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Nanoscale neural network using non-linear
spin-wave interference
Ádám Papp1, Wolfgang Porod 2 & Gyorgy Csaba 1✉

We demonstrate the design of a neural network hardware, where all neuromorphic com-

puting functions, including signal routing and nonlinear activation are performed by spin-

wave propagation and interference. Weights and interconnections of the network are realized

by a magnetic-field pattern that is applied on the spin-wave propagating substrate and

scatters the spin waves. The interference of the scattered waves creates a mapping between

the wave sources and detectors. Training the neural network is equivalent to finding the field

pattern that realizes the desired input-output mapping. A custom-built micromagnetic solver,

based on the Pytorch machine learning framework, is used to inverse-design the scatterer.

We show that the behavior of spin waves transitions from linear to nonlinear interference at

high intensities and that its computational power greatly increases in the nonlinear regime.

We envision small-scale, compact and low-power neural networks that perform their entire

function in the spin-wave domain.
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The interest in neuromorphic computing hardware
increased significantly in recent years, for two main rea-
sons. It was realized long ago that digital systems (let they

be CPUs or Graphics Processing Units, GPUs) are rather ineffi-
cient for such inherently analog tasks. A more recent develop-
ment is that traditional, MOS-transistor-based devices turned out
to have a strong staying power for Boolean, digital logic—which
has driven the research of emerging nanoelectric devices towards
neuromorphic, analog problems. These are the application areas
where emerging devices have the potential to show substantial
benefits over MOS switches1.

A central challenge of the research on neuromorphic devices is
that most computing models require highly interconnected sys-
tems, i.e., artificial neurons with a large number of connections,
often all-to-all connections. Stand-alone neuronal units have little
utility—there should always be an effective way to interconnect
those devices to computing systems. This is where wave-based
computing concepts show their strengths: if the computing device
is realized in a wave-propagating substrate, then interference
patterns realize an all-to-all interconnection between points of
this substrate.

Recently, Hughes et al.2 presented a theoretical framework for
implementing a recurrent neural network (RNN) in a medium
described by a nonlinear wave equation. Specifically, it was shown
that if a substrate is described by the nonlinear wave equation and
this substrate is excited and probed at given points, then the
equations that give the wave dynamics between the prescribed
points map to an RNN. In their work, the nonlinearity of the
medium is modeled by a spatially varying and intensity-
dependent wave propagation speed. Training of the neural net-
work is implemented by adjusting the spatially dependent wave
propagation speed by gradient-based computational learning.

The work of Hughes et al.2 is an original, fresh approach to wave-
based computing, but leaves crucial questions unanswered. It is
admitted that numerical simulations with the computational
learning machine do not fully support the premise of the study, as
the RNN-equivalent nonlinear structure shows similar performance
to what is achievable by linear propagation. Thus, it is not proved
that the presented structure can indeed exploit nonlinear waves to
achieve better performance in problems beyond linear signal pro-
cessing. Furthermore, it is not elaborated, how the form of non-
linearity assumed in the study can be realized by a physical system,
albeit a few hints are provided for optical implementations.

The power of wave-based computing has long been harnessed
in optical computing and the high interconnectivity is a major
selling point for most optical (holographic, interference-based)
devices. It is, however, clear that although linear interference is
excellent for high interconnections, its computing power is fairly
limited. Linear interference is sufficient only for signal processing
tasks: general-purpose computing and all variants of neuro-
morphic computing require some sort of nonlinearity. In optical
computing, implementing nonlinearities requires high optical
intensities and nonlinearities are often implemented separately
from the linear scatterer that provides the interconnections.
Other types of waves may implement nonlinear functions in a
more natural way. In the present study, we show that spin waves
provide both high interconnections and the nonlinearities
required for neuromorphic computing.

Spin waves (often also referred to as magnons) are wave-like,
collective excitations of a spin ensemble3. Here we restrict our-
selves to spin waves propagating in ferro- and ferrimagnetic thin
films. Spin-wave behavior is approximately linear at low ampli-
tudes, but nonlinearities become significant at moderate inten-
sities. Unlike photons, magnons interact with each other, which is
a requirement for non-trivial computation. Spin waves show

many similarities to electromagnetic waves and preserve many
benefits of optics, e.g., they can maintain long coherence length
even at room temperature4. Spin waves exist down to sub-100 nm
wavelengths at microwave frequencies and they are suitable for
integration with electronic components5.

Spin-wave-based computing devices (which are also referred to
as magnonic devices) are widely regarded as a promising beyond-
Moore computing paradigm. They have already been experi-
mentally demonstrated for logic, signal processing, and optically
inspired computing3,5. It has been also realized that high con-
nectivity and built-in nonlinearity make spin waves6 (and spin-
based devices in general7) an ideal choice for neuromorphic
computing.

However, to actually use spin waves for useful computing tasks,
an inverse problem must be solved: one must find a scatterer
configuration that yields a certain input/output relation via the
formation of an interference pattern. This is in general a daunting
task due to the complexity of nonlinear wave propagation.

In the present study, we use the work of Hughes et al.2 as a
starting point, but we study an experimentally realizable magnetic
system and model it with full micromagnetic simulations that can
precisely describe experimental scenarios. We employ a specific
physical system and program it to do true neuromorphic func-
tions. The device is a magnetic thin film, with a spatially non-
uniform magnetic field acting on it. A custom micromagnetic
solver based on a machine learning framework, Pytorch (https://
pytorch.org), is used to design a magnetic-field distribution that
steers (scatters) spin waves to achieve the desired function. We
named our micromagnetic design engine Spintorch.

Specifically, we design a nanoscale device that performs the
functions of a multilayer neural network and which device is
physically realizable using microelectronics-compatible technol-
ogies. Our work builds on prior art in wave-based computing
methods, but rather than choosing an abstract wave equation as
its starting point, we start from the physics of magnetic materials.
We show that the rich and complex physics of spin waves in a
ferrimagnetic thin film can be engineered to perform neuro-
morphic computation.

For small-amplitude excitations, Spintorch solves an inverse pro-
blem for the linear wave equation—it designs a magnetic-field dis-
tribution that performs a desired linear operation (such as matrix
multiplication, convolution, pattern matching, and spectral analysis,
matched filtering) as we will show in “Design of spin-wave scatterers
by computational learning.” The algorithm has great utility already in
this regime, as it automatizes the design of spin-wave-based Radio
Frequency (RF) signal processors.

Higher-amplitude spin waves, with a precession angle above
few degrees, show nonlinear behavior and Spintorch—the exact
same computational learning engine—can be used to design a
nonlinear interference device. This device is functionally
equivalent to the RNN of Hughes et al.2 and in “Linear vs.
nonlinear interference in the scattering block,” we will show how
the introduction of nonlinearity increases the computational
ability of the device. The spin-wave scatterer becomes a true
neural network, exploiting nonlinearity to exceed the perfor-
mance of linear classifiers.

Our work also addresses the challenge of device integration,
possibly the biggest obstacle in the way of practically useful spin-
wave computing. There is a number of spin-wave-computing
devices designed in the literature, but it is challenging to inter-
connect such stand-alone magnonic components to functional
processor8. Our approach circumvents the difficulty of wiring
individual nanoscale spin-wave devices: the device and the
interconnect are indistinguishable in the wave-computing sub-
strate and they are also designed as one.
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During the finalization of our manuscript, we learned about the
results of Wang et al.9, in which the authors use the inverse-
design magnonics to create arbitrary linear, nonlinear, and non-
reciprocal devices.

Results
Design of spin-wave scatterers by computational learning. A
spin-wave scatterer is a magnetic thin film with spatially non-
uniform magnetic field acting on it: this magnetic-field distribu-
tion locally changes the dispersion relation of the wave10, scatters
(steers) the spin waves, creating an interference pattern. For the
sake of concreteness, we assumed that the wave source is a
microwave coplanar waveguide (CPW). The output of the spin-
wave scatterer is the spin-wave intensity at particular areas, which
experimentally could be picked up via antennas on the film
surface.

In order to design experimentally realizable field distributions,
a specific geometry of field-generating nanomagnets was
assumed, as sketched in Fig. 1a. The punchcard-like pattern of
up/down pointing nanomagnets sits on top of a low-damping
substrate (such as yttrium iron garnet, YIG) and acts as the
program for the spin-wave scatterer. The programming nano-
magnets assumed to exhibit strong perpendicular magnetic
anisotropy (PMA) and their magnetization is not influenced by
the spin waves propagating in the layer underneath—see
Supplementary Information for details on the material system.
The physical system is straightforwardly realizable; in fact, it is
rather similar to the scenarios used in recent experiments, such as
in ref. 4. For some simulations, we used a more fine-grained field
distribution (see “Methods” for details).

Spintorch inverse-designs the up/down configuration of the
programming magnets in order to realize particular output
intensity patterns as a response to an input temporal waveform.
The code uses the same gradient-based algorithm that is
implemented in Wavetorch (https://pytorch.org; https://github.
com/fancompute/wavetorch), but a GPU-based, custom-built full
micromagnetic solver is used to model spin-wave propagation as
described in “Methods.” Instead of using a (nonlinear) wave
equation for modeling wave propagation, we solve for the
underlying physics by discretizing the modeled region into
25 nm × 25 nm × 25 nm-sized volumes and solve the Landau–
Lifshitz–Gilbert (LLG) equations11 to calculate the precession of
magnetic moments in these computational regions. Most
importantly, our micromagnetic solver fully accounts for the
demagnetizing field and thus the change in magnetic field due to
the magnetization precession, which is the source of nonlinearity

in spin-wave propagation. The micromagnetic solver is fully
integrated within the computational engine, which performs
gradient-based optimization of the trainable parameters finding
the optimal up/down magnet configuration.

Micromagnetic simulations, in general, give a highly accurate
and predictive description of magnetic behavior, without
requiring fitting parameters. To give a recent example, ref. 12

shows how complex interference patterns and nonlinear excita-
tions in a magnetic thin film can be engineered and subsequently
measured experimentally. Details about the solver implementa-
tion are given in “Modeling the computing substrate.”

Inverse design in the small-amplitude linear regime. Perhaps
the simplest example of inverse design is that of a spectrum
analyzer, where the design objective is to focus different spectral
components (frequencies) to different spatial locations of the
scatterer. In our example, we used a 10 μm× 10 μm scatterer to
separate 3, 3.5, and 4 GHz components of the time-domain signal
applied on the waveguide. The outputs are 300 nm diameter areas
and the time-integrated wave intensity over these areas is defined
as the output variable.

The computational learning engine converges to a high-quality
design in about 30 training epochs. Here we used small-amplitude
spin waves for the training: for precession angles not exceeding a
few degrees (excitation fields in the mT range), the computational
learning algorithm finds the same solution regardless of the
amplitude. The snapshots of Fig. 2 show the spin-wave intensity
for the the three frequencies and show that the device performs
the required function. The punchcard program that is found by
the learning engine is non-intuitive and does not resemble
spectrum analyzer designs that were constructed from optical
analogies13. The field pattern, however, makes a similar
impression to refractive index patterns in photonic metamaterial
devices14–16. The converged scattering pattern also depends on
initial conditions that are given to the computational learning
engine. The designs, however, all appear to be robust: we verified
that switching errors in the magnet states (which are unavoidable
in an experimentally realized device) do not affect the
performance significantly in most cases.

We would like to point out that the selectivity of the spectrum
analyzer design is limited by the relatively small degrees of
freedom provided by the ~300 binary values (i.e., the magnets).
To scale up the simulations to include more magnets, significantly
more computing resources would be needed. Instead, in the
following examples, we used external magnetic-field values as
training parameters directly without simulating magnets on top.
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Fig. 1 Nanomagnet-based spin-wave scatterer. a The schematics of the envisioned computing device. The input signal is applied on the coplanar
waveguide (CPW) on the left and the magnetic state (up/down) of programming magnets on top of the YIG film define the weights. b Magnets exhibiting
perpendicular magnetic anisotropy are placed on top of the YIG film and generate a bias-field landscape. The training algorithm finds the binary state of the
programming magnets. c Spin-wave intensity pattern for a particular applied input, which results in a high intensity at o1. The size of the simulation area is
10 μm× 10 μm.
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This increases the degrees of freedom to ~ 16000 continuous
variables, resulting in much better performance at the same
computational expense.

The automatized design of linear signal processors alone is an
important result and opens many potential application for spin-
wave-based devices. Just as photonic metamaterials have much
smaller footprint than classical optics devices (such as a 4f
correlator), the above-designed scatterer (spin-wave metamater-
ial) has the same advantages over designs based on classical optics
(e.g., see refs. 13,17).

Vowel recognition in the linear and nonlinear regimes. For the
computational engine, it makes no difference whether the scat-
terer needs to focus “pure” frequencies to the output points or it
has to identify a certain spectral pattern. We tested this by run-
ning a vowel-recognition example using the vowel samples
available in the Wavetorch package (https://github.com/
fancompute/wavetorch)2. For comparability, we used the same
samples of the data set as in ref. 2, but only the male samples (due
to computational resource limitations). In the data set, vowels
“ae,” “ei,” and “iy” were recorded inside the words “had,” “hayed,”
and “heed”; we cropped these samples and only used the middle
part of the waveform where the vowel was audible. The wave-
forms of the vowels were scaled up to microwave frequencies in
such a way that the frequency components with significant energy
content on the input waveguide launch propagating waves with
wavelengths compatible with the scatterer. The scatterer structure
was trained to maximize the spin-wave intensity at one of the
three output points, which correspond to the recognized vowels.
We used four samples of each vowel as a training set. The rest of
the 45 samples for each vowel was used as test set.

Some results on the training samples can be seen in Fig. 3a. In 30
training epochs, the system was able to learn to distinguish the vowels
“ae,” “ei,” and “iy,” directing the waves toward the correct outputs.

For comparison, we repeated the simulations with increased
excitation fields (nonlinear regime, see Fig. 3b). On the training
data set, the difference is not significant, although in Fig. 3c, d it is
visible that the nonlinear operation achieved better performance
and also the convergence is faster. The quality of the vowel-
recognition operation is also compared using confusion matrices
in case of the testing data set. For three vowels, these are 3 × 3
matrices, where the rows correspond to the predicted output, the
columns to the applied input, and the cij matrix elements give the
percentage of cases where vowel i is identified for j vowel as input.
For perfect recognition, the confusion matrix is diagonal with
100% at the cii elements.

At the end of the training, 100% accuracy was achieved on the
training data set for both amplitudes, which is largely due to the
small size of the training data set (four samples of each vowel).
On the larger (41 samples of each vowel) testing data set, the
advantage of the the nonlinear operation mode becomes clear.
Figure 3e, f show the confusion matrices on the testing data set.
The confusion matrix is closer to diagonal in the nonlinear case; it
misidentified only 7 out of 123 vowels. The linear device more
frequently misidentified all three vowels, but especially “ae,”
achieving only 60% accuracy.

The confusion matrices in this test scenario characterize the
generalization (extrapolation) ability of the network. Based on a
very small (four vowels each) learning set, the network had to
recognize and classify vowels that it had not seen before. Linear
scatterers cannot excel in this job—they match the distinctive
spectral features of learned samples, but their ability to generalize
from learned data is limited. The nonlinear scatterer appears to
behave as a true neural network, which performs nonlinear
classification and generalizes (extrapolates) from the training
data. We believe that our simulation data may also verify the
hypothesis of ref. 2 that nonlinear wave interference acts as
an RNN.

We also performed simulations using multiple excitation
amplitudes and plotted the corresponding accuracy achieved on
the testing data set (Fig. 3g). We observe three distinct regions
depending on the amplitude: linear, nonlinear, and chaotic
(strongly nonlinear) region. In the linear regime, the accuracy of
the system is modest and independent of the amplitude. When
the amplitude reaches a certain threshold level, the recognition
accuracy suddenly improves significantly and reaches maximum
performance around 50 mT excitation field. We attribute this
improvement to the emergence of nonlinear effects. However,
further increase of the amplitude does not yield to better accuracy
due to increasingly chaotic spin-wave dynamics and the system
accuracy eventually degrades even below the accuracy of the
linear operation.

Linear vs. nonlinear interference in the scattering block. Per-
forming successful vowel recognition does not necessarily require
a neural network and satisfactory results can be obtained by linear
classifiers, as shown in the above example. Using the vowel-
recognition example, it is not at all straightforward to identify
what benefits could possibly come from using a neural network-
like behavior.

However, a fairly simple example can show the computational
limitations of linear interference, where the superposition
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Fig. 2 Frequency separation by training. a–c The scatterer was trained to direct frequency components f1= 3 GHz, f2= 3.5 GHz, and f3= 4 GHz to the
corresponding outputs denoted by o1, o2, and o3. The bar charts indicate time-integrated intensities measured at the outputs (green circles). The colormaps
show time-integrated intensity of spin waves at t= 30 ns. Black/white circles are contours of the out-of-plane component of the magnetic field, indicating
the state of the magnets on top of the YIG film (same in all cases a–c). The size of the simulation area is 10 μm× 10 μm.
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principle always holds. In the following example (see Fig. 4), the
training goals were to

(A) focus waves on output o1 at 3 GHz input frequency,
(B) focus waves on output o1 at 4 GHz input frequency, and
(C) focus waves on output o2 if and only if 3 and 4 GHz are

simultaneously present.

Clearly, condition (C) is inconsistent with the superposition of
(A) and (B).

We used excitation amplitudes in the linear (1 mT) and
moderately nonlinear (20 and 50 mT) regimes, and run the
training for 30 epochs in every case. The resulting spin-wave
intensity snapshots are shown in Fig. 4. It is clearly visible that the
results of the training are different in case of different amplitudes.
The paths traveled by the waves are completely different in the

three cases. It is also clear from the snapshots that the linear case
failed to focus on o2, whereas the nonlinear cases were clearly
focusing to the bottom output (o2) avoiding o1.

As expected, the linear case could not provide the desired
outcome: the output of the two-frequency case is a linear
combination of the outputs observed with single-frequency
excitations. On the contrary, the operation in the nonlinear
regime achieved good results, with the highest amplitude
excitation giving the best outcome. Quantitatively, the loss
function, which quantifies the quality of the computational
learning, yields the same conclusion: the linear case did not show
a convergence over the 30 epochs, whereas the nonlinear cases
converged to an optimal loss value. The highest excitation
amplitude achieved lower loss at the end of the training and its
convergence was also faster.

Fig. 3 Using the spin-wave scatterer for vowel recognition. a, bWave intensity patterns, formed in response to the time-domain excitations (vowels). The
scatterer was trained to focus waves to the corresponding outputs. The bar charts show the intensity at the output locations (normalized). The linear
regime a (1 mT excitation field) and the nonlinear regime b (50mT excitation field) performs comparably well on the training data (slight improvement in
case of nonlinear waves). c Cross-entropy loss decreases during the training, indicating learning. After 30 epochs (training steps), the nonlinear cases
achieve better performance compared to the linear case. Note that a nonzero loss value corresponds to the perfect response, indicated by a dotted line. d
Accuracy of vowel recognition on the training and testing data sets. e, f Confusion matrices over the testing data set (123 vowel samples). g Accuracy of
vowel recognition (test set) as a function of excitation amplitude.
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Fig. 4 A simple example of a problem that is not solvable by a linear system. Input is encoded in two frequencies (f1= 3 GHz and f2= 4 GHz) and the
training function is listed in the inset tables (expected results indicated by numbers, output data are shown in color). a In the linear case (1 mT excitation
field), application of simultaneous frequencies results in both o1 and o2 high (incorrect training). b, c In the nonlinear cases, the wave is focused at o2, but o1
is avoided (correct operation). In case of 50mT excitation, the distinction is even stronger. The colormap shows integrated wave intensity. The size of the
simulation area is 10 μm× 10 μm.
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This elementary example demonstrates a crucial difference
between the computational power of linear and nonlinear spin
waves—and this difference is expected to manifest itself for more
complex operations, such as the high-amplitude vowel-recogni-
tion example in “Vowel recognition in the linear and nonlinear
regimes.” It also serves as a proof that our computation engine is
able to exploit the nonlinearity of spin waves.

Discussion
Nowadays complex neuromorphic computing pipelines are
implemented on CPUs and GPUs, which posses high computing
power, but have poor energy efficiency for analog neuromorphic
tasks: computing steps are implemented on digital (often floating
point) arithmetic and each of those steps consume energy in the
E= 10−11 J range. A typical processing computing primitive
(such as a single convolution with smaller precision in convolu-
tional neural network) consumes roughly the same amount.

Spin waves in nanoscale magnetic structures carry little energy:
the total magnetic energy stored in the patterns of say Fig. 4c is
about E ≈ 1000 eV, E ≈ 10−16 J. Patterns in the linear regime hold
orders of magnitude less energy, in the few-eV range. The stored
energy can serve as a first estimate of the energy that is dissipated
in the magnetic domain in each neural computation step. The
time it takes for the interference pattern to build up is on the
order of t= 10 ns; thus, the spin-wave scatterer simultaneously
achieves low power and high speed. These estimations represent
orders of magnitude improvement when compared to the above-
mentioned energy of approximate convolution or floating point
operation, indicating great potential for the spin-wave-based
processor. Neurons and synapses based on other emerging
devices18 also consume significantly more energy than the stated
E ≈ 10−16 and they do it at slower computational times. The
neural operation done by the scattering block in the nonlinear
regime is also considerably more complex than a convolution or
what is performed by the synapses and neurons in ref. 18.

The power dissipated in the magnetic domain is just a lower
bound for net power consumption. The spin-wave scatterer may
find application as a hardware accelerator in electrical circuitry—
and, in that case, the net energy efficiency of spin-wave-based
computing block is dominated by the magneto-electric transdu-
cer. More specifically, picking up magnetic oscillations from sub-
square-micrometer areas will induce less than a microvolt voltage
in the transducer antenna, possibly even less than that. Ampli-
fying such small and high-frequency signals requires significant
microwave circuitry, which consumes at least 10 mW of
power19,20. Assuming a GHz date rate, this gives E= 10−11 J per
output point. Transduction on the input side (creation of spin
waves) is less challenging as can be done by acceptable efficiency
using CPWs and a single waveguide can excite a larger number of
scatterers. It is worth noting that the computational learning
engine can implement any kind of readout mechanism; thus, any
shape, size, and type of detector may be used, depending on the
application. For example, inverse spin-Hall effect21 might be used
to detect directly the amplitude of spin waves, whereas the
detector size is not limited by the spin-wave wavelength.

The net power efficiency of the spin-wave scatterer is com-
parable to that of electronic implementation for a simple opera-
tion (i.e., a convolution). If large internal complexity can be
reached in the scatterer with a single or very few inputs, then the
spin-wave scatterer potentially leads to several orders of magni-
tude performance gain compared to electronic implementations.

Optical reservoir computing22,23—another promising hardware
for accelerating neural computations—consumes on the order of
E= 10−11 to E= 10−12, which is comparable to a small spin-wave
scatterer with I/O, but it comes with a significantly larger device

footprint. Strictly linear operations in optics may be performed with
much higher energy efficiency (due to the more straightforward
scalability of optical systems24), but such systems require several
additional components for general-purpose computation.

Most likely, the capabilities of our spin-wave scatterer are limited
by the computational learning method we use to design it. Machine
learning on the micromagnetic model is computationally intensive
(see “Implementation of the computational learning engine”) and
we could not design larger systems than the ones presented here
and compare those to state-of-the-art neural networks.

Spin waves are a leading candidate for non-electrical infor-
mation processing and magnonic devices have been designed for
many different purposes, such as Boolean logic gates25, and signal
processors13. In many cases, magnonic computers are derived
from photonic computing devices and, most often, classical
photonics is used as an inspiration, with lenses, mirrors, and
interferometers designed in the spin-wave domain26.

Our work advances the state-of-the-art of magnonic computing
devices on two fronts. First, we demonstrated that the computational
tools developed for the inverse design of photonic metamaterials
(a.k.a. photonic inverse design) can be applied in the spin-wave
domain: convolvers, spectrum analyzers, matched filters, and possibly
a large variety of RF signal processing devices can be designed in a
fully automatic way. Spin waves, unlike electromagnetic waves,
seamlessly transition to a nonlinear regime at higher excitation
amplitudes. Apparently, the computational design algorithm operates
just as well if the underlying wave propagation is a nonlinear wave
and designs devices based on nonlinear interference. The second and
perhaps the most important result of our work is that the capabilities
of such-designed nonlinear interference devices go beyond linear
signal processing and they are likely equivalent to RNNs. The device
realizes all the interconnections, weighted sums, and the non-
linearities in a single magnetic film. The techniques we demonstrate
pave the way to magnonic (spin-wave) devices way beyond the
complexity of stand-alone logic gates or elementary signal processors.

Wave-based general-purpose computing—and more generally,
computing in a material substrate by the laws of physics—is a
longtime dream of the emerging computing community27–30. Pos-
sibly, spin-wave-based nonlinear processors enable practical, physical
realization of these ideas and bring closer to the fulfillment of this
vision.

Methods
Implementation of the computational learning engine. Spintorch is a modified
version of Wavetorch (https://github.com/fancompute/wavetorch), in which we
implemented a full micromagnetic solver to precisely model spin-wave behavior. The
numerical engine for inverse design is built on the popular and open-source machine
learning framework, Pytorch (https://pytorch.org). An important feature of Pytorch is
the automatic gradient calculation, which allows automatic backpropagation through-
out complicated multilayered computational flows. In our system, this means gradient
calculation can be performed backwards in time throughout the whole wave propa-
gation. This allows us to perform gradient-based optimization of the trainable para-
meters, e.g., the applied magnetic-field distribution. Pytorch also provides a number of
optimizers, loss functions, and data-loading modules, so we did not need to implement
these from scratch. Pytorch modules can run on CPU or GPU (using the CUDA
programming interface), without any device-specific coding on the user side.

In order to exploit the automatic gradient calculation feature of Pytorch, custom
modules must use the internal methods for implementing the forward path of the
system. This way, the backward method is automatically generated on the fly by
building a computational graph and saving the required intermediate results. Thus,
readily available micromagnetic solvers (such as OOMMF or mumax311) cannot be
integrated in Pytorch, because these do not build a computational graph and do not
save intermediate results for backpropagation.

Due to the requirement of saving all (micromagnetic) computational steps, the
algorithm requires a large amount memory to run—the size of the systems we
could simulate is limited by the available GPU memory. Due to this limitation, we
could not test larger systems and much larger data sets.

Modeling the computing substrate. The dynamics of the magnetic media are
described by the LLG equation and takes into account all relevant physical
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interactions in the micromagnetic model. Elementary magnetic moments are
represented by three-dimensional vectors and we use a finite difference dis-
cretization with a rectangular grid. The dynamics of magnetic moments depend on
the torque exerted on them by the effective magnetic field, which is a sum of several
field components. Most importantly, it includes an (space-, and time-dependent)
external field, the dipole fields of other magnetic moments, and the exchange
interaction between neighboring volumes. The external field contains a bias field,
the time-dependent excitation field, and also the field coming from the PMA
magnets (which is optimized by machine learning). We neglect any dynamics of
the PMA magnets (e.g., due to coupling of spin waves from YIG), as these fields are
orders of magnitude lower10. The dipole interaction is a long-range effect; thus, it is
the most computationally expensive part of the calculation. We used Fast Fourier
transform (FFT)-based acceleration for calculating the solution of the Poisson
equation (i.e., determine the dipole fields), for which the GPU-accelerated FFT
module of Pytorch enabled effective implementation. The exchange field is cal-
culated only between nearest neighbors, as exchange field is local. Exchange-field
calculation is implemented using a convolution with a Laplacian kernel. The time
stepping of the differential equation is realized by a standard fourth-order
Runge–Kutta method. The LLG equation also includes a damping term, which is
implemented in our model; thus, realistic attenuation of spin waves is simulated. A
similar model (i.e., implemented in Matlab and does not use computational
learning) is described in ref. 31. Damping is also used to realize absorbing boundary
conditions, so we could accurately model a few-micrometer-sized, finite region of
an extended magnetic film.

The micromagnetic model fully accounts for the nonlinearities appearing at
higher intensities: these nonlinearities are a direct consequence of the dependence
of the demagnetizing field on the local magnetization and the spin-wave amplitude.
A detailed description of the dispersion relation and nonlinearity of spin waves can
be found in ref. 32. The nonlinear wave equation for spin waves cannot be stated in
a simple form, as the source of nonlinearity is the amplitude-dependent magnetic
field, so the nonlinearity enters to the dynamic equations via Maxwell’s equations.
Experimental demonstration of chaotic behavior of spin waves due to modulational
instability at high-amplitude levels can be found in ref. 33. In this work, we used
moderate amplitudes to avoid chaotic behavior, which degrades the ability of the
device to perform the desired functionality.

We verified our solver by comparing results with the widely used
mumax3 solver11. The high-level use of GPU-based functions and the overhead of
automatic gradient computation makes our code less efficient as a general-purpose
micromagnetic solver; however still, running times are comparably fast and more
than 100,000 cells with a few thousand timesteps can be simulated in minutes on a
state-of-the-art GPU. This makes it possible to embed the solver into the learning
algorithm and train the system with multiple samples and epochs within a few
hours or, with a larger training set, days.

Magnetic material properties. YIG is used as a medium for low-damping spin-
wave propagation and arrays of nanomagnets with PMA provide control over spin
waves via their dipole fields. PMA magnets are bistable (magnetization pointing
either upwards or downwards) if their size is below the single domain limit
(typically less than a few hundred nanometers).

Such a system could provide a reconfigurable means to programming spin-
wave-based neural networks, by individual switching of the nanomagnets. This
implementation of the scatterer shows many benefits over a lithographically
patterned (hardwired) scatterer. In our model, we included the calculation of
realistic dipole fields of the nanomagnet arrays, which works for any configuration.

The chosen material system and geometry is just one of many possible choices.
Metallic ferromagnets could have been used in place of the YIG film—these have
higher damping (shorter propagation length), but easier to integrate and access

electrically. In addition, instead of the stray-field programming, lithographically
defined patterns (lithography followed by etching) could have defined the function
of the scatterer. Fine-grained tuning of YIG magnetic properties can be achieved by
Focused Ion Beam (FIB) irradiation of a YIG film34,35 that continuously changes
magnetic parameters as a function of the local dose. We expect that our
computational engine can be used with similar effectiveness when film magnetic
parameters are adjusted by training, instead of designing the applied field pattern
as we have done in this work.

Linear spin-wave scatterer as a perceptron layer. Here we would like to show
how a spin-wave scatterer block can represent a single layer of a neural network
(perceptron layer). A perceptron layer can be described mathematically as a linear
transformation (vector–matrix multiplication) followed by a nonlinear activation
function: y ¼ σ Wxð Þ, where x is a vector of length n representing the input, W is
an m × nmatrix that contains the trainable weights of the perceptron layer, and σ is
an activation function applied on every output channel (in the simplest case, a
threshold function). Regarding its functionality, a perceptron performs a linear
classification, so a layer of perceptrons performs m different linear classifications.
The linear transformation (W) can be performed by a spin-wave scatterer block, as
depicted in Fig. 5. If the amplitude of the spin waves is sufficiently small, the wave
propagation can be described by the linear wave equation. Input signals routed to
input antennas generate spin waves with corresponding amplitudes and phases.
Waves travel through a region where the effective refractive index is spatially
varying according to the program (the desired linear transformation). The wave
intensity from every input will be distributed among the outputs by the scatterer
map (some losses may also occur). As the wave propagation is assumed to be
linear, the activation function has to be implemented in the readout circuitry.

The matrix representation of a given scatterer map can be constructed using the
superposition principle: exciting the inputs one at a time with unit amplitude (base
vectors) and recording the outputs will produce the columns of the equivalent
matrix. The inverse problem is, however, more cumbersome to solve in general.
One possible approach is the machine learning method described by Hughes et al.2,
which is directly applicable to any system that obeys the linear wave equation or
can be modified for nonlinear equations.

Such a device, apart from dynamic range and scaling limitations, can in
principle realize any perceptron layer. However, the computing capabilities of a
single layer are limited to linear classification and even some relatively simple
operations (such as an XOR gate) is impossible to realize using this device. To
overcome such limitations, one could create a multilayer neural network using such
devices sequentially, but any advantages that come from the low-power operation
and compactness of the spin-wave scatterer would be overshadowed by the
required readout circuitry. Any approach to exploit the benefits of the highly
interconnected nature of wave interference should minimize the number of
input–output conversions. Thus, we investigated the feasibility of exploiting the
nonlinearity of spin waves, which would allow implementing a multilayer neural
network (or an RNN) within a single scattering block.

Compared to the linear operation, nonlinear wave propagation implements a
“distributed activation function”; thus, the spin-wave substrate is more akin to
multilayer neural networks. Moreover, due to back-scattering of spin waves, loops can
form in the scatterer that resemble the operation of RNNs. Due to the delay of wave
propagation, such loops could also implement a fading memory, which is not
exploited in the current investigation, but provide additional potential for the spin-
wave substrate. We briefly note that the activation function in the system is bounded
in the [−1,1] interval, which is shown to be a satisfactory condition in multilayer
feedforward networks for universality36. Although investigation of the limits to the
computational capability of the spin-wave substrate is out of the scope of this study, in
principle, the presented substrate could approximate arbitrary functions.

Fig. 5 Understanding the spin-wave scatterer as a neural network. a Is a schematic of an n-input, m-output perceptron layer (b) is an n-input, m-output
spin-wave scatterer.
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We finally note that our study is not the first to describe physically realizable
wave-computing systems: there are other proposals (e.g., see ref. 37) that even
experimentally demonstrate wave-based computing protocols. However, to our
knowledge, our study is the first to show an on-chip, integration-friendly wave-
computing device where nonlinearities play a key role.

Data availability
The Spintorch package is available from the authors upon request. A publicly available
version is planned for release in 2021.
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