of unknown primary cancer and tissue of origin prediction of metastatic cancer are under
construction.
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cancer metastasis to bone62. In addition, different exosomal
integrins revealed by exosome proteomics were found to associate
with organotropic colonization63. However, the lack of large-scale
transcriptomic and proteomic data in both primary and meta-
static samples hinders us to identify the connection from geno-
mics to downstream functional layers that directly dictate
organotropic metastasis. We expect that newly emerging high-
throughput data and technology, together with sufficiently large
data sets gradually accumulated over the years, will soon help
close the gap among different types of molecular data and shed
light on the entire picture of metastasis biology at a pan-
cancer scale.

Another limitation of our study is that we cannot rule out drug
resistors from the list of metastasis-related variants based on the
present statistical comparison. A better design to overcome this
limitation could be the enrollment of patients who did not receive
neoadjuvant nor adjuvant chemotherapies. In this case, the sta-
tistical comparison of genomic profiles between primary and
metastatic samples could unveil metastasis drivers independent of
treatment solutions. Further validation through biological
experiments is also a must to consolidate the biological roles of
the discovered variants.

To enable the wide application of MetaNet by clinic and
research communities, we created an R-shiny web application
(Fig. 7b) for organotropic biomarker exploration and metastatic
risk assessment at https://wanglab.shinyapps.io/metanet. MetaNet
has the potential in helping oncologists to assess metastatic risk
and relapse time of primary cancer patients, especially to deter-
mine whether to surgically resect the tumor given the risk stra-
tification when a biopsy sample is available for sequencing.
Finally, even though the present study cannot perform deep
investigation and experimental validation for each organotropic
biomarker, our online application provides a public window for
inquiry of biomarker candidates from other cancer biologists
interested in metastatic organotropism.

Methods
Data collection of primary and metastatic cancer studies. The clinical records
and tumor genomic sequencing data of primary and metastatic patients from MSK-
IMPACT7, FoundationONE8, and MET50064 were collected for this study. In parti-
cular, the MSK data were downloaded from cBioPortal (https://www.cbioportal.org/).
The FoundationONE data was downloaded from the Genomic Data Commons Data
Portal (https://portal.gdc.cancer.gov/). And the MET500 data was downloaded from the
official website (https://met500.path.med.umich.edu/). For independent validation, we
collected the clinical and genomic sequencing data of four common cancer types: breast,
colon, lung, and prostate cancers from TCGA via FireHose data portal (https://gdac.
broadinstitute.org/).

Clinical data profiling of pan-cancer metastasis. Each primary cancer sample is
annotated by its primary site, and each metastatic sample is annotated by its
location (metastatic site) and tissue of origin (primary site). The raw clinical record
shows that the primary and metastatic sites of the total 32,176 samples are from
360 unique tissues (Supplementary Fig. 1a). For the convenience of downstream
study, we merged the tissues into 47 anatomical organs (Supplementary Data 1 and
2) via a computational cancer classification system, OncoTree65, followed by the
consensus of a pathologist panel (Supplementary Fig. 1b). Ruling out the tumors in
minor organs (Supplementary Fig. 1b), we visualized the metastatic spreading
pattern (Fig. 1a) of all the metastatic tumors from 16 primary sites to 8 metastatic
sites using the R packages: circlize66 and echarter, the R interface of ECharts67. We
calculated the PCCs of metastatic-site distribution between each pair of primary
cancers to construct the PCN (p < 0.05, Fig. 1b), and that of primary-site dis-
tribution between each pair of metastatic sites to construct the MSN (p < 0.1,
Fig. 1c), respectively. The network visualization was performed using Cytoscape68.

Feature compilation and engineering of genomic variants. For genomic data
compilation and feature engineering, we first merged the gene panels of MSK-
IMPACT and FoundationONE to generate an intersect panel of 241 genes (Sup-
plementary Data 4 and Supplementary Fig. 1a). The mutations and copy-number
alterations of these 241 genes are used to build a genomic profile of each sample.
For the genomic data from MET500 and TCGA generated by whole-exome
sequencing, we extracted the mutations and the copy-number alterations of the 241

genes from the whole-exome data in order to unify the genomic profile of the
32,176 samples in total. Each gene was annotated with its chromosome location
and total exon size using the GTF file derived from GENCODE69. We then
engineered extra genomic features: tumor mutation burden (TMB), fraction of
genome altered (FGA), chromosome-arm level alteration, and oncogenic pathway
aberration. The TMB of each sample, measured at the number of somatic muta-
tions per megabase, was calculated by the total somatic mutation count divided by
the total exon size of the 241 genes, followed by a multiplication of 1,000,000. The
FGA was calculated by the total size of genes with copy-number alteration nor-
malized by the sum of the chromosomal size of all the 241 genes. We defined and
calculated the chromosome-arm level alteration of each sample as over 50% of the
genes on the arm have copy-number alteration. Collecting the ten curated onco-
genic pathways from TCGA pan-cancer analysis20, we defined and calculated the
aberration of one pathway of each sample if any gene in the pathway has mutation
or copy-number alteration.

Comparison of genomic difference between primary and metastasis. We
performed a proportion test for each variant in the primary and the metastasis of
each cancer type, and defined metastasis-enriched variants if the log2 fold change
of the variant fraction in the metastasis over that in the primary is larger than 1 and
the adjusted p-value of the proportion test is <0.05 (Benjamini–Hochberg cor-
rection). Conversely, primary-enriched variants were defined in the opposite way.

Machine-learning model for identification of metastasis-featuring primary
tumors. The training and testing of the machine-learning models were individually
performed for each type of the four common cancers: breast, colon, lung, and
prostate, using xgboost package in R27. The MSK-IMPACT and FoundationONE
data were used in the training and testing procedure, while the data from TCGA
were used for independent validation. The same features of each sample from dif-
ferent cohorts were compiled and screened for each individual cancer type, especially
for those cancer type-specific clinical and histological features (Supplementary
Table). Stratified sampling was performed to split the samples from MSK-IMPACT
and FoundationONE into five folds with identical ratio of primary over metastasis in
each fold. One fold was held out for testing, while the other four folds were used to
seek the best parameters in a four-fold cross validation. This process was repeated
five rounds for each fold of the data so that each sample was tested once to acquire
an independent evaluation of metastatic risk, namely Metascore. The model per-
formance was then evaluated by the area under the Receiver Operating Characteristic
(ROC) curve using the Metascore of each sample computed in its testing round
(Fig. 2c and Supplementary Fig. b1–4). The contribution of each genomic variant to
the metastatic risk (Metascore) in each sample was quantified using SHAP value
(SHapley Additive exPlanations value29, Figs. 2d and 3a).

For independent validation, an additional model was trained using all the five-
fold data, and then was used to compute the Metascore of TCGA samples (Fig. 3).
In order to determine a robust threshold of Metascore to separate the conventional
primary group and the metastasis-featuring primary group, three different
statistical methods were used:

(a) Lowest-P: Use the Metascore of each patient as the threshold and calculate
the p-value of log-rank test by comparing the disease-free survival between
the two groups, and select the Metascore that yields the lowest p-value as the
threshold;

(b) Top N%: Rank all the patients based on the Metascore at descending order
and select the top 10% of patients as the high-risk group; and

(c) Unsupervised: A Gaussian Mixture Model (GMM) with two components
was used to fit the distribution of Metascore, and the threshold was at the
intersection of the two components.

The final threshold was determined as the median of the candidate thresholds
calculated by the three methods.

Gene set enrichment analysis. The Gene Set Enrichment Analysis (GSEA70) was
performed using GSEAPY, a Python wrapper for GSEA and Enrichr71. The 50
hallmark gene sets (h.all.v7.0.symbols.gmt) generated by the Molecular Signature
Database72 were used in the analysis. The permutation was performed within the
gene set at 1000 times. The gene list was ranked by the signal-to-noise metric via
comparison of the expression in MFP versus CP.

Survival analysis. The Kaplan–Meier plot, log-rank test, and the estimation of
mean, median, and quantiles of survival time were all performed by MATLAB
function MatSurv73. The multivariate Cox regression was performed using the R
package survival.

Comparison of genomic difference among different metastatic sites. We
performed a Chi-squared test for the variants of each cancer type in the four
common metastatic sites: bone, brain, liver and lung. The regional relapse, i.e., the
liver metastasis of liver cancer and the lung metastasis of lung cancer were
excluded. The projection of scaled variant fractions into the tetrahedron space was
implemented using MATLAB function quatplot374.
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ESR1 mutation analysis. We merged the ESR1 mutations from MSK, FMI, and
MET500 together. The genomic positions in different genomic references were
converted into hg19 using LiftOver in the UCSC Genome Browser75.

Gene-drug data analysis. The area under the dose-response curves (AUC) were
derived from the original study50. To identify the efficacious drugs inhibiting the 23
lung-cancer-brain-metastasis (LUBM) PDCs, we performed a drug-wise standar-
dization of the raw AUCs. To compare the AUCs treated in the 23 LUBM versus
the other PDCs, we performed a cell-wise standardization after the drug-wise
standardization. Then two-sample t-test was performed for the comparison fol-
lowed by Benjamini–Hochberg correction.

Machine-learning model for organotropic stratification. For organotropic
stratification, we used the prostate cancer samples from the MSK and FMI cohorts
to train an ordinal regression model76 based on a Proportional Odd Model
(POM77) using ORCA toolbox78, a MATLAB framework, and implementation of a
wide range ordinal regression methods. Instead of treating each response label
(primary, bone metastasis, and liver metastasis) independently using one-hot
encoding, we set the label at an order from primary prostate as 0, bone metastasis
as 1, to liver metastasis as 2. The genomic variants without enrichment in the
primary or organotropic metastases were removed based on our previous enrich-
ment analysis using the z-statistic of the proportion test and the Chi-squared
statistic. The training was performed using half of the samples and the other half
was used in the testing of the accuracy. Independent validation was performed
using the TCGA prostate cancer cohort.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The published data sets used in this study are listed as follows. The MSK clinical and
genomic data of the 10,946 samples were directly downloaded from cBioPortal (https://
cbioportal-datahub.s3.amazonaws.com/msk_impact_2017.tar.gz). The clinical and
genomic data of the 18,004 samples generated by Foundation Medicine Inc. were
accessed from the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/)
with accession code phs001179. The MET500 clinical and genomic data were directly
downloaded from the official website (https://met500.path.med.umich.edu/). And TCGA
clinical and genomic data were directly downloaded via FireHose data portal (https://
gdac.broadinstitute.org/). All the downloaded genomic data were previously processed by
the corresponding data owners, including mutation call table, copy-number alteration
table, and gene fusion/rearrangement table. No raw sequencing data were acquired and
processed in this study. Anatomic classification of primary and metastatic organs, and
supportive data of genomics variants have been provided in Supplementary Data. The
remaining intermediate data processed from the above data sets are available from the
corresponding author upon request.

Code availability
The main codes used to develop the MetaNet are available at our GitHub repository:
https://github.com/WangLabHKUST/METANET-analysis.
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