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Pairwise effects between lipid GWAS genes
modulate lipid plasma levels and cellular uptake
Magdalena Zimoń1,2,8, Yunfeng Huang3,8, Anthi Trasta1,2,8, Aliaksandr Halavatyi 4, Jimmy Z. Liu3,
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Sally John3, Wolfgang Huber 7, Ellen A. Tsai 3, Rainer Pepperkok1,2,4,9✉ & Heiko Runz 1,3,9✉

Complex traits are characterized by multiple genes and variants acting simultaneously on a

phenotype. However, studying the contribution of individual pairs of genes to complex traits

has been challenging since human genetics necessitates very large population sizes, while

findings from model systems do not always translate to humans. Here, we combine genetics

with combinatorial RNAi (coRNAi) to systematically test for pairwise additive effects (AEs)

and genetic interactions (GIs) between 30 lipid genome-wide association studies (GWAS)

genes. Gene-based burden tests from 240,970 exomes show that in carriers with truncating

mutations in both, APOB and either PCSK9 or LPL (“human double knock-outs”) plasma lipid

levels change additively. Genetics and coRNAi identify overlapping AEs for 12 additional gene

pairs. Overlapping GIs are observed for TOMM40/APOE with SORT1 and NCAN. Our study

identifies distinct gene pairs that modulate plasma and cellular lipid levels primarily via AEs

and nominates putative drug target pairs for improved lipid-lowering combination therapies.
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Genome-wide association studies (GWAS) have firmly
established that a substantial fraction of variation in blood
lipid levels and the risk of coronary artery disease (CAD)

is heritable. Hundreds of genetic loci have been identified that
reach genome-wide significant associations with plasma levels of
low-density lipoprotein cholesterol (LDLc), high-density lipo-
protein cholesterol (HDLc), triglycerides (TG), total cholesterol
(TC) and CAD1–4. In rare instances, susceptibility to altered
blood lipids can be attributed to mutations in individual genes
such as LDLR, PCSK9 or APOB that lead to familial forms of
disease. For the vast majority of dyslipidemic individuals, how-
ever, no single gene mutation can be identified or remain unde-
tected without substantial follow-up. Recent evidence suggests
that in the majority of such cases inherited susceptibility is caused
by a cumulative effect of numerous common alleles within and
across GWAS loci. Individually, such common alleles have only a
minor effect, but when summarized in polygenic scores they can
modify a phenotype to a similar extent as single high-impact
mutations5, or further magnify the penetrance of individual
mutations causing Mendelian disease6. The biological mechan-
isms behind the cumulative effect of risk alleles in different genes
remain largely unclear.

While the refined understanding of the polygenic nature of
complex disease is starting to show promise for improved risk
prediction and treatment decisions7,8, it has made it increasingly
difficult to decide which individual genes could be the most
suitable targets for developing new drugs. Drug development is
traditionally focused on discrete targets with well-understood
biology. For certain diseases, an additive therapeutic benefit has
been demonstrated through combination therapies that simulta-
neously modulate two or more targets at once. For instance,
combinations of statins, inhibitors of HMG-CoA-reductase
(HMGCR), with distinct other cholesterol-lowering medications
including NPC1L1, PCSK9 and APOB inhibitors have been
demonstrated to lower LDLc levels and CAD risk further than
statin treatment alone9,10. Despite such successes, systematic
strategies to predict that joint modulation of drug target pairs in
combination therapies will show benefits beyond standard of care
have yet to be explored.

Genetic support for a drug target increases the probability that
a medicine directed against the respective target will succeed by
several fold11,12. We thus hypothesized that genetics might also
assist in nominating drug target pairs that, when addressed
jointly, will have a higher probability to reach a desired ther-
apeutic benefit. A particularly attractive approach to prioritize
optimal target pairs would be to leverage synergistic gene-gene
interactions, where genetic variants in two disease risk genes
induce a phenotype that is more pronounced than what would be
expected from each of the variants’ individual effects. Genetic
interactions (GIs), or epistasis, have been extensively studied in
model organisms and cell models with the aim to identify func-
tional relationships among genes and gene products13–16. In
humans, however, the contribution of GIs to complex traits has
been controversial. While there is increasing evidence for modi-
fier genes that modulate Mendelian phenotypes in non-additive
manners17, most of the variance of complex traits appears to be
explained by genes acting additively within or between loci
(additive effects, or AEs)18.

Here we systematically test for pairwise genetic effects, both
GIs and AEs, that regulate blood lipid levels by studying whether
30 genes prioritized based on known lipid regulatory functions
from GWAS loci interact. For this, we use three complementary
tools: protein-truncating variants (PTVs) identified through
exome sequencing in the UK Biobank; reported GWAS lead SNPs
genotyped or imputed in the UK Biobank; and combinatorial
RNA interference (coRNAi) screening measuring LDLc uptake

into cultured cells. Our combined genetics and functional geno-
mics approach provides evidence that pairwise effects between
lipid genes are foundational elements in controlling blood lipid
levels and highlights distinct gene pairs as promising targets for
lipid-lowering combination therapies.

Results
Study outline. To explore combined effects between genes in
GWAS loci and how these impact plasma lipid levels and LDLc
uptake into cultured cells, we followed three parallel approaches:
first, we extracted protein-truncating variants (PTVs) from
whole-exome sequencing data of 302,331 participants of the UK
Biobank. Second, we utilized GWAS lead SNPs commonly used
to construct polygenic risk scores from the full set of 378,033
unrelated participants of European ancestry in the UK Biobank.
And third, we conducted systematic RNAi-based combinatorial
knockdown experiments in cells (Fig. 1a). We focussed our
analyses on 30 high-confidence candidate genes from 18 genomic
regions associated with blood lipid levels or the risk for CAD
(Supplementary Data 1). Twenty-eight of these genes had scored
as functional regulators of LDLc uptake, cellular levels of free
cholesterol, or LDL-receptor (LDLR) mRNA or protein levels in
an earlier study where we had functionally analysed 133 genes at
56 lipid and CAD GWAS loci through RNAi-based knockdown
experiments19. Causality for several of these genes to drive GWAS
associations was further supported through systematic colocali-
zation of plasma LDLc GWAS lead SNPs with GTEx liver eQTLs1

(2 genes), cis-pQTL signals20 (3 genes) and independently
reported biological evidence for lipid-relevant functions (15
genes) (Supplementary Data 2). To identify pairwise effects, we
applied four linear regression models (modified from Axelsson
et al.21) to model the data. For each gene pair, both the additive
effects (AEs) (model 3), defined by the sum of effects from each
gene or variant individually, as well as the genetic interactions
(GIs) (model 4), represented by observed effects different than the
expected additive effect, were calculated, with GIs being divided
further into either negative (aggravating) or positive (alleviating
or suppressive) (Fig. 1a and ‘Methods’)22. Pairwise analyses were
conducted for four plasma lipid parameters (LDLc, HDLc, TG,
TC) and CAD as available from UK Biobank23 (see ‘Methods’).

PTV burden tests in UK Biobank reveal additive effects for
four gene pairs. We first studied pairwise effects between the 30
lipid candidate genes using predicted high-impact protein-trun-
cating variants (PTVs). PTVs are expected to cause loss-of-
function and compared to other types of mutations are rare at the
population level due to purifying selection24,25. We obtained the
quality-controlled exome sequences of 302,331 UK Biobank
participants, annotated PTVs using Variant Effect Predictor v9626

and the LOFTEE plugin25, and identified 573,369 high confidence
PTVs in the canonical transcripts of 19,076 genes. Within the 30
lipid GWAS genes, we detected a total of 983 unique rare PTVs
(Supplementary Data 3). For instance, we discovered 41 different
PTVs in LDLR, 57 in PCSK9 and 142 in APOB. Most PTVs in
these three genes co-occured with strongly abnormal plasma
LDLc levels in heterozygote carriers, with 45 PTVs annotated as
pathogenic or likely pathogenic in ClinVar27.

Gene-based PTV burden association analyses were conducted
in a cohort of 240,970 unrelated UK Biobank participants of
European ancestry. Single-gene PTV burden testing identified
three genes that were significantly associated (Bonferroni-
corrected p < 0.05) with both LDLc and TC (APOB, PCSK9,
LDLR), one with LDLc (LPL), two with HDLc (LPL, APOB) and
two with TG (LPL, APOB), respectively (Supplementary Data 4).
Loss-of-function of these genes had already been identified earlier
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as associated with the respective lipid traits at the population
level2. Next, we expanded from these single gene PTV burden
analyses to study PTV-based pairwise effects, which could be
tested for 45 of the 435 theoretically possible gene combinations
(Supplementary Data 5 and ‘Methods’). Four gene pairs met our
stringent criteria to be classified as AEs (PCSK9-APOB for LDLc
and TC; LPL-APOB for HDLc, LDLc and TG; LDLR-LPL for

LDLc; and PCSK9-LPL for LDLc), reflecting that joint loss-of-
function of both genes modulates the respective lipid measures
significantly more than if only one of the two genes is truncated
(Fig. 1b–e, Supplementary Data 5). For instance, while control
individuals without PTVs in either PCSK9 or APOB had average
levels of 138.3 mg/dl LDLc, PTVs in PCSK9 and APOB
individually reduced mean plasma LDLc by 34.5 mg/dl and
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69.1 mg/dl relative to individuals without PTVs in these genes,
consistent with previous reports28,29. However, the three UK
Biobank participants (‘human double knock-outs’) who carried
both, PCSK9 and APOB PTVs, showed on average a further
reduction in plasma LDLc by 41.2 mg/dl compared to individuals
with PTVs in only one of the two genes, and by 91.7 mg/dl
compared to individuals with no PTV in either of the two genes
(Fig. 1b, Supplementary Fig. 1a), suggesting considerable
additional protection from CAD. Similarly, individuals who
carried PTVs in both, LPL and APOB, showed gradually higher
HDLc and TG levels than individuals with no PTVs, or PTVs in
only one gene (Fig. 1c, Supplementary Fig. 1b). Conversely, for
other AEs such as for LDLR-LPL and PCSK9-LPL for LDLc,
LDLR and PCSK9, respectively, exerted the predominant effect on
the respective lipid traits (Fig. 1d, e, Supplementary Fig. 1c, d).
Conditioning these gene pairs for the most prevalent LPL PTV,
p.S447X abrogated the signals, suggesting the AEs with LPL were
primarily driven through this distinct gain-of-function allele
instead of a loss-of-function mechanism (Supplementary Data 6).
Our PTV-based burden tests in up to 240,970 exomes did not
identify any GIs. This is consistent with the prediction that for
rare variant-based burden analyses even larger sample sizes will
be necessary to robustly detect GIs in the human population18,28.

Pairwise GIs between GWAS lead SNPs modulate plasma lipid
levels. We next tested for pairwise genetic effects using 28 lipid/
CAD GWAS lead SNPs representing the 30 loci in 378,033
unrelated individuals of European ancestry in the UK Biobank23

as proxies for the respective candidate genes. Of a total of 1890
pairwise SNP–SNP effects tested, 142, 41, 78, 140 and three AEs
were identified for LDLc, HDLc, TG, TC and CAD, respectively
(Fig. 2a–e; Supplementary Data 7). Interestingly, SNP-based
analyses also suggested pairwise effects between GWAS loci that
deviated from an additive model and were classified as GIs.
Specifically, we detected ten GIs for LDLc, one for HDLc, five for
TG, and nine for TC (Table 1). No GI was detected for CAD. The
strongest driver of putative interactions came from the 19q13.32
APOE locus which in our analyses contributed to 19 of the 25 GIs
identified across all traits. Twelve GIs were between lead SNPs
from within the same GWAS region (‘cis-GI’), although only one
gene-pair showed strong (R2= 0.764; NCAN-TM6SF2) and two
weak LD (R2 > 0.1; ZNF259-SIK3, ZNF259-PAFAH1B2) between
corresponding lead SNPs. GIs were also identified between loci on
different chromosomes (‘trans-GIs’), such as between ZNF259
and APOE, or SORT1/CELSR2 and TOMM40 for LDLc and TC,
or between LPL and ZNF259, or LPL and SIK3 for TG. Overall,
our data support the hypothesis that AEs between GWAS loci are
pervasive and individually small, yet if summed up across many
loci in polygenic scores modulate complex traits5. Conversely, GIs
are considerably less prevalent, with the APOE locus being a
potential contributor to GIs for lipid traits.

Genetic effects between PTV burden with GWAS lead SNPs
and polygenic risk. Next, we queried for GIs between different
types of genetic variation. Pairwise interaction testing between
gene-based PTV burden and GWAS lead SNPs identified two
GIs, LDLRPTV-APOBSNP and LDLRPTV-PCSK9SNP, both with
LDLc as well as TC (Supplementary Data 8). Moreover, 67, 21, 60
and 26 AEs were identified for LDLc, HDLc, TC and TG,
respectively. These results are consistent with the types of genetic
variation modulating plasma lipids being continuous between
high-impact rare and low-impact common alleles4 and again GIs
being substantially less prevalent than AEs. A recent study6

proposed that the penetrance of Mendelian disease, including FH,
can be modulated by genetic effects between the respective
mutant gene with common variants (minor allele frequency
>0.01) of individually small effect size subsumed in polygenic risk
scores (PRS). We created PRS for the four lipid species using
PRS-CS29 (‘Methods’) and tested for genetic effects between PRS
and PTV burden for each of the 30 genes. Five AEs were iden-
tified (between APOBPTV with PRS for HDLc and TG; PCSK9PTV
with PRS for LDLc and TC; and LPLPTV with PRS for LDLc). Of
all combinations tested, only PTV burden in LPL showed evi-
dence for a GI with the PRS for TG (p= 1.77 × 10−14; beta=
−0.03) (Fig. 2f; Supplementary Data 9). The GI remained sig-
nificant (p < 2 × 10−16, beta=−0.04) in a sensitivity analysis
using the p.S447X variant alone instead of LPL PTV-burden,
proposing an alleviating GI of p.S447X variant on TG-PRS. These
results are consistent with the hypothesis that a high polygenic
risk for elevated TG can be mitigated by a concomitant gain-of-
function mutation in LPL.

RNAi identifies pairwise gene interactions modulating LDLc
uptake. To gain insights into the functional consequences of
genetic effects, we complemented our genetic analyses with sys-
tematic experiments in cells using combinatorial RNAi (coRNAi)
(Fig. 3a and ‘Methods’). We applied solid-phase reverse trans-
fection to simultaneously knockdown candidate gene pairs
in cultured HeLa cells, which we have previously shown to
reliably reflect various aspects of LDLc biology and lipid
homoeostasis19,30,31. Each of the 30 lipid genes was profiled with
a single siRNA that had previously been validated to significantly
enhance or reduce cellular uptake of fluorescently-labelled LDL
(DiI-LDL) or free cellular cholesterol levels, and/or to efficiently
downregulate mRNA or protein levels of its respective target gene
(Supplementary Data 2)19. The impact of both, single and com-
binatorial gene knockdown on LDLc uptake per cell was mea-
sured and quantified from high-content microscopy images using
automated image analysis routines as described (Supplementary
Fig. 2)30,31. All pairwise knockdown combinations between the 30
lipid genes (435 gene pairs) were assayed in a total of 16,128
experiments (Fig. 3b). Each combination was tested in at least
seven biological replicates. In order to identify genetic

Fig. 1 PTV burden tests in UK Biobank establish additive effects for PCSK9-APOB, LPL-APOB, LDLR-LPL and PCSK9-LPL. aWorkflow of the study. Tests
for pairwise genetic effects were conducted with 30 high-confidence candidate genes chosen from 18 GWAS regions associated with blood lipid traits or
CAD risk based on colocalization analyses with eQTL/pQTL signals and/or previously reported lipid-regulatory functions (see ‘Methods’). Pairwise
analyses were conducted from three complementary datasets: protein-truncating variants (PTVs) from exome sequencing in the UK Biobank; lipid/CAD
GWAS lead SNPs; and combinatorial RNAi (coRNAi) experiments in cells. Robust linear model fitting was used to identify additive effects (AEs) and
genetic interactions (GIs), and genetic and functional data were integrated. b–d Gene-based PTV burden AEs, minimum and maximum values of
residualized lipid measures as well as the data distribution were shown by violin plots, box in the middle indicates 25 and 75 percentile with a horizontal
black line indicating the median b between PSCK9 and APOB for LDLc in n= 215,810 (and TC; Supplementary Fig. 1a), c LPL and APOB for HDLc in
n= 198,052 (and TG, LDLc; Supplementary Fig. 1b), d LDLR and LPL for LDLc in n= 215,810, and e PCSK9 and LPL for LDLc in n= 215,810 exomes of
unrelated UK Biobank participants of European ancestry. n, number of carriers. (−), predicted loss-of-function due to PTVs. Shown are p-values for single-
gene genetic effects derived from robust linear model fit and corrected for multiple comparisons with FDR method (see ‘Methods’). For all gene pairs
displayed, Interaction p(FDR)-values were not significant (p > 0.01), consistent with AEs.
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Fig. 2 Pairwise genetic effects between lipid and CAD GWAS lead SNPs in 387,033 UK Biobank participants. a–e Circos plots showing AEs (grey) and
GIs (coloured) between GWAS lead SNPs (blue) at the 28 selected lipid/CAD loci (red) for the four tested lipid species and CAD. f Tests for GIs between
polygenic risk scores (PRS) for the four lipid species and PTV burden for each of the 30 lipid genes identified a GI between PTV burden in LPL and the PRS
for TG. PRS distribution (mean ± SD) for LPL-PTV carriers (pink) and non-carriers (blue) are plotted against mean normalized residual TG levels. Each dot
reflects mean TG levels at a respective percentile.
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interactions and additive effects, we conducted, analogously to the
genetic analyses, robust linear regression model fitting. Initially,
we used Schwarz’s BIC model estimation to determine potential
GIs and AEs. Then we calculated p-values from t-values of the
linear regression model term for single and double knockdowns
(see ‘Methods’). We corrected these p-values for multiple com-
parison testing with FDR. This identified 37 gene pairs, for which

the interaction coefficient had a p-value(FDR) < 0.005, proposing
them as GIs that differentially impact cellular LDLc uptake
(Supplementary Data 10). The corresponding gene pairs were
brought forward to independent liquid-phase based coRNAi
replication experiments which validated 20 of these GIs (Table 2,
Supplementary Data 11, Supplementary Fig. 3). Of the 20 vali-
dated GIs identified through coRNAi, six were classified as
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negative (GI−)—aggravating (or synergistic), i.e., simultaneous
knockdown of both genes magnified the effect size beyond
expectations for an additive effect; and fourteen GIs were cate-
gorized as positive (GI+). Positive GIs were further subdivided
into: seven alleviating GIs (i.e., the joint effect was approximately
equal to the most severe phenotype) and seven suppressive GIs
(i.e., the joint knockdown was less severe (‘healthier’) than the
most severe of the phenotypes) (Fig. 3c)22. For instance, simul-
taneous knockdown of HMGCR and APOB enhanced cellular
LDLc uptake beyond a mere additive effect expected from
knockdown of either of the two genes, proposing an aggravating
GI (Fig. 3d), that can most likely be explained by a higher
capacity of cells to bind and internalize LDLc via increased
availability of LDL receptor at the cell surface (Supplementary
Fig. 4). Conversely, knockdown of LDLR strongly inhibited,
whereas knockdown of LDLRAP1 increased cellular LDLc uptake
under our experimental conditions, an effect that could not be
explained by elevated LDLR levels at the plasma membrane
(Supplementary Fig. 5) or would have been anticipated from
LDLRAP1’s role in FH32. When silencing LDLR and LDLRAP1
jointly, the reduction of LDLc uptake was less attenuated than
expected under an additive model, suggesting a positive alleviat-
ing GI (Fig. 3e). Interestingly, reduction of LDLc uptake upon
knockdown of LDLR was magnified when LDLR was jointly
silenced with HAVCR1, a suggested LDLc scavenger receptor that
might contribute to maintenance of the potential of LDLR-
depleted cells to internalize LDLc33 (Fig. 3f). Noteworthy, among
the remaining validated coRNAi GIs, simultaneous silencing of
PCSK9 and TMEM57, MYBPHL and SIK3 as well as of SIK3 and
PAFAH1B1 increased cellular LDLc uptake to a similar extent as
the simultaneous knockdown of HMGCR and APOB, although
silencing of these genes individually had a significant, yet only
modest impact on cellular LDLc uptake. GIs such as these that
stimulate LDLc internalization beyond expectation might harbour
particular potential as starting points for improved LDLc low-
ering therapies. In summary, coRNAi identified AEs and GIs
between established lipid-regulatory genes, but also proposed
combinations of less characterized genes as potentially important
factors in maintaining cellular lipid levels.

Integrated analysis highlights overlapping genetic effects. In
order to assess whether AEs and GIs identified through either
PTV-based gene-burden tests, GWAS lead SNPs, or cell-based
coRNAi overlapped, we integrated results from the three
approaches (Fig. 4). HMGCR-LDLR and LDLR-SIK3 showed AEs

both in coRNAi and PTV-SNP analyses for LDLc and TC
(Fig. 4a). There were no overlapping GIs between coRNAi and
PTV-burden analyses, although several gene pairs that were
classified by coRNAi as GIs were classified by genetics as AEs
(Fig. 4b). Eight of the 13 gene pairs nominated by coRNAi as AEs
also scored as AEs in SNP-based interaction testing of which five
involved HMGCR and three LDLRAP1 (Fig. 4c). Two gene pairs,
SORT1-TOMM40 and NCAN-TOMM40, scored as GIs both in
the SNP-based as well as the coRNAi-based interaction testing
(Fig. 4d). Among these, TOMM40 exerted an alleviating positive
GI effect in either gene pair (Fig. 4e) that could not be explained
by an off-target effect of TOMM40 siRNAs on APOE as an
adjacent gene in the 19q13.32 GWAS locus (Supplementary
Fig. 6). In conclusion, integrating genetic with functional data
validated 10 proposed AEs and further substantiated a role of the
APOE locus, presumably mediated through TOMM40, as con-
tributing to genetic interactions.

Discussion
Here, we apply whole-exome sequencing, genotyping and coR-
NAi to systematically test for pairwise genetic effects between 30
lipid-regulatory genes at lipid and CAD GWAS loci. Pairwise
genetic effects, which encompass either additive effects or non-
additive genetic interactions, are considered to be central con-
stituents of biological pathways and complex traits, contributors
to human disease, and promising starting points for therapy
development13,17. Mapping especially GIs, however, has been
challenging. GI studies require very large population sizes in
order to obtain sufficient statistical power, so that the large
number of potential interactions to be evaluated quickly leads to a
prohibitive number of statistical tests34. Together with most GI
studies to date being limited to just a single data type, the relative
contribution of GIs to variation in human complex traits has been
controversial, and the relevance of epistasis potentially
overestimated18.

In our study, we have tried to overcome several of these
challenges through a systematic approach to testing genetic effects
that integrates genetic with functional data and relies on the UK
Biobank, a population cohort linking genetic with phenotype data
at an unprecedented scale23. To protect against statistical penal-
ties from multiple hypothesis testing we focused on pairwise
interaction analyses between 30 candidate genes nominated
through GWAS that functional or genetic follow-up studies have
proposed as likely causal to confer associations with lipid traits or
CAD19. We assessed these genes for genetic effects across the

Fig. 3 Combinatorial RNAi identifies pairwise GIs modulating cellular LDLc uptake. a The coRNAi screen workflow. Customized cell microarrays were
generated by pairwise spotting of siRNAs against two different candidate genes on 384 spots/array for solid-phase reverse siRNA transfection of cultured
HeLa cells. Integrated fluorescence intensities of internalized fluorescently-labelled LDL (DiI-LDL) for each cell individually were quantified by automated
image analysis. Averaged signal intensities per gene pair were tested for genetic effects in multiple replica experiments per array. Effects suggested in the
coRNAi screen as non-additive were subsequently validated in customized experiments using fluid-phase transfection. b Heatmap visualizing median
robust Z-score distribution upon coRNAi of 435 gene pairs assessed for their impact on cellular LDLc uptake (Supplementary Data 10). Red, increase. Blue,
decrease. CTRL (top row and first column) reflects the relative impact on LDLc uptake when candidate genes were silenced individually
(siRNAgeneAorB+ CTRL). c 20 gene pairs validated as either positive alleviating and suppressive or negative aggravating GIs on cellular LDLc uptake in
independent replica experiments. Best estimate of Interaction Value (c-right graph) depicts the directionality and difference of the combined effect versus
single knockdown effects. Error bars represent ± standard error of the estimate for each interacting pair. d–f Selected examples of single gene
(siRNAgeneA+ CTRL) and gene pair (siRNAgeneA+ siRNAgeneB) siRNA knockdown effects on relative fluorescently-labelled LDLc (DiI-LDL) cellular uptake.
CTRL, negative control siRNA. Dots in boxplots ((c—left)–(f)) are robust Z-score values calculated for integrated DiI-fluorescence intensities of cells
averaged per image (‘Methods’), showing the data distribution with minimum and maximum values. Boxplots represent values between 25th and 75th
percentile, horizontal black line—median robust-Z-score for total n= 625, 1063, 674 images for (d), (e), (f), respectively, for (c—left graph) number of
images is detailed in Supplementary Data 11. All images are originating from minimum three independent biological replicas. Whiskers indicate largest
value within 1.5 times interquartile range above 75th percentile. All validated GIs ((c)–(f)) have p(FDR) < 0.01, p-values were derived from robust linear
model fit and corrected for multiple comparisons with FDR method (see ‘Methods’). Scale bar= 10 μm.
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allelic spectrum, from rare PTVs ascertained from the exomes of
more than 240,000 individuals, to common GWAS lead SNPs.
Genetic GI-testing was complemented by functionally knocking
down gene pairs with siRNAs and determining the consequence
on LDLc internalization into cells.

Several of the genetic effects identified in our study can be
expected to be high potential starting points for the development
of advanced lipid-lowering combination therapies. Lowering
LDLc with statins is the first-line pharmacological strategy to
treat or prevent CAD and ischaemic heart disease as its clinical
manifestation. However, many patients do not reach their
recommended goals of LDLc lowering through statins alone, or
they are intolerant against statins. For these, combination thera-
pies have become available that aim to lower atherogenic lipid
levels further. A motivation for this is that every 1 mmol/l (39 mg/
dl) reduction in blood LDLc is associated with a 19% reduction in
coronary mortality and a 21% reduction in major vascular events,
supporting that, at least for secondary prevention, the lower blood
LDLc levels, the better35. Among the options to successfully lower
atherogenic blood lipids are therapeutics against drug targets that
when mutated cause familial hypercholesterolemia (FH), such as
NPC1L1, the target of ezetimibe, or PCSK99. Genetic analyses in
extreme phenotypes have identified a small number of individuals
with concomitant mutations in two distinct FH genes, such as
LDLR and APOB36,37, LDLR and LDLRAP138,39 or APOB and
PCSK940. However, due to the rarity of highly penetrant FH
mutations such findings have thus far remained limited to indi-
vidual families. Conversely, on a population level, a previous GI
analysis based on common alleles from ~24,000 individuals
ascertained for lipid traits reported 14 replicated GIs between
lipid GWAS loci, most notably, like in our study, with SNPs at the
APOE locus being a key contributor41. Additional support for the
relevance of genetic effects for modulating lipid traits comes from
a study that includes a subset of the UK Biobank exomes analysed
here and proposes an interplay of genetic variation across the
allelic spectrum6. Notably, that study reports that carriers of
monogenic CAD risk variants show an up to 12.6-fold higher risk
to manifest disease if they are in the highest quintile of the
polygenic risk distribution.

Our analyses here propose distinct gene pairs that modulate
plasma and cellular lipid levels via additive and non-additive
effects. Among others, we identify pairwise effects for several
prominent cardiovascular risk genes that individually are estab-
lished targets for lipid-lowering drugs. For instance, coRNAi
proposed a synergistic, aggravating GI between HMGCR, the rate-
limiting enzyme during cholesterol biosynthesis and target of
statins, and APOB encoding apolipoprotein B, a critical con-
stituent of LDLc particles. Consistent with the known biological
functions of these genes, joint knockdown increased levels of
functional LDLc receptor on the cell surface and stimulated
internalization of exogenous, fluorescently-labelled LDLc. This
observation is well in line with results from clinical trials showing
that in patients with Familial Hypercholesterolemia and other
hyperlipidemias a combination of statins with an antisense
inhibitor of apolipoprotein B (mipomersen) efficiently reduces
plasma LDLc levels more strongly than high-intensity statin
treatment alone42–45. Importantly, the AE identified from UK
Biobank participants carrying PTVs in both APOB and PCSK9
suggests that similarly beneficial effects can be expected when
APOB antisense therapies are applied in combination with
PCSK9 inhibitors. Recently, inclisiran, an siRNA targeting PCSK9
in individuals on maximally tolerated statin doses46 led to a
persistent, highly significant lowering of LDLc in treated indivi-
duals relative to placebo in a phase 3 study47, introducing siRNAs
as an attractive therapeutic modality for lipid-lowering therapies.
Our results strongly propose that, on a population level,T
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combination therapies inhibiting both PCSK9 and APOB may
lower LDLc levels and CAD risk even more substantially than
drugs targeting only one of the two genes.

APOB PTV burden was associated not only with LDLc and TC,
but also HDLc and TG, and our analyses propose that joint
disruption of APOB together with gain-of LPL function reduces
TG and increases HDLc, most likely in an additive manner. LPL

encodes for lipoprotein lipase which hydrolyzes TG from apoli-
poprotein B containing lipoproteins, releasing fatty acids48. PTV
burden in LPL was dominated by the stop-gain variant p.S447X
(c.1421 G>C; rs328) which in our exome-sequenced UK Biobank
sub-cohort showed an allele frequency of 9.95%. This variant is
known to cause gain-of LPL activity leading to a 0.8-fold reduced
risk for ischaemic heart disease49, an effect that is likely to be
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further enhanced by concomitant reduction of apolipoprotein B.
The p.S447X allele was also the main driver behind the only GI
detected between PTV burden and polygenic risk for plasma
lipids and conferred that in LPL PTV-carriers polygenic risk for
TG is reduced, with assumed non-additive effects being the most
pronounced in the upper percentile range of the PRS distribution.

A prominent driver of GIs in both our SNP- and coRNAi-
based analyses was the 19q13.32 locus which includes APOE and
apart from plasma lipids and CAD is associated with Alzheimer’s
disease, longevity and macular degeneration among others20.
Interestingly, our findings indicate that genes other than APOE at
this locus might contribute to lipid GIs, which is consistent with
our earlier findings that knockdown of several genes at this locus
independently modulate cellular LDLc uptake19. For instance,
both SNP-based GI testing and coRNAi suggested alleviating GIs
for TOMM40 with SORT1 and NCAN, respectively. Variants in
TOMM40 have been hypothesized to modify onset of Alzheimer’s
disease independently of and in conjunction with APOE50. Our
analyses suggest TOMM40 might exert similar modifying effects
on lipid phenotypes and CAD risk, which will need to be clarified
in future studies. Such studies will also need to critically assess
whether GI signals involving the APOE locus might be inflated
due to its large effect sizes51. Importantly, our integrated analysis
revealed AEs between MLXIPL, NCAN and SIK3 with HMGCR,
nominating these poorly characterized genes to be explored as
potentially attractive new targets for lipid-lowering therapies on
top of statins.

Consistent with previous assumptions18, our results show that
for regulating plasma lipid levels, additive effects between gene or
variant pairs are common, while non-additive epistasis is rare.
Indeed, despite a sample size of over 240,000 exomes, our gene-
based PTV burden GI analyses did not find evidence for pairwise
GIs between lipid genes disrupted by PTVs. Further increasing
sample sizes might help uncover non-additive effects, however, at
least for lipid traits and based on the analysed candidate gene set,
the contribution of GIs to the overall variance appears to be small.
This is consistent with the existence of evolutionary mechanisms
that suppress epistatic interactions13. Since pairwise GIs can be
expected to be identified the most easily for genes that are dis-
rupted sufficiently frequently in a population by PTVs of large-
enough effect size, sequencing of consanguineous or bottlenecked
populations might improve the detection rate of GIs24,52. Inter-
estingly, as observed also here, GIs seem to be more easily
detectable in cell and animal models, for instance through syn-
thetic lethality mapping14.

Integration of population-scale genetics and functional coRNAi
screening results yielded a total of ten AEs and two putative GIs
that influence plasma and cellular lipid levels. Such validation via
two systematic approaches substantially increases the confidence
for committing to time and resource-intense follow-up analyses
of such findings, e.g., when exploring the suitability of a gene pair
to be jointly targeted in combination therapies. Interestingly, a

significant number of GIs identified through genetics and coRNAi
in our study do not yet overlap. This may be explained by several
reasons: First, our functional analyses were limited to measuring
LDLc uptake into cells, which reflects a relevant, yet only a partial
aspect of the many possible mechanisms by which a gene can
modulate plasma lipid levels. Second, siRNA-based gene knock-
down captures acute and rather severe functional effects, which
may differ from the chronic and often compensated consequences
upon lifelong modulation of a gene’s function through genetic
variation. Third, despite the large number of samples used for
genetics-based GI testing, the number of informative high-impact
variants in the human germline may still be too discrete to
comprehensively identify GIs. Conversely, the large numbers of
individually low-impact GWAS lead SNPs may not unambigu-
ously be mapped to a respective gene, so that observed associa-
tions may stem from a causal variant from another gene in LD.
Regardless, the availability and rapid development of advanced
high-throughput microscopy technology joint with the constantly
increasing cohort sizes for genetic analyses will allow up-scaling
of the approach taken here in future studies and with a high
probability identify and validate further genetic effects.

In conclusion, our study introduces a strategy to link large-
scale genetic data from a population biobank with quantitative,
cell-based coRNAi to map pairwise genetic effects that affect
blood lipid levels and CAD, an approach that can be applied to
other diseases and complex traits. Our analyses support that
mechanisms exist through which pairs of genes help maintain
blood lipid homoeostasis in additive and non-additive manners.
CAD and ischaemic heart disease remain a substantial global
health burden, and doubling-down on lowering atherogenic
plasma lipids remains one of the most promising therapeutic
approaches. With the encouraging results from recent gene- and
antisense-based clinical trials for CAD, our results may help
prioritize drug target pairs for the development of lipid-lowering
combination therapies rooted in human genetics.

Methods
Gene selection. We chose to study 30 candidate genes from 18 loci reported as
associated through common-variant genome-wide association studies (GWAS)
with plasma lipid levels and the risk for CAD. Twenty-eight of these genes had
been identified and validated as functional regulators of LDLc uptake and/or
cholesterol levels into cells in a previous RNAi-screen analysing a total of 133 genes
in 56 lipid and CAD GWAS loci19 (Supplementary Data 1). Common-variant
association signals and published biological evidence for potential roles in lipid
regulation were updated for all 30 candidate genes based on the recent literature
(e.g., refs. 1–3,53) and queries using the PhenoScanner platform54 (http://
www.phenoscanner.medschl.cam.ac.uk/). Twenty-eight genes were validated to
reside within loci that are associated at genome-wide significance (p < 5e−8) with
plasma lipid levels or CAD. For all lipid loci analysed we selected the more recently
published sentinel SNP. When a respective locus was associated with multiple lipid
phenotypes, the SNP with the lowest reported p-value association with LDLc was
chosen to be the lead SNP. SNPs near FAM174A (rs383830) and SEZ6L (rs688034)
had originally been reported as associated with CAD55, but failed to replicate at
genome-wide significance in more recent meta-GWAS. However, since knockdown

Fig. 4 Integrative analysis identifies pairwise effects supported by both, genetic and functional data. Overlap of genetic effects identified through
genetic analyses and coRNAi. Highlighted are gene pairs identified through either a, b PTV-SNP or c, d SNP-SNP testing for which pairwise siRNA-
knockdown showed corresponding effects on cellular LDLc uptake. e TOMM40 as an example for which, consistent with SNP-SNP analyses, siRNA
knockdown revealed alleviating positive GIs when jointly silenced with SORT1 (left panel) or NCAN (right panel). Values on the graphs reflect robust
Z-scores values calculated for total intensity of DiI-LDL per cell averaged per image (see ‘Methods’). Dots on boxplots represent robust Z-score values
calculated for integrated DiI fluorescence intensities of cells averaged per image (‘Methods’), showing the data distribution including minimum and
maximum values. Boxplots represent values between 25th and 75th percentile, horizontal black line indicates median robust-Z-score for total n= 588 and
438 images for (SORT1-TOMM40) and (NCAN-TOMM40), respectively, across three independent biological replicas, whiskers indicate the largest value
within 1.5 times interquartile range above 75th percentile. All p-values were derived from robust linear model fit and were corrected for multiple
comparisons with FDR method (see ‘Methods’); p(FDR) < 1e−15, p(FDR)= 3.45e−08 for SORT1-TOMM40 and NCAN-TOMM40, respectively. Scale
bar= 10 μm.
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of both genes had scored as significantly impacting lipid parameters in cells19 the
two genes were maintained for this current study.

Colocalization analysis. Colocalization analysis was performed between the 28
GWAS lead SNPs using summary statistics from the 2013 Global Lipid Genetics
Consortium GWAS1 (http://csg.sph.umich.edu/willer/public/lipids2013/) and the
GTEx liver cis-eQTL dataset (N= 153)56. When a respective locus was associated
with multiple lipid phenotypes, the SNP with the lowest reported p-value asso-
ciation with LDLc was chosen to be the lead SNP. There was no GTEx liver
expression data for four genes (APOE, MYBPHL, NCAN, SEZ6L), therefore there
were no cis-eQTL for these genes to colocalize with. Colocalization analysis was
conducted following the methods in Giambartolomei et al., 57 using the R ‘coloc’
package on a ±500 kb window around each lead SNP against SNP-to-expression
data of all neighbouring genes within that locus. Positive colocalization between
liver cis-eQTL and GWAS signal was defined as showing a posterior probability of
sharing the same SNP (PP4) of larger than 0.8. A lead SNP at the SORT1/CELSR2
locus (rs629301) showed a positive colocalization signal, but the cis-eQTL co-
localized with both genes, so SNP-based genetic effects for these genes could not be
analysed separately.

UK Biobank lipid and CAD phenotypes. The UK Biobank is a prospective study
of over 500,000 participants recruited at an age of 40–69 years from 2006 to 2010 in
the United Kingdom. Participant data include health records, medication history
and self-reported survey information, together with imputed genome-wide geno-
types and biochemical measures23. Baseline biochemical measures including LDL
cholesterol (LDLc), HDL cholesterol (HDLc), triglycerides (TG), and serum total
cholesterol (TC) had been obtained in UK Biobank’s purpose-built facility in
Stockport as described in the UK Biobank online data showcase and protocol
(www.ukbiobank.ac.uk). Demographic and other relevant phenotypic information
was obtained from standard questionnaire data. Individual lipid phenotypes (LDLc,
HDLc, TG and TC) were first modelled as dependent variables using linear
regression models against covariates including age, sex, smoking, alcohol drinking
status, BMI, lipid medication use and top ten genetic principle components.
Residuals were then used as outcome variables in genetic analyses. Lipid medica-
tion use was obtained from self-reported questionnaire data (UK Biobank fields
6153 and 6177). CAD cases were recognized based on both self-reported diagnosis
and Hospital Episode Statistics data in the UK Biobank with a code-based CAD
definition as presented in the most recent CAD GWAS that included UK
Biobank53. In total, 30,125 CAD cases were identified and the CAD analysis was
conducted using logistic regression models adjusted for age, sex, smoking status,
alcohol drinking status, BMI, lipid medication use and top ten genetic principle
components. All phenotype data were derived from the UK Biobank basket
‘ukb27390’ released on March 11, 2019.

Pairwise gene-based PTV burden interaction testing. High-impact protein-
truncating variants (PTVs) expected to disrupt protein functions were identified
from 302,331 whole-exome sequencing (WES) data of UK Biobank participants to
conduct pairwise interaction analyses. WES data were generated and quality
controlled (QCed) as described in Van Hout et al. at the Regeneron Genetics
Center as part of a collaboration between AbbVie, Alnylam Pharmaceuticals,
AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer, Regeneron and Takeda and the
UK Biobank consortium54. PTVs were called from a Regeneron QC-passing
‘Goldilocks’ set of genetic variants using Variant Effect Predictor v9626 and the
LOFTEE plugin25. LOFTEE applies a range of filters on stop-gained, splice-site
disrupting and frameshift variants in order to exclude putative PTVs due to variant
annotation and sequencing mapping errors that are unlikely to significantly disrupt
gene function. For instance, stop-gained and frameshift variants that are within
50 kb of the end of the transcript will be flagged as ‘low-confidence’. For our
analysis, we only considered variants predicted as PTVs and flagged as ‘high
confidence’ by LOFTEE for each canonical transcript (as defined in Ensembl). We
identified 573,369 high-confidence PTVs in the canonical transcripts of 19,076
genes. This set included 983 rare PTVs in the 30 lipid genes analysed in this study.
PTVs per gene were enumerated, and a PTV burden association analysis was
conducted in 240,970 unrelated (>2nd degree relatedness) UK Biobank participants
of European ancestry, as defined by principle components analysis of the geno-
typing data23.

For pairwise PTV-based interaction testing, QCed UK Biobank lipid
phenotypes (HDLc, LDLc, TG and TC) after residualization against the covariates
were modelled as dependent variables using the following four robust linear
regression models:
Model 1 for gene1 PTV burden only: lipids ~ PTV1

Model 2 for gene2 PTV burden only: lipids ~ PTV2

Model 3 for gene1 PTV burden and gene2 PTV burden (additive effects, AEs):
lipids ~ PTV1+ PTV2

Model 4 for gene1 PTV burden and gene2 PTV burden (GI): lipids ~
PTV1+ PTV2+ PTV1 * PTV2

Schwarz’s Bayesian Information Criterion (BIC)58 scoring was used to
determine the best model to explain the data and goodness of fit, with the lowest
BIC value indicating the best-fitting model describing each gene pair. Model 3

reflected additive effects (AEs), Model 4 gene interactions (GIs). The model with
the lowest BIC was chosen as describing most adequately the type of interaction
between each corresponding gene pair. All models were fitted using the rlm()
function in R package ‘MASS’.

In order to also estimate statistical significance of gene interaction and additive
effect for each PTV combination, we calculated normal distribution approximated
p-values from the t-statistics of the robust linear regression full model (Model 3 or
Model 4 depending on the gene pair), including the interaction term (if interaction
testable), as well as the PTV effect for each single gene, for all gene pairs and all
four lipid measures. To correct for multiple comparisons, the p-values were then
adjusted using the false discovery rate (FDR) method59, after which genetic
interactions, as well as additive effects, were identified in a two-step manner: if the
FDR-corrected p-value of the interaction term was less than 0.005 and the BIC
indicated Model 4 as the best fitting model, then the gene pair was considered as
being a significant GI; if the FDR-corrected p-value of the interaction term was
larger than 0.01 or untestable, but FDR-corrected p-value for each single-gene PTV
effect was less than 0.005 and the BIC indicates Model 3 as the best fitting model,
the gene pair was considered as a significant AE.

Pairwise SNP interaction testing. To assess whether GWAS lead SNPs modulate
plasma lipid levels through joint effects within and across GWAS loci, we con-
ducted pairwise SNP-SNP interaction analysis using genome-wide genotyping data
and biochemical measures of lipid species from the UK Biobank. Twenty-eight lead
SNPs mapped to the 30 lipid GWAS genes were extracted from genotyping data of
378,033 unrelated (removed up to 2nd degree relatedness) participants of European
ancestry. A total of 378 pairwise interaction effects were tested for each of the four
lipids species after residualization against the covariates by running four robust
linear models using rlm() function from R package ‘MASS’:
Model 1 for SNP1 only: lipids ~ SNP1
Model 2 for SNP2 only: lipids ~ SNP2
Model 3 for SNP1 and SNP2 (AE): lipids ~ SNP1+ SNP2
Model 4 for SNP1 and SNP2 (GI): lipids ~ SNP1+ SNP2+ SNP1 * SNP2

Schwarz’s Bayesian Information Criterion (BIC) scoring was used to determine
the best model to explain the data and goodness of fit, with the lowest BIC value
indicating the best-fitting model describing each SNP pair. If Model 3 had the
lowest BIC value, it reflected an AE, and if Model 4 had the lowest BIC value, it
reflected a GI.

A similar strategy was applied for pairwise interaction testing to explore
potential joint effects between the 30 genes on CAD risk by running the following
four logistic regression models adjusted for age, sex, smoking status, alcohol
drinking status, BMI, lipid medication use and ten principle components:
Model 1 for SNP1 only: CAD ~ SNP1
Model 2 for SNP2 only: CAD ~ SNP2
Model 3 for SNP1 and SNP2 (AE): CAD ~ SNP1+ SNP2
Model 4 for SNP1 and SNP2 (GI): CAD ~ SNP1+ SNP2+ SNP1 * SNP2

As above, the model with the lowest BIC was chosen as describing most
adequately the type of interaction between each corresponding SNP pair.

We also calculated normal distribution approximated p-values from the
t-statistics of the robust linear regression and logistic regression full model (Model
4), including the interaction term, as well as the SNP effect for each single gene, for
all gene pairs and all four lipid measures as well as CAD. To correct for multiple
comparisons, the p-values were then adjusted using the false discovery rate (FDR)
method59, after which genetic interactions, as well as additive effects, were
identified in a two-step manner: if the FDR-corrected p-value of the interaction
term was less than 0.005 and the BIC indicated Model 4 as the best fitting model,
then the gene pair was considered as being a significant GI; if the FDR-corrected p-
value of the interaction term was larger than 0.01 or untestable, but FDR-corrected
p-value for each single-gene PTV effect was less than 0.005 and the BIC indicates
Model 3 as the best fitting model, the gene pair was considered as a significant AE.

PTV-SNP interaction testing. In order to conduct pairwise interaction analyses
between GWAS lead SNPs and PTVs, we assessed the interaction of the 28 lead
SNPs with rare PTV burden for each of the 30 genes. For SNP-PTV interaction
testing, UK Biobank lipid phenotypes (HDLc, LDLc, TG and TC) after residuali-
zation against the covariates were modelled as dependent variables using the fol-
lowing four robust linear regression models fitted by rlm() function in R package
‘MASS’:
Model 1 for gene1 lead SNP only: lipids ~ SNP1
Model 2 for gene2 PTV burden only: lipids ~ PTV2

Model 3 for gene1 lead SNP and gene2 PTV burden (AE): lipids ~ SNP1+ PTV2

Model 4 for gene1 lead SNP and gene2 PTV burden (GI):
lipids ~ SNP1+ PTV2+ SNP1 * PTV2

As above, the model with the lowest BIC was chosen as describing most
adequately the type of interaction between each corresponding SNP-gene pair.

We also calculated normal distribution approximated p-values from the t-
statistics of the robust linear regression full model (Model 3 or Model 4 depending
on the gene pair), including the interaction term (if interaction testable), as well as
the PTV or SNP effect for each single gene, for all gene pairs and all four lipids
measurements. To correct for multiple comparisons, the p-values were then
adjusted using the false discovery rate (FDR) method59, after which genetic
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interactions, as well as additive effects, were identified in a two-step manner: if the
FDR-corrected p-value of the interaction term was less than 0.005 and the BIC
indicated Model 4 as the best fitting model, then the gene pair was considered as
being a significant GI; if the FDR-corrected p-value of the interaction term was
larger than 0.01 or untestable, but FDR-corrected p-value for each single-gene PTV
effect was less than 0.005 and the BIC indicates Model 3 as the best fitting model,
the gene pair was considered as a significant AE.

PTV–PRS interaction testing. We assessed the interaction effects between poly-
genic risk score (PRS) and PTVs for each of the four lipid phenotypes. To construct
PRS for UK Biobank samples, we first derived the PRS weights for each SNP across
the genome using PRS-CS29, which is a Bayesian regression-based algorithm, and
publicly available summary statistics from lipid GWAS1. We applied derived PRS
weights to imputed genotypes (with minor allele frequency >0.01 and imputation
quality INFO > 0.8) of UK Biobank samples and calculated PRS for each lipid,
based on the corresponding PRS weights. Note that all SNPs in the gene of interest
were excluded from the PRS when testing for PRS–PTV gene interaction. To test
GIs between PRS and PTV burden for each of the 30 genes, UK Biobank lipid
phenotypes (HDLc, LDLc, TG and TC) after residualization against the covariates
were modelled as dependent variables by fitting the four robust linear regression
models using rlm() function in R package ‘MASS’:
Model 1 for PRS only: lipids ~ PRS
Model 2 for gene PTV burden only: lipids ~ PTV
Model 3 for PRS and gene PTV burden (AE): lipids ~ PRS+ PTV
Model 4 for PRS and gene PTV burden (GI): lipids ~ PRS+ PTV+ PRS ∗ PTV

As above, the model with the lowest BIC was chosen as describing most
adequately the type of interaction between each corresponding PRS-gene pair.

We also calculated normal distribution approximated p-values from the t-
statistics of the robust linear regression full model (Model 4), including the
interaction term, as well as the PRS and PTV effect, for all PRS–PTV pairs and all
four lipids measurements. To correct for multiple comparisons, the p-values were
then adjusted using the false discovery rate (FDR) method59, after which genetic
interactions, as well as additive effects, were identified in a two-step manner: if the
FDR-corrected p-value of the interaction term was less than 0.005 and the BIC
indicated Model 4 as the best fitting model, then the gene pair was considered as
being a significant GI; if the FDR-corrected p-value of the interaction term was
larger than 0.01 or untestable, but FDR-corrected p-value for each single-gene PTV
effect was less than 0.005 and the BIC indicates Model 3 as the best fitting model,
the gene pair was considered as a significant AE.

Multiple testing correction with false discovery rate (FDR). We performed
FDR-correction as described by Benjamini and Hochberg, 199559. P-values were
calculated based on t-values extracted from the rlm result for the fitted effects of
single genes and interaction terms. For both genetics and primary coRNAi screen,
we set the threshold to call a gene pair as GI to an FDR-corrected p-value for the
interaction term as p < 0.005, with FDR correction being based on the number of
interactions between gene/variant pairs tested (n= 1740 for PTV-PTV interaction,
n= 1890 for SNP-SNP interaction, n= 3240 for PTV-SNP interaction, n= 120 for
PTV–PRS interaction, and n= 435 for coRNAi primary screen and n= 36 for
coRNAi validation experiments) times the number of genetic effects tested (n= 3,
single-gene effects for gene1 and gene2, and the interaction effect if testable). FDR-
correction was done separately for PTV-PTV, SNP-SNP, PTV-SNP, and PTV-PRS
interaction for genetic analyses given the different nature of genetic variations
tested, but a rather stringent significance cut off was chosen at FDR corrected
p < 0.005 for all analyses. For the validation RNAi experiments, significance
threshold was set at an FDR corrected p < 0.01.

RNAi interaction testing
Cells and reagents. HeLa-Kyoto cells are a strongly adherent Hela isolate (gift from
S. Narumiya, Kyoto University Japan) that, as we demonstrated earlier, enable
reliable measurements of LDL-cholesterol uptake dynamics and show lipid
homoeostatic mechanisms similar to those described for liver-derived cell
models19,30,31. DiI-LDL (Life Technologies), DRAQ5 (Biostatus), Dapi (Molecular
Probes), 2-hydroxy-propyl-beta-cyclodextrin (HPCD) (Sigma), Lipofectamine
2000 (Invitrogen) and Benzonase (Novagen) were purchased from the respective
suppliers.

siRNA selection and production of siRNA microarrays. RNA interference (RNAi)
screening was conducted in glass-bottomed single-well chambered cell culture
(Lab-Tek) slides with solid-phase reverse siRNA-transfection of cultured cells (‘cell
microarrays’) as described previously19,31,60. Each gene under study was targeted
with a single siRNA (Silencer Select, Invitrogen) that had been selected with the
EMBL-generated software tool bluegecko (J.K. Hériche, in house database) based
on the alignment to the reference genome, a maximal number of protein-coding
transcripts per gene targeted and expected specificity for the target gene. The
28 siRNAs in this study had been validated earlier to significantly enhance or
reduce cellular uptake of fluorescent-labelled LDLc (DiI-LDL) or free cellular
cholesterol levels19 and were shown to efficiently downregulate mRNA or protein
levels of their respective target genes (Supplementary Data 2). siRNA sequences are

provided in Blattmann et al., 2013 Supplementary Data 4. For the two genes not
analysed in our earlier study (MYLIP, PAFAH1B2), siRNAs used in the current
study were prioritized from 3 and 5 siRNAs per gene based on bluegecko in silico
analyses, knockdown efficiency on target mRNA/protein levels (up to less than 10%
residual levels) and/or efficiency to modulate cellular DiI-LDL uptake in pre-
paratory individual single gene knock-down experiments (not shown). The 75%
(12/16) of siRNAs that had scored as individually modulating cellular DiI-LDL
uptake in our earlier study19 also met the more stringent criteria of our current
study to score as LDLc uptake modulator when used either alone or together with
non-silencing control siRNA Neg9 (Fig. 3b, CTRL column), thereby replicating our
earlier results and validating experimental settings for this current study.

To cover the total of 435 pairwise siRNA combinations including controls and
replicas, five different cell microarrays with 384 spots/array were produced. Per
array, the following negative controls were added: eight spots containing INCENP-
siRNA (s7424) to control for transfection efficiency19; eight spots containing non-
silencing control siRNA Neg1 (s229174), and eight spots containing non-silencing
control siRNA (denoted as CTRL throughout the text) Neg9 (s444246).
Furthermore, eight spots were added with siRNA targeting LDLR (s224006) as a
positive control for LDLc uptake, as well as eight spots with siRNA targeting NPC1
(s237198) knockdown of which increases free cellular cholesterol signals30. For
pairwise combinatorial RNAi-screening, siRNAs against two genes were printed
simultaneously on a respective siRNA-spot, with equal amounts (~0.053 pmol/
siRNA) of siRNA per gene. As positive controls, eight spots containing both, non-
silencing control siRNA Neg9 (CTRL) (s444246) and siRNA targeting LDLR
(s224006), and eight spots containing both, non-silencing control siRNA (CTRL)
Neg9 (s444246) and siRNA targeting NPC1 (s237197) were included per array. For
all genes, ‘single-gene knockdown’ scenarios [siRNAgeneA+Neg9] were added on
two spots per array. Each pairwise ‘combinatorial knockdown’ scenario
[siRNAgeneA+ siRNAgeneB] was analysed on one spot per array, with a single spot
covering 50-100 informative cells31,61 (Supplementary Fig. 2).

In order to confirm genetics interactions identified with the coRNAi screen, we
replicated our analyses with forward transfection in a liquid-phase format with
Lipofectamine 2000 reagent in 12-well plates, according to the manufacturer’s
instructions. Concentrations of the siRNAs were adjusted to mimic the single
knockdown phenotypes from the screen (Supplementary Data 2). 1 μl of
Lipofectamine 2000 was used per each transfection. GIs that showed statistically
significant interaction effects (pFDR < 0.01) in replication analyses and for which
interaction values showed the same as in the primary coRNAi screen, were
considered as validated (Supplementary Data 11).

Cell culture, transfection and LDLc uptake assay. HeLa Kyoto cells were grown
in DMEM medium (Gibco) supplemented with 10% (w/v) foetal calf serum (FCS)
(PAA) and 2 mM L-glutamine (Sigma) at 37 °C with 5% CO2 and saturated
humidity. Cells were plated at a density of 6 × 104 per plate on the cell microarrays
for solid-phase siRNA transfection60 and cultivated for 48 h before performing the
LDLc uptake assay. For liquid phase transfection-based validation experiments,
cells were plated in 12-well plates the day prior to transfection, and siRNA-
transfected cells were cultivated for 48 hours. The assays to monitor cellular uptake
of fluorescently-labelled LDLc (DiI-LDL) were performed as described also in the
previous publications19,30,31. Cells cultured in serum-free medium (DMEM/2 mM
L-glutamine/0.2% (w/v) BSA) and exposed to 1% 2-hydroxy-propyl-beta-cyclo-
dextrin for 45 min were labelled with 50 µg/ml DiI-LDL (Invitrogen) for 30 min at
4 °C. DiI-LDL uptake was stimulated for 20 min at 37.0 °C. Endocytosis of labelled
LDLc was stopped by washing with ice-cold media. We removed non-internalized
DiI-LDL from the plasma membrane by acidic wash for 1 min in medium at pH 3.5
performed also at 4 °C. This was followed by fixation, counterstaining for nuclei
(Dapi) and cell outlines (DRAQ5). For RNAi-based gene interaction screening,
each of the five cell microarrays was assayed in 7–10 biological replicas.

Image acquisition and quality control. Image acquisition was performed using an
Olympus IX81 automated microscope with Scan^R software and an UPlanSApo
20×/0.4NA air objective as described19,31. Images from a total of 42 cell micro-
arrays were visually quality controlled. Arrays with insufficient knockdown effi-
ciency where INCENP siRNA treated cells did not show the expected
multinucleated phenotype in the DAPI channel were excluded. Also, arrays with
plate effects as evaluated through diagnostic plots with the splot function in R, and
arrays where knockdown of LDLR, or LDLR together with negative control siRNA
Neg9, did not show a significant difference from controls, were discarded as well.
Following these QC criteria, 29 cell microarrays with a total of 11,047 image frames
per channel were further analysed. The in-house developed tool HTM Explorer (C.
Tischer; https://github.com/embl-cba/shinyHTM) was then used to select images
fulfilling pre-defined criteria for cell number, image sharpness quality, and image
background intensity, resulting in a total number of 9539 (86.35%) QCed image
frames that were used for subsequent analyses.

Image analysis. Automated image analysis was performed using a specifically
developed pipeline (available upon request) in the open-source software
CellProfiler62 http://www.cellprofiler.org as described19,31. In brief, areas of indi-
vidual cells were approximated by stepwise dilation of masks on the DAPI (nuclei)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26761-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6411 | https://doi.org/10.1038/s41467-021-26761-3 | www.nature.com/naturecommunications 13

https://github.com/embl-cba/shinyHTM
http://www.cellprofiler.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


and DRAQ5 (cell outlines) channels63. For each individual cell, DiI-LDL signal was
determined from masks representing intracellular endosome-like vesicular areas
that were determined by local adaptive thresholding according to predefined cri-
teria for size and shape (Supplementary Fig. 2). Initially, the total fluorescence
intensity of DiI-signal above the local background per cell mask was quantified,
and mean values were calculated from all cells per image. Then, for each single
siRNA ([siRNAgeneA+Neg9] and [siRNAgeneB+Neg9]), or double siRNA knock-
downs ([siRNAgeneA+ siRNAgeneB]), these mean values from different images from
the same biological replicate were averaged ([IFtreated] and a robust Z-score was
calculated in HTM Explorer using the median of total fluorescence signal of all the
negative control siRNAs per array ([medianIF(controls)]) and the median absolute
deviation of these controls (madIF(controls)) as follows64,65:

robustZ � score ¼ IF treated �medianIF controlsð Þ
madIF controlsð Þ ð1Þ

A median robust Z-score was calculated per treatment across all biological
replicates and is represented on the heatmap (Fig. 3c) and in the respective
Supplemental tables (Supplementary Data 10–11).

RNAi gene interaction testing. To identify pairs of genes for which simultaneous
knock-down results in additive effects (AEs) or gene interactions (GIs) on LDLc
uptake we conducted a Robust Linear Model fitting in R (rlm() function of ‘MASS’
package). Robust Z-score values calculated from different biological replicates in
the presence of single ([siRNAgeneA+Neg9] and [siRNAgeneB+Neg9]) or double
knock-downs ([siRNAgeneA+ siRNAgeneB]) were considered to be response variable
values. Negative control values [Neg9] were included in each fitted dataset to
correctly account for baseline LDLc uptake. The full regression model considered
in the study was

y ¼ β0 þ βA � xA þ βB � xB þ βAB � xA � xB þ ϵ ð2Þ
which is equivalent to the short form of the statistical formula:

y � xA þ xB þ xA � xB ð3Þ
In both formulas y corresponds to the robust Z-score values of measured LDLc

uptake; xA, xB are encoded predictor variables, which are equal to 1 in case of
presence of siRNAgeneA, siRNAgeneB, or both siRNAs accordingly and equal 0
otherwise. The ϵ is a noise term, which is minimised during the fitting process.
Model fitting provides estimates of β0, βA, βB and βAB values. β0 defines the effect of
the negative control on robust Z-score values and can be also denoted as an
intercept of the linear fit. For our data β0 is always close to 0 because of the robust
Z-score definition. The βA and βB define individual effects of siRNAgeneA and
siRNAgeneB accordingly. The βAB defines the interaction effect, denoted in the text,
figures and tables as Interaction Value, between genes A and B and represents the
difference between the observed robust Z-score values in case of double
knockdown yAB and the expected additive effect of geneA and geneB knockdown
(βAB= yAB− β0− βA− βB).

Subsequently, two strategies were used to evaluate functional interactions for
each gene pair using a defined statistical model:

First, we used primary screen data to identify likely gene pairs for which GIs
and AEs observed upon combinatorial knockdowns. For this we compared fitting
of the whole model to the fitting of reduced model versions. Following models were
compared:

Model 0 - (only baseline effect β0 in case of either single or double knockdown):
y ~ 1
Model 1 - effect of siRNAgeneA only: y ~ xA
Model 2 - effect of siRNAgeneB only: y ~ xB
Model 3 for additive effect of both siRNAs (AE): y ~ xA+ xB
Model 4 – full model including genetic interaction (GI): y ~ xA+ xB+ xA ∗ xB.

To determine the best model explaining the data for each gene pair we used
Schwarz’s Bayesian Information Criterion (BIC)58. BIC score was calculated for
each model fitted to the data, then the model with the lowest BIC value (BIC*) was
selected as the best-fitting model. Co-knockdown effects of each gene pair were
classified as AEs or GIs when model 3 or model 4 accordingly were defined to fit
data best. Additionally, for the coRNAi screen, we used the method published by
Raftery, 1995 to define the strength of evidence for the respective model to be
selected66. Namely, if the difference (ΔBIC) between the BIC value of the best
fitting model (the model with the lowest BIC value) and the BIC value of any other
model is bigger than 2, then it would indicate a significant evidence for this model
(with BIC*) to truly represent the data. In other words, if ΔBIC > 2 then the model
with lowest BIC value (BIC*) was considered as the one most correctly describing
the data in comparison to other tested models. If the ΔBIC < 2, then two models
were considered as possible alternatives for representing the dataset.

Secondly, to estimate the statistical significance of gene interaction effect for
each siRNA gene combination and to confirm potential AE and GI pairs identified
by the BIC method, we calculated a p-value from the t-value of the linear regression
model terms describing effects of individual gene knockdowns (βA and βB) and
genetic interaction (βAB) as pVal= 2-2 * pnorm(abs(tVal)). To correct for multiple
comparisons, the p-values were adjusted using the false discovery rate (FDR)
method62. We applied FDR-correction on the pulled together p-values of
individual gene knockdown effects (βA and βB) and genetic interaction term (βAB),

thus we calculated FDR-correction on the set of 3 × 435= 1305 p-values. The FDR-
corrected p-values pFDR < 0.005 were considered to correspond to significant GIs.

AEs were defined as pairs for which both individual effect terms (βA and βB)
were significant having a p(FDR) < 0.005, whereas the interaction term (βAB) was not
significant, namely p(FDR) > 0.01. Both were defined only when BIC analysis
indicated Model 3 and each of the SNPs separately had significant effect.

36 gene pairs were subsequently taken for validation experiments by liquid
phase transfection. Of these, we considered 20 to be validated when p(FDR) < 0.01
and Interaction Value had the same directionality (‘−’ or ‘+’) as in the primary
screen.

GIs identified through coRNAi were classified (according to the review article
Boucher B., Jenna S., 2013 and EMBL-EBI ontology website: https://www.ebi.ac.uk/
ols/ontologies) as negative—aggravating or synergistic, i.e., simultaneous
knockdown of both genes magnified the effect size beyond expectations for an
additive effect and positive GIs. Positive GIs were further subdivided into:
alleviating, i.e., the joint effect was approximately equal to the most severe of the
phenotypes and suppressive, i.e., the joint effect was less severe (‘healthier’ or
‘closer to wild-type’) than the most severe of the phenotypes22.

RT-qPCR analysis. Cell lysis and total RNA extraction was done using the RNease
Mini Kit (Qiagen). Reverse-transcription was performed with the SuperScript™ III
First-Strand Synthesis SuperMix for RT-qPCR (Invitrogen). Raw data was collected
with StepOne Software v2.3. RT-qPCR data were obtained from three biological
replicates/siRNA treatment. For each siRNA treatment target mRNA was nor-
malized to that of GAPDH and compared to CTRL siRNA and the log2 of fold
change (2−ΔΔCT) was calculated (see Supplementary Fig. 6). Results were con-
sidered as significant if p-values were below 0.05 in a two-tailed Student’s t-test.
Primer sequences are provided in Supplementary Table 1.

Immunocytochemistry and confocal microscopy. Cells were transfected and
cultured as described above then fixed with 3% paraformaldehyde (PFA) at room
temperature for 20 min, washed with PBS, incubated with 30 mM glycine for 5 min
and washed again with PBS. For LDLR staining cells were permeabilized with
0.05% Filipin III (Sigma #F4767) in 10% FCS for 30 min at room temperature.
Primary antibody: rabbit monoclonal anti-LDLR (Fitzgerald #20R-LR002) was
diluted 1:100 in 5% FCS overnight at 4 °C. Secondary antibody: goat polyclonal
goat anti-rabbit IgG Alexa 568 (Invitrogen #A11011) was diluted 1:400 in 5% FCS.
Fixed cells were imaged using a Zeiss LSM 780 confocal microscope using a 63×/
1.4NA oil immersion objective. For plasma membrane LDLR staining, cells were
not permeabilized, but directly stained for 1 hour at 4 °C with antibody recognising
the extracellular part of LDLR, namely, mouse anti-LDLR-C7 antibody (Progen
#61087) diluted 1:100 in PBS. As a secondary antibody, we used chicken anti-
mouse IgG Alexa 488 (Invitrogen #A-21200) diluted 1:400. Cells were imaged on
an Olympus FluoView 3000 confocal microscope using 60×1.3NA silicon oil
immersion objective.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genetic data utilized in this study have been or will be made publicly available via UK
Biobank (for updates, see here: https://www.ukbiobank.ac.uk/enable-your-research/
about-our-data/genetic-data). A ‘minimum dataset’ of original image files, the Cell
Profiler pipeline and all R-codes required to fully recapitulate how results were generated
from coRNAi-analyses in a step-by-step manner have been deposited at https://
git.embl.de/grp-almf/genetic-interactions-screen-lipid-levels. All source imaging data are
deposited at https://idr.openmicroscopy.org/about/. Additional data that support the
findings of this study can be made available through contacting the corresponding author
Heiko Runz (heiko.runz@gmail.com). Source data are provided with this paper.

Code availability
Computational codes for all interaction analyses (robust linear model fitting, BIC model
selection and FDR correction) in the UK Biobank and on RNAi experimental data are
available at: https://git.embl.de/grp-almf/genetic-interactions-screen-lipid-levels.
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