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Non-Hermitian physics for optical manipulation
uncovers inherent instability of large clusters
Xiao Li1,2, Yineng Liu3, Zhifang Lin4,5, Jack Ng1✉ & C. T. Chan 2

Intense light traps and binds small particles, offering unique control to the microscopic world.

With incoming illumination and radiative losses, optical forces are inherently non-

conservative, thus non-Hermitian. Contrary to conventional systems, the operator governing

time evolution is real and asymmetric (i.e., non-Hermitian), which inevitably yield complex

eigenvalues when driven beyond the exceptional points, where light pumps in energy that

eventually “melts” the light-bound structures. Surprisingly, unstable complex eigenvalues are

prevalent for clusters with ~10 or more particles, and in the many-particle limit, their presence

is inevitable. As such, optical forces alone fail to bind a large cluster. Our conclusion does not

contradict with the observation of large optically-bound cluster in a fluid, where the ambient

damping can take away the excess energy and restore the stability. The non-Hermitian theory

overturns the understanding of optical trapping and binding, and unveils the critical role

played by non-Hermiticity and exceptional points, paving the way for large-scale

manipulation.
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Optical trapping (OT) is a process in which optical forces
trap particles at the intensity extrema1–6. In addition, it
has been demonstrated experimentally that quite a large

number of particles can be bound by scattering, and this process
is called optical binding (OB)7,8. Despite decades of research7–20,
the following question remains unanswered: can OB assemble a
large number of particles to create some form of macroscopic
“optical matter”? This paper aims to show that this is impossible,
even for a modest number of particles (N > ~10) in a typical
situation. The optically bound clusters found experimentally are
actually not bound by light alone. Additional forces, such as
dissipative forces arising from viscosity, are indispensable in
overcoming instability.

This inevitable instability can be explained by non-Hermitian
physics21–23. Conventionally, physicists used to focus on Her-
mitian matrices of conservative closed systems, as they yield real
eigenvalues. However, non-Hermitian matrices have recently
attracted considerable attention because they can also yield real
eigenvalues (for example, in the exact phase of a parity-time
symmetric system)24,25. In nature, most systems incur losses, and
hence, non-Hermitian systems are ubiquitous. The force matrices
governing OB stability are actually non-Hermitian because we are
dealing with open systems with incoming light and radiative
loss26–31. More interestingly, they are different from the usual
non-Hermitian matrices studied in the exceptional point (EP)
literature32–35, which typically involve symmetric matrices with
complex diagonal terms36–40. The force matrices for light-bound
clusters are real but asymmetric (thus non-Hermitian) and they
possess EPs before which all eigenvalues are real, but turn com-
plex once these EPs are crossed. Thus, a stable OB (stable equi-
librium) can only be achieved before reaching the EP. This paper
aims to demonstrate that when the number of particles increases
in an optically bound cluster, the system will always pass through
EPs to yield unstable conjugate pairs of complex eigenvalues,
irrespective of details such as particle size, shape, composition,
and the illuminating light. We stress that energy is conserved for
the entire system composed of light and particles, while non-
Hermiticity arises when we consider only the particles’ degrees of
freedom (and ignoring the degree of freedom for light), which can
exchange energy, momentum, and angular momentum with the
light. The “run-away” phenomenon associated with the EP
(exponentially growing trajectory when perturbed from the
equilibrium) can be suppressed to a certain extent by viscous
dissipation8–11,41–44.

Results
Stability theorem. The system stability is investigated by con-
sidering N identical spherical particles acted upon solely by
optical forces and reaching equilibrium:

m
d2

dt2
ΔX ¼ FðΔXÞ � K

$
�ΔX; ð1Þ

where m is the single-particle mass, t is the time, ΔX ¼ ðΔx1;
Δy1;Δz1; � � � ;ΔxN;ΔyN;ΔzNÞ is the displacement from the
equilibrium, F ¼ ðFx1

; Fy1
; Fz1

; � � � ; FxN
; FyN

; FzN
Þ is the optical

force, and K
$

ij ¼ ∂Fi=∂ΔXj is the 3N × 3N force matrix at the
equilibrium11,41,45. In general, the forces acting on a collection of
N spherical lossless particles are conservative if and only if

Work done ¼
I

p
FðxÞ � dx ¼

Z Z
S
∑
3N

i;j¼1

∂F j

∂xi
dxi ^ dxj ¼ 0; ð2Þ

where F and x are the vectors (each with 3N components) for the
optical forces and positions of the N particles, p is any arbitrary

closed path, S is an area bound by p, and ^ denotes the wedge
product with dxi ^ dxj ¼ �dxj ^ dxi ¼ dxidxj. Alternatively, as
one can deduce from the above condition, the system is con-
servative if and only if

∂Fj

∂xi
� ∂Fi

∂xj
¼ 0 ð3Þ

everywhere and for all i and j. The F and K
$

are numerically
evaluated using the rigorous and highly accurate generalized
multi-particle Mie theory46 and Maxwell stress tensor47 (see
Methods). Being nonlinear dynamical systems, OT and OB are
stable in the Lyapunov sense if and only if their linear approx-
imations in Eq. (1) are stable48. In other words, the stability is

fully governed by Ki, which represents the eigenvalues of K
$
. The

general solution to Eq. (1), except at the EP (which is of measure
zero), can be expressed as

ΔX ¼ ∑
3N

i¼1
αiΔX0ie

iΩit ¼ ∑
3N

i¼1
αiΔX0ie

iReðΩiÞte�ImðΩiÞt ; ð4Þ

where αi is the complex vibration amplitude for the ith mode to
be determined by initial conditions, Ωi is the generally complex

ith vibrational frequency, ΔX0i is the ith eigenvector of K
$
, and

Ki ¼ �mΩi
2. In brief, a cluster becomes unstable when Ki > 0 for

any i (Ωi is imaginary) or when Ki is a complex number for any i
(Ωi is complex). A detailed stability analysis is presented in
Supplementary Note 1. This paper focuses on the instability
induced by complex Ki, which is related to EPs, and is prevalent
in the many-particle limit.

EPs in OT. To illustrate the basic ideas, we first consider the
simplest example of a single-particle OT under a generic incident
light, whose generally non-defective real 3 × 3 force matrix can be

block-diagonalized into a 2 × 2 real matrix K
$

OT and a real
scalar49. The scalar always corresponds to simple harmonic
motion (if stable); thus, we are only concerned with the real
matrix. Without loss of generality, upon appropriate rotation, the

real matrix K
$

OT can be expressed as

K
$

OT ¼ S
$
þA

$
¼ aþ b 0

0 a� b

� �
þ 0 g

�g 0

� �
ð5Þ

where S
$

¼ ðK
$

OT þ K
$

OT
TÞ=2 and A

$
¼ ðK

$
OT � K

$
OT

TÞ=2 are,
respectively, the conservative symmetric and nonconservative
anti-symmetric components, a is the average trap stiffness, b is

half the level spacing between the two trap stiffnesses of S
$
, and g

stems from the nonconservative torque. Equation (5) describes an

anisotropic harmonic oscillator associated with S
$
being driven by

nonconservative torque associated with A
$
. We also note that Eq.

(5) can be applied to both 2D and 3D cases, as in the 3D case, we
can block diagonalize the 3 ´ 3 matrix to obtain Eq. (5).

The eigenvalues of K
$

OT are

K± ¼ �mΩ2
± ¼

a± 1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � g2

q
j; jgj< jbj;

a± ij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � g2

q
j; jgj> jbj;

8><
>: ð6Þ

We only consider the case ReK ± < 0, otherwise the system is
unstable, independent of the value of g. At g ¼ 0, the system
exhibits simple harmonic oscillation about the zero-force
position. As evident in Eq. (5), a finite b signifies an
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anisotropy50,51 between the two axes, inducing a level spacing in
the vibration spectrum. This generates a rotational barrier for the
particle, because it prefers to align with one of the axes. When
jgj< jbj, the nonconservative torque associated with g cannot
overcome the barrier b. The modes are twisted by g, inducing
non-orthogonality; otherwise, they are quite similar to harmonic
oscillators. For jgj> jbj, a conjugate pair of vibration frequency,
Ω+ and Ω−, emerges, corresponding to stable spiral-in and
unstable spiral-out motions, respectively. The point jgj ¼ jbj is
the EP, which is the singular point at which the non-Hermitian
matrix becomes defective.

Let us consider a dielectric particle trapped by a strongly
focused Gaussian beam (standard optical tweezers), as shown in
Fig. 1a. Figure 1b plots the eigenvalues K± versus ζ , which defines
the beam’s polarization (ε̂ ¼ x̂ cos ζ þ iŷ sin ζ). The parameter ζ
ranges from 0 (linear polarization) to π=4 (circular polarization).

The conservative part of the force matrix S
$

and the nonconser-

vative part A
$

are, respectively, symmetric and anti-symmetric
upon permuting any two indices. Thus, certain symmetries may

be compatible with S
$

but not A
$
, and vice versa. For linear

polarization with ε̂ ¼ x̂ (ζ ¼ 0), the xz- or yz-plane mirror

symmetry eliminates A
$

(g ¼ 0), whereas the asymmetry between
x and y axes allows b ≠ 0. The opposite happens for circular
polarization with ε̂ ¼ ðx̂ þ iŷÞ= ffiffiffi

2
p

(ζ ¼ π=4). The cylindrical
symmetry of the beam enforces b ¼ 0, whereas the finite angular
momentum of light gives g ≠ 050. Consequently, an EP where
jbj ¼ jgj must exist for an intermediate ζ between 0
(jbj≠ 0; jgj ¼ 0) and π=4 (jbj ¼ 0; jgj≠ 0). As shown in Fig. 1b,
as the value of ζ increases, the two originally real eigenvalues
(light blue lines) coalesce at the EP marked by purple crosses,
whereas the imaginary part bifurcates into a conjugate pair.

Consequently, once passed through the EP, ImðΩ�Þ< 0, render-
ing the system unstable, as shown in Eq. (4). The instability
originates from the nonconservative torque (associated with g),
which exceeds the half level spacing (b), as shown in Eq. (6). This
overturns the intuitive but inaccurate common understanding
that instability is always due to the nonconservative force
overcoming the conservative one, or the conservative force itself
is unstable. It is somewhat surprising that it is the level spacing
characterized by b that plays the role in stability. Even when both
trap stiffnesses are very large (i.e., a ! �1), the complex
instability still emerges whenever |g| > |b|. Figure 1c plots K±
against the particle radius at an elliptical polarization marked by
the yellow arrow in Fig. 1b (ζ ¼ 37:5�). Here, b and g vary with
the radius, creating alternating intervals of real (gray region) and
complex (white region) eigenvalues. When g exceeds b, the
particle orbits around the trap with increasing speed, and
eventually being torn away by the centrifugal force45.

EPs in OB. Meanwhile, EPs are also found in OB. It was
experimentally demonstrated by Burns et al.7,8 that analogous to
the binding of matter by electrons, light can bind microparticles
into a form of soft condensed matter, known as “optical matter”.
We will see that, unlike electrons, photons cannot bind many
particles because the laser power is limited, and more impor-
tantly, the electronic Hamiltonian is Hermitian, but its counter-

part in OB, K
$
, is manifestly non-Hermitian.

As shown in Fig. 2b–e, particle clusters are trapped and
bounded on the xy-plane by the incident field depicted in Fig. 2a.
The mirror symmetries about the xz- and yz-planes decouple the
z motion from the x and y motion; thus, we focus on the x and y
motion. The incident wave possesses neither energy flow (so
scattering force vanishes) nor intensity gradient (so gradient force

Fig. 1 Exceptional point in optical trapping of a single particle. a Schematic of the optical trapping of a dielectric particle (nparticle ¼ 1:57, rS= 0.5 μm) by a
strongly focused Gaussian beam (λ ¼ 1:064 μm, N.A.= 1.2, filing ratio= 1, power= 1 mW) in water (nwater ¼ 1:33). b Ki versus the polarization
(ε̂ ¼ x̂ cos ζ þ iŷ sin ζ) of the Gaussian beam, ranging from linear (ζ = 0) to circular (ζ ¼ π=4). The exceptional point of K

$
emerges at ζ ¼ 2π=15 (marked

by purple crosses), beyond which the eigenvalues become complex, which implies instability. c The stability also depends on the particle size. Ki become
recursively complex (white region) and real (gray region) as the particle radius is increased. The polarization used here is marked with a yellow arrow in b.
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vanishes) along the x and y directions52; and hence any transverse
force that occurs is exclusively owing to scattering, which
modifies the spatial light distribution to induce OB. As evident
in Fig. 2b–e, the total field is drastically different from the
uniform incident field.

Let us consider the “momentum vorticity”, defined as
C ¼ H

particle circumference p � dr, where p represents the photon
momentum density. In Fig. 2d–e, the red and yellow circles
indicate C > 0 and C < 0, respectively. C ≠ 0 implies the field
tends to rotate the particle, favoring the occurrence of complex
modes (CMs). Particles not marked by a circle have C ¼ 0, which
is enforced by the mirror symmetries, but that does not exclude

CMs. Consider the component A
$

μν ¼ 1=2½∂Fμ=∂xν � ∂Fν=∂xμ�, it
can couple the coordinates μ and ν in a non-Hermitian manner,
thus inducing CMs if it is sufficiently large, even when the
“momentum vorticity” is absent. Here, μ and ν each label an
arbitrary cartesian coordinate of an arbitrary particle. This is
similar to how ∂Fx=∂y � ∂Fy=∂x ¼ 2g couples x and y in single-
particle OT.

The configuration shown in Fig. 2b is a chain of two spheres,
which possesses four modes in xy-plane, and the corresponding
force matrix is

K
$

¼

0:027 0 �0:027 0

0 �0:580 0 0:580

�0:027 0 0:027 0

0 0:580 0 �0:580

2
6664

3
7775
pN
μm

: ð7Þ

The mirror symmetries about the xz- and yz-planes and the
translational invariance along x and y directions make the force
matrix completely symmetric (i.e., Hermitian) and thus the
eigenvalues must be real. However, increasing the number of
particles (e.g., three spheres in Fig. 2c) will break the Hermiticity.
More particles imply more degrees of freedom but the number of
available spatial symmetries does not increase indefinitely. This
breaks the Hermiticity because the symmetry is insufficient to
make the force matrix fully symmetric. For example, despite it
sharing the same symmetry as the two spheres case, the force

matrix for the three-sphere chain (Fig. 2c) is asymmetric:

K
$

¼

0:010 0 �0:006 0 �0:004 0

0 �0:159 0 0:140 0 0:019

�0:007 0 0:015 0 �0:007 0

0 0:139 0 �0:278 0 0:139

�0:004 0 �0:006 0 0:010 0

0 0:019 0 0:140 0 �0:159

2
666666664

3
777777775
pN
μm

:

ð8Þ
In addition to the number of particles, symmetry-breaking also

increases the non-Hermiticity. The triangular structure compris-
ing of 3 particles in Fig. 2d exhibits a single mirror symmetry on
the yz-plane (less than the two mirror symmetries for the chain in
Fig. 2c), which makes the force matrix possess even more
asymmetric components:

K
$

¼

0:027 0 �0:027 0

0 �0:580 0 0:580

�0:027 0 0:027 0

0 0:580 0 �0:580

2
6664

3
7775
pN
μm

: ð9Þ

In Eqs. (8) and (9), the ratio of the asymmetric off-diagonal
pairs are, respectively, 4:15, and 12:15, i.e., the one with
fewer spatial symmetries clearly has more asymmetric matrix
elements. Detailed discussion and information about the force
matrices (Eqs. (7–9)) can be found in Supplementary Note 2. We
note that, for the triangular geometry, EPs can already exist
although they are rare (see Supplementary Note 2).

The cluster of six particles in Fig. 2e exhibits mirror
symmetries about the xz- and yz-planes. However, given the
2N= 12 transverse degrees of freedom, the symmetries cannot
make the force matrix symmetric. Consequently, EPs can emerge
easily. For the geometry shown in Fig. 2e, ReðK iÞ and ImðK iÞ are
plotted against the particle radius in Fig. 2f, g, respectively. At
each radius, the configuration is relaxed to find the equilibrium
positions for the particles. Ten modes are real (black) in this
parameter range, whereas the remaining two (light blue) are
initially real but become complex after reaching the EP, which is
marked by purple crosses in the figure. After crossing the EP, the
real parts (light blue) merge, whereas the originally zero
imaginary part (red) splits into an equal but opposite pair of
CMs. In Supplementary Note 2, other examples of optically

Fig. 2 Exceptional points in optical binding. a Schematic of a pair of counter-propagating plane waves that are applied to confine particles on the xy plane.
Despite the incident light intensity is uniform over the xy plane, the scattering of light among the spheres modifies the spatial light distribution, as shown in
b–e, which induces binding forces. The colored contour plots in b–e represent the normalized total field intensity for the spheres with b rS ¼ 0:31λ and
nr ¼ 1:2, c rS ¼ 0:31λ and nr ¼ 1:2, d rS ¼ 0:41λ and nr ¼ 1:2, and e rS ¼ 0:27λ and nr ¼ 1:51. All figures are drawn to scale. Red (yellow) circles denote
positive (negative) momentum vorticity C (see main text) near each sphere. f–g plot the real (f) and imaginary (g) components of the eigenvalues for the
force matrix of e against the particle radius. The exceptional point is marked by purple crosses.
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bound structures with EP are presented, all of them corroborate
the analysis.

Prevalence of CMs in OB systems. Figure 3a shows the per-
centage of CMs versus cluster size. Each colored line represents a
class of geometry depicted in Fig. 3b–g. The CM percentages
increase with N and become dominant for a large value of N. The
red (blue) lines correspond to an incident non-standing (stand-
ing) wave, which does (does not) directly exert a nonconservative
force on the individual particles52,53. The results show that it is
more likely for the non-standing wave to induce complex
eigenvalues and hence the red lines rise faster than the blue lines.
For a cluster bound by a non-standing wave, the first pair of CMs
emerges at N < 10 and most modes are complex when N > 50. All
clusters with N > 70 possess CMs, demonstrating the necessity to
account for the CM physics even for moderately sized clusters.
The line with red solid circles in Fig. 3a corresponds to the
experimental configuration in ref. 8, where CMs exist for all
calculated cluster sizes, ranging from N= 7–91. The non-
Hermitian physics analysis implies that the results referred to
in ref. 8 requires an alternative interpretation: the optical forces

alone are insufficient to produce optical crystallization8,54, and
additional forces, such as viscosity, are essential.

Figure 3h shows the mode distribution for the eigenvalues Si of

S
$

¼ ðK
$
þK

$T

Þ=2 for the configuration shown in Fig. 3g. As N
ranges from 7 to 91, the “bandwidth” of the eigenvalues doubles,
whereas the number of eigenmodes increases by 13 times. This
implies an ~6.5-fold increase in the average “density of
eigenvalues” within a specific spectral interval and a correspond-
ing decrease in the gap separating adjacent eigenvalues. The
decrease of the gaps between eigenvalues with increasing N is

universal, independent of details. The conservative force S
$

is
induced by the external light source with a finite intensity, thus Si
is bounded by a lower bound Slower and an upper bound Supper.
Then, for N particles, there will be 3N modes within a finite and
fixed interval ½Slower; Supper� independent of N. Evidently, the
average level spacing has to diminish to zero as N ! 1 (Fig. 3i).
The inherent non-Hermiticity will have an increasingly high
probability to coalesce some of the modes as the level spacings get
smaller and smaller. As a consequence, the encounter with an EP
becomes inevitable in the large N limit. The emergence of

Fig. 3 Prevalence of complex modes with increasing particles. a Percentage of complex modes (CMs) increases with particle number for all considered
geometries. b Planar square lattice (rS ¼ 0:2λ, nr ¼ 1:2) bound by four in-plane plane waves. c Cubic lattice (3D) (rS ¼ 0:2λ, nr ¼ 1:2) bound by six plane
waves. d Planar OB confined by two counter-propagating plane waves. e Planar quasi-crystal lattice (rS ¼ 0:2λ, nr ¼ 1:1) bound by five in-plane plane waves.
f Planar triangular lattice A (rS ¼ 0:2λ, nr ¼ 1:1) bound by three in-plane plane waves. g Planar triangular lattice B (rS ¼ 1:7μm, λ ¼ 0:5145μm,
nr ¼ 1:57=1:33) bound by three nearly x-polarized, z-propagating plane waves with the angle between their k-vectors being ~2°. This configuration was also
considered in ref. 8. The details regarding the incident waves and the particle arrangement for b–g are presented in Supplementary Note 3. h The distribution
of the eigenvalues of S for the geometry in g. The density of eigenvalues within a specific spectral interval increases with N. i The minimum level spacing
(jΔSijMin) decreases with N. j Correlation between gThreshold and δMin for each matrix size, constructed from uniform or Gaussian random numbers.
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complex eigenvalues in the many-particle limit is in fact a
mathematical consequence of dealing with large asymmetric real
matrices. It is known that the eigenvalues for a sufficiently large
random asymmetric matrix are complex, even for the tiniest
asymmetry55. We generated 10,000 random matrices (see
Methods for definition) for each matrix size (Nmatrix), with
Nmatrix ranging from 10 to 100 in steps of 2. We define gThreshold as
the minimum asymmetry in the matrix required to generate the
first pair of CMs (see Methods) and δMin as the minimum level
spacing. For any Nmatrix, the correlation (shown in Fig. 3j)
between gThreshold and δMin are ~0.75 and ~0.65 for uniform and
Gaussian random numbers, respectively. Clearly the asymmetry
(gThreshold) required to induce CMs is smaller when the minimum
level spacing (δMin) is smaller. The minimum level spacing
vanishes in the large Nmatrix limit, so does gThreshold, indicating
even a tiny asymmetry is sufficient to generate CMs when the
matrix size is large. The average percentage of CMs for the
random matrix filled with uniform random numbers is also
plotted in Fig. 3a. The trend is similar to the optically bound
clusters. These results are in good agreement with our analysis.

Stability phase diagrams. Figure 4a–c shows the stability phase
diagrams for the triangular lattices of particles trapped by three in-
plane plane waves (see insets). It is now well-accepted in the
literature that optical force alone can bind particles into a stable
entity. Although it is true for a small cluster of particles with a
small refractive index, OB is stable as shown in Fig. 4 only in a very
small green domain in the phase diagram, and the stable domain
diminishes with increasing N. Evidently, the interpretation of OB
requires refinement, especially when the scattering is strong such
that the nonconservative force becomes prominent. In the gray
domains, equilibrium configurations cannot be found, indicating
the absence of optical crystallization (trapping a large number of
particles at the intensity extrema of an optical lattice)56. This is a

consequence of having an OB force induced by light scatter-
ing being greater than the OT force induced by the incident field.
In the orange domains, zero-force positions can be found but those
are unstable equilibria because the clusters possess CMs. Such
systems are unstable when acted upon by optical force alone but
can be stabilized with sufficient damping (when the damping
coefficient γ> γicritical ¼

ffiffiffiffi
m

p jImðK iÞj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijReðK iÞj

p
for all modes11).

When the particles are submerged in a fluid, the hydrodynamic
damping57,58 provides the dissipation needed to damp out unstable
CMs. Similar behaviors should be qualitatively expected for all
types of dissipative forces added to OB, because the key to stabilize
OB lies in dissipating the energy injected by light. In the present
study, dynamic simulations were performed on some particle
clusters experiencing optical force and hydrodynamic forces. The
outcome was qualitatively similar to the case where only optical
forces and damping were considered (see Supplementary Note 4
and Supplementary Movies 1–2).

As evident in Fig. 4d, the required damping for stabilization
generally increases with N. Figure 4e, f shows the fraction of area
covered by stable, complex unstable, and no-equilibrium phases.
As N increases, the no-equilibrium phases become increasingly
dominant, whereas the stable domains described in ref. 8 contract.
The complex unstable domains first expand by replacing the
stable domain and then shrink as they are replaced by the non-
equilibrium domains. Optical crystallization cannot be achieved
in the gray domains even with damping. Thus, the particles do
not always follow the predefined incident interference pattern56.

Discussion
Contrary to the insightful proposal of OB put forth previously7,8,
the optical force gradually loses its ability to stabilize a cluster
with an increasing number of particles, because the non-
conservative force is allowed to continuously “pump” energy into
the system, which finally “melts” the system. Nevertheless, the

Fig. 4 Stability phases for the optically bound triangular lattices. Gray areas denote the absence of equilibrium (zero-force configuration). The green
areas denote stability regions where light alone stabilizes the cluster (i.e., optical binding). Orange areas denote the region where damping is required to
stabilize the cluster (opto-hydrodynamic binding). a N= 7, b N= 61, c N= 91. d Minimum damping coefficient required to stabilize the cluster versus N. A
larger damping value is required at a larger N. e–f Percentages of the phase space area occupied by OB, opto-hydrodynamic binding, and no-equilibrium
phase, with e representing the triangular lattice and f the square lattice. The lines linking the points are guides to the eyes only.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26732-8

6 NATURE COMMUNICATIONS |         (2021) 12:6597 | https://doi.org/10.1038/s41467-021-26732-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


stability of such a system can be retained by introducing sufficient
damping, which prevents energy accumulation. The fact that
dissipation in water damps out the non-Hermitian instability
does not mean non-Hermiticity has no consequence. We take
single-particle trapping as an example, Svak, V. et al.44 have
shown the equipartition theorem is broken in the presence of
nonconservative forces. This is in fact also a consequence of the
system’s non-Hermiticity. Our work offers a new perspective on
OT and OB. In addition, our theory is applicable to other non-
Hermitian systems as well, including, but not limited to, acoustic
trapping and binding.

Vacuum OT59 and OB have emerged as a hot and important
topic, partly because of the possibility to realize quantum
entanglement of macroscopic objects60,61. In fact, vacuum OB has
been experimentally realized19,20. In these experiments, since only
a few particles are involved, the non-Hermitian effect is negli-
gible. Nevertheless, in Supplementary Note 5, we show that in
agreement with the conclusion made here, when the number of
particles increases, or when the certain system symmetry is bro-
ken, the non-Hermiticity should be taken into account for a
complete description. In vacuum, optical crystallization and OB
are generally unstable in the many-particle limit. In water, suf-
ficient damping can remedy the trapping. As such, OT and OB in
water, while primarily due to the Lorentz force, must be assisted
by damping, and are better described as “opto-hydrodynamic
trapping and binding”. All these are consequences of the inherent
non-Hermitian feature of an open system that possesses EPs.

We note that there are very special configurations in which an
optical cluster can grow infinitely big. For example, an infinite
one-dimensional periodic chain of particles (with no boundaries)

possesses a Hermitian K
$
, and thus, is not subjected to complex

instability even when N ! 1. However, under the many-
particle limit, as the level spacing approaches zero, the smallest
amount of symmetry breaking will introduce nonconservative
forces that will destabilize the system. In other words, the pro-
tecting symmetry must be “perfect”. More specifically, all particles
are required to be perfectly identical, all counter-propagating
waves should have the same amplitude and matching phases, etc.
In practice, such stability is fragile, as constructing an infinite
periodic lattice of identical particles is basically impossible to
realize experimentally. We remark that if we replace ideal sphe-
rical particles that have no internal degree of freedom with a non-
spherical particle that has some structural degrees of freedom, the
instability will be even more likely to occur because there are
more degrees of freedom in the system at the same number of
particles.

Finally, our work has an impact beyond OT and can be applied
to study any large non-Hermitian systems, which can be in optics,
mechanics, acoustics, etc. Some examples, which warrant further
investigations, are listed here. (1) Whenever we use a wave to trap
particles, such as in acoustic trapping62,63 or OT, energy can be
exchanged between waves and particles, rendering the particle
system alone nonconservative. Such systems would possess non-

Hermitian K
$
. In fact, the transition from sufficiently damped

stable complex modes to insufficiently damped unstable complex
modes were observed in acoustic trapping for a single trapped
particle64, although its non-Hermitian characteristics were not
recognized. (2) Anti-symmetric real matrix is seldom found in
other non-Hermitian systems, which are usually represented by
symmetric matrices (reciprocal coupling) with complex diagonal
terms (indicating explicit gain/loss). It extends the realm of non-
Hermitian physics to an under-explored regime that cannot be
easily realized otherwise. (3) The emergence of complex modes
with increasing matrix size is a mathematical consequence for

non-Hermitian systems. As such, the emergence of complex
eigenvalues for large matrices is a universal phenomenon that can
also be expected in another large non-Hermitian system.

Methods
Computing electromagnetic fields for a collection of spherical particles. The
Maxwell equations governing the behavior of light are solved by the multi-particle
generalization of the Mie theory46. In short, the incident and scattered waves of
each sphere are expanded in a series of vector spherical wavefunctions. Applying
the vector translation–addition theorem and the standard electromagnetic
boundary conditions, the expansion coefficients can be determined by solving a
linear system of equations. Such a semi-analytical approach is highly efficient and
accurate.

Modeling the strongly focused Gaussian beam. A strongly focused Gaussian
beam is modeled by the vector generalization of the Debye integral41. The lens is
much larger than the wavelength, and thus, geometrical optics can be applied to
solve the focusing problem. Then, using the Debye integral, the full-wave elec-
tromagnetic field in the focus region can be determined by connecting it to the
geometrical optics solution. Such an approach is known to yield accurate results
that can be directly compared with the experimental results.

Computing the optical force. The time-averaged optical force, referred to as
optical force in this paper, can be calculated using the surface integral of the time-
averaged Maxwell stress tensor47:

F ¼
I

S
hT
$
i
t
� da; ð10Þ

where hT
$
it is the time-averaged Maxwell stress tensor, and the electromagnetic

fields required to evaluate this tensor are obtained by the Mie theory. This
approach is highly accurate.

Searching for equilibrium positions. The equilibrium configurations are identi-
fied by performing dynamic simulations to propagate the particle motion forward
in time inside a fictitious medium with damping using an efficient integrator. The
simulation stops once we find an equilibrium where the forces acting on all par-
ticles become zero.

Evaluating the force matrix and identifying the EPs. Once equilibrium is

reached, we numerically evaluate the force matrix, K
$

ij ¼ ∂Fi=∂Δxj , by using the

finite difference method. If K
$

is found to be defective at a certain value of a
parameter, it is called an EP.

Definition of random matrix. Any matrix K
$

can be split into a symmetric part

S
$

¼ ðK
$
þK

$
TÞ=2 and an anti-symmetric part A

$
¼ ðK

$
�K

$
TÞ=2. By applying a

similarity transformation U
$

that diagonalizes S
$
, the original matrix becomes

U
$
K
$
U
$

T ¼ U
$

S
$
U
$

T þ U
$
A
$
U
$

T ¼ S
$ 0 þ A

$ 0; ð11Þ

where S
$ 0 is a diagonal matrix and A

$ 0 is an anti-symmetric matrix. We generate

random matrices S
$ 0 and A

$ 0 that have similar forms to study their threshold
behavior. We define

MN ´N ¼ S
$

random þ gasymArandom; ð12Þ

where S
$

random is a random diagonal matrix with elements ai uniformly distributed

between −1 and 0, whereas A
$

random is an anti-symmetric matrix with random
elements g jk ¼ �gkj uniformly distributed between −1 and 1. Here gasym tunes the
strength of the anti-symmetric non-Hermitian term. The minimum level spacing
δMin is the minimum value of jai � ajj for any pair of i and j where i≠ j. For each
random matrix, we calculate gThreshold, the minimum gasym required to generate the
first pair of CMs, by using bisection. Random numbers ai and g jk with Gaussian
distributions are also considered, and the results are qualitatively similar.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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