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Revealing nonlinear neural decoding by analyzing
choices
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Sensory data about most natural task-relevant variables are entangled with task-irrelevant

nuisance variables. The neurons that encode these relevant signals typically constitute a

nonlinear population code. Here we present a theoretical framework for quantifying how the

brain uses or decodes its nonlinear information. Our theory obeys fundamental mathematical

limitations on information content inherited from the sensory periphery, describing redundant

codes when there are many more cortical neurons than primary sensory neurons. The theory

predicts that if the brain uses its nonlinear population codes optimally, then more informative

patterns should be more correlated with choices. More specifically, the theory predicts a

simple, easily computed quantitative relationship between fluctuating neural activity and

behavioral choices that reveals the decoding efficiency. This relationship holds for optimal

feedforward networks of modest complexity, when experiments are performed under natural

nuisance variation. We analyze recordings from primary visual cortex of monkeys dis-

criminating the distribution from which oriented stimuli were drawn, and find these data are

consistent with the hypothesis of near-optimal nonlinear decoding.
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How does an animal use, or ‘decode’, the information
represented in its brain? When the average responses of
some neurons are well-tuned to a stimulus of interest, this

can be straightforward. In binary discrimination tasks, for
example, a choice can be reached simply by a linear weighted sum
of these tuned neural responses. Yet real neurons are rarely tuned
to precisely one variable: variation in multiple stimulus dimen-
sions influence their responses in complex ways. As we show
below, when these nuisance variations have nonlinear effects on
responses, they can dilute or even abolish the mean tuning to the
relevant stimulus. Then the brain cannot simply use linear
computation, nor can we understand neural processing using
linear models.

A quantitative account of nonlinear neural decoding of sensory
stimuli must first express how populations of neurons encode or
represent information. Past theories of nonlinear population
codes made unsupported assumptions about the covariability of
this population responses1,2, leading to substantially under-
estimated redundancy of large cortical populations. Here we
correct this problem by generalizing information-limiting
correlations3 to nonlinear population codes, providing a more
realistic theory of how much sensory information is encoded in
the brain.

Just because a neural population encodes information, it does
not mean that the brain decodes it all. Here, encoding specifies
how the neural responses relate to the stimulus input, whereas
decoding specifies how the neural responses relate to the beha-
vioral output. To understand the brain’s computational strategy
we must understand how encoding and decoding are related, i.e.
how the brain uses the information it has. These are distinct
processes, so the brain could encode a stimulus well while
decoding it poorly, or vice-versa.

This paper makes four main contributions. First, it weaves
together important concepts about tuning curves and nuisance
variables, nonlinear computation, and redundant population codes,
forming a general, unified description of feedforward encoding and
decoding processes in the brain. This description is supported by
intuitive explanations and concrete examples to illustrate how these
concepts relate to each other and enrich familiar views of neural
computation. Second, this paper provides a simple way of testing
the hypothesis that the brain’s decoding strategy is efficient, using a
simple statistic to assess whether neural response patterns that are
informative about the task-relevant sensory input are also infor-
mative about the animal’s behavior in the task. Third, it establishes
the technical details needed to apply this test in practical neu-
roscience experiments. Fourth, we apply this test to analyze V1
data from macaque monkeys, finding direct experimental evidence
for optimal nonlinear decoding.

The “Results” section describes the main concepts, their formal
connections, and applications. More specifically, the first sections
introduce a framework for understanding nonlinear computation,
including basic notation, internal and external (nuisance) noise
and their effects on information content and formatting, and how
this information can be isolated by nonlinear computation of the
right statistics. Subsequent sections introduce a formalism for
decoding, including notions of linear and nonlinear choice cor-
relations, fine and coarse estimation tasks, and predictions about
those correlations under optimal decoding. This section continues
by describing how redundancy in the population responses
appears as special high-order response statistics, and how they
affect the predictions. The last sections present an experimental
application of these ideas. A sketch of the details of our general
predictions are presented in the “Methods” section, and are
derived in full in the Supplement along with details of their
application to specific models and our experimental data.

Results
A simple example of a nonlinear code. Imagine a simplified
model of a visual neuron that includes an oriented edge-detecting
linear filter followed by additive noise, with a Gabor receptive
field like simple cells in primary visual cortex (Fig. 1a). If an edge
is presented to this model neuron, different rotation angles will
change the overlap, producing a different mean. This neuron is
then tuned to orientation.

However, when the edge has the opposite polarity, with black
and white reversed, then the linear response is reversed also. If the
two polarities occur with equal frequency, then the positive and
negative responses cancel on average. The mean response of this
linear neuron to any given orientation is therefore precisely
constant, so the model neuron is untuned.

Notice that stimuli aligned with the neuron’s preferred
orientation will generally elicit the highest or lowest response
magnitude, depending on polarity. Edges evoking the largest
response to one polarity will also evoke the smallest response to
its inverse. Thus, even though the mean response of this linear
neuron is zero, independent of orientation, the variance is tuned.

To estimate the variance, and thereby the orientation itself, the
brain can compute the square of the linear responses. This would
allow the brain to estimate the orientation independently from
polarity. This is consistent with the well-known energy model of
complex cells in the primary visual cortex, which use squaring
nonlinearities to achieve invariance to the polarity of an edge4.

Generalizing from this example, we identify edge polarity as a
‘nuisance variable’—a property in the world that alters how task-
relevant stimuli appear but is, itself, irrelevant for the current task
(here, perceiving orientation). Other examples of nuisance

Fig. 1 Simple nonlinear code for orientation induced by two polarities. a Receptive field for a linear neuron. b Four example images, each with an
orientation s∈ [0, π) and a polarity ν∈ {−1, +1}. c The mean response of the linear neuron is tuned to orientation if polarity were specified (conditional
mean, red). But when the polarity is unknown and could take either value, the mean response is untuned (marginal mean, black). d Tuning is recovered by
the marginal variance even if the polarity is unknown (blue).
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variables include the illuminant for guessing a surface color,
position for object recognition, the expression for face identifica-
tion, or pitch for speech recognition. Generically, nuisance
variables make it hard to extract the task-relevant variables from
sense data, which is the central task of perception5–10. For
example, cells in the early visual cortex are not tuned to object
identity, since the object could appear at any location and V1 has
not yet extracted the complex combinations of features that reveal
object type independent of the nuisance variable of position. The
brain learns from its history of sensory inputs which statistics of
its many sense-data are tuned to the task-relevant variable. Good
nonlinear computations then compute those statistics. In the
orientation estimation task above, the relevant statistic was not
the mean, but the variance.

Task, stimuli, neural responses, actions. Our mathematical
framework describes a perceptual task, a stimulus with both
relevant and irrelevant variables, neural responses, and behavioral
choices.

In our task, an agent observes a multidimensional stimulus
(s, ν) and must act upon one particular relevant aspect of that
stimulus, s, while ignoring the rest, ν. The irrelevant stimulus
aspects serve as nuisance variables for the task (ν is the Greek
letter ‘nu’ and here stands for nuisance). Together, these stimulus
properties determine a complete sensory input that drives some
responses r in a population of N neurons according to the
distribution p(r∣s, ν).

We consider a feedforward processing chain for the brain, in
which the neural responses r are nonlinearly transformed
downstream into other neural responses R(r), which in turn are
used to create a perceptual estimate of the relevant stimulus ŝ:

ðs; νÞ ! r ! R ! ŝ ð1Þ
We model the brain’s estimate as a linear function of the
downstream responses R. Ultimately these estimates are used to
generate an action that the experimenter can observe. We assume
that we have recorded activity only from some of the upstream
neurons, so we do not have direct access to R, only a subset of r.
Nonetheless, we would like to learn something about the
downstream computations used in decoding. In this paper, we
show how to use the statistics of fluctuations in r, s, and ŝ to
estimate the quality of nonlinear decoding.

We first develop the theory for local or fine-scale estimation
tasks: the subject must directly report its estimate ŝ for the
relevant stimuli near a reference s0, and we measure performance
by the variance of this estimate, σ2ŝ . In later sections, we then
generalize the problem to allow for binary discrimination as well
as coarse tasks, which are more complicated mathematically but
not conceptually different.

Signal and noise. The population response, which we take here to
be the spike counts of each neuron in a specified time window,
reflects both signal and noise, where the signal is the repeatable
stimulus-dependent aspects of the response, and noise reflects
trial-to-trial variation. Conventionally in neuroscience, the signal
is often thought to be the stimulus dependence of the average
response, i.e. the tuning curve fðsÞ ¼ ∑rr pðrjsÞ ¼ rjsh i. (Angle
brackets denote an average overall responses given the condition
after the vertical bar.) Below we will broaden this conventional
definition to allow the signal to include any stimulus-dependent
statistical property of the population response.

Noise is the non-repeatable part of the response, characterized
by the variation of responses to a fixed stimulus. It is convenient
to distinguish internal noise from external noise. Internal noise is
internal to the animal and is described by response distribution

p(r∣s, ν) when everything about the stimulus is fixed. This could
also include uncontrolled variation in internal states11–14, like
attention, motivation, or wandering thoughts. External ‘noise’ is
variability generated by the external world—nuisance variables—
leading to a neural response distribution p(r∣s) where only the
relevant variables are held fixed. Both types of noise can lead to
uncertainty about the true stimulus.

Trial-to-trial variability can of course be correlated across
neurons. Neuroscientists often measure two types of second-
order correlations: signal correlations and noise
correlations2,15–22. Signal correlations measure shared variation
in mean responses f(s) averaged over the set of stimuli s:
ρsignal= Corr(f(s)) where again all averages are taken over all
variables not fixed by a condition to the right of the vertical bar.
(Internal) noise correlations measure shared variation that
persists even when the stimulus is completely identical, nuisance
variables and all: ρnoise(s, ν)= Corr(r∣s, ν).

For multidimensional stimuli, however, these correlations are
only two extremes on a spectrum, depending on how many
stimulus aspects are fixed across the trials to be averaged. We
propose an intermediate type of correlation: nuisance correlations.
Here we fix the task-relevant stimulus variable(s) s, and average
over the nuisance variables ν: ρnuisance(s)=Corr(f(s, ν)∣s). Includ-
ing both internal and external (nuisance) noise correlations gives
Corr(r∣s).

Critically, but confusingly, some so-called ‘noise’ correlations
and nuisance correlations actually serve as signals. This happens
whenever the statistical pattern of trial-by-trial fluctuations
depends on the stimulus, and thus contain information. For
example, a stimulus-dependent noise covariance functions as a
signal. There would still be true noise, i.e. irrelevant trial-to-trial
variability that makes the signal uncertain, but it would be
relegated to higher-order fluctuations23 such as the variance of
the response covariance (Fig. 2d, Table 1). Whether from internal
or external noise, stimulus-dependent correlations lead naturally
to nonlinear population codes, as we explain below.

Nonlinear encoding by neural populations. Most accounts of
neural population codes actually address linear codes, in which
the mean response is tuned to the variable of interest and com-
pletely captures all signals about it3,24–27. We call these codes
linear because the neural response property needed to best esti-
mate the stimulus near a reference (or even infer the entire
likelihood of the stimulus, Supplement S.1.2.2) is a linear function
of the response. Linear codes for different variables may arise
early in sensory processing, like orientation in V1, or after many
stages of computation5,9, like for objects in the inferotemporal
cortex.

If any of the relevant signals can only be extracted from
nonlinear statistics of the neural responses1,2, then we say that the
population code is nonlinear (Table 1). One straightforward
example is a stimulus-dependent covariance QðsÞ ¼ hrr>jsi; its
information can be decoded by quadratic operations
R= rr⊤ 28–30.

A simple example of a nonlinear code is the exclusive-or
(XOR) problem. Given the responses of two binary neurons, r1
and r2, we would like to decode the value of a task-relevant signal
s= XOR(r1, r2) (Fig. 2a). We do not care about the specific value
of r1 by itself, and in fact, r1 alone tells us nothing about s. The
same is true for r2. The usual view on nonlinear computation is
that the desired signal can be extracted by applying an XOR or
product nonlinearity. However, there is an underlying statistical
reason this works: the signal is actually reflected in the trial-by-
trial correlation between r1 and r2: when they are the same then
s=−1, and when they are opposite then s=+1. The correlation,
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and thus the relevant variable s, can be estimated nonlinearly
from r1 and r2 as ŝ ¼ �r1r2.

Some experiments have reported stimulus-dependent internal
noise correlations that depend on the signal, even for a
completely fixed stimulus without any nuisance variation31–35.
Other experiments have turned up evidence for nonlinear
population codes by characterizing the nonlinear selectivity
directly36–38.

More typically, however, stimulus-dependent correlations arise
from external noise, leading to what we call nuisance correlations.
In the introduction (Fig. 1) we showed a simple orientation
estimation example in which fluctuations of an unknown polarity
eliminate the orientation tuning of mean responses, relegating the
tuning to variances. Figure 2b–e shows a slightly more
sophisticated version of this example, where instead of two
image polarities, we introduce spatial phase as a continuous
nuisance variable. This again eliminates mean tuning but
introduces nuisance covariances that are orientation tuned.

One might object that although the nuisance covariance is
tuned to orientation, a subject cannot compute the covariance (or
any other statistic of the encoding model) on a single trial because
it does not experience all possible nuisance variables to average
over. However, in linear codes, the subject does not have access to
the tuned mean response rjsh i either, just a noisy single-trial
version of the mean, namely r. Analogously, the subject does not
need access to the tuned covariance, just a noisy single-trial
version of the second moments, rr⊤ (Table 1). In this simple

example, the nuisance variable of the spatial phase ensures that
quadratic statistics contain relevant information about the
orientation, just like complex cells in V14.

Choice correlations predicted for optimal linear decoding. To
study how neural information is used or decoded, past studies
have examined whether neurons that are sensitive to sensory
inputs also reflect an animal’s behavioral outputs or choices39–47.
This choice-related activity is hard to interpret, because it may
reflect decoding of the recorded neurons, or merely correlations
between them and other neurons that are decoded instead48.
However, testable predictions about the choice-related activity
can reveal the brain’s decoding efficiency for linear codes27. Next,
we discuss these predictions, and then generalize them to
nonlinear codes.

We define ‘choice correlation’ Crk
as the correlation coefficient

between the response rk of neuron k and the stimulus estimate
(which we view as a continuous ‘choice’) ŝ, given a fixed stimulus
s:

Crk
¼ Corrðrk; ŝjsÞ ð2Þ

This choice correlation is a conceptually simpler and more
convenient measure than the more conventional statistic, ‘choice
probability’49, but it has almost identical properties (see the
“Methods” subsection “Nonlinear choice correlations”)27,48.

Intuitively, if an animal is decoding its neural information
efficiently, then those neurons encoding more information should
be more correlated with the choice. Mathematically, one can
show that choice correlations indeed have this property when
decoding is optimal. There are several closely connected versions
of this relationship that quantify information by estimator
variance or Fisher information for continuous estimates, or by
threshold or discriminability for binary estimates27—but the
simplest is based on discriminability:

Copt
rk

¼
d0rk
d0

ð3Þ

where d0 and d0rk are, respectively, the stimulus discriminability50

based on the behavior or on neuron k’s response rk (see the
“Methods” subsection “Nonlinear choice correlations”). This
relationship holds for binary classification derived from a locally

Fig. 2 Nonlinear codes. a Simple example in which a stimulus s is the XOR of two neural responses (top). Conditional probabilities p(r1, r2∣s) of those
responses (bottom) show they are anti-correlated when s=+1 (red) and positively correlated when s=−1 (blue). This stimulus-dependent correlation
between responses creates a nonlinear code. The remaining panels show that a similar stimulus-dependent correlation emerges in orientation
discrimination with an unknown spatial phase. b Gabor images with two orientations and three spatial phases. c Mean responses of linear neurons with
Gabor receptive fields are sensitive to orientation when the phase is fixed (arrows), but point in different directions for different spatial phases. When
phase is an unknown nuisance variable, this mean tuning, therefore, vanishes (black dot). d The response covariance Cov(r1, r2∣s) between these linear
neurons is tuned to orientation even when averaging over spatial phase. Response covariances for four orientations are depicted by ellipses. e A continuous
view of the covariance tuning to orientation for a pair of neurons.

Table 1 Neural response properties relevant for linear and
nonlinear codes.

Linear Nonlinear Quadratic

Trial data r R(r) rr⊤

Signal Mean(r∣s) Mean(R∣s) Mean(rr⊤∣s)
Noise Cov(r∣s) Cov(R∣s) Cov(rr⊤∣s)

In each case, the brain must estimate the stimulus from a single example of neural data, but the
relevant function of that data is linear for linear codes and nonlinear for nonlinear codes (such as
the quadratic example in the last column). The noise and signal can be quantified by the
corresponding covariance and stimulus-dependent changes in the corresponding means (i.e. the
tuning curve slope).
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optimal linear estimator

ŝ ¼ w � rþ c ð4Þ
for any stimulus-independent noise correlations, regardless of
their structure.

Another way to test for optimal linear decoding would be to
measure whether the animal’s behavioral discriminability
matches the discriminability for an ideal observer of the neural
population response. Yet this approach is not feasible, as it
requires one to measure simultaneous responses of many, or even
all, relevant neurons, with enough trials to reliably estimate their
joint information content. In contrast, the optimality test (Eq. (3))
requires measuring only non-simultaneous single neuron
responses, which is vastly easier. Neural recordings in the
vestibular system are consistent with near-optimal decoding
according to this prediction27.

Nonlinear choice correlations for optimal decoding. When
nuisance variables wash out the mean tuning of neuronal
responses, we may well find that a single neuron has both zero
choice correlation and zero information about the stimulus. The
optimality test would thus be inconclusive.

This situation is exactly the same one that gives rise to
nonlinear codes. A natural generalization of Eq. (3) can reveal the
quality of neural computation on nonlinear codes. We simply
define a ‘nonlinear choice correlation’ between the stimulus
estimate ŝ and nonlinear functions of neural activity R(r):

CRk
¼ CorrðRkðrÞ; ŝjsÞ ð5Þ

(see the “Methods” subsection “Nonlinear choice correlations”),
where Rk(r) is a nonlinear function of the neural responses. If the
brain optimally decodes the information encoded in the nonlinear
statistics of neural activity, according to the simple nonlinear
extension to Eq. (4),

ŝ ¼ w � RðrÞ þ c ð6Þ
then the nonlinear choice correlation satisfies the equation

Copt
RkðrÞ ¼

d0RkðrÞ
d0

ð7Þ

where d0RkðrÞ is the stimulus discriminability provided by Rk(r) (see
the “Methods” subsection “Optimality test”). This simple

Equation (7) is the most important in this paper, and it is the
basis of most predictions and intuitions we present in subsequent
sections.

Equation (7) predicts that choice correlations of individual
statistics will be stronger for more informative statistics, those
with higher discriminability d0Rk

. This reflects either stronger
stimulus tuning of the statistic and/or lower variability of that
statistic. This effect does not depend on whether the variability is
shared. The variability that is not decoded dilutes the choice
correlation; variability that is decoded increases it. Finally, choice
correlations for optimal decoding can never be negative: if a
statistic is tuned to increase with the stimulus, its fluctuations
should correlate with choices that increase as well.

As an example of this relationship, we return to the orientation
task. Here the response covariance Σ(s)= Cov(r∣s) depends on
the stimulus, but the mean f ¼ rjsh i ¼ rh i does not. In this
model, optimally decoded neurons would have no linear
correlation with behavioral choice. Instead, the choice should
be driven by the product of the neural responses, R(r)= vec(rr⊤),
where vec( ⋅ ) is a vectorization that flattens an array into a one-
dimensional list of numbers. Such quadratic computation is what
the energy model for complex cells is thought to accomplish for
phase-invariant orientation coding4. Figure 3 shows linear and
nonlinear choice correlations for pairs of neurons, defined as
Crirj

¼ Corrðrirj; ŝjsÞ. When decoding is linear (a suboptimal

strategy for this example), linear choice correlations are strong
while nonlinear choice correlations are near zero (Fig. 3a, b).
When the decoding is quadratic, here mediated by an
intermediate layer that multiplies pairs of neural activity, the
nonlinear choice correlations are strong while the linear ones are
insignificant (Fig. 3c, d).

Redundant codes. It might seem unlikely that the brain uses
optimal, or even near-optimal, nonlinear decoding. Even if it
does, there are an enormous number of high-order statistics for
neural responses, so the information content in any one statistic
could be tiny compared to the total information in all of them.
For example, with N neurons there are on the order of N2

quadratic statistics, N3 cubic statistics, and so on. With so many
statistics contributing information, the choice correlation for any
single one would then be tiny according to the ratio in Eq. (7),
and would be indistinguishable from zero with reasonable
amounts of data. Past theoretical studies have described nonlinear
(specifically, quadratic) codes with extensive information that
grows proportionally with the number of neurons2,28. This would
indeed imply immeasurably small choice correlations for large,
optimally decoded populations.

A resolution to these concerns is information-limiting
correlations3. The past studies that derive extensive nonlinear
information treat large cortical populations in isolation from the
smaller sensory population that would naturally provide its
input2,28. Yet when a network inherits information from a much
smaller input population, the expanded neural code becomes
highly redundant: the brain cannot have more information than it
receives51. Noise in the input is processed by the same pathway as
the signal, and this generates noise correlations that can never be
averaged away3.

The previous work3 characterized linear information-limiting
correlations for fine discrimination tasks by decomposing the
noise covariance into Σ ¼ Σ0 þ ϵf 0f 0>, where ϵ is the variance of
the information-limiting component and Σ0 is noise that can be
averaged away with many neurons.

For nonlinear population codes, it is not just the mean
responses that encode the signal, fðsÞ ¼ rjsh i, but rather the
nonlinear statistics FðsÞ ¼ RðrÞjs� �

. Likewise, the noise does not

Fig. 3 Linear and nonlinear choice correlations successfully distinguish
network structure. A linearly decoded population (a) produces nonzero
linear choice correlations (b), while the nonlinear choice correlations are
randomly distributed around zero. The situation is reversed for a nonlinear
network (c), with insignificant linear choice correlations but strong
nonlinear ones (d). Here the network implements a quadratic nonlinearity,
so the relevant choice correlations are quadratic as well, Cjk ¼ Corrðrjrk; ŝjsÞ.
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comprise only second-order covariance of r, Cov(r∣s), but rather
the second-order covariance of the relevant nonlinear statistics,
Γ= Cov(R(r)∣s) (see the “Results” subsection “Signal and noise”).
Analogous to the linear case, these correlations can be locally
decomposed as

Γ ¼ CovðRðrÞjsÞ ¼ Γ0 þ ϵF0F0> ð8Þ

where ϵ is again the variance of the information-limiting
component, and Γ0 is any other covariance that can be averaged
away in large populations, including internal noise and external
nuisance variation. The information-limiting noise bounds the
estimator variance σ2ŝ to no smaller than ϵ even with optimal
decoding. Likewise, the Fisher information cannot exceed the
value of 1/ϵ, and the discriminability d0 cannot exceed ds=

ffiffiffi
ϵ

p
for

a stimulus change of ds3. Neither additional cortical neurons nor
additional decoded statistics can improve performance beyond
this bound.

Consequences of optimal decoding on choice correlations. The
simple formula of Eq. (7) provides useful insights into the rela-
tionship between neural activity and choice when that activity is
decoded optimally in a natural task. First, the choice correlations
do not depend on the shape or magnitude of the internal noise or
nuisance correlations, because these dimensions are deliberately
avoided by optimal decoding, whose weights cancel those corre-
lations (Eq. (18)). The only aspect of shared variability that
matters for choice is the information-limiting component, i.e. that
which is indistinguishable from a change in the task-relevant
stimulus. This information-limiting variability increases choice
correlations mostly by decreasing the overall behavioral dis-
criminability d0; the shared variability is large only at the popu-
lation level and typically only has a small contribution to any one
statistic3,27 and thus to its discriminability d0k. With a smaller
denominator and roughly unaffected numerator, the ratio in Eq.
(7) rises with information-limiting correlations.

Likewise, the total number of the decoded statistics only affects
the prediction of Eq. (7) insofar as it affects the available
information. This is especially important when considering
nonlinear statistics, as there are potentially so many of them.
When optimally decoded, greater numbers of independently
informative statistics will increase the total discriminability

exhibited by the behavioral choices, while the discriminability
for each statistic remains unchanged. According to Eq. (7), choice
correlations for optimal decoding are the ratio of these two, so as
the behavioral behavioral d0 increases and the individual terms
remain fixed, the choice correlations shrink. On the other hand,
greater numbers of redundant statistics change neither the total
information content nor the behavioral choice. These added
statistics can have similar tuning and similar fluctuations as each
other (which is what makes them redundant). Any single
redundant statistic might or might not be decoded, but it is
correlated with others that are. According to Eq. (7), the
individual d0Rk

are unchanged when adding more redundant
statistics; the total information d0 is unchanged; and thus their
ratio is fixed, consistent with the unchanged choice correlations.

When there are many fewer sensory inputs than cortical
neurons, as seen in the brain, many distinct statistics Rk(r) will
carry redundant information. Under these conditions, many
choice correlations CRk

can be quite large even for optimal
nonlinear decoding: the discriminabilities d0Rk

of redundant
statistics can be comparable to the discriminability d0 of the
whole population, producing ratios d0Rk

=d0 that are a significant
fraction of 1 (Fig. 4). Supplementary Information S.7.1 illustrates
this effect for a redundant nonlinear population code: the brain
need not decode all functions of all neurons to extract essentially
all of the information (Fig. S6A), and neuroscientists need not
compute choice correlations for all possible statistics to establish
decoding efficiency (Fig. S6B).

Which nonlinear statistics? If the brain’s decoder optimally uses
all available information, choice correlations will obey the pre-
diction of Eq. (7) even if the specific nonlinear statistics extracted
by the brain’s decoder differ from those selected for evaluating
choice correlations (see the “Methods” subsection “Nonlinear
choice correlation to analyze an unknown nonlinearity”). The
prediction is valid as long as the brain’s nonlinearity can be
expressed as a linear combination of the tested nonlinearities (see
the “Methods” subsection “Nonlinear choice correlation to ana-
lyze an unknown nonlinearity”). Since the brain needs compli-
cated nonlinearities for complicated tasks, it may be difficult to
find a suitable basis set for truly natural conditions; feature spaces
from deep networks trained on comparable tasks might provide a

Fig. 4 Information-limiting noise makes a network more robust to suboptimal decoding. a A simulated optimal decoder produces measured choice
correlations that match our optimal predictions (blue, on diagonal). In contrast, when a noise covariance Γ0 permits the population to have extensive
information, then a suboptimal decoder can exhibits a pattern of choice correlations that does not match the prediction of optimal decoding. Here we show
two suboptimal decoders, one that is blind to higher-order correlations (w / F0 , red), and another ‘worse’ decoder that has the same weights but with 40%
random sign flips (green). As in Fig. 5, horizontal axis shows optimal choice correlations (Eq. (7)) and vertical axis shows measured choice correlations (Eq.
(5)). b When information is limited, the same decoding weights may be less detrimental, and thus exhibit a similar pattern of choice correlations as an
optimal decoder (red), or if they are sufficiently bad they may retain a suboptimal pattern of choice correlations (green).
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useful basis38,52. For the modest, controlled-complexity tasks
used in most neuroscience experiments53–56, polynomials or
other simple bases may be sufficient, even when individual neu-
rons do not use polynomial operations.

Indeed, Fig. 5 shows a situation where information is encoded
by linear, quadratic and cubic sufficient statistics of neural
responses, but a simulated brain decodes them near-optimally
using a generic neural network rather than a set of nonlinearities
matched to those sufficient statistics. Despite this mismatch we
can successfully identify that the brain is near-optimal by
applying Eq. (7), even without knowing details of the simulated
brain’s true nonlinear transformations.

Decoding efficiency revealed by choice correlations. Even if
decoding is not strictly optimal, Eq. (7) can be approximately
satisfied due to information-limiting correlations. Decoders that
seem substantially suboptimal because they fail to avoid the lar-
gest noise components in Γ0 can be nonetheless dominated by the
bound from information-limiting correlations. This will occur
whenever the variability from suboptimally decoding the noise Γ0
is smaller than the information-limiting variance ϵ. Just as we can
decompose the nonlinear noise correlations into information-
limiting and other parts, we can decompose nonlinear choice
correlations into corresponding parts as well, with the result that

Csub
R � αCopt

R þ χR ð9Þ
where χR depends on the particular type of suboptimal decoding
(Supporting Information S.3.2). The slope α between choice
correlations and those predicted from optimality is given by the
fraction of estimator variance explained by information-limiting
noise, α ¼ ϵ=σ2ŝ . This slope α therefore provides an estimate of
the efficiency of the brain’s decoding.

Figure 4 shows an example of one decoder that would be
suboptimal without redundancy, but is nonetheless close to

optimal when information limits are imposed. This rescue of
optimality does not happen for all decoders, however. The figure
also shows another decoder that is so suboptimal that it throws
away most of the available information even when there is
substantial redundancy. The patterns of choice correlations
reflect this.

In realistically redundant models with more cortical neurons
than sensory inputs, many decoders could be near-optimal, as we
recently discovered in experimental data for a linear population
code27. However, even in redundant codes there may be
substantial inefficiencies and information loss57, especially for
unnatural tasks58, so it is scientifically interesting to discover
near-optimal nonlinear computation even in a redundant code.

Coarse versus fine, estimation versus classification. Our con-
ceptual framework and predictions are most simply expressed for
fine estimation tasks, where here we define ‘fine’ as a stimulus
range over which the noise statistics do not vary with the sti-
mulus. Some minor details of our predictions change when
moving to binary classification instead of continuous estimation:
this introduces a correction factor that depends on the response
distribution (Section S.6.4).

More details change when moving to ‘coarse’ tasks, which we
define as when noise statistics do change significantly with the
stimulus. As for fine discrimination, we again find that when
decoding is optimal, random fluctuations in choices are correlated
with neural responses to the same degree that those responses can
discriminate between stimuli. However, this relationship is
slightly more complicated for coarse discrimination. For this
reason we introduce a slightly more complicated measure of
choice correlation that we call Normalized Average Conditional
Choice Correlation (NACCC, Eq. (17)), which removes the
stimulus-induced covariation between neuron and choice, and
isolates only the remaining shared fluctuations that reflect the

Fig. 5 Identifying optimal nonlinear decoding by a generic neural network using nonlinear choice correlations. Neural responses r are constructed to
encode stimulus information in polynomial sufficient statistics up to cubic order (see the “Methods” section Eq. (13)). These responses are decoded by an
artificial nonlinear neural network or polynomial nonlinearities, and we evaluate the quality of the decoding using polynomial nonlinearities for both cases. a
Architecture of a network that uses ReLU nonlinearities trained to extract the relevant information. b Architecture of a second network that instead uses
polynomial nonlinearities to extract the relevant information. c, d Choice correlations based on polynomial statistics show that both networks'
computations are consistent with optimal nonlinear decoding (see the “Methods” subsection “Nonlinear choice correlation to analyze an unknown
nonlinearity”), even though the simulated networks used different implementations to extract the stimulus information. Horizontal axis shows optimal
choice correlations (Eq. (7)); vertical axis shows measured choice correlations (Eq. (5)).
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brain’s processing. However, the end result is the same: choice
correlations for optimal decoding are equal to the ratio of
discriminabilities (Eq. (7); Supplemental Information S.5). As for
fine estimation, there is a correction factor of order 1 for binary
choices instead of continuous estimation (see the “Methods”
subsection “Optimality test”, Supplemental Information S.6.4, Eq.
(185)).

Evidence for optimal nonlinear computation in macaque
brains. We applied our optimality test to data recorded with Utah
arrays from primate visual cortex (V1) during a nonlinear
decoding task. Monkeys performed a Two-Alternative Forced
Choice task (2AFC) in which they categorized an oriented
drifting grating based on whether it came from a wide or narrow
distribution of orientations59 (Fig. 6a, b). The categorical target
variable s is therefore the variance of the orientation distribution.
This coarse binary discrimination task is a simplified version of a
task that might arise in nature when identifying a surface texture
or material60; the orientation of the material would be a nuisance
variable independent of the material type. Here the observable
variable, the orientation, is the product of the target variable and a
nuisance variable ν. An additional nuisance variable was the sti-
mulus contrast varying independently of the stimulus variance,
although here we only analyze the highest contrast.

Below we analyze whether the trial-by-trial nonlinear statistics
of V1 multi-unit neural responses to these stimuli provide
information about the task-relevant category and the behavioral
choice, and whether these two informations are correlated as
predicted by our optimal decoding theory. Since the marginal
response statistics depend substantially on the stimulus category,
at least in part because the corresponding nuisance distributions
differ, this is a coarse binary discrimination task. For this reason
we test suitable optimal decoding predictions about nonlinear
choice correlations in coarse tasks, using the NACCC measure
that we outlined in the section “Coarse versus fine, estimation

versus classification” and derived in the “Methods” subsection
“Application to neural data” and Supplemental Information S.6.

V1 responses contain information about orientation61. Here we
found that V1 responses also contain some linear information
about the orientation variance (Fig. 6c, blue; d0 calculated by Eq.
(20)). This implies that within their receptive field they have
already performed some nonlinear transformations of the input
that are useful for estimating the orientation variance. However,
we expect that nonlinear computations downstream can extract
still more information. Note that for a fixed contrast, an optimal
computation based on the stimulus is simply to threshold the
squared deviation from the mean orientation. Because neural
responses in this brain area can be linearly decoded to compute
orientation, a good downstream decoder for the orientation
variance would naturally be quadratic in those responses.

Indeed, we found information in the quadratic statistics of
neural responses, δr2i and δriδrj (Fig. 6c, red and green), verifying
that downstream nonlinear computations could extract additional
information from the neural responses. To isolate the nonlinear
information we eliminated the linear stimulus dependence of the
response, computing neural nonlinear statistics according to
δri ¼ ri � hri ĵs1i, where ŝ1 ¼ wopt � rþ c is the optimal estimate
decoded only from a linear combination of available neural
responses.

These quadratic statistics also contained substantial nonlinear
information about the behavioral choice (Fig. 6d). In general,
there is no guarantee that the particular nonlinear statistics that
are informative about the stimulus are also informative about the
choice. However, our theory of optimal decoding predicts
specifically that these quantities should be directly proportional
to each other. Indeed, in two monkeys, we found that nonlinear
choice correlations were highly correlated with nonlinear
stimulus information (Fig. 6e). Remarkably, when we compare
the measured nonlinear choice correlations to the ratio of
discriminabilities after adjusting for the binary data (see the

Fig. 6 Nonlinear information and choice correlations in a variance discrimination task, for neural data from two monkeys. a Example oriented grating
and saccade targets. b The orientations of the gratings were drawn from a narrow or wide distribution, and the monkey had to guess which by saccading to
the appropriate target. c Neurons contain linear and nonlinear information about the task variable. This is revealed by the Normalized Average Conditional
Choice Correlations (NACCC, Eq. (17)) predicted for optimal decoding, which are proportional to the measured signal-to-noise ratios (Eq. (7)) for each
neural response pattern (blue ri, green δr2i , red δriδrj). Color saturation indicates statistical significance (see the “Methods” subsection “Application to
neural data”). d These neurons also contain significant information about the animal’s choice, as computed by the measured NACCC. e The measured and
optimal NACCCs are highly correlated, with a proportionality near 1 (lines). The coefficient of determination, R-squared is 0.50, 0.33, 0.12 for linear, square
and cross terms for monkey 1; 0.61, 0.64, 0.40 for monkey 2. Each point represents one response pattern (e.g. δriδrj) in one session. Top and bottom panels
are data from two different monkeys. These two plotted quantities are strongly correlated (0.76, 0.65, 0.53 for linear, square and cross terms for monkey 1;
0.80, 0.83, 0.72 for monkey 2). f Shuffling internal noise correlations while preserving nuisance correlations maintains the relationship between prediction
and nonlinear choice correlations, implying that internal noise is not responsible for the correlations. g Shuffling nuisance correlations across trials (see the
“Methods” subsection “Application to neural data”) nearly eliminates the relationship between measured and predicted nonlinear choice correlations
(0.76, 0.05, 0.04 for monkey 1; 0.80, 0.10, 0.11 for monkey 2), implying that nuisance variation creates the nonlinear code.
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“Methods” subsection “Application to neural data”), the slopes of
this relationship for the two animals were near the value of 1 that
Eq. (7) predicts for optimal decoding (Fig. 6e).

Monkey 2 performed slightly worse than an ideal observer,
with a probability correct of 0.76, compared to the ideal of 0.82
(see the “Methods” subsection “Application to neural data”)—
even while its decoding was near-optimal, with an efficiency
according to Eq. (9) of 0.96 ± 0.04 (mean ± 95% confidence
intervals). Even at the level of individual sessions, this is
consistent with optimal decoding, with efficiencies not signifi-
cantly different from 1 (p= 0.26, one-tailed t-test). This suggests
that information is lost in the encoding stage somewhere between
the stimulus and the recorded neurons, and not downstream of
those neurons. Monkey 1 had similar overall performance
(probability correct of 0.74) but worse decoding efficiency
(0.75 ± 0.08). Across sessions with reliable slopes (positive
coefficients of determination, 77/119 sessions), the efficiencies
were significantly different from 1 (p < 10−6, one-tailed t-test).
This suggests the second monkey’s task performance has
limitations arising downstream of the recorded neurons.

Controls to find the origins of choice correlations. To evaluate
whether internal noise correlations contribute nonlinear infor-
mation or choice correlations, we created a shuffled data set that
removed internal noise correlations while preserving external
nuisance correlations. That is, for each neuron we independently
selected responses to high-contrast trials with matched target
stimulus (variance), nuisance (orientations within ±1.5), and
choice, and repeated our analysis on these shuffled data (Fig. 6f).
The observed relationship between predicted and observed choice
correlations was the same as in the original test, indicating that
nuisance variations were sufficient to drive the nonlinear infor-
mation and decoding.

We then shuffled the external nuisance correlations by
randomly selecting responses to trials with matched target
stimulus and choice, but now using unmatched nuisance
variables, and again repeated the analysis (Fig. 6g). In other
words, we picked responses from different trials that came from
the same signal category (wide or narrow) and elicited the same
choice but had different orientations, and we picked these trials
(and thus their stimulus orientations) independently for neurons i
and j. The strong statistical relationship observed between
predicted and measured nonlinear choice correlations vanished
with this shuffling, indicating that the nuisance variation was
necessary for the nonlinear information and nonlinear decoding.

These shuffle controls removed noise correlations and nuisance
correlations, respectively. Combining the conclusions from these
controls, we find no evidence that the brain optimally decodes
any stimulus-dependent internal noise correlations in this task.

We looked directly for stimulus-dependent internal noise
correlations by conditioning on both the signal and the nuisance
variable (which here is simply the single number, orientation) and
measuring orientation-dependent response covariances. The
resultant nonlinear tuning was quite weak compared with the
trial-to-trial variability in those nonlinear statistics, and available
nonlinear information arose largely in changing variances rather
than covariances; likely arising from Poisson statistics and tuning
of the mean firing (Supplementary Fig. S5A, B). Internal noise
fluctuations in those directions were not significantly correlated
with choice (Supplementary Fig. S5C, p= 0.088, 0.830, 0.969 for
linear, square, and cross terms for monkey 1; p= 0.073, 0.094,
0.573 for linear, square, and cross terms for monkey 2 using a
two-sample Kolmogorov–Smirnov test).

Recent analyses of these same data found that internal noise
did in fact influence the monkeys’ behavioral choices62, but this

effect was subtle and only apparent when examining the entire
neural population simultaneously with a complex trained
nonlinearity. In our analysis this effect is buried in the noise, so
our method is not sensitive enough to tell if these large-scale
patterns induced by internal noise are used optimally or
suboptimally. Additionally, in this work we analyzed a subset of
trials with the highest contrasts and it is possible that at lower
contrasts internal noise has a greater influence. However, we can
detect that the brain contains information that is encoded
nonlinearly due to external nuisance variation, and that this
information is indeed decoded near-optimally by the brain.

Discussion
This study introduced a theory of nonlinear population codes,
grounded in the natural computational task of separating relevant
and irrelevant variables. The theory considers both encoding and
decoding—how stimuli drive neurons, and how neurons drive
behavioral choices. It shows how correlated fluctuations between
neural activity and behavioral choices could reveal the efficiency
of the brain’s decoding. Unlike previous theories of nonlinear
population codes2,28, ours remains consistent with biological
constraints due to the large cortical expansion of sensory repre-
sentations by incorporating redundancy through a nonlinear
generalization of information-limiting correlations3. Also unlike
past work which largely concentrates on encoding efficiency, we
provide mathematical methods to quantify the brain’s nonlinear
decoding efficiency. When we applied this method to the neural
responses of monkeys performing a discrimination task in which
neural statistics were dominated by nuisance variation, we found
quantitative results consistent with efficient nonlinear decoding of
V1 activity.

The best condition to apply our optimality test is in a task of
modest complexity but still possessing fundamentally nonlinear
structure. Some interesting examples where our test could
have practical relevance include motion detection using
photoreceptors63, visual search with distractors (XOR-type
tasks)30,64, sound localization in early auditory processing before the
inferior colliculus65, or context switching in higher-level cortex55.

Optimal nonlinearities extract the sufficient statistics about the
relevant stimulus. These statistics depend not only on the task but
also on the nuisance variables. In complex tasks, like recognizing
objects from images, nuisance variables push most of the relevant
information into higher-order statistics which require more
complex nonlinearities to extract. In such high-dimensional cases,
our proposed test is unlikely to be useful. This is because our
method expresses stimulus estimates as sums of nonlinear func-
tions, and while that is universal in principle66, that is not a
compact way to express the complex nonlinearities of deep net-
works. Relatedly, it may be difficult to see statistically significant
information or choice correlations for nonlinear statistics that
provide many important but small contributions to the behavioral
output. Since many stimulus-dependent response correlations are
induced by external nuisance variation, not internal noise, we
might not find informative stimulus-dependent noise correlations
upon repeated presentations of a fixed stimulus. Indeed, our
analysis found no evidence of internal noise generating nonlinear
choice correlations (Fig. 6). Those correlations may only be
informative about a stimulus in the presence of natural nuisance
variation. For example, if a picture of a face is shown repeatedly
without changing its pose, then small expression changes can
readily be identified by linear operations; if the pose varies then
the stimulus is only reflected in higher-order correlations9.

In contrast, we should see some nonlinear choice correlations
even when nuisance variables are fixed. This is because neural
circuitry must combine responses nonlinearly to eliminate natural
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nuisance variation, and any internal noise passing through those
same channels will thereby influence the choice. Although they
may be smaller and more difficult to detect than the fluctuations
caused by the nuisance variation, this influence will manifest as
nonlinear choice correlations. In other words, nonlinear noise
correlations need not predict a fixed stimulus, but they may
predict the choice (Supplementary Information S.4).

Our approach is currently limited to spatial feedforward pro-
cessing, which unquestionably oversimplifies cortical processing.
The approach can be generalized to recurrent networks by con-
sidering spatiotemporal statistics67. Feedback could also cause
suboptimal networks to exhibit choice correlations that seem to
resemble the optimal prediction. If the feedback is noisy and
projects into the same direction that encodes the stimulus, such as
from a dynamic bias68–70, then this could appear as information-
limiting correlations, enhancing the match with Eq. (7). This
situation could be disambiguated by measuring the internal noise
source providing the feedback, though of course this would
require more simultaneous measurements.

In principle our method can also be applied to temporal neural
response properties like spike timing or time series. For optimal
processing, spike timing that is tuned to task-relevant stimuli
should also be correlated with resultant choices, even if the timing
is converted to rate codes by downstream processing. On the
other hand, it is more difficult to track behavioral consequences
of spatiotemporal correlations that evolve through a recurrent
network67 with dynamic outputs, as in motor control applica-
tions. It should be fruitful to develop this theory further for more
complex tasks involving time sequences of actions.

Our method to understand nonlinear neural decoding requires
neural recordings in a behaving animal. The task must be hard
enough that it makes some errors, so that there are behavioral
fluctuations to explain. Finally, there should be a modest number
of nonlinearly entangled nuisance variables. Unfortunately, many
neuroscience experiments are designed without explicit use of
nuisance variables. Although this simplifies the analysis, this
simplification comes at a great cost, which is that the neural
circuits are being engaged far from their natural operating point,
and far from their purpose: there is little hope of understanding
neural computation without challenging the neural systems with
nonlinear tasks for which they are required. In this context, it is
especially noteworthy that a mismatch between choice correla-
tions and the optimal pattern might not indicate that the brain is
suboptimal, but instead that the nuisance variation in the
experimental task may not match the natural tasks the brain has
learned. For this reason it is important for neuroscience to use
natural tasks, or at least naturalistic ones, when aiming to
understand computational function71–73.

Methods
Orientation estimation with varying spatial phase. Figure 1 illustrates how
nuisance variation can eliminate a neuron’s mean tuning to relevant stimulus
variables, relegating the neural tuning to higher-order statistics like covariances. In
this example, the subject estimates the orientation of a Gabor image, G(x∣s, ν),
where x is spatial position in the image, and s and ν are the orientation and spatial
phase (nuisance) of the image, respectively (Supplementary Material S.1.1). The
model visual neurons are linear Gabor filters like idealized simple cells in primary
visual cortex, corrupted by additive white Gaussian noise. Their responses are thus
distributed as r ~ P(r∣s, ν)=N(r∣f(s, ν), ϵI), where ϵ is the noise variance and the
mean fðs; νÞ ¼ rjs; νh i ¼ ∑rr pðrjs; νÞ is determined by the overlap between the
image and the receptive field.

When the spatial phase ν is known, the mean neural response contains all the
information about orientation s. The brain can decode responses linearly to
estimate orientation near a reference s0.

When the spatial phase varies, however, each mean response to a fixed
orientation will be combined across different phases:
fðsÞ ¼ rjsh i ¼ ∑rr pðrjsÞ ¼

R
dν ∑rr pðrjs; νÞpðνÞ. Since each spatial phase can be

paired with another phase π radians away that inverts the linear response, the

phase-averaged mean is f(s)= 0. Thus the brain cannot estimate orientation by
decoding these neurons linearly; nonlinear computation is necessary.

The covariance provides one such tuned statistic. We define Covij(r∣s, ν) as the
neural covariance for a fixed input image (noise correlations), and Covij(r∣s) as the
neural covariance when the nuisance varies (nuisance correlations). According to
the law of total covariance,

CovijðrjsÞ ¼
R
dν ðCovijðrjs; νÞ þ δf iðs; νÞδf jðs; νÞÞpðνÞ ð10Þ

where δf iðs; νÞ ¼ f iðs; νÞ � f iðs; νÞ
� �

ν
. Supplementary Information S.1.1 shows in

detail how Covij(r∣s) is tuned to s.

Exponential family distribution and sufficient statistics. It is illuminating to
assume the response distribution conditioned on the relevant stimulus (but not on
nuisance variables) is approximately a member of the exponential family with
nonlinear sufficient statistics,

pðrjsÞ ¼ bðrÞ expðHðsÞ � RðrÞ � AðsÞÞ ð11Þ
where R(r) is a vector of sufficient statistics for the natural parameter H(s), b(r) is
the base measure, and A(s) is the log-partition function. In this case, a finite
number of sufficient statistics contains all of the information about the stimulus in
the population response, and all other tuned statistics may be derived from them.

Estimation and inference are closely connected in the exponential family. In
Supplementary Material S.1.2.2, we show that the optimal local estimation can be
achieved by linearly decoding the nonlinear sufficient statistics, ŝ ¼ w>RðrÞ þ c.
The decoding weights minimize the variance of an unbiased decoder,

wopt / H0ðsÞ / Γ�1F0 ð12Þ
where F0 ¼ ∂hRðrÞjsi=∂s is the sensitivity of the statistics to changing inputs, and
Γ= Cov(R∣s) is the stimulus-conditioned response covariance—which generally
includes nuisance correlations (see the section “Signal and noise”).

Quadratic encoding. In a quadratic coding model, the distribution of neural
responses is described by the exponential family with up to quadratic sufficient
statistics, R(r)= {ri, rirj} for i, j∈ {1,…,N}. A familiar example is the Gaussian
distribution with stimulus-dependent covariance Σ(s). In order to demonstrate the
coding properties of a purely nonlinear neural code, here we assume that the mean
tuning curve f(s) is constant, while the stimulus-conditional covariances Σij(s)
depend smoothly on the stimulus. We can quantify the information content of the
neural population using Eq. (61).

Cubic encoding. In our cubic coding model, the distribution of neural responses is
described by the exponential family with up to cubic sufficient statistics, R(r)=
{ri, rirj, rirjrk} for i, j, k∈ {1,…,N}.

We approximate a three-neuron cubic code first using purely cubic
components, and we then apply a stimulus-dependent affine transformation to
include linear and quadratic statistics. The pure cubic code is used for a vector z
with sufficient statistics zizjzk (and a base measure e�kzk4 to ensure the distribution
is bounded and normalizable).

pðzjsÞ ¼ 1
Z
exp � k zk4 þ γ s zizjzk

� �
ð13Þ

We approximate this distribution by a mixture of four Gaussians. The mixture is
chosen to reproduce the tetrahedral symmetry of the cubic distribution
(Supplementary Fig. S1), which allows the cubic statistics of responses to be
stimulus dependent, leaving stimulus-independent quadratic and linear statistics.

To generate larger multivariate cubic codes for Supplementary Fig. S1, for
simplicity we assume the pure cubic terms only couple disjoint triplets of variables,
and sample independently from an approximately cubic distribution for each
triplet. To convert this purely cubic distribution to a distribution with linear and
quadratic information, we shift and scale these cubic samples z in a manner
dependent on s:

r ¼ fðsÞ þ Σ1=2ðsÞz ð14Þ
where f(s) and Σ(s) describes the desired signal-dependent mean and covariance
(see Supplementary Material S.1.4).

Nonlinear choice correlations. For fine discrimination tasks, the nonlinear choice
correlation between the stimulus estimate ŝ ¼ w>Rþ c and one nonlinear function
Rk (the kth element of the vector R) of recorded neural activity r is

CRk
¼ CorrðRkðrÞ; ŝjsÞ ¼

Γwð Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γkkw>Γw

p ð15Þ

where w>Γw ¼ σ2ŝ is the estimator variance.
When the relevant response statistics change appreciably over the stimulus

range used in the task, such as for the coarse variance discrimination task in the
section “Evidence for optimal nonlinear computation in macaque brains”), the
relevant quantities change slightly. The optimal linear decoder of nonlinear
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statistics, ŝ ¼ w � Rþ c, has weights obtained through linear regression:

w / �Γ�1ΔF ð16Þ

where �Γ ¼ CovðRjsÞ� �
s is the average conditional covariance between R given the

stimulus s. The differences from Eq. (12) are Γ ! �Γ and F0 ¼ dF=ds ! ΔF=Δs.
These differences are reflected in a slightly modified measure of correlation that

we call normalized average conditional choice correlations (NACCC),

BRk
¼ CovðRk; ŝjsÞ

� �
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðRkjsÞ
� �

s Varð̂sjsÞ� �
s

q ¼ ð�ΓwÞkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Γkkw>�Γw

p ð17Þ

BRk
is actually a correlation coefficient based on the average conditional covariance

�Γ, and is bounded in absolute value by 1. As the stimulus range in a coarse task
decreases, and the noise distribution p(R∣s) becomes independent of the stimulus,
then Eq. (17) converges toward Eq (15).

The choice correlation for binary choices differs slightly from that for
continuous estimation, for both fine and coarse discrimination tasks, by a factor ζ
that is typically of order 1 (Supplementary Materials S.6.1).

Optimality test. Substituting the optimal weights (Eq. (12)) into Eq. (15), the
optimal nonlinear choice correlation becomes

Copt
RkðrÞ ¼

ΓΓ�1F0
� �

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓkkF

0>Γ�1F0
p ¼ F0

kffiffiffiffiffiffi
Γkk

p σ ŝ ¼
d0RkðrÞ
d0

ð18Þ

where d0RkðrÞ ¼ F0
kΔs=

ffiffiffiffiffiffi
Γkk

p
is the fine discriminability provided by Rk(r) for a sti-

mulus difference of Δs. The same argument holds for coarse discrimination, where
�Γ in Eq. (17) is canceled by �Γ�1 in the optimal weights (Eq. (16)), yielding
Bopt
RkðrÞ ¼ d0Rk

=d0 .
For fine-scale discrimination, optimal choice correlations can be written in

many equivalent ways that reflect the simple relationships between four quantities
often used to represent information: discriminability d-prime is proportional to the
square root of the Fisher information d0 ¼ Δs

ffiffi
J

p
74; estimator variance is bounded

by the inverse of the Fisher information, σ2ŝ ≥ 1=J ; discrimination threshold is
proportional to the estimator standard deviation, θ ¼

ffiffiffiffiffi
σ2ŝ

p
with proportionality

given by the threshold condition.
In different experiments (binary discrimination, continuous estimation), it can

be most natural to express this optimal decoding prediction as ratios of different
measured quantities:

Copt
Rk

¼
d0Rk

d0
¼ θ

θRk

¼
ffiffiffiffiffiffiffiffiffi
σ2ŝ
σ2ŝ;Rk

s
¼

ffiffiffiffiffiffi
JRk

J

s
ð19Þ

These quantities reflect information between the stimulus and the neural or
behavioral responses. Supplemental material S.5 shows how this can be computed
easily for general binary discrimination using the total correlation between the
responses and the stimuli, DRk

¼ CorrðRk; sÞ, or a continuously varying behavioral
choice ŝ and the stimuli, Dŝ ¼ Corrð̂s; sÞ:

d0 ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�2 � 1

p � 2D ð20Þ

and likewise for d0Rk
. When the behavioral choice is binary rather than continuous,

the correlations are modified by a factor δ near 1 (Supplemental Information S.6.3,
Eq. (182)). For our experimental conditions, δ ≈ 1.2 ± 0.2.

Nonlinear choice correlation to analyze an unknown nonlinearity. In Fig. 5, we
generated neural responses given sufficient statistics that are polynomials up to
third order, R(r)= {ri, rirj, rirjrk} (see the “Methods” subsection “Cubic encoding”).
Our model brain decodes the stimulus using a cascade of linear–nonlinear trans-
formations, with Rectified Linear Units (ReLUðxÞ ¼ maxð0; xÞ) for the nonlinear
activation functions. We used a fully connected ReLU network with two hidden
layers and 30 units per hidden layer. We trained the network weights and biases
with backpropagation to estimate stimuli near a reference s0 based on 20,000
training pairs (r, s) generated by the cubic encoding model. This trained neural
network extracted 91% of the information available to an optimal decoder.

Information-limiting correlations. Only specific correlated fluctuations limit the
information content of large neural populations3. These fluctuations can ultimately
be referred back to the stimulus as r ~ p(r∣s+ ds), where ds is zero mean noise,
whose variance 1/J∞ determines the asymptotic variance of any stimulus estimator.
These information-limiting correlations for nonlinear computation can be char-
acterized by the covariance of the sufficient statistics, Γ= Cov(R∣s) conditioned on
s; the information-limiting component arises specifically from the signal covariance
Cov(F(s)∣s). Since the signal for local estimation of stimuli near a reference s0 is
F0ðsÞ ¼ d

ds RðrÞjs� �
, the information-limiting component of the covariance is

proportional to F0F0> :

Γ ¼ Γ0 þ
1
J1

FðsÞ0FðsÞ0> ð21Þ

Here Γ0 is any covariance of R that does not limit information in large populations.
Substituting this expression into (Eq. (61)) for the nonlinear Fisher Information,
we obtain

J ¼ F0Γ�1F0 ¼ 1
1=J1 þ 1=J0

ð22Þ

where J0 ¼ F0Γ�1
0 F0 is the nonlinear Fisher Information allowed by Γ0. When the

population size grows, the extensive information term J0 grows proportionally, so
the output information will asymptote to J∞.

Application to neural data. All behavioral and electrophysiological data were
obtained from two healthy, male rhesus macaque (Macaca mulatta) monkeys (L
and T) aged 10 and 7 years and weighting 9.5 and 15.1 kg, respectively. All
experimental procedures complied with guidelines of the NIH and were approved
by the Baylor College of Medicine Institutional Animal Care and Use Committee
(permit number: AN-4367). Animals were housed individually in a room located
adjacent to the training facility on a 12 h light/dark cycle, along with around 10
other monkeys permitting rich visual, olfactory, and auditory social interactions.
Regular veterinary care and monitoring, balanced nutrition and environmental
enrichment were provided by the Center for Comparative Medicine of Baylor
College of Medicine. Surgical procedures on monkeys were conducted under
general anesthesia following standard aseptic techniques.

Monkeys faced a Two-Alternative Forced Choice (2AFC) to guess whether an
oriented drifting grating stimulus came from a narrow or wide distribution of
orientations, centered on zero with standard deviations σ+= 15∘ and σ−= 3∘.
Visual contrast was set to 64%. Each trial was initiated by a beeping sound and the
appearance of a fixation target (0.15∘ visual angle) in the center of the screen. The
monkey fixated on a fixation target for 300 ms within 0.5∘–1∘ visual angle. The
stimulus appeared at the center of the screen. After 500 ms, colored targets
appeared randomly on the left and right, and the monkey then saccades to one of
these targets to indicate its choice (red and green targets correspond to narrow and
wide distributions).

After the monkey was fully trained, we implanted a 96-electrode microelectrode
array (Utah array, Blackrock Microsystems, Salt Lake City, UT, USA) with a shaft
length of 1 mm over parafoveal area V1 on the right hemisphere. The neural signals
were pre-amplified at the head stage by unity gain preamplifiers (HS-27,
Neuralynx, Bozeman MT, USA). These signals were then digitized by 24-bit analog
data acquisition cards with 30 dB onboard gain (PXI-4498, National Instruments,
Austin, TX) and sampled at 32 kHz. The spike detection was performed offline
according to a previously described method12,75. For each behavioral session and in
both monkeys, 95 multiunit neural responses rk were measured by spike counts in
the 500 ms preceding the saccade target onset.

The animals did not perform well on all days, so for further analysis we selected
sessions where the performance exceeded 0.7 for monkey 1 (85% of all sessions)
and 0.75 for monkey 2 (68% of all sessions).

The neural data from the two monkeys is of comparable quality, although the
monkey with higher task accuracy (monkey 2) performs more trials and has more
significantly tuned neurons. When we resampled from both datasets to control for
the number of trials and tuned neurons, and then used comparable datasets to do
nonlinear choice correlation analysis, we found similar decoding efficiencies for
two monkeys as was reported in the section “Evidence for optimal nonlinear
computation in macaque brains” (data not shown).

The task-relevant stimulus s is the large or small variance s ± ¼ σ2± of the
distribution over orientations. The orientation ϕ is a variable jointly determined by
the task-relevant stimulus and a multiplicative nuisance variable ν through
ϕ ¼ ffiffi

s
p

ν, with ν � N ð0; 1Þ. If the orientation itself can be estimated locally from
linear functions of the neural responses, then the stimulus can be decoded

quadratically from those neural responses according to ŝ ¼ ϕ̂
2
. A binary

classification of the variance is given by ŝ± ¼ sgn ðϕ̂2 � θ2Þ where θ is the animal’s
orientation threshold. This threshold is optimal where the two stimuli are equally
probable: p(ϕ∣s+)= p(ϕ∣s−), implying that θ2opt ¼ log sþ � log s�

� �
= s�1

� � s�1
þ

� �
.

The probability of correctly guessing the orientation variance is
1
2 pð̂s ± ¼ þjsþÞ þ pð̂s± ¼ �js�Þ
� �

, where these probabilities can be computed
from the cumulative normal distribution on the correct side of the optimal

orientation threshold, pð̂s ± ¼ þjsþÞ ¼ 2
R1
θopt

dϕ pðϕjsþÞ ¼ erfc θopt=
ffiffiffiffiffiffiffi
2sþ

p� �
;

similarly, pð̂s± ¼ �js�Þ ¼ 1� erfc ðθopt=
ffiffiffiffiffiffiffi
2s�

p Þ. Using values of s± for our task,
this gives an optimal fraction correct of 0.82.

We computed choice correlations using NACCC (Eq. (17)), and
discriminability based on total correlations between stimulus and response (Eq.
(20)). We adjusted the optimal prediction by constant factors ζ and δ to account for
binary choices using the equations in Supplement S.6.4, with thresholds estimated
by logistic regression between choice and the absolute value of the stimulus
orientation. We estimated the slopes of the relationship between measured and
predicted choice correlation using the angle of the principal component of the
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bivariate data. We computed standard deviations for these quantities by
bootstrapping 100 times.

For our two shuffle controls testing whether correlations between neurons were
informative about the stimulus or choice, we selected responses independently
from ri � pðrijs;ϕ; ŝÞ (Fig. 6f) or ri � pðrijs; ŝÞ (Fig. 6g). We evaluate statistical
significance of the measured and predicted optimal choice correlations using p-
values for null distributions based on 100 shuffled choices and 100 shuffled stimuli,
while preserving correlations between neural responses. Both null distributions are
approximately Gaussian with zero means, so we compute the p-value of the choice
correlations with respect to the corresponding Gaussian, p ¼ 1�
1
2 erfc ð�jxj= ffiffiffiffiffiffiffi

2σx
p Þ where x is the quantity of interest and σx is its standard

deviation (Fig. 6c, d).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
All custom code used for electrophysiology data collection and data processing are made
publicly available at github.com/atlab. Experimental data for Fig. 6 and code used for
analysis and figure generation are available for download from github.com/xaqlab/
nonlinear_choice_correlation.
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