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Overactivated transport in the localized phase
of the superconductor-insulator transition
V. Humbert 1,2, M. Ortuño 3✉, A. M. Somoza 3, L. Bergé4, L. Dumoulin4 & C. A. Marrache-Kikuchi 4✉

Beyond a critical disorder, two-dimensional (2D) superconductors become insulating. In this

Superconductor-Insulator Transition (SIT), the nature of the insulator is still controversial.

Here, we present an extensive experimental study on insulating NbxSi1−x close to the SIT,

as well as corresponding numerical simulations of the electrical conductivity. At low

temperatures, we show that electronic transport is activated and dominated by charging

energies. The sample thickness variation results in a large spread of activation temperatures,

fine-tuned via disorder. We show numerically and experimentally that this originates from the

localization length varying exponentially with thickness. At the lowest temperatures, there is

an increase in activation energy related to the temperature at which this overactivated regime

is observed. This relation, observed in many 2D systems shows that conduction is dominated

by single charges that have to overcome the gap when entering superconducting grains.
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The recent interest in low-dimensional systems primarily
stems from the many exotic electronic phases they exhibit,
due to their extreme sensitivity to any emerging order1–3.

The superconductor−insulator transition (SIT) in two-dimensional
disordered materials is one such famous example. There, super-
conductivity competes with localization and Coulomb interactions
to give rise to unusual electronic phases4–9.

Despite several decades of investigation of the SIT, the nature
of the insulator is still a subject of debate. Some argue that
Coulomb interactions and disorder prevail so that the insulator
is fermionic10,11, whereas others claim that localized Cooper
pairs exist even if global superconducting coherence is
suppressed12,13. Moreover, there is a controversy on whether the
system is electronically homogeneous, granular, or fractal6,14.
Especially intriguing are the reports of very strong insulating
behaviors in the immediate vicinity of the SIT, with activated or
even overactivated temperature dependence of the resistivity
at the lowest experimentally accessible temperatures15–24.
These findings have prompted fierce debate as to their possible
interpretation.

Arrhenius, or activated, behavior is found in the electronic
transport of many insulators. In this case, the temperature
dependence of the resistance is of the form:

R ¼ R0 exp
T0

T

� �
; ð1Þ

where T0 is the activation temperature. It is usually associated either
with a band gap or with nearest neighbor hopping. In disordered
materials, the insulating behavior originates from charge carriers
being spatially localized, and activated behavior usually takes place
at relatively high temperatures25. At low temperatures, electrons
have to compromise between tunneling to close neighbors at the
price of an energy mismatch, or traveling further where the hopping
energy difference may be smaller. This process is known as variable-
range hopping (VRH)26 and results in a temperature dependence of
the resistance of the form:

R ¼ R0 exp
T0

T

� �α

: ð2Þ

For non-interacting systems, Mott27 predicted an exponent
α=D/(D+ 1), with D the system dimensionality. Efros and
Shklovskii28 extended the argument to Coulomb interacting sys-
tems and obtained an exponent of 1/2, independent of dimen-
sionality. In both cases, the temperature dependence is subactivated,
i.e. α < 1. Experimentally however, in systems close to the SIT,
activated29–31 and, in some cases, overactivated dependencies are
found at very low temperatures15–22. This unfamiliar behavior calls
for investigation and is the subject of the present work.

Here, we investigate, both experimentally and numerically,
transport properties of quasi-2D systems on the insulating side of
the SIT. We have measured over 80 insulating NbxSi1−x films
down to 7 mK to span several orders of magnitude in activation
temperatures. We perform Monte Carlo simulations of VRH
conductivity on quasi-2D systems, so as to reproduce the
experimental situation. We analyze at which conditions activated
behavior is present at very low temperatures and investigate the
different scenarii leading to overactivated transport. We compare
our experimental results with the outcome of our simulations to
extract the main physics of conduction mechanisms in the
insulating state of the SIT. Our main conclusion is that, close to
the SIT, appearance of Cooper pairing enhances the activation
temperature at low temperature.

Results and discussion
Experimental system. Thin metal alloy films constitute model
systems to study the zero-magnetic field SIT. In these compounds,
the SIT can be driven either by a reduction of the sample thickness
or by a variation in stoichiometry which directly affects the amount
of disorder in the system. In amorphous NbxSi1−x (a-NbSi)
which we consider, thermal treatment is yet another parameter that
enables us to very finely and progressively tune a single sample
disorder32,33. The combination of these experimental tuning para-
meters allows us to study the effects of thickness and disorder
independently.

We have considered over 80 insulating a-NbSi thin films with
compositions (x= 9% and 13.5%), thicknesses (d∈ [20, 250] Å)
and heat treatments (θht∈ [70, 160]∘C) that allowed us to
investigate localized regimes with activation temperatures spanning
over four decades.

The as-deposited sample conductivity has been studied from
room temperature down to 7 mK (see ‘Methods’). The corre-
sponding temperature dependence of the samples sheet resistance
is shown in Fig. 1 (panel (a) x= 13.5% batch, panel (c) x= 9%
batch). The films considered in this work are all insulators and, as
expected, a thickness reduction drives the system deeper into the
insulating regime. All x= 13.5% samples have been progressively
annealed from 70 to 160 ∘C, to slightly change the amount of
disorder in the films. Panels (d)−(f) of Fig. 1 show the effect of
successive heat treatments on a single sample: in our case, the
higher the heat treatment temperature θht, the more insulating the
film becomes32.

For all films and all heat treatments, the low temperature sheet
resistance follows an Arrhenius-type law as given by Eq. (1). This
is particularly visible in Fig. 1 (panels (b) and (c)). The x= 9%
samples show a single activated behavior, while the x= 13.5%
samples deviate from this law at the lowest temperatures.
Previous works have reported such a behavior15,19,20,22–24,34.
It has often been referred to as overactivation and associated with
the presence of superconductivity in the system15,19,20,23,24.
However, this intriguing feature has mostly been observed under
magnetic field19,20,23,24,34 or pressure22, and has not been
systematically addressed experimentally. In particular, the role
disorder plays in the emergence of this behavior has not yet been
settled, neither has the nature of the excitations that are dominant
for low frequency transport been determined. As can be seen
from Fig. 1g, the resistance actually undergoes a crossover from
an activated regime to an overactivated regime at very low
temperatures, with a slightly larger characteristic energy T 0

0.
A quantitative understanding of both regimes is one of the main
goals of this work.

Activated behavior. Let us first study the activated regime and
derive the expression for its characteristic temperature. Close to
the SIT, one expects thin films to have very large localization
lengths ξloc and therefore very high dielectric constants κ.
As a consequence, the electric field lines will tend to stay within
the film, resulting in an approximately logarithmic effective
interaction26,35:

VðrÞ � e2

2πϵ0κd
ln

rmax

r
; ð3Þ

for distances r between rmin and rmax. rmin corresponds to a
typical grain radius in granular materials and to ξloc otherwise.
rmax usually corresponds to the electrostatic screening length
κd. Due to these logarithmically long-range Coulomb interac-
tions, the insertion of a charge into the system produces electric
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fields over a large region, resulting in a charging energy:

E0 ¼
1
2
ϵ0κ

Z
dr EðrÞ
�� ��2 � e2

4πϵ0κd
ln

rmax

rmin
� kT0; ð4Þ

where k is Boltzmann constant, and the dielectric constant κ is
given by36:

κ ¼ κ0 þ 4πβ2
e2

a
NðEFÞξ2loc; ð5Þ

κ0 being the host dielectric constant, β2 ≈ 3.2, a the typical
interatomic distance and N(EF) the 2D density of states at the
Fermi level. This charging energy opens a gap in the single-
particle density of states. In the presence of disorder, extending
Efros and Shklovskii’s argument for the Coulomb gap37 to our
logarithmic interaction, Eq. (3), one obtains an exponential
density of states around the Fermi level with a characteristic
energy kT0 proportional to this charging energy37,38. Extending
Mott’s VRH argument to this density of states results in an
activated conductivity with logarithmic corrections26,39. As a
consequence, a low temperature activated behavior can be the
result of either transport dominated by charging energies or
VRH in quasi-2D materials with high dielectric constants.

To study these two scenarii, we model the electrical
transport in these disordered films by a 2D random capacitor
network schematized in Fig. 2a (see ‘Methods’ and ref. 40).
Grains are interconnected by random capacitors with average
capacitance C and connected to the gate by a capacitance
C0. Conduction is by hops of quantized charges between grains.
By a proper choice of parameters, the model can generate
regimes either controlled by charging energies, or dominated

by logarithmic Coulomb interactions between charges. A gate
capacitance C0≪ C results in a regime dominated by long-
range logarithmic Coulomb interactions with a screening
length, κd, given by

ffiffiffiffiffiffiffiffiffiffiffi
C=C0

p
41. If C ≲ C0 the only relevant

energies involved are the grain charging energies. The hopping
conductivity in the system is calculated using a kinetic Monte
Carlo method42,43.

The results of the simulations are shown in Fig. 2b, where we
represent the resistance for three values of the gate capacitance.
Solid lines correspond to clean samples and dashed lines to
disordered samples where 5% of the nodes have fixed charges ±1,
at random, not contributing to the current and creating a random
onsite potential. We observe a roughly activated behavior at low T
in all cases. The activation energy increases as C0 decreases and
the screening length increases.

Our results show that disorder produces a decrease of the
activation energy. In our simulations, disorder is introduced by
placing fixed charges at random. Carriers will move through regions
where the long-range contribution of the interaction is screened by
other charges. The presence of such charged impurities will reduce
rmax roughly to the inter-impurity distance. In real situations, any
disorder will induce the presence of charges, so that rmax will be of
the order of the distance between these charges. All samples then
end up with very similar activation temperatures, of the order of
kT0= E0.

Logarithmic interactions in disordered systems imply the
existence of charging energies, and so effective electronic
granularity, irrespective of the film morphology44. We can think
of our samples as formed by effective grains with a charging
energy given by Eq. (4).

Fig. 1 Low temperature resistance measurements. a Temperature dependence of the sheet resistance of NbxSi1−x for the x= 13.5% as-deposited batch.
b Sheet resistance as a function of 1/T on a semilogarithmic scale to highlight the activated behavior for the x= 13.5% samples. R and L correspond to the
right and left sides of the same sample (see ‘Methods’). c Sheet resistance as a function of 1/T on a semilogarithmic scale for the as-deposited samples.
d−f Effect of successive heat treatments on the sheet resistance of the 13.5% 40Å (d), 35Å (e) and 30Å (f) samples. The insets show the R□(T), while
the main panels display the same data as a function of 1/T. g At low temperature, at about 0.9 K for the 13.5% 30Å as-deposited film, there is a crossover
between two activated regimes. Circles represent the data and dashed lines correspond to linear fits with the corresponding activation temperatures
(T0 and T0) represented.
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Exponential dependence of the localization length with thick-
ness. Let us come back to the experimental situation. In Fig. 2c,
the activation temperature T0 is plotted as a function of sample
thickness for x= 13.5% and all heat treatment temperatures. The
first striking feature of this plot is that T0 varies over almost four
orders of magnitude. Except for the thinnest sample (d= 20Å),
T0 presents an exponential dependence on sample thickness, such
that T0∝ e−ζd, with ζ that depends on the heat treatment tem-
perature, i.e. the degree of disorder.

According to Eqs. (4) and (5), when the localization length is
large, T0 � κdð Þ�1 � ξ�2

locd
�1. To explain the exponential depen-

dence of T0 on thickness observed experimentally, ξloc must increase
exponentially with thickness. To investigate this dependence, we
have calculated ξloc for square samples of finite thickness in an
Anderson model, through a one-parameter scaling analysis of their
conductance. The main results of these simulations are presented in
Fig. 2d where we plot ξloc/a as a function of W/t (W is the disorder
level and t the kinetic energy of the electrons) for thicknesses
ranging from d= 1 to 7 layers.

For small disorder levels, one can appreciate the strong
dependence of ξloc on both W and d. More quantitatively, our
numerical simulations establish that in this regime the localization
length is of the form (Fig. 2e):

ξloc � A exp
ηd

W2

� �
ð6Þ

with A and η approximately constants, but non-universal. The small
shift between data for different thicknesses can be taken into
account with a thickness-dependent prefactor.

Although the exponential dependence of the localization length
with thickness has been observed in many systems, it is often
attributed to a thickness-induced change in the amount of the
disorderW. We are here able to distinguish the quite distinct effects
of both parameters. Equation (6) is in line with the self-consistent
theory of Anderson localization45,46, that predicts this exponential
dependence of the localization length ξ on disorder W for 2D
systems. It is also in agreement with analytical self-consistent results
in weakly localized 2D systems47, with numerical simulations
performed on quasi-1D systems48, as well as with the exponential
dependence of the localization length with thickness was observed
in Mo-C films49 in VRH regimes.

The activation temperature therefore exponentially decreases
with thickness as shown by the straight lines in Fig. 2c. Moreover,
we expect each θht to correspond to a single value of W, so that
the disorder-induced spread in T0 should linearly depend on the
thickness, which is experimentally the case in our films. For small
thicknesses, the contribution of the host dielectric constant κ0
becomes non-negligible, causing the bending downwards of the
solid curve in Fig. 2c for d≲ 30Å and the values of T0 are smaller
than the exponential prediction.

Overactivation. We will now turn to the overactivated behavior,
i.e. the increase in the activation energy at the lowest tempera-
tures, in the immediate vicinity of the SIT. Let us stress that we
here concentrate on the zero-magnetic field situation.

Far from the SIT, the thinnest (d= 20Å) samples do not
exhibit any overactivated regime. However, samples closer to the
SIT do. To appreciate the systematicity of the overactivated
behavior, we scaled the high temperature activated regime for the

Fig. 2 Numerical simulations of the localization length and comparison with experimental data. a A sketch of the model used for numerical simulations.
The electrode connected to the left edge is grounded, the electrode at the right edge has a potential V. The bottom panel shows a lateral view of the model
where the capacitors C0 connecting the system to the gate can be seen. Grains are interconnected by random capacitors with average capacitance C.
b Numerical results of the resistance as a function of inverse temperature. Each color corresponds to a different value of C0. The solid lines correspond to the
clean case whereas the dashed lines correspond to the case where disorder is added (5% of the nodes have fixed charges ± 1 at random). c Characteristic
temperature T0 as a function of the sample thickness (in Å) for different heat treatments (x= 13.5% sample). The solid line corresponds to Eqs. (4)-(6) with
κ0≃ 250. For each thickness, the disorder level was averaged over the different heat treatments. Each dashed line corresponds to the exponential thickness
dependence for a given heat treatment (as-deposited and θht= 160 ∘C). d Localization length on a logarithmic scale as a function of the disorder level W
(relative to the kinetic energy t) for thicknesses ranging from 1 to 7 layers. e Exponential dependence of ξloc with d/W2, where d is the thickness.
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13.5% 35-Å-thick sample (Fig. 3a) at different heat treatment
temperatures (i.e. disorder). By doing so, the overactivated
regimes cannot be made to scale. Moreover, the ratio of the
overactivated characteristic temperature T 0

0 over the activated one
T0 decreases with the disorder level.

We have extracted T 0
0, whenever an overactivated regime was

observed, by fitting the low temperature data to Eq. (1). The
transition temperatures Tcross between the two activated regimes
were also extracted from the crossing point between the two fits.
The corresponding results are plotted in Fig. 3d as a function of
the disorder level, quantified by the high temperature (200 K)
resistance R200 K. We note that T0, T

0
0 and Tcross vary over almost

three orders of magnitude. Moreover, Tcross gets closer to T0 as we
approach the SIT, at about R200 K≃ 3450Ω. Our aim is now to
understand the relation between these characteristic temperatures
since they shine light on the conduction mechanisms.

Since the overactivated regime is only found close to the SIT,
it is reasonable to assume it is related to superconductivity. Let
us examine what will happen if, due to the proximity to the SIT,
superconductivity sets in locally in some (effective) grains. In

this case, Cooper pairs will be phase coherent on a short range,
but there will not be any global phase coherence. There are then
two different possibilities. The first one is that conduction is
still dominated by one-electron processes. Then, when a single
electron enters a superconducting grain, it has to pay an extra
energy penalty associated with the superconducting gap. The
second possibility is that conduction between superconducting
grains is ensured by tunneling of Cooper pairs. In this case the
energy penalty for a pair entering a superconducting grain is
four times the charging energy, since the grain becomes doubly
charged. In both cases, the crossover temperature to the
overactivated regime must be of the order of the pairing energy.
In our experimental case, Tcross is much smaller than the
activation energy (kTcross≪ kT0 ~ E0), i.e. the pairing energy is
much smaller than the charging energy, so that conduction by
single electrons is more likely to be the main conduction
mechanism.

We have performed Monte Carlo simulations of the con-
ductivity on our random capacitor model to quantify the increase
in activation energy when the grains become superconducting.

Fig. 3 Characterization of the activated and overactivated regimes. a Scaled resistance as a function of T0/T (with T0 the activation temperature and T
the temperature) so that the activated regime overlaps for all disorder levels (tuned by the successive heat treatments) for the 35-Å-thick 13.5% sample.
The unscaled data are shown in Fig. 1e. b Simulation results for the resistance as a function of 1/T, on a semilogarithmic scale. The black line corresponds to
activated behavior, with no superconductivity, and the other curves to overactivation due to superconductivity for several values of the ratio Tcross/T0, with
Tcross the crossover temperature between the activated and overactivated regimes. The overactivated regime is characterized by an activation temperature
T0 as shown Fig. 1g. c Resistance as a function of the inverse temperature, 1/T, on a semilogarithmic scale, for the 13.5% 35-Å-thick sample (heat treatment
of 110 ∘C, black dots). The continuous blue curve is our simulation without superconductivity effects, while the red curve is with grain superconductivity
for the case Tcross/T0= 0.14. d Characteristic temperatures T0, T

0
0 and Tcross for all measured samples. The bottom panel shows the value of γ ¼

ðT0 � T0Þ=Tcross as given by Eq. (9). The black line then corresponds to the average γexp ¼ 1:5. The green squares correspond to Tcross given by Eq. (10):
Tcross ’ 1:8=d ½A� þ 0:105´ T0

0. The black error bars are typical error bars on γexp at the considered disorder: far from the SIT, the error bars are typically
smaller than closer to the SIT, where the two activated regimes are difficult to precisely define. e Characteristic temperatures T0, T

0
0 and Tcross of the

activated regimes in several systems (re-analysis of published data). The bottom panel gives the value of γ, determined by Eq. (9). The black line
corresponds to γexp ¼ 1:5 obtained from our results on a-NbSi. The experimental data are from ref. 15 for Sn and Pb16, for Bi50, for Al17, for InOx/In (Shahar,
D. Transport measurements of InOx films, private communication), and ref. 23 for InOx under magnetic fields (respectively InOx1 for fields ranging from 1 to
7 T and InOx2 taken at 0.75 T), and ref. 22 for β0-(BEDT-TFF)2ICl2 under pressures ranging from 0 to 1.8 GPa.
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We consider the model with only charging energies and no long-
range interactions, since, as we have seen, both cases produce
similar results, and the higher computational efficiency of the
former is convenient in this highly demanding calculation.

The grains become superconducting typically below Tcross, so
that the energy penalty for an electron to enter a grain becomes:

E0 ¼ E0 þ ΔðTÞ ; ð7Þ
where Δ is the superconducting gap. Assuming Δ/kTcross= 2
(Chapelier, M. STM measurements of NbxSi1−x films, private
communication 2011), we have:

E0 ¼ E0 þ 2kTcross

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tcross � T
Tcross

s
: ð8Þ

Let us emphasize that the random nature of our capacitor model
naturally takes into account the fluctuations of the gap amplitude
that are bound to exist in such disordered systems7.

The results of the simulations are shown in Fig. 3b, where we
plot R versus 1/T for several values of Tcross (in units of T0).
The black curve corresponds to the non-superconducting case
(pure activated behavior) and the rest to different values of Tcross/
T0, chosen to reproduce the experimental situation. At tempera-
tures below Tcross, we obtain a new roughly activated regime, as
experimentally observed. As expected, the transition temperature
between both regimes coincides with Tcross.

In Fig. 3c we compare our numerical simulations for Tcross=
0.14T0 with the experimental data for the 35Å sample
(θht= 110 ∘C) by scaling the theoretical curve so that both
coincide in the activated regime. The overactivated behavior is
fairly well reproduced by our simulations.

Extracting characteristic temperatures from our numerical
results in the same way as from the experimental data, we have
established the relation:

T 0 � T0 ¼ γTcross ð9Þ
and found γnum= 1.8. Independently for each experimental
point, we derived the value of γexp given by Eq. (9) and represent
it as an orange triangle (bottom panel of Fig. 3d). On average, we
find γexp ¼ 1:5 (black line). The agreement with theoretical
predictions is fairly good, clearly indicating that the overactivated
regime is a consequence of electrons having to pay the
superconducting gap penalty, proportional to Tcross. Note that,
close to the SIT, uncertainties on γexp are large, since the activated
regime expands on a very narrow temperature range.

We have also reanalyzed the stronger-than-activated behaviors
found in the literature (Shahar, D. Transport measurements of
InOx films, private communication 2020)15–17,22,50—although it
may not have been originally analyzed as such—and compared
the experimental data to our prediction. In Fig. 3e, we represent γ
obtained from Eq. (9) for each system (orange triangles). The
value of γ is fairly constant for all systems, and of the order of
unity. This is remarkable given the variety of systems considered,
and the three orders of magnitude over which T0 extends. We
therefore believe that our theoretical scenario could be an
alternative explanation for the stronger-than-activated behaviors
reported in the literature23,24, with the caveat that we do not here
consider the effect of magnetic field or pressure.

Let us note that the theoretical prediction depends both on
the BCS ratio linking Tcross and Δ, which we took to be 2
following STM data for a-NbSi (Chapelier, M. STM measure-
ments of NbxSi1−x films, private communication), and on the
proportion of superconducting grains. If, instead of having all
grains superconducting, only a fraction p of them are, T 0 � T0
should be proportional to p. From the agreement between the

simulations and the experiment, we can conclude that a large
fraction of the grains become superconducting.

We can explain the dependance of Tcross on disorder (Fig. 3d)
by assuming that the superconducting gap is of the form

Δ ¼ Δ3DξSC
d

1þ ξ2SC
ξ2loc

 !
� kTcross; ð10Þ

where ξSC is the superconducting coherence length in the material
and Δ3D is the bulk superconducting gap. This equation is an
interpolation between the gap for a uniform system of finite
thickness51–56 and the situation of small superconducting grains.
The first limit occurs close to the SIT when ξloc is large. Then,

Δ ’ Δ3DξSC
d is approximately constant. In the second limit, farther

from the SIT, the equation for the gap becomes similar to the
proposal in ref. 57: it increases as the inverse of the volume over
which Cooper pairs are forced to be confined.

Far from the SIT, since the fastest changing parameter in T0 is
ξ�2
loc (Eqs. (4) and (5)), Eq. (10) implies that Tcross is of the form
a/d+ bT0. Green squares in Fig. 3d are a fit of Tcross by this
expression. The agreement with experimental points (blue) is
relatively good, although, close to the SIT, the temperature range
over which T0 is observed is small and the uncertainty large.
Close to the SIT, for our 13.5% 45-Å-thick samples, the activation
energy is almost constant because it is dominated by the
superconducting gap, larger than the charging energy, and
approximately constant and equal to (ξSC/d)Δ3D. In this region,
we observe only one activated regime and, since there is no
crossover, the green squares correspond to a prediction of the
superconducting temperature of the grains.

Strictly speaking, ξloc in Eq. (10) should be the Cooper pair
localization length, that, due to interactions, may be larger than
the one particle localization length, but this difference is small
in the regime considered and we have assumed that both
were equal.

We have shown that the activated transport behavior observed
in thin films close to the SIT is due to transport dominated by
charging energies. In homogeneous systems, the electronic
granularity is a consequence of a diverging localization length.
In a-NbSi, we have established that, for a fixed amount of
disorder, ξloc depends exponentially on the film thickness. The
overactivated regime observed close to the SIT is a crossover to a
regime governed both by the charging energy and the super-
conducting gap. This is surprising in a material where no sign of
bosonic insulator was observed until now. Our results indicate
that the superconducting gap depends critically on the grains
size. The overall conclusion is that, in the insulating regime close
to the SIT, localized Cooper pairs exist but electronic transport is
still dominated by single electrons.

Methods
Experimental details. The a-NbSi films have been grown at room temperature by
e-beam co-deposition of Niobium and Silicon under ultra-high vacuum (the
chamber pressure during the deposition was typically of a few 10−8 mbar). The
film composition was fixed by the respective evaporation rates of Nb and Si (both
of the order of 1Å s−1) and monitored in situ by a set of dedicated piezoelectric
quartz crystals. The sample thickness was determined by the duration of the
deposition. Both parameters have been checked ex situ by Rutherford Back-
scattering Spectroscopy (RBS).

The samples have been deposited onto sapphire substrates coated with a
25-nm-thick SiO underlayer designed to smooth the substrate surface. They were
also protected from oxidation by a 25-nm-thick SiO overlayer. a-NbSi films of
similar compositions and thicknesses have been measured to be continuous,
amorphous and homogeneous at least down to a thickness 2.5 nm32.

The transport characteristics of a-NbSi thin films are mainly determined by
their composition x and their thickness d. However, an additional thermal
treatment can also microscopically modify the system disorder while keeping x and
d constant. a-NbSi becomes more insulating as the heat treatment temperature
increases without any change in the sample morphology32. Thermal treatments
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and the film composition have an analogous effect on the disorder level: films of
similar sheet resistance R□ have the same transport characteristics. On the other
hand, we have shown that the effect of the thickness is distinct32. In the present
case, we have considered as-deposited films which parameters are listed in Table 1.
The composition x has been chosen so that the samples are close to the SIT
(x= 13.5%) or further within the insulating regime (x= 9%). The sample thickness
has been varied between d= 20 and 50Å for x= 13.5%. For this stoichiometry, the
critical thickness at which the system undergoes a thickness-tuned SIT is about
140Å 58. a-Nb9Si91 is not superconducting, even for bulk samples59,60, and in this
work, we considered thicknesses of 125 and 250Å. Each batch having a constant
composition is considered to have the same disorder level (W constant). We can
therefore directly evaluate the effect of the thickness within each batch.

The samples resistances have been measured in a dilution refrigerator with a
base temperature of 7 mK. In the case of the x= 13.5% batch, two regions of each
sample, labeled left and right, could be probed independently. We used standard
low noise transport measurement techniques to ensure the samples were measured
without electrical heating of the electronic bath. In other words, we made sure via
appropriate filtering that the sample electron temperature was the same as its
phononic temperature. Moreover, we have checked that the applied bias was
sufficiently low for the resistance measurement to be in the ohmic regime.

Capacitor model. To calculate the hopping conductance of quasi-2D high
dielectric constant disordered systems, we consider a 2D random capacitor
model40 in order to get a consistent set of energies. Sites (nodes) are randomly
distributed and the corresponding junction network without crossings can be
constructed using a Delaunay triangularization algorithm61. Capacitors with
randomly chosen capacitances were placed at the links between adjacent nodes,
as shown in Fig. 2a. The capacitances Ci,j assume random values drawn from the
distribution Ci,j= Ceφ, where φ ∈ [−B/2, B/2]. We have chosen C= 1 (in units of
ϵ0a, where a is the lattice constant) and B= 2. The left bank is connected to the
ground, while the right bank is at the potential V, and there are periodic
boundary conditions in the lateral direction. In order to take into account the
leakage of field lines to outside the 2D system due to the finite value of κ, we
introduce capacitances to the ground, C0, as shown in the bottom panel of
Fig. 2a.

The plates of each capacitor carry opposite charges and the total charge on each
site Qi is the sum of the charges on the plates of the capacitors connected to it,
Qi=∑jqi,j. Here, qi,j is the charge on the plates of the capacitor connecting nodes i
and j and satisfies

qi;j ¼ ∑
j
Ci;jðVi � VjÞ : ð11Þ

We construct a vector Q, whose components are the charges of the nodes in the
sample, and a vector V, whose components are the node potentials. Both vectors
are related by Q ¼ CV where the capacitance matrix C has components equal to

½C�i:j ¼ ∑
k≠i

Ci;k

� �
δi;j � Ci;j : ð12Þ

The total electrostatic energy of this system can be obtained in a compact form
through the inverse of the capacitance matrix40

H ¼ 1
2
QC�1QT : ð13Þ

The matrix C�1 plays the role of an interaction matrix. In the continuous limit,
the average interaction between two charges separated by a distance r is

proportional to the modified Bessel function K0(r/Λ), where the screening length is
Λ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffi
C=C0

p
41. In the limit of small r (r0≪ r≪Λ) we have K0ðxÞ � �ln ðx=2Þ,

and the effective interaction is given by Eq. (3) provided that we identify the
screening length with Λ= κd, and choose C= ϵ0κd and C0 ¼ ϵ0r

2
0=ðκdÞ. In the

simulation of hopping transport, r0 is our unit of distance, which for random nodes
is defined by r0= L/N1/2, N being the number of nodes, L the size of the system,
and e2/(r0ϵ0) is our unit of energy. The charging energy, i.e., the energy cost for
putting a unit charge at a given site i, is equal C�1

i;i =2.
Carriers hop from site to site transferring a quantized unity charge. They can

hop over many sites with a probability that exponentially decays with distance, thus
modeling charge transfer in experimental systems mediated by the cotunneling
mechanism. The transition rate between sites i and j can be expressed as:

Γi;j ¼ τ�1
0 e�2ri;j=ξ loc e�Δi;j=kT ; ð14Þ

where τ�1
0 is the phonon frequency, ri,j the hopping distance, ξloc the localization

length and Δi,j the transition energy, given by our capacitor model. To simulate
hopping conductivity in the system of interacting electrons, we employ a kinetic
Monte Carlo method42,43. The allowed node charges are 0 and ±1. At each
Monte Carlo step, the algorithm chooses a pair of sites (i,j) with the probability
proportional to expð�2rij=ξÞ, ref. 42. Doing so, the time step associated with
a hop attempt per site is τ0=∑ij expð�2rij=ξÞ, where τ0 is the inverse phonon
frequency. The algorithm first checks whether the transfer of a unit charge from
site i to j is compatible with the allowed node charges. Then it calculates the
transition energy

Δi;j ¼ Vj � Vi �C�1
i;j þ 1

2
C�1

i;i þC�1
j;j

h i
; ð15Þ

where Vi ¼ ∑jC
�1
i;j Qj is the potential at i, and the hop is performed when Δi,j is

negative or with probability expð�Δi;j=TÞ otherwise. All site potentials Vi are
recalculated after every successful transition. The last term in Eq. (15) is the
charging energy of the nodes involved. The electric current is generated by the
potential difference Vlead between the leads at the opposite sides of the sample,
which is reflected in the site potentials by extending the Q vector to include
nodes j in the lead connected to nodes i in the sample and associating a charge
−Ci,jVlead with each of them40.

The algorithm starts from an initial random charge configuration and follows
the dynamics at a given temperature. Once the system is in a stationary situation,
the conductivity of each sample is calculated from the number of electrons crossing
to one of the leads. The number of Monte Carlo steps performed in this calculation
drastically increases with decreasing T, and it is determined by the condition that
the net charge crossing one of the leads is on the order of 1000. The number of
samples considered is 100. Finally, we averaged ln σ over the set of samples (an
ensemble averaging).

The main results of the simulations were shown in Fig. 2b. From them, we
concluded that, in the presence of disorder, the activation energy is fairly
independent of the screening length or, equivalently, of the ratio C0/C. To simulate
the overactivated regime, we have to use the most efficient numerical procedure in
order to reach very low temperatures. To this end, in Fig. 4 we compare the
resistance for the exact interacting potential in the C0= 1 case (thick curves) with
the results including only the charging energy (thin curves). Again, thick lines
correspond to the case without site disorder, while thin lines reflect samples with
5% of the nodes having fixed random charges. We see that the activation energies
are similar and conclude that a model with charging energies only, without the
logarithmic contribution, is adequate to simulate conductivity in disordered
samples.

For the simulations of the overactivated regime, the random capacitor network
takes into account the spatial variation of the superconducting gap amplitude7.
Indeed we have taken a gap varying by about 40%, thus reflecting the fluctuations
in Δ that have been measured in similar films (Chapelier, M. STM measurements

Table 1 Characteristics of the different a-NbSi samples:
composition x, thickness d, low temperature sheet
resistance R4K evaluated at 4.2 K except for the 20-Å-thick
sample for which they have been measured at 5 K.

Name x (%) d (Å) R4K
CKSAS43 α left 13.5% 20 111 GΩ
CKSAS43 α right 13.5% 20 n.d.
CKSAS61 α left 13.5% 30 162 kΩ
CKSAS61 α right 13.5% 30 151 kΩ
CKSAS61 β left 13.5% 35 18.8 kΩ
CKSAS61 β right 13.5% 35 17.8 kΩ
CKSAS61 γ left 13.5% 40 10.8 kΩ
CKSAS61 γ right 13.5% 40 10.5 kΩ
CKSAS61 δ left 13.5% 45 7.73 kΩ
CKSAS61 δ right 13.5% 45 7.50 kΩ
CK8 γ 9% 125 53.3 kΩ
CK9 γ 9% 125 52.6 kΩ
CK9 β 9% 250 14.1 kΩ

Fig. 4 Numerical results. Resistance as a function of inverse temperature
with (green curves) and without (magenta curves) long-range interactions.
Thick lines correspond to the case without site disorder, while thin lines to
disordered samples.
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of NbxSi1−x films, private communication). Most of this variation comes from the
geometrical disorder, i.e., from the changes in the number of neighbors of
each grain.

Localization length. For the calculation of the localization length, we consider the
standard Anderson Hamiltonian for spinless particles

H ¼ ∑
i
ϵini þ ∑

hi;ji
tðcyj ci þ cyi cjÞ; ð16Þ

where cyi is the creation operator on site i and ni ¼ cyi ci is the number operator. We
consider a transfer energy t=−1, which sets our unit of energy, and a disordered
site energy ϵi∈ [−W/2,W/2]. The double sum runs over nearest neighbors. We
have considered square samples of finite thickness with dimensions L × L × d. All
calculations are done at an energy equal to 0.1, to avoid possible specific effects
associated with the center of the band.

We have studied numerically the zero temperature conductance g proportional
to the transmission coefficient T between two semi–infinite leads attached to
opposite sides of the sample,

g ¼ 2e2

h
T; ð17Þ

where the factor of 2 comes from spin. We measure the conductance in units of
2e2/h. We calculate the transmission coefficient from the Green function, which
is obtained propagating layer by layer with the recursive Green function
method62. We can solve samples with lateral section up to L × d= 400. The
number of different realizations employed is 104 for most values of the
parameters. We have considered wide leads with the same section as the samples,
represented by the same Hamiltonian as the system, but without diagonal
disorder. We use cyclic periodic boundary conditions in the long direction
perpendicular to the leads, and hard wall conditions in the narrow traversal
direction.

According to single-parameter scaling, the conductance is a function of the ratio
of the two relevant lengths of our problem,

g ¼ g0f ðL=ξ locðW; dÞÞ;
where L is the lateral system size and ξ the correlation length, which carries the
dependence on W and d. Data for different W and d can be made to overlap by an
adequate choice of ξloc(W, d). We use this idea in both the diffusive and the
localized regimes. In the former the conductance depends logarithmically on
system size

g ¼ g0 �
2
π
log

L
ξ loc

; ð18Þ

where the factor 2/π has been obtained by diagrammatic perturbation theory63. In
the strongly localized regime, the conductance depends exponentially on the
system size

g ¼ c exp
�2L
ξ loc

: ð19Þ

The results for ξloc(W,d) are shown in Fig. 2d.
To analyze quantitatively the overall behavior of ξloc, we have performed a new

one-parameter scaling analysis62,64–66 of the data plotted in Fig. 2d. The idea is to
plot log ðξ loc=dÞ as a function of log ðdÞ and shift the data horizontally by the
disorder-dependent amount that best overlaps the data. This shifting quantity
corresponds to the three-dimensional correlation length ξ3DcorðWÞ which is either the

metallic correlation length if the bulk system with the same amount of disorder W
is delocalized or corresponds to the three-dimensional localization length ξ3DlocðWÞ if
it is localized (Fig. 5). The two branches therefore correspond to the well-known
three-dimensional localization-delocalization transition at a critical disorder of
about Wc ≈ 16.5. The corresponding scaling is shown in the inset of Fig. 5. For
small (resp. large) disorder levels, the system is in the upper (resp. lower) branch
and the corresponding 3D system is delocalized (resp. localized): ξloc increases
(resp. decreases) faster than thickness. The transition between those two regimes,
for our model, occurs when:

log
ξ loc
d

� �
� 0:3: ð20Þ

This implies that if for a given thickness and amount of disorder ξloc > 2d, the
system will tend to metallic when its thickness increases and to an insulator when
ξloc < 2d.

Usually in experimental situations, one does not know with enough precision
the relation between d and ξloc to decide if a sample for a given disorder will
become extended or localized when its thickness increases according to criteria
(20). We can establish a new criteria to predict the 3D character of a system. If the
3D system corresponding to a given disorder value is extended, as its thickness
decreases, the ratio ξloc/d decreases, meaning that the localization length decreases
faster than the thickness:

ξ loc;1
ξ loc;2

>
d1
d2

; ð21Þ

if d1 > d2. Conversely, if the 3D system corresponding to a given disorder value is
localized:

ξ loc;1
ξ loc;2

<
d1
d2

; ð22Þ

for d1 > d2. Let us apply criterion (21) to our experimental samples.
For the most disordered x= 13.5% samples (θht= 150 °C), one can estimate the

ratio of the localization lengths through the relation ξ loc / T�1=2
0 (Eqs. (4) and (5)):

ξ loc;1
ξ loc;2

�
ffiffiffiffiffiffiffiffi
T02

T01

s
¼ 6>

d1
d2

¼ 4
3

ð23Þ

for d1= 40Å and d2= 30Å for instance. The corresponding 3D system is therefore
on the metallic side of the metal−insulator transition. All considered x= 13.5%
samples exhibit ξloc≫ d. The x= 9% samples are also extended, but closer to the
transition: ξloc,1/ξloc,2= 2.6 for d1/d2= 2.

Data availability
All data in the main text or the Methods are available from the corresponding authors
upon reasonable request. The analysis also includes data from refs. 15–17,22,23,50 (Shahar,
D. Transport measurements of InOx films, private communication).
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