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Deciphering cell lineage specification of human
lung adenocarcinoma with single-cell RNA
sequencing
Zhoufeng Wang1,2,3,11, Zhe Li4,11, Kun Zhou5,6,11, Chengdi Wang1,11, Lili Jiang7, Li Zhang1, Ying Yang1,

Wenxin Luo1, Wenliang Qiao8, Gang Wang2, Yinyun Ni1, Shuiping Dai9, Tingting Guo1, Guiyi Ji10, Minjie Xu4,

Yiying Liu4, Zhixi Su4, Guowei Che 6✉ & Weimin Li 1,2,3✉

Lung adenocarcinomas (LUAD) arise from precancerous lesions such as atypical adenoma-

tous hyperplasia, which progress into adenocarcinoma in situ and minimally invasive ade-

nocarcinoma, then finally into invasive adenocarcinoma. The cellular heterogeneity and

molecular events underlying this stepwise progression remain unclear. In this study, we

perform single-cell RNA sequencing of 268,471 cells collected from 25 patients in four

histologic stages of LUAD and compare them to normal cell types. We detect a group of cells

closely resembling alveolar type 2 cells (AT2) that emerged during atypical adenomatous

hyperplasia and whose transcriptional profile began to diverge from that of AT2 cells as

LUAD progressed, taking on feature characteristic of stem-like cells. We identify genes

related to energy metabolism and ribosome synthesis that are upregulated in early stages of

LUAD and may promote progression. MDK and TIMP1 could be potential biomarkers for

understanding LUAD pathogenesis. Our work shed light on the underlying transcriptional

signatures of distinct histologic stages of LUAD progression and our findings may facilitate

early diagnosis.
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Lung cancer is the leading cause of cancer-related deaths
worldwide, and the most prevalent subtype is lung adeno-
carcinoma (LUAD)1. LUAD is thought to progress most

often from atypical adenomatous hyperplasia (AAH) to adeno-
carcinoma in situ (AIS), then to minimally invasive adenocarci-
noma (MIA), and finally to overt invasive lung adenocarcinoma
(IA)2. Several studies have tried to understand LUAD progression
based on the frequencies of genetic alterations during progression
to malignancy3. Nonetheless, recent studies only reported
increase in the frequency of genetic alterations during cancer
progression to malignancy4,5, but the underlying molecular event
and level of cellular heterogeneity remain unclear.

The lung is composed of multiple cell types. Basal, club, and
ciliated cells are predominant in the proximal airway. The
alveolar wall contains alveolar type 1 (AT1) and type 2 (AT2)
cells6. Studies in mice have suggested that LUAD may originate in
AT2 cells, bronchioalveolar stem cells (BASCs), or club cells7.
Some of these mouse studies have utilized lineage tracing tech-
nologies, but similar experiments could not be performed in
human7–9.

Single-cell RNA sequencing (scRNA-seq) can provide a com-
prehensive, unbiased catalog of cellular diversity within lung
tissue10–13. Studies based on scRNA-seq have provided infor-
mation about the roles of stromal cells in a few LUAD subtypes14,
and about cellular reprogramming in metastatic LUAD15,16.
However, the diversity of cell states at different points during
progression, especially during the early stages, and what roles
different cell types play in progression are largely unknown.

Here, we perform scRNA-seq on matched tumor and normal
samples from 25 patients in four different histological stages of
LUAD. Our results provide the single-cell transcriptome atlas for
all major subtypes of LUAD. They further suggest that AT2 cells
dedifferentiate into a cell stem-like state, which helps initiate and
maintain tumor progression. We further identify genes related to
energy metabolism and ribosome synthesis that may be helpful
for diagnosing LUAD in early stages. Taken together, our findings
contribute to the understanding of how LUAD progresses at the
cellular and molecular levels.

Results
Characterization of cellular heterogeneity across four LUAD
subtypes. A total of 52 freshly resected lung specimens were
collected from 25 patients in different histologic subtypes of
LUAD (3 AAH, 5 AIS, 9 MIA, and 17 IA) (Fig. 1a and Supple-
mentary Data File 1), along with 18 adjacent normal lung tissues
from a distal region within the same lobe, which served as con-
trols. Eight of the 25 patients presented multiple nodules (Fig. S1).
We selected nodules that showed pure ground-glass character-
istics by computed tomography (CT), to reduce nodule hetero-
geneity in AAH, AIS, and MIA samples. Tumor specimens were
cut along the largest diameter, and half were processed for
intraoperative freezing and paraffin embedding, while the other
half were carefully cut along the inner side of the nodule edge in
order to minimize contamination of normal tissue. All samples
were evaluated by two pathologists to determine pathologic
diagnosis and tumor cellularity (Supplementary Data File 2 and
Supplementary Data File 3).

For each specimen, we rapidly digested the freshly collected
tissues to generate a single-cell suspension, and the isolated live
cells were used directly (Fig. S2), without enrichment steps, in
scRNA-seq on the 10x Chromium platform. We characterized the
transcriptome of 140,556 cells from patients P1-P22 at single-cell
resolution using the V2 kits and validated our results on a
separate dataset of 127,923 single cells from multiple nodules in
patients P23-P25 processed using the V3 kits (Supplementary

Data File 4). We also performed whole exome sequencing (WES)
or whole genome sequencing (WGS) on a subset of 26 tumor
samples that have available DNA, and identified mutations in
nine canonical driver genes, including BRAF, EGFR, ERBB2,
HRAS, KRAS, MAP2K1, MET, NF1 and ROS13, while driver
mutations in EGFR and KRAS mutation were detected in only six
tumor samples (Fig. S3).

To identify distinct transcriptional profiles of different cell
populations, we performed dimensionality reduction and unsu-
pervised cell clustering using the Seurat package17. We identified
cell clusters based on their key marker gene expression and
assigned them to 16 major cell types (Fig. 1b–d, and Fig. S4a),
comprising epithelial types (ciliated, club, basal, AT1, AT2, and
AT2-like cells) and stromal types (endothelial cells, fibroblasts,
lymphocytes and myeloid cells). Analysis of normal and tumor
epithelial cell types revealed a group of cells closely resembling
that of AT2 cells (AT2-like cells) and were enriched in malignant
cell population (Fig. 1b–d). Comparisons between normal and
malignant cells in the four histologic stages showed that most
normal cells were immune cells, and that each cell cluster
contained cells from multiple patients (Fig. 1c, Fig. S4b, and
Supplementary Data File 5). The frequency of some cell types
varied significantly during progression from normal lung to
AAH, AIS, MIA and then IA (Supplementary Data File 5 and
Fig. S4c–d). For example, the enrichment of T and B lymphocytes
as well as the decline in natural killer (NK) cells and granulocytes
during tumor progression, suggesting activation of adaptive
immune responses, which is consistent with a previous report
that immune evasion may have started as early as the
preneoplastic stage18. These results illustrate a high level of
transcriptomic heterogeneity within LUAD, could be at least
partially modulated by the surrounding microenvironment
during progression.

Given previous studies suggesting that AT2 cells are the origin
of LUAD9,17, we calculated correlation coefficient of gene
expression levels between different cell types and found that
AT2-like cells correlated strongly with AT2 cells (Supplementary
Data File 6), which was confirmed by comparison of gene
expression profiles (Fig. S5) and the correlation coefficient among
epithelial cell types (Supplementary Data File 7). Notably, we
observed very small percentage of cells expressing cell prolifera-
tion markers, so we opt not to correct for the cell cycle effect
(Fig. S6a, b). Overall, this analysis revealed AT2-like cells were
associated with malignant cell population, and AT2 cells are likely
the origin of LUAD.

Recent advances in scRNA-seq have allowed researchers to
closely examine the diversity of molecular and transcriptional
states of lung cancer cells in the IA stage (Supplementary Data
File 8), but molecular events in early-stage LUAD remain poorly
understood. Here we reanalyzed the data published from two
LUAD patients of the total eight lung cancer patients in a
previous study14, based on the same normalization and filtering
parameters in Seurat package (Fig. S7). We identified the same 16
cell clusters as in our dataset. In fact, both datasets were highly
consistent in the cell types detected. However, our dataset
captured additional rare cell populations such as ciliated cells,
lymphocytes, and early-stage AT2-like cells that were absent from
the previous study (Fig. S7a, b). Most of the epithelial and stromal
cell types identified in our primary dataset of 22 patients were
validated in a group of 127,923 single cells from additional 3
LUAD patients (Supplementary Data File 1 and Fig. S7c–e).

Characterization of epithelial cell lineages across different
histologic stages of LUAD. Lung epithelial cells have been stu-
died extensively due to their role in lung cancer and various
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pulmonary diseases such as asthma and fibrosis19. Here we
compared the transcriptomes of normal and tumor epithelial cells
from four histologic stages of LUAD. We identified 15,984 epi-
thelial cells and grouped them into 10 subclusters. (Fig. 2a–c and
Fig. S8). Based on the expression profile of known markers, we
found that the epithelial cell atlas mainly comprised of AT1 cells

(PDPN and AGER), AT2 cells (HHIP, SFTPC and SFTPA), club
cells (SCGB1A1 and CP), basal cells (Krt5 and TP63), ciliated cells
(FOXJ1 and CCDC78) and AT2-like cells (MDK and SFTPB) in
Fig. S5 and Fig. 2c. As expected, normal epithelial cells showed
five sub-populations expressing well-defined epithelial markers of
the six forth mentioned cell types (Fig. 2b, c). Interestingly, the
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Fig. 1 Overview of the single-cell transcriptomic profile of LUAD samples. a Schematic experimental workflow for the study. A total of 34 freshly
resected lung tumor specimens were collected from 25 patients, and normal lung tissues were collected from 18 patients as controls. Samples from
patients 1 to 22 were processed using 10X Chromium V2 kits, while samples from patients 23 to 25 were used as the validation dataset and processed
using 10X Chromium V3 kits. b UMAP visualization of 16 major cell types identified and color-coded by their associated clusters. c UMAP visualization of
the 16 major cell types identified and color-coded by tumor or normal lung origin. d UMAP visualization of 16 major cell types identified and color-coded by
histologic stages. LUAD: lung adenocarcinoma; UMAP: Uniform Manifold Approximation and Projection.
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AT2 cell marker SFTPC was highly expressed in normal and
early-stage tumor tissues (AT2 and AT2-like 2 cell clusters), but
expression diminished in IA-stage tissues (Fig. 2c), consistent
with the loss of AT2 cell identity during tumor progression

previously reported in genetically engineered mouse models
(GEMM)13.

In tumor tissues, epithelial cells may contain residual normal
cells in the malignant tumor cell population. Here we used
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inferCNV on epithelial cells to distinguish between tumor and
normal cells based on large-scale somatic Copy Number
Variation (CNV) events (Fig. S9 and Fig. 2d, e). We used the
cell types from normal lung tissues as a healthy reference to
estimate the CNVs of four histologic stages tumors. Chromoso-
mal amplification (red) and deletion (blue) were mapped to each
chromosomal position (columns) of the AT2-like cells in Fig. 3d.
The results suggested that AT2-like cells obtained large-scale
chromosomal CNVs in IA stage (Fig. S9). Specifically, the AT2-
like cells showed a gradual increase of chromosomal gain/loss
events throughout cancer progression, while other epithelial cell
subtypes had little or no somatic CNVs (Fig. 2e and Fig. S9).
Therefore, these results represent strong genetic evidence
supporting AT2 cells as the origin of LUAD.

Next, we employed single-cell regulatory network inference
and clustering (SCENIC)20 to assess the differences in expression
levels of transcription factors (TFs) in epithelial cells. We found
that RFX family motifs were highly activated in ciliated cells, and
that MYC and HES1 were highly upregulated in basal cells
(Fig. 2f). The TFs SPDEF, RBPJ, and CREB3 were activated in
club cell cluster. Canonical AT1 TF such as MYRF was expressed
in AT1 cells17. Notably, we found that the lung fate TFs Nkx2-1
and the AT2 cell identity TFs Etv5 were enriched in the normal
AT2 cell cluster. In contrast, the TFs HSF1, CEBPG and FOXQ1
were highly upregulated in AT2-like cells. HSF1 overexpression is
common in lung cancer and correlates with tumor angiogenesis,
while HSF1 activation in early-stage lung cancer cells and stroma
are associated with poor outcome21. The TF CEBPG correlates
with antioxidant and DNA repair genes in airway epithelium and
is associated with predisposition to lung cancer22. Thus, our
findings are consistent with the literature, and suggest that TFs of
AT2 and AT2-like cells help drive LUAD tumorigenesis and
progression.

To confirm the expression pattern of our epithelial markers, we
performed immunofluorescent staining to determine the abun-
dance and spatial localization of AT1 cells (AGER), ciliated cells
(FOXJ1), club cells (SCGB1A1), basal cells (Krt5) and AT2 cells
(SFTPC, Nkx2-1, SFTPA) (Fig. S10 and Table S1). Normal lung
alveolar and bronchi tissues were double-stained with anti-AGER
and anti-SFTPC antibodies. AT1 and AT2 cells were localized
mainly in peripheral alveoli, while club cells, ciliated cells and
basal cells were distributed mainly on the bronchial surface as
previously described14. In LUAD tissues, expression of the SFTPC
was observed in MIA tumors, but less than half of the AT2 cells
expressed SFTPC compared to that of AAH (Fig. 2g and
Fig. S11a). In IA stage tumors, SFTPC expression was almost
undetectable, and the alveolar structure was not recognizable.
Consistent with the reduced SFTPC expression, Nkx2-1 and
SFTPA staining was lower in IA stage tumors than in early-stage
tumors (Fig. S10b and Fig. S11a). Therefore, canonical AT2 cell
marker gene expression significantly decreased during cancer

progression. Consistent with our findings, another recent study
reported loss of Nkx2-1 and SFTPC expression during LUAD
progression in mouse model23. Our results, together with the
literature, suggest that AT2 cells may be the origin of LUAD and
we therefore designate them as AT2-like cancer cells.

Transcriptional trajectory of AT2 cells. To identify the key
molecular events governing the cell-fate transition during pro-
gression from normal to cancer cells, we selected cell clusters that
closely resemble those of AT2 cells and AT2-like cancer cells, and
then tracked the gene expression changes along the trajectory
from AAH, AIS, MIA and finally to IA. We performed pseudo-
time analysis based on Monocle2 and observed non-random
expression patterns (Fig. 3a–c). The transcriptional states in the
trajectory revealed progression-associated changes in tumors.
Tumor cells at early stages (AAH or AIS) gathered on one end,
while cells from late-stage tumor tissues (MIA or IA) were on the
other end (Fig. 3a).

We identified 283 differentially expressed genes that exhibited
dynamic expression over pseudotime (q-value < 0.05) and
classified them into four groups (groups 1-4). Then, we ordered
these genes along pseudotime and reconstructed a diffusion map
(Fig. 3b). The expression profile of group 1 showed relatively
quiescent self-renewing AT2 genes (with high level of WIF1
inhibiting WNT), and high expression of several stem-like cell
transcription and differentiation genes (LAMP3, MUC1)10,24. By
contrast, the gene expression profile in group 2 resembled the
start of dedifferentiation, involving upregulation of the RNA
biogenesis processing (RPS) family25,26 and the mitochondrial
factors MT-ND4 and MT-ND227. The expression profile of group
3 reflected inflammatory responses triggered by cytokines (FOSB,
NFKB1) as well as expression of the EMT-related gene
Vmentin28. Lastly, the genes in group 4 were involved in
extracellular matrix organization (Tissue Inhibitor Matrix
Metalloproteinase 1, TIMP1)29 as well as cell–cell signaling and
regulation of cell migration (S100A4, VEGF)30. We also identified
several genes previously linked to cancer progression, such as
midkine (MDK), SOX4 and LYZ1,31. Although each of these
expression patterns emerged at a different time, they all persisted
in tumors once occured, such that more advanced tumors
contained a greater diversity of cells in different states.

We next examine the changes in marker gene expression along
the pseudotime (Fig. 3c). JUN, TIMP1 and MDK were highly
expressed at the IA stage, whereas LAMP3 were substantially
diminished as LUAD progressed. Elevated levels of MDK, a
product of lysine decarboxylation, were also identified as one of
the most important features for discriminating IA stage LUAD31.
TIMP1 have been reported to regulate metabolism in metastases
by activating the PI3K/Akt pathway29, which we confirmed by
immunostaining of our tissue samples (Fig. S11b, c). Our results

Fig. 2 Characterization of epithelial cell lineages across different stages. a UMAP visualization of epithelial cell sub-clustering, color-coded by the
identified cell subtypes. b UMAP visualization of epithelial cell sub-clustering by histologic stages. c Heatmap of selected marker genes in each cell cluster
subtype. d Summary plot of the inferred CNV profiles from each of the 15 patients; CNVs were annotated by the chromosome arm in which the CNV
events were calculated. Chromosomal amplification (red) and deletion (blue) were extrapolated in each chromosomal position (columns) across the single
cell (rows). The color bar represents the assigned cell-type signature for each cell. e Violin plot of CNV percentage present in tumor cells at different
stages. Each dot represents the average CNV (amplification or deletion) percentage in each stage (left) and the CNV events in chromosome arm in each
stage (right). Mann–Whitney two-sided test is used to test the significance of CNV levels between different tumor stage categories. (AAH stage: n= 3,
AIS: n= 4, MIA stage: n= 5 and IA stage: n= 9; Left: AIS vs IA p-value is 0.0253, AAH vs. IA p-value is 0.0420; Right: AAH vs AIS p-value is 2.898e-05,
AIS vs. MIA p-value is 0.0348, MIA vs. IA p-value is 0.00799; *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001). f Heatmap of gene expression
regulation by transcription factors using SCENIC for the epithelial cells. g Protein fluorescence immunostaining for SFTPC in human tumor samples from
the representative tumor stages (i.e., AAH to IA). Each staining in panels come from three samples. Nuclei were stained blue (DAPI). Scale bars: 25 μm.
CNV: copy number variation; SCENIC: Single-Cell Regulatory Network Inference and Clustering. Source data are provided as a Source Data file.
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Fig. 3 Transcriptional trajectory analysis of AT2 cells. a Trajectory analysis of AT2 and AT2-like cell clusters. Cells were color-coded by histologic stages
or pseudotime. AT2: alveolar type 2 cells. b Heatmap showing 283 differentially expressed genes arranged in pseudotemporal patterns. Gene Oncology
terms from the enrichment analysis revealed biological functions of cells in the four groups indicated. c Representative gene expression levels of different
marker genes. The size of each dot represents relative expression levels. d Gene-gene interaction networks between marker genes in AT2 and AT2-like cell
clusters. e Fluorescent in situ hybridization staining for Vimentin, E-cadherin, and FoXM1 in normal tissues and tumor tissues from different stages. Each
staining in panels come from three samples. Scale bars: 50 μm, nuclei (DAPI) are stained blue.
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highlight MDK and TIMP1 as potential biomarkers for under-
standing LUAD pathogenesis.

After filtering out genes expressed in fewer than 10% of all
cells, we examined genetic interactions between 3613 genes in the
AT2 and AT2-like cell clusters (Fig. 3d). We found that genes
upregulated in normal tissues are association with pulmonary
surfactant-associated protein and homeostasis. In contrast, the
genes upregulated in tumor are involved in metabolism,
ribosomal activity, or MHC class II molecule expression, which
suggests that these activities are essential during tumor progres-
sion. Notably, the genes significantly downregulated in tumor
cells are related to immune activation, supporting a previous
finding that LUAD cells suppress immune responses14.

Loss of AT2 features and gain of stemness are associated with
LUAD progression. Multiple mouse studies have suggested that
AT2 cells retain a self-renewal activity of stem cells that helps to
drive cancer progression32,33. Consistent with this notion, we
uncovered an AT2-like cell cluster whose transcriptional profile
closely resembled that of AT2 cells initially, but gradually lost
AT2 cell transcriptional identity while retain features of the lung
epithelial lineage. These AT2-like cells, which expressed many
stemness genes (CD44, IFI27 and S100A4), were present in
tumors throughout LUAD progression (Fig. 3b). This observation
suggests that LUAD progression involves a loss of AT2 features
for the lung lineage and the emergence of an alternative ded-
ifferentiated, stem-like state. These results are consistent with the
idea that several diseases, especially cancer, involve dediffer-
entiation of committed epithelial cells34.

Dedifferentiation of epithelial cells may play a role in the
promotion of epithelial-mesenchymal transition (EMT)28. To
investigate the prevalence of EMT in LUAD progression, we used
RNA fluorescence in situ hybridization (RNA-FISH) to examine
the expression levels of the mesenchymal marker Vimentin, the
epithelial marker E-cadherin and FOXM1, a pro-stemness
transcription factor associated with proliferation of kidney and
ovarian tumors35,36 (Fig. 3e and Fig. S12a). Expression of
E-cadherin decreased in conjunction with increased Vimentin.
We also found increased expression of FOXM1 as LUAD
progression. Our results suggest that FOXM1 also could be a
driver of dedifferentiation and proliferation in LUAD37. These
findings were further supported by tissue immunofluorescence
and bioinformatics analysis of known epithelial and fibroblast
markers.

We next used indirect immunofluorescence staining to validate
our scRNA-seq findings based on levels of Ki67, Vimentin and
VEGF protein. Ki67 expressed in all phases of the cell cycle except
G0. Interestingly, the staining intensity in our study showed an
increase in Ki67 expression (gray) from normal to AAH/AIS
stages, however, there was no significant changes during
progression (Fig. S12b and Fig. S13). This finding corroborates
the clinical practice of using Ki67 expression to make treatment
decisions in LUAD38. Immunostaining also showed that expres-
sion of the EMT marker Vimentin and the angiogenesis marker
VEGF increased during LUAD progression.

Wnt contributes to stem cell self-renewal and lineage-specific
differentiation in diverse tissues39,40. Wnt signaling was found to
be amplified by engaging the leucine-rich repeat-containing G-
protein-coupled receptor Lgr5, which is a marker for stem cells in
multiple epithelial tissues and can drive lung adenoma progres-
sion in mouse model39. RNA-FISH revealed a higher Lgr5
expression in all four histologic subtypes of LUAD than in
normal tissues (Figs. S12c and S14). We also detected two WNT
mediators of GPX2 and OLFM4 (Fig. 3b), which can be activated
by Lgr5 to drive tumor progression41. On the other hand, the

expression of the stem-like genes IFI27 and S100A4 increased as
LUAD progressed (Fig. 3b). Our results suggest that the stem-like
transcriptional signature correlates with increased tumorigenic
potential. Therefore, we speculate that AT2 cells dedifferentiate
into a stem-like state in which they initiate and maintain tumor
progression.

Characterization of stromal cells in coordinating tumor
microenvironment during LUAD progression. Analyzing the
stromal cells associated with tumors could provide deeper
insights into lung cancer biology14. To investigate stromal cell
dynamics in the tumor microenvironment (TME), we examined
the single-cell transcriptomes of endothelial cells (ECs), fibro-
blasts, lymphocytes, and myeloid cells from normal and tumor
tissues in the four histologic stages of LUAD. We detected 3,925
ECs and five clusters based on marker genes (Fig. 4a–c and
Figs. S15–S16). We next attempted to identify marker genes for
each of these clusters and to assign them to known endothelial
cell types. These clusters included tip-like cells, tumor ECs, stalk-
like cells, endothelial progenitor cells (EPCs) and lymphatic ECs.
Most of the EC clusters belonged to normal tissues and could be
assigned to known vascular cell types14. For example, lymphatic
ECs were enriched in normal tissues (Fig. S16a). Tumor ECs were
observed in the tumor tissues of all four histologic stages. Tumor
ECs in early-stage tumors strongly expressed PLVAP, GSN, and
TSC22D1, which are relevant to the development and cell-fate
commitment of ECs15. To gain more biological insights under-
lying these cell states, we used Gene Set Enrichment Analysis
(GSEA) to compare expression profiles between tumor and
normal ECs (Fig. 4c and Supplementary Data File 9). The top
enriched signature in tumor ECs included Myc targets and the
interferon (IFN) pathway. The c-Myc protein is essential for
tumor angiogenesis, glycolysis and oxidative phosphorylation, all
of which promote vessel sprouting42. Upregulation of IFN-γ and
IFN-α pathways is associated with inflammatory responses. So,
these processes may play a role in ECs biology. The endothelium
represents the primary interface between circulating immune cells
and the tumor, this may help explain how ECs contribute to
LUAD43.

Fibroblasts are known to be heterogeneous, but their hetero-
geneity in LUAD progression is unclear44. We detected six
clusters of fibroblasts, including fibroblast-like cells, normal
fibroblasts, smooth muscle cells, lipofibroblasts and myofibro-
blasts (Fig. 4d–f and Fig. S15). Expression profiles are consistent
with fibroblast-like cells (A2M, PTGDS), myofibroblasts (ACTA2,
RGS5) were reproducibly detected in AAH and AIS tumors, so
they may be features of the TME in early-stage LUAD (Fig. S16b).
Fibroblast-like cells and myofibroblasts positive for α-smooth
muscle actin (α-SMA), encoded by the ACTA2 gene, function as
cancer-associated fibroblasts (CAFs), promoting extensive tissue
angiogenesis45 and tumor progression46. Smooth muscle cells
were observed in IA stage tumors and a few normal tissues. These
cells are the main type of fibroblasts in vasculature and have been
linked to wound healing and angiogenesis47. GSEA comparing
fibroblasts from normal and tumor tissues showed that cancer-
derived fibroblasts were associated with the oxidative phosphor-
ylation and with strong IFN-γ and IFN-α responses15 (Fig. 4f).
These may be related with the increased synthesis and secretion
of collagens48. Our results suggest that stromal cells shift towards
a phenotype of tissue remodeling and angiogenesis during LUAD
progression.

Lymphocytes play important roles in inflammation, cancer
immune evasion, and responses to immunotherapy treatment49.
Our dataset of 61,196 lymphocytes consists of 10 clusters, mainly
T cells, B cells and NK cells, among other immune cell types
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(Fig. 4g, h and Fig. S15). We observed that CD8+ T and
regulatory T (Treg) cells were enriched in the tumor, but that
natural killer cells were depleted during tumor progression
(Fig. S4c, d and Fig. S15c). We found HLA-DRA, as an
exhaustion marker, expressed in CD8+ T cells50. IL32 showed

higher expression in CD4+ T and Treg cells, which was
previously reported to be associated with immune suppression51.
This is consistent with the idea that T cell-mediated cytotoxicity
is critical for tumor cell clearance52. While B cells and plasma
cells were rare in most samples. Our analysis suggested a shift in
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Fig. 4 Profiling stromal and immune cell populations in LUAD progression. a UMAP visualization of endothelial cell clusters, color-coded by identified
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lymphocyte composition and gene expression towards immune
suppression during LUAD progression.

Myeloid cells play a critical role in maintaining tissue
homeostasis, and they regulate inflammation in the lung19. We
examined the gene signatures of the 8 myeloid clusters including
granulocytes, macrophages, NK cells and dendritic cells (Fig. 4i, j
and Fig. S15). Dendritic cells were mostly myeloid cells falling
into three DC subsets: DCs (CCL17), activated DCs (BIRC3,
CCL22) and CD141+ DCs (CPVL, CST3). CD141+DCs, which
express lymphotoxin beta transcripts in lung tumor tissues and
contribute to tertiary lymphoid structure formation53, were
significantly less abundant in LUAD tissues than in normal lung.
Alveolar macrophages (AMs), which highly express MARCO,
FABP4, and MCEMP137, were detected mainly in normal and
early-stage LUAD. Tumor macrophages (TMs) comprised the
remaining tumor-enriched clusters and were present mostly in IA
tumors (Fig. 4i, Fig. S4d, and Fig. S15a). TMs showed high
expression of SPP1, APOE and CCL2, involved in apolipoprotein
metabolism37. We speculate that the TMs in the IA stage induce
tumor angiogenesis, promote tumor migration, invasion, and
form an immunosuppressive TME54.

TME is heterogeneous and includes reprogrammed immune cells,
fibroblasts, and ECs14. To characterize stromal cell heterogeneity in
LUAD progression, we performed simultaneous immunofluores-
cence staining for ECs (CD31), fibroblasts (fibronectin) and immune
cells (CD45) in normal and tumor tissues from patients of different
stages (Fig. 4k and Fig. S17). The CD45+ and Fibronectin+

populations increased as the tumor progressed, consistent with the
idea that immune cell infiltration and EMT help define the TME
during tumor progression55. In fact, we found that the levels of six
cell subtypes, including CD4+ T cells, T follicular helper cells,
activated DC cells, and granulocytes have a negative association,
while other cell subtypes for plasmacytoid DC cells and CD141+ DC
cells, have a positive association with the survival period (Fig. S18).
These findings suggest that stromal cells and immune cells in the
lung TME may predict clinical outcome.

Cell–cell crosstalk during LUAD progression. The hemato-
poietic stromal cell lineage and tumor epithelial cells appear to
engage in cell-type-specific crosstalk56. We used CellPhoneDB to
identify the expression of potential crosstalk signaling molecules
based on ligand-receptor interactions57. The epithelial cell clus-
ters, especially the AT2/AT2-like clusters, as well as the fibroblast
clusters showed the most interactions with other cell types, such
with myeloid cells (Fig. 5a and Fig. S19). This suggests interac-
tions between epithelial and stromal cells involving certain
receptor-ligand gene pairs (Fig. 5b). We focused on gene pairs
associated with p < 0.001 in strongly interacting cell types. AT2-
like cells express high levels of ANXA1, MDK, and FN1 (Fig. 5c),
the receptor of FPR1, SORL and a4b1 were expressed by DCs and
macrophages. The results were consistent with our comparison of
expression patterns between normal tissue and tumors in differ-
ent histologic stages (Figs. S20 and S21). The expression pattern
of the FN1-A4B1 (A4B7) and ANXA1-FPR1(FPR3) receptor-
ligand complex indicates the existence of functional interactions
between AT2-like cells and immune cells. By contrast, AT2 cells
expressed higher levels of LGALS9, as a major binding protein for
PD-1 with known immunomodulatory activity58, the ligands of
COLEC12 and MRC2 were found in DCs, granulocytes and
macrophages. Endothelial cells and fibroblasts strongly expressed
receptors such as FN1 and CXCL12, which can interact with
immune-related ligands. For example, fibroblasts express higher
levels of CXCL12, the receptor of CXCR4, which is widely
expressed on immune cells. These cytokines have been associated
with metastasis of cancer49.

To characterize potential signaling crosstalk between immune
cells and epithelial cells, normal and tumor tissues were stained
for simultaneous detection of cytokeratin (tumor cells), CD8
(cytotoxic T cells), FoxP3 (regulatory T cells), CD68 (macro-
phages), PD-1, and PD-L1 (Table S1). The results confirmed that
infiltration of immune cells increased with LUAD progression
(Fig. 5d and Fig. S22), and existing in a high spatiotemporal
intertumoral heterogeneity in IA stage. However, we did not
detect clear interactions between tumors and immune cells.
Statistical tests for fluorescence intensity were performed between
pan-CK+ vs. pan-CK− cells from normal to AAH/AIS, MIA, and
IA (Fig. S23). The results shown that the PD-1 was high
expression for pan-CK− cells in AAH/AIA stage, while inversely
PD-1 was high expression for pan-CK+ cells in MIA an IA stages.
This is in line with a similar study showing that PD-1 could be
expressed in tumor cells and could activate mTOR or Hippo
signaling pathway, therefore facilitating tumor proliferation59.
Taken together, interactions related to immunomodulatory
signaling were more abundant in LUAD in comparison with
normal, indicating heterogeneity and plasticity of the tumor
ecosystem, varying during cancer progression.

Discussion
TME is composed of multiple cell types14, while the cells within a
tumor can show a substantial level of heterogeneity60. Here we
provide a high-resolution scRNA-seq dataset of LUAD cells
collected from four different histologic stages to recapitulate key
transcriptional events during LUAD progression. Our findings
provide valuable insights into the pathogenesis of LUAD early
cancer progression, including AT2 cells being the most likely
cancer cells of origin. In addition, we also discovered that tumor
ECs are highly angiogenic, yet immune compromised. Fibroblast-
like cells and myofibroblasts are CAFs that promote tumor pro-
gression. CD8+ T cells and Tregs persist in the IA stage, pro-
viding a suppressive mechanism antitumor immunity during
tumor progression. Transcriptional phenotypes in TMs, which
are involved in apolipoprotein metabolism, are observed mostly
in IA stage. Consistent with recent findings, these alterations in
stromal and immune populations cooperatively transformed
immune-competent tissues into an immune-suppressive TME
during LUAD progression18,48,61. Eventually, we find that MDK
and TIMP1 are potential biomarkers to facilitate our under-
standing of LUAD pathogenesis.

The heterogeneity of tumor cells represents a major challenge
in oncology. We found that the level of transcriptional hetero-
geneity dramatically increased during LUAD progression. Dif-
ferent epithelial cell types in our samples exhibited unique
molecular signatures. In fact, AT2 cells and other alveolar pro-
genitor cells have been reported to participate in the repair of
alveoli62. In alveoli, AT2 cells self-renew under homeostatic
conditions and initiate the generation of stem-like cells after
injury or gene mutation6. Early cancer cells dedifferentiated into a
stem-like state that closely resembled AT2 cells, which we termed
AT2-like cells, and gave rise to the heterogeneous populations of
cancer cells observed in LUAD (Fig. 6). Our work suggested that
LUAD cancer progression could be initiated by progressive
downregulation of tissue-specific marker genes such as SFTPC,
and upregulation of stem cell signaling factors such as CD44.
AT2-like cells strongly express ribosomal and mitochondrial
genes that promote tumor progression. This phenotype was
similar to a recently reported pulmonary subsolid nodules
showing a strong metabolic reprogram61. Thus, an increase in the
expression of ribosomal and mitochondrial genes could be an
early indicator of lung cancer. We also observed that Lgr5+

LUAD cells display persistent proliferative potential, followed by
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the appearance of several alternative differentiation programs
mimicking the primordial lung, and then the emergence of cells
with a mesenchymal phenotype, indicating the completion of the
EMT. Throughout this process, we observed the expression of
EMT, migration and stemness genes such as E-cadherin, IFI27
and S100A430,63–65. Taken together, our finding shed light on the

underlying transcriptional signatures of distinct histologic stages
of LUAD progression.

Immune cells can communicate via ligand-receptor
interactions56, so targeting cell–cell interactions is frequently
utilized in the clinical setting. For example, the immune check-
point inhibitor ipilimumab targets the binding of ligands to CD28
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or CTLA4, and both pembrolizumab and nivolumab target the
interaction between PD1 and PD-L166. Malignant cells activate
cellular and humoral immune responses to different extents in
different patients, while also inducing immune exhaustion. AT2-
like cells express high levels of ANXA1, MDK and FN1, which
bind receptors of FPR1, SORL and a4b1, were expressed by DCs
and macrophages in IA stage. However, AT2 cells interact spe-
cifically with myeloid cells through the LGALS9 receptor. Inter-
cellular interactions suggest that AT2-like cells might be
responsible for the recruitment of DCs and macrophages by
specific ligands. Overall, our single-cell data may help explain
tumor-immune interactions by providing insights into the com-
position and dynamics of T cells in LUAD progression. However,
our knowledge of which interactions occur in tumors and how
these interactions affect prognosis are still limited. There is a need
to elucidate the full spectrum of cell–cell interactions in the TME
and how these interactions affect patient outcomes.

One limitation of our study was the sample representation. In
the clinical setting, the primary tumor tissues from the same
patient along the trajectory of tumor progression could only be
collected once, serial sample collection was not possible to do a
longitudinal study. However, we were able to collect multiple
tumor tissues at different histologic stages from the same patient,
which provide valuable insights into the study on early LUAD
carcinogenesis. Secondly, it is very difficult to obtain thousands of

cells per patient with LUAD in early stages such as AAH and AIS
in the clinical setting due to the size of the lesions. Nonetheless,
Tirosh et al. have previously identified distinct tumor micro-
environmental patterns using just few thousand single metastatic
melanoma tumors isolated from a total of 19 patients67. So single-
cell data obtained from small sample size could still be mean-
ingful. Third, it is worth noting that the tissue samples used for
single-cell sequencing and pathological diagnosis were different
parts of the same surgical specimens, so there might be potential
differences in their biological complexities of these parts. Finally,
our findings could be further validated and extended with GEMM
and PDX approaches, preferably with integration of genomics,
transcriptomics and proteomics to capture lineage plasticity
comprehensively. Beyond the outlined technical challenges, tra-
jectory inference analysis also has its limitation. The field is still
maturing, and the complexity of the underlying topology could be
underestimated68. Therefore, future studies on larger cohorts and
utilizing tools designed to handle increasingly complex biological
features are needed to dissect the evolutionary trajectory of early
LUAD carcinogenesis and its underlying molecular mechanisms.

In summary, we constructed a single-cell transcriptome atlas of
premalignant lung lesions and LUAD at all major clinical stages,
which highlights the transcriptional heterogeneity of lung epi-
thelial cells at different tumor stages. We found that each epi-
thelial cell-type exists in a unique transcriptional state, but that

Fig. 5 Cell–cell crosstalk during LUAD progression. a Heat map depicting the significant interactions among the 16 major cell types identified in Fig. 1b.
b Overview of the selected ligand-receptor interactions. p-values (two-tailed permutation test) are indicated by circle size; the scale is on the right. The
means of the average expression level of interacting molecule 1 in cluster 1 and interacting molecule 2 in cluster 2 are indicated by color. Assays were
carried out at the RNA level, but extrapolated to protein interactions. Selected cells include AT2 cells, AT2-like cells, ECs and fibroblasts. AT2: alveolar type
2 cells; ECs: endothelial cells. c Diagram of the main receptors and ligands expressed on AT2 cells and AT2-like cells, AT1: alveolar type 1 cells; AT2:
alveolar type 2 cells. d Representative multiplexed staining of cytokeratin-positive tumor cells (Cyan), CD68+ macrophages (orange), FoxP3+ regulatory
T cells (yellow), CD8+ T cells (red), PD-1+ cells (magenta), and PD-L1+ cells (green) on tissues from different stages. Each staining in panels come from
three samples. Scale 50 μm, nuclei (DAPI) are stained blue.
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early cancer cells are highly similar to AT2 cells, which undergo
dedifferentiation to generate a stem-like state that initiates and
maintains tumor progression. These stem-like cells give rise to the
heterogeneous populations observed in LUAD. In addition, our
research has shown that MDK and TIMP1 are potential bio-
markers to facilitate understanding of LUAD pathogenesis.

Methods
Patients and clinical information. This study was designed to characterize the
cellular heterogeneity and molecular events underlying LUAD initiation and
progression. We performed single-cell RNA sequencing on 52 specimens from 25
patients spanning the four histologic stages (AAH, AIS, MIA and IA), together
with 18 of matched normal lung samples. Patients diagnosed with AAH, AIS, MIA,
and IA according to the 2015 WHO classification69, were enrolled with informed
consent from West China Hospital of Sichuan University, China. All patients
received surgical treatment and none of them underwent neoadjuvant therapy
before surgery. Tumors and matched distal normal lung tissues were obtained
during surgery. Cancer clinical stage was defined according to the 8th edition of the
American Joint Committee on Cancer (AJCC) TNM stage system. This study
protocol was approved by the Institutional Review Board of West China Hospital
of Sichuan University (Ethics: Project identification code: 2018.270). All the
patients have provided written informed consent.

Sample preparation. Resected tumors were transported in Hank’s Balanced Salt
Solution (HBSS, Life Technologies) on ice immediately after surgery. The tumor
sample was subsequently divided into two pieces, and a small fragment was stored
in liquid nitrogen for tissue staining. The remainder of the tumor was minced with
scalpels into tiny cubes <0.5 mm3 and transferred into a 15 mL conical tube (BD
Falcon) containing 8 mL pre-warmed HBSS, 1 mg/mL collagenase I and 0.5 mg/mL
collagenase IV. Tumor pieces were digested on a Tube Revolver (Thermo) for
30 min at 37 °C. This suspension was then filtered using a 70 μm nylon mesh (BD
Biosciences) and residual cell clumps were discarded, then the cell pellet was
resuspended in red blood cell lysis buffer. Following a 5 min incubation at room
temperature, samples were centrifuged to discard the supernatant and re-suspend
the cell pellet in PBS with 0.04% FBS. Cell sorting was performed with a
MoFloAstrios EQ (Beckman Coulter). Live cells were used for single-cell experi-
ments after the dead cells were eliminated based on exclusion of
7-aminoactinomycin D (Life Technologies).

Genome sequencing. DNA was extracted from freshly frozen tumors and matched
normal samples using the Gentra Puregene DNA Extraction Kit (Qiagen) following
the protocol of the manufacturer. WES was performed with hybridization-cap-
tured; adapter ligation-based libraries were synthesized using an Agilent SureSelect
Human All Exon Kit (Santa Clara, CA, USA), which was designed to enrich
334,378 targeted exonic regions of 20,965 genes. WES libraries were then amplified,
quality-checked, and sequenced using an Illumina NovaSeq 6000 Platform. The
average sequencing depth of the target regions was >200×. For WGS, library was
generated using Truseq Nano DNA HT Sample Prep Kit (Illumina USA) following
the manufacturer’s recommendations, and index codes were added to each sample,
then sequenced on Illumina NovaSeq 6000 Platform, the average sequencing depth
was 30×.

Genome data processing. Pair-end reads were aligned to hg38 reference genome
via BWA-mem (version 0.7.13-r1126), we use SAMtools (version 1.9) to sort and
index BAM and Picard Tools (version 2.2.1) to mark duplicates. The Genome
Analysis Toolkit (GATK, version 4.1.2.0) was used to local realignment and base
quality recalibration. Germline single-nucleotide variants (SNVs) and indels were
detected by GATK HaplotyeCaller, somatic SNVs and indels were detected by
GATK mutect2, both with default parameters. We use ANNOVAR (version
2020.06.07) to facilitate the variant annotations with parameter -dbtype wgEnco-
deGencodeBasicV33. Variants which located in the exon of 9 genes (BRAF, EGFR,
ERBB2, HRAS, KRAS, MAP2K1, MET, NF1 and ROS1) we interested were selected
basing on the results of ANNOVAR.

scRNA-seq library preparation and sequencing. Single-cell suspensions were
converted to barcoded scRNA-seq libraries using the Chromium Single Cell
3’Library, Gel Bead & Multiplex Kit and Chip Kit (10x Genomics) following the
manufacturer’s instructions. The goal was to achieve approximately 5,000 cells per
library. The sequencing-ready library was purified with SPRIselect, quality-
controlled for size distribution and yield (LabChip GX Perkin-Elmer) and quan-
tified using quantitative PCR (KAPA). Libraries were sequenced on an Illumina
NovaSeq-6000 system and mapped to the human genome (build hg19) using
CellRanger (10x Genomics).

Single-cell RNA sequencing analysis and identification of marker genes. Raw
gene expression matrices generated per sample using CellRanger (version 3.0.0)
were combined in R (version 3.6.3) and converted to a Seurat object using the

Seurat R package (version 3.0.3.9028). Cells were removed if they had more than
20,000 UMIs, more than 3,000 or fewer than 300 expressed genes, or >10% UMIs
that were derived from the mitochondrial genome. After filtering, the gene
expression matrices were normalized to total cellular read count, original sample
identity, and mitochondrial read count using linear regression as implemented in
Seurat’s “Regress Out” function. Consequently, none of the resulting principle
components correlated with transcript count.

To reduce dimensionality of this dataset, the variably expressed genes were
summarized by principle component analysis, with the first 100 principle
components further summarized using UMAP dimensionality reduction with the
default settings in the RunUMAP function. Clustering was conducted using the
“FindClusters” function using 50 PCA components with resolution parameter set
to 2. Cell clusters in the resulting two-dimensional representation were annotated
to known biological cell types using canonical marker genes. Very few cells were
positive for cell proliferation markers, so we did not correct for effects of cell cycle
in the analysis.

To identify marker genes of cell clusters, we contrasted cells from one particular
cluster to those in all other clusters using the Seurat “FindAllMarkers” function.
Marker genes were required to have an average expression in one particular cluster
that was >2.5-fold higher than that in the other clusters.

Gene set enrichment analysis. GSEA is a widely used approach to test whether a
particular gene set is enriched at the top of a ranked gene list70. The fgsea package
(version 1.8.0) was used with default settings together with annotated Hallmark
gene sets from the msigdbr package (version 7.2.1). The top 50 pathways ranked by
adjusted p-value (adjusted p < 0.005) were plotted in the visualization.

Trajectory analysis. In order to generate a trajectory, we generated a randomly
sampled subset of malignant cells from each histologic stage among the epithelial
cells in the samples of lung tumor tissue. Next, we employed the Monocle2 (version
2.12.0) algorithm using the gene-cell matrix in the scale of UMI counts extracted
from Seurat subset as input, and a new “Cell Data Set” function was used to create
an object with the parameter negbinomial size as the expression family. The cell
trajectory was inferred using default parameters after dimension reduction and cell
ordering.

InferCNV and clonality analysis. For the InferCNV (version 1.0.4) analysis, the
following parameters were used: “denoise”, default hidden Markov model (HMM)
settings, and a “cutoff” of 0.1. To reduce the possibility of false positives, CNV
calling of the default Bayesian latent mixture model was implemented to identify
the posterior probabilities of alterations in each cell. Low-probability CNVs were
filtered using the default threshold of 0.5. To determine the clonal CNV changes in
each tumor, the “subcluster” method was utilized on the CNVs generated by the
HMM. GRCh37(hg19) cytoband information was used to convert each CNV to a
p- or q- arm-level change for simplification based on its location. Each CNV was
annotated to be either a gain or a loss. After data conversion, subclones containing
identical arm-level CNVs were collapsed. Chromosomes X and Y as well as
mitochondrial CNVs were excluded from this analysis. UPhyloplot2 (version 2.3)
was used to generate evolutionary trees with default parameters. A scalable vector
graphics (.svg) file visualizing the phylogenetic tree was generated for each sample.

Gene regulatory network analysis. We constructed the gene regulatory network
in normal lung cells and cancer cells using the bigSCale2 (version 2.0) algorithm
(https://github.com/iaconogi/bigSCale2). Briefly, the expression data of the
13,461 cells in the AT2 and AT2-like cell clusters were extracted using Seurat and
then combined into a sparse expression data matrix. We eliminated the genes
expressed in fewer than 10% of cells, leaving us with 3,613 genes for the network
analysis. The resulting matrix was then input into bigSCale2 for construction of the
network under the “direct” clustering parameter; only genetic interactions with the
correlation coefficient > 0.75 were retained. The network was then visualized using
the Prefuse Force Directed Layout in Cytoscape (version 3.8.0) (https://
cytoscape.org/).

Cell–cell interaction network analysis. We mapped cell–cell interaction and
receptor-ligand pairs between all major cell types using CellPhoneDB (version
2.1.2) (www.cellphonedb.org). Potential interactions between the two cell types
were inferred through gene expression levels through 1000 permutation tests. Then
the resulting adjacency matrices were generated for all cell–cell interactions and
visualized on heatmaps. Cell–cell interactions within identical cellular lineages were
excluded, and only gene pairs for receptor-ligand interactions in cell types of
interest were visualized, so long as the combined p-value < 0.001 (obtained by
multiplying all p-values within each gene-pair).

SCENIC analysis. R package SCENIC (version 1.1.2) to infer gene regulatory
network activity, in which we scored the activity of each regulon of the single cells
using the default settings and the following cisTarget databases: hg19-500bp-
upstream-7species.mc9nr.feather (https://resources.aertslab.org/cistarget/
databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based) and hg19-tss-
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centered-10kb-7species.mc9nr.feather (https://resources.aertslab.org/cistarget/
databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based).

Survival analysis based on the Cancer Genome Atlas. To assess the correlation
of specific cell types with survival of LUAD patients, we downloaded LUAD RNA-
seq data (TCGA-LUAD), as well as clinical data using the Bioconductor TCGA
biolinks package (version 2.2.10). 515 LUAD RNA-seq data (TCGA-LUAD) as well
as clinical data were used. For the cell cluster identified in the study, the top 10
marker genes in each cluster were ranked by log (fold change), and averaged per
patient and assigned to high or low groups based on the median expression.
Survival analyses were performed using the R packages “survival” (version 3.2.3)
and “survminer” (version 0.4.7). Kaplan–Meier survival curves were generated for
high and low groups, then compared using Cox regression p-values after correction
for age, sex, and tumor stage.

Immunofluorescence staining. Human lung normal and tumor tissues were fixed
by perfusion in 10% paraformaldehyde (PFA) for 48 h at 4 °C. Formalin-fixed,
paraffin-embedded sections (4 μm) were deparaffinized in xylene and hydrated in
graded alcohol. The dried sections were washed three times with phosphate buffer
saline (PBS), then blocked with normal goat serum. Sections were stained with
primary antibodies at 4 °C overnight in a wet box containing a small amount of
water, then washed with PBS three times, and finally incubated with Alexa-
conjugated secondary antibodies for 50 min at room temperature. Sections were
then washed with PBS three times and mounted with mounting medium con-
taining DAPI (Vector Labs).

Primary antibodies against the following proteins were used: SFTPC (Millipore,
AB3786, 1:200), SFTPA (Millipore, AB3420-I, 1:200), AGER (R&D, AF1145, 1:50),
SCGB1A1 (Santa Cruz, SC-365992, 1:100), FOXJ1(Abcam, ab235445, 1:200),
Nkx2-1(Millipore, SAB1403709, 1:500), TIMP1 (Invitrogen, MA5-13688, 1:200),
EPCAM (Abcam, ab223582, 1:50). CD45 (Servicebio, GB14038, 1:100),
CD31(Servicebio, GB14033, 1:200), VEGF (Servicebio, GB14165, 1:200), Vimentin
(Servicebio, GB111308, 1:1500), Fibronectin (Servicebio, GB13091, 1:100), Ki67
(Servicebio, GB14102, 1:200), and MDK (Abcam, ab215835, 1:50). The secondary
antibodies were Alexa Fluor 488-conjugated AffiniPure Donkey Anti-Rabbit IgG
(H+ L) (min X Bovine, Chicken, Goat, Guinea Pig, Syrian Hamster, Horse,
Human, Mouse, Rat, Sheep Serum Proteins, Jackson, 711-545-15, 1:500); Cy3-
conjugated AffiniPure Donkey Anti-Mouse IgG (H+ L) (min X Bovine, Chicken,
Goat, Guinea Pig, Syrian Hamster, Horse, Human, Rabbit, Rat, Sheep Serum
Proteins, Jackson, 715-165-15, 1:500); Alexa Fluor 647-conjugated AffiniPure
Donkey Anti-Goat IgG (H+ L) (min X Chicken, Guinea Pig, Syrian Hamster,
Horse, Human, Mouse, Rabbit, Rat Serum Proteins, Jackson, 705-605-14, 1:500).
Pictures were taken with a Zeiss fluorescence microscope (Imager. Z2) system.

Multiplex immunohistochemistry (OPAL™) staining. Human lung normal and
tumor tissues were fixed in 4% FPA and embedded in either paraffin or OCT
(Tissue-Tek O.C.T., Sakura Finetek, USA). Formalin-fixed, paraffin-embedded
samples were sliced into 4 µm thick sections. Consecutive staining was performed
by heat-induced antigen retrieval followed by incubation with primary antibody
with the Opal Polaris 7-Color Manual IHC Kit (NEL861001KT). The panel kit
MOTiFTM PD-1/PD-L1 (OP-000001, Akoya, USA) was used to simultaneously
label regulatory T cells (FoxP3), tumor cells (Pan CK), cytotoxic T cells (CD8),
tumor-associated macrophages (CD68), and immune check point markers (PD-1/
PD-L1) on the same tissue slide. The chromogen-based multiplex immunohis-
tochemistry labeling was operated by an automated staining system (BOND-RX;
Leica Microsystems, Vista, CA). Antibodies in the kit were in working dilution,
including Pan CK (clone AE1/AE3), FoxP3 (clone D608R), PD-L1 (clone E1L3N),
PD-1 (clone, EPR4877), CD8 (clone 4B11), and CD68 (clone PG-M1). The Opal
Polaris dyes were paired with a panel of antibodies containing fluorophores for
tyramide signal amplification (TSA) to enhance sensitivity. The sequence of
labeling for detecting each marker was optimized: Foxp3 (Opal 570), PD-L1 (Opal
520), Pan CK (Opal 690), PD-1 (Opal 620), CD8 (Opal 480), CD68 (Opal 780), and
DAPI. One autofluorescence section was included, which was stained using the
same procedure as above but without adding primary antibody. Multiplex analysis
was performed to analyze the simultaneously stained samples.

Image and analysis. Stained sections were imaged using a Vectra Polaris automated
quantitative pathology imaging system (Akoya, USA) at high resolution (20x). The
images were spectrally unmixed by Phenoptics inForm software (inForm 2.4.8, Akoya,
USA). Subsequent cellular and subcellular analyses were performed using inForm
software. Within tumor tissues, Pan CK positivity was used to define the tumor area,
while stroma was defined as Pan CKnegative. Using inForm software, we quantified the
area and percentage of each tissue type. In each tissue region, cells were recognized and
separated according to the DAPI signal. Furthermore, individual fluorophore signal
intensity was calculated in each cell. The positivity of each channel was quantified using
manually defined thresholds of positivity.

In situ RNA-FISH. Formalin-fixed, paraffin-embedded biopsies were sectioned to
generate 5 μm thick sections. All materials, including the microtome and blade,
were sprayed with RNase-away solution prior to use. Slides were baked for 1 h in a

60 °C dry oven the night before, and stored overnight at room temperature in a
Parafilm-sealed slide box containing a silicone desiccator packet. Sections were
deparaffinized and dried at room temperature. Protease activity was blocked and
the slides were incubated with probes (Lgr5: TCCCCAAAAGGCAAAGGCAGG-
CAGAGAG, E-cadherin: TGGTGTAAG- CGATGGCGGCATTGTAGGTGT,
FOXM1: GATCTTGCTGAGGCTGTCATTC-ATTGTG, Vimentin: CAA-
GACGTGCCAGAGACGCATTGTCAACAT and EPCAM: CCAACTGAAGTA-
CACTGGCATTGACGATT). The fluorochromes Cy3(Lgr5) and DIG (E-cadherin,
FOXM1, Vimentin and EPCAM) were bound to the probes, and the nuclei were
counterstained with DAPI. The slides were covered with a coverslip and imaged
under a Nikon Imaging system (NIKON DS-U3) and Caseviewer software (version
2.3). Imaging parameters were kept consistent for all images within the same
experiment, and any post-imaging manipulations were performed in the same way
on all images from a single experiment.

Statistics and reproducibility. No statistical method was used to predetermine
sample sizes. Samples were processed for scRNA-seq (10x Genomics) soon after
resection in the operating room. As a result, samples from different patients were
processed in separate experiments. Survival probabilities were estimated using the
Kaplan–Meier method, and differences between Kaplan–Meier curves were com-
pared using the log-rank test. Univariable and multivariable Cox proportional
hazard regression models were used to identify independent prognostic factors.
Hazard ratios (HR) were presented together with their 95% confidence intervals
(CI) and corresponding p-values. Statistical tests were two-sided, and a p-value of
<0.05 was considered significant (*p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001). Non-parametric Kruskal–Wallis tests were applied as described in
the corresponding figure legends. Analyses were performed using SPSS software
(version 18.0, SPSS Inc., Chicago, IL, USA). A Spearman correlation matrix was
generated to examine associations among different cell types. All representative
images reflect a minimum of three biological replicates.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The generated WES, WGS, and RNA-seq data in this study have been deposited to
Genome Sequence Archive (GSA) in BIG Data Center, Beijing Institute of Genomics
(BIG) under accession number HRA001130. The transcriptome data of TCGA LUAD
were collected from the following web-links https://portal.gdc.cancer.gov/projects/
TCGA-LUAD. The human-specific databases for RcisTarget were downloaded from
(https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/
mc9nr/gene_based/hg19-500bp-upstream-7species.mc9nr.feather) and (https://
resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/
gene_based/hg19-tsscentered-10kb-7species.mc9nr.feather). Source data are provided
with this paper.
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