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Longitudinal single-cell analysis of a myeloma
mouse model identifies subclonal molecular
programs associated with progression
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Molecular programs that underlie precursor progression in multiple myeloma are incom-

pletely understood. Here, we report a disease spectrum-spanning, single-cell analysis of the

Vκ*MYC myeloma mouse model. Using samples obtained from mice with serologically

undetectable disease, we identify malignant cells as early as 30 weeks of age and show that

these tumours contain subclonal copy number variations that persist throughout progression.

We detect intratumoural heterogeneity driven by transcriptional variability during active

disease and show that subclonal expression programs are enriched at different times

throughout early disease. We then show how one subclonal program related to GCN2 stress

response is progressively activated during progression in myeloma patients. Finally, we use

chemical and genetic perturbation of GCN2 in vitro to support this pathway as a therapeutic

target in myeloma. These findings therefore present a model of precursor progression in

Vκ*MYC mice, nominate an adaptive mechanism important for myeloma survival, and

highlight the need for single-cell analyses to understand the biological underpinnings of

disease progression.
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Multiple myeloma (MM) is a haematological malignancy
characterized by the clonal expansion of
immunoglobulin-secreting plasma cells in the bone

marrow (BM)1. Despite improvements in treatment over the last
two decades, MM remains incurable, with a median 5-year sur-
vival of 44%2. All patients with active MM progress through a
preceding spectrum of precursor asymptomatic disease stages
known as monoclonal gammopathy of undetermined significance
(MGUS) and smouldering MM (SMM)3,4. Although the standard
of care for MGUS and SMM patients is “watchful waiting”, recent
findings from randomized clinical trials have shown that early
treatment can reduce the risk of progression to MM in a subset of
precursor patients5. However, the molecular determinants of
what constitutes high-risk precursor disease remain unclear.
Current stratification approaches are based on clinical parameters
that define tumour burden and not biological differences that
may underlie progression. Thus, a better understanding of mye-
loma biology in the context of progression is needed to improve
surveillance, clinical management, and treatment.

Previous attempts to unravel the molecular underpinnings of
disease progression in myeloma have relied on the use of bulk
genomic sequencing6–9 and transcriptional analyses10,11. These
studies have shown that the genomic landscape of precursor
myeloma is similar to active disease but reveals a handful of
aberrations that are more commonly identified in precursor
patients that progress (i.e., high-risk precursor disease) including
dysregulation of MYC, MAPK, and DNA repair pathways7.
However, these studies lack the resolution to identify distinct
malignant cell states, do not reveal the impact of genetic events
such as copy number variations (CNVs) on gene expression, and
are unable to characterize features of intratumoural hetero-
geneity. Instead, the recent application of single-cell sequencing
technologies to study the myeloma disease spectrum has revealed
significant molecular complexity and variability in the tumour
ecosystem at all stages of disease12,13. For example, Ledergor et al.
used single-cell RNA sequencing (scRNA-seq) to define tran-
scriptional heterogeneity in the malignant cell compartment
within and between patients with MGUS, SMM, and MM12.
However, the authors did not relate these patterns back to disease
progression, nor did their results validate therapeutic vulner-
abilities. The challenge of defining drivers of progression in these
studies may result from inter-patient heterogeneity, extensive
genomic complexity, and tumour subclonality that characterizes
myeloma14–16. Therefore, it is possible that the application of
scRNA-seq to a genetically uniform cohort of subjects may pro-
vide the clarity needed to better understand the molecular
mechanisms associated with progression.

The Vκ*MYC mouse model of MM allows for a controlled
comparison across disease stages as malignant transformation is
uniformly driven by constitutive activation of the MYC
oncogene17. Vκ*MYC mice inevitably develop a progressive
accumulation of clonal plasma cells in the BM that faithfully
recapitulate the human disease. The genetic background of this
model is also highly relevant as MYC rearrangements are found
in half of human MM tumours18–21, including SMM19, and
because MYC dysregulation is implicated in high-risk SMM
progression19,22. Indeed, the natural history of Vκ*MYC disease
progression is said to likely follow the early stages of a higher-risk
precursor disease to a clinically-defined overt MM, including a
transitory smouldering-like period23. Moreover, the disease can
be monitored in mice indirectly by measuring monoclonal
immunoglobulins (M-protein) in the blood. Thus, the Vκ*MYC
model provides a unique opportunity to assess the molecular
profiles of malignant cells from the earliest stages of myeloma,
prior to serological detection of disease, which is typically not
feasible in human studies.

Here, we use this genetically uniform tumour model to char-
acterize the molecular features of malignant cells during myeloma
disease progression over time. Using a single-cell approach, we
explore sources of tumour heterogeneity longitudinally in the
malignant cell compartment of Vκ*MYC tumours and char-
acterize the relationship between subclonal genomic events and
subclonal transcriptional programs. These analyses reveal that the
malignant cell compartment of mice with early disease consists of
multiple CNV-driven subpopulations and is enriched for tran-
scriptional programs identified as subclonal in mice with active-
MM. Moreover, pathway-level analyses revealed that one of these
subclonal pathways relates to an adaptive program in malignant
cells involving GCN2 and the integrated stress response pathway.
Finally, we show how activation of this pathway is associated with
disease progression in human myeloma patients and validate
GCN2 experimentally as a promising therapeutic target in a
subset of myeloma tumours. Thus, our study demonstrates how
subclonal molecular programs can inform targeted therapeutic
strategies in MM.

Results
A disease spectrum-spanning cohort of Vκ*MYC tumours. To
model the evolutionary stages of human MM disease progression,
we established a cohort of Vκ*MYC mice on the C57BL/6/KaL-
wRij background strain (Fig. 1a and Supplementary Data 1), which
has been shown to have an increased propensity for developing
spontaneous monoclonal gammopathies24,25. The cohort included
5 Vκ*MYC mice without detectable disease (early-MM, EMM1-5,
27–33 weeks), 3 Vκ*MYC mice with intermediate disease (int-
MM, IMM1-3, 49 weeks), and 7 Vκ*MYC mice with active MM
(active-MM, AMM1-7, 61−74 weeks). We also included 3 C57BL/
6/KaLwRij mice that served as age-matched controls (Control,
Cont1-3, 55–72 weeks). Disease stage groups were defined based
on serum M-protein levels (Fig. 1b) and age (Supplementary
Data 1). While the distinction between early and intermediate
disease based on these criteria was subtle, mice with active disease
demonstrated a significantly higher serum M-protein compared to
all other mice (Fig. 1b), supporting an exponential pattern of
progression. To characterize malignant cell states throughout dis-
ease progression, we used droplet-based scRNA-seq and profiled
unselected, red blood cell-depleted cells derived from femoral BM
of mice (Fig. 1a). After removing low-quality cells (see “Methods”
for details, Supplementary Fig. 1a), we considered expression
profiles for 104,880 cells across 18 samples, with a median of 5,258
cells sequenced per sample (range: 973−10,245 cells). This inclu-
ded 13,296 cells from early-MM mice, 27,510 cells from int-MM
mice, 44,463 cells from active-MM mice, and 19,611 cells from
control mice. This scRNA-seq data set therefore provides a valu-
able resource for the MM community and for those who employ
the Vκ*MYC mouse model.

To distinguish cell types within the BM, we used a combination
of dimensionality reduction and unsupervised clustering to obtain
an integrated map of 52 transcriptional clusters (Supplementary
Fig. 1b). Cell lineages were then assigned to each cluster using
SingleR26, which annotates scRNA-seq data using a reference set
with known labels. For our data set of BM cells, we used the
ImmGen27 reference comprised of bulk gene expression profiles
from highly purified immune and hematopoietic cell populations
(Supplementary Fig. 1c, d). This revealed 17,504 cells from the B
cell lineage (Fig. 1c), which we further refined by scoring
expression profiles using a BM plasma cell gene set generated by
the Human Cell Atlas28 (Fig. 1d). This, together with the
expression of canonical marker genes Cd19 and Sdc1 (Fig. 1e),
enabled discrimination of 10,344 B cells and 7,160 plasma cells in
the BM of this cohort (Supplementary Data 1).
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Previous bulk gene expression studies in MM employ cell
selection methods that do not discriminate between normal and
malignant plasma cells, thus resulting in potentially contaminated
malignant cell expression profiles. We were able to make this
distinction in our scRNA-seq data set by measuring Vκ*MYC
transgene (tMYC) expression levels, which revealed a small
population of normal plasma cells with significantly lower tMYC
expression (Fig. 1f). The expression profiles of this population
also scored lower for gene sets comprised of MYC transcriptional
targets (Chesi et al.17, Schuhmacher et al.29, Menssen et al.30,
Supplementary Fig. 1e–g) further supporting their identity as
normal, non-malignant plasma cells. Consistent with this, only
normal plasma cells were identified in age-matched control mice,
while the proportion of normal plasma cells progressively
decreased from early/int-MM to active-MM (Fig. 1g). Moreover,
the proportion of malignant cells in each tumour from our
scRNA-seq data correlated strongly with initial M-protein
measurements (R= 0.890, P= 7.401e−07, Supplementary
Fig. 1h), supporting our use of this marker to define disease
progression. Consistent with disease stage classifications defined
above, mice in the active-MM group had significantly more
malignant cells compared to all other disease groups and control
mice (Supplementary Fig. 1i). In contrast, all early-MM and int-
MM mice had less than 5% malignant cells (no significant
difference across groups). Thus, measuring gene expression
profiles at the single-cell level revealed that normal and malignant

plasma cells have distinct transcriptional programs and enabled
discrimination of these populations within samples.

A core malignant program spans the myeloma disease spec-
trum. Using the scRNA-seq data from purely malignant cells, we
next defined a core molecular program shared by all malignant
cells in the Vκ*MYC mouse model, regardless of disease stage. In
this and all subsequent analyses, malignant cells were defined as
plasma cells that were not members of the normal plasma cell
cluster described above. We first performed differential expres-
sion (DE) analysis between the malignant cells at each disease
stage and normal plasma cells (Supplementary Data 2). We then
selected differentially expressed genes that overlapped in all dis-
ease stage groups, which produced a core set of 226 differentially
expressed genes (171 upregulated, 55 downregulated) shared by
malignant cells at all disease stages (Fig. 2a, Supplementary
Fig. 2a, and Supplementary Data 3). These genes included tMYC
and Ccnd2, consistent with the hypothesis of early and universal
cyclin D dysregulation in the pathogenesis of MM16. To clarify
the biological relevance of the core malignant cell program, we
performed gene set enrichment analysis using the 226 shared
differentially expressed genes and plotted the top 20 positively
and negatively enriched terms (Fig. 2b and Supplementary
Data 4). As expected, positively enriched terms were associated
with MYC transcriptional regulation, myeloma pathogenesis, and

Fig. 1 A single-cell transcriptional map of malignant cells from progressing Vκ*MYC mice. a Schematic of Vκ*MYC mouse cohort and experimental
workflow for collection of single cells. Graphics created in part using BioRender.com. b Disease burden across cohort as determined by M-protein
measurements from SPEP. Statistical comparison of multiple groups was performed using a Wilcoxon rank-sum test (two-sided) corrected for multiple
testing (Benjamini−Hochberg). Boxplots represent the distribution of each measurement within defined groups, where the central rectangle spans the
interquartile range, the central line represents the median, and “whiskers” above and below the box show the value 1.5× the interquartile range. Only P
values for statistically significant comparisons are listed. Data points represent measurements from biologically-independent animals (Control (n= 3),
early-MM (n= 5), int-MM (n= 3), and active-MM (n= 7)). c tSNE visualization of 17,504 B lineage cells, coloured by sample ID. d tSNE visualization of B
lineage cells, coloured by plasma cell gene signature score (Hay SB et al.28). e tSNE visualization of B lineage cells, coloured by the relative expression of
indicated cell-type-specific genes. f tSNE visualization of plasma cells identified by criteria displayed in (d) and (e) coloured by the relative expression of
Vκ*MYC transgene (tMYC). g Bar plot showing the distribution of normal vs. malignant plasma cells across samples No malignant cells were detected in
EMM2 and thus it was removed from downstream malignant cell analyses. Source data are provided in SourceData_Fig. 1.xlsx. EMM: early-MM, IMM:
intermediate-MM, AMM: active-MM.
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general cancer biology. Interestingly, many of the negatively
enriched terms from this analysis were associated with immune
processes such as graft-versus-host disease and innate immunity,
suggesting that malignant cells express a molecular program that
promotes immune dysregulation. Indeed, this would be consistent
with results from Zavidij et al. who demonstrated that immune
dysfunction occurs early in myeloma pathogenesis13. Other sig-
natures were also identified in this analysis that implicates pre-
viously unreported processes in Vκ*MYC disease biology
including signatures related to knockdown of the tumour sup-
pressor TCF21, KRAS mutations, and constitutive activation of
the RHOA oncogene. This may in turn suggest that additional
oncogenic hits are acquired early in the course of Vκ*MYC
tumourigenesis and persist throughout disease evolution.

Subtly distinct expression programs underpin progression. The
analysis above revealed a set of overlapping genes shared by

malignant cells across the disease spectrum, so we next asked
whether distinct molecular programs emerge longitudinally
throughout progression. By employing DE analysis, we defined
the temporal expression patterns that are specific to malignant
cells from each stage of progression (see “Methods”, Fig. 2c–e,
Supplementary Fig. 2b, c, and Supplementary Data 5). This
revealed 21 genes with expression levels that changed significantly
throughout progression (Fig. 2c–e) and whose longitudinal pat-
tern of expression coincided with one of three different groups.
The first group of genes consisted of Gm2a and Myl4 whose
expression progressively decreased during progression (Fig. 2c).
The second group, whose expression peaked at the early-MM
disease stage (Fig. 2d), consisted of Il5ra, a cytokine receptor,
Mgmt, a methyltransferase crucial for genome stability, and
Tsc22d1, a pro-apoptotic tumour suppressor. This, therefore,
suggests that malignant cells at early disease stages increase
expression of apoptotic regulators and genome stabilizers but that
these processes may be progressively lost during progression. The

Fig. 2 Core versus disease-stage specific gene expression programs in malignant cells from Vκ*MYC mice. a Heatmap of differentially expressed genes
shared by all malignant cells in Vκ*MYC mice compared to normal plasma cells (FDR < 0.05). Heatmap is split vertically to show normal plasma cells
(nPC) versus malignant plasma cells (mPC), the latter of which is further split by disease stage group. The upper and lower panels of the heatmap separate
upregulated and downregulated genes, respectively. A subset of 100 randomly selected cells per disease stage group are shown and data represent scaled
expression values (any values outside a range of −2 to 2 were clipped). b Top 20 positively/negatively enriched terms from MSigDB gene set enrichment
analysis (H, C2, C6, FDR < 0.05) computed using core upregulated/downregulated genes identified by DE analysis in (a). c–e Disease stage-specific genes
that are significantly differentially expressed between disease stage groups. Coloured dots represent the mean expression of disease stage samples for
each gene, with error bars depicting the standard error of the mean. Statistical comparisons were performed using a two-sided t-test with subsequent
correction for multiple testing (Bonferroni). Grey data points represent mean expression of respective genes in cells from each biologically-independent
animal (Cont1= 44 cells, Cont2= 72 cells, Cont3= 148 cells, EMM1= 45 cells, EMM4= 52 cells, EMM5= 71 cells, IMM1= 206 cells, IMM2= 88 cells,
IMM3= 149 cells, AMM1= 2,003 cells, AMM2= 830 cells, AMM3= 1,379 cells, AMM4= 822 cells, AMM5= 302 cells, AMM6= 323 cells,
AMM7= 310 cells). Genes are grouped according to the pattern of expression throughout progression. Source data are provided in SourceData_Fig. 2.xlsx.
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third group of genes demonstrated a temporal pattern char-
acterized by peak expression in the intermediate stage of disease
(“Peak-Intermediate”, Fig. 2e) and included genes related to
immune processes such as cytokine signalling (Osm, Lilr4b), the
complement system (Fcnb), and cell adhesion (Clec4e, Sell). Genes
whose expression peaked during the intermediate stage of pro-
gression also included F630028O10Rik, a lncRNA reported to play
a role in modulating tumour angiogenesis31, Plaur, a urokinase
receptor involved in cell migration, cell cycle regulation, and cell
adhesion32, and Ctsh, a lysosomal cysteine proteinase whose
expression has been correlated with malignant progression of
prostate tumours33. Thus, disease progression in Vκ*MYC mice
is accompanied by transcriptional variability within the malignant
cell compartment. However, given how few differentially
expressed genes were shared by mice within a given disease stage
group, we hypothesized that intra/intertumoural heterogeneity
may be present in Vκ*MYC mice and account for the subtlety of
expression changes observed longitudinally.

CNVs are a source of tumour heterogeneity in Vκ*MYC mice.
To evaluate whether malignant cells demonstrate heterogeneity
driven by somatic genome alterations, we inferred CNVs from
our scRNA-seq data using the InferCNV34 algorithm (see
“Methods” for details). This analysis revealed extensive copy
number variation in the malignant compartment of all Vκ*MYC
mice (Fig. 3a and Supplementary Fig. 3a). This included pre-
viously reported CNVs such as gain of chr1, chr6, chr16, chr18,
and loss of chr5 and chr1435. CNVs not previously reported in
this model included subchromosomal losses in chr3, chr9, and
chr17 and subchromosomal gains in chr15. Notably, many of
these CNVs were not shared by all Vκ*MYC mice, even within
mice from the same disease stage (e.g., loss of chr12 in AMM1,
gain of chr18 in IMM3). By partitioning cells into groups having
consistent patterns of CNVs, we observed that Vκ*MYC tumours
are comprised of 4–8 malignant cell subpopulations with distinct
CNV profiles (Fig. 3a and Supplementary Fig. 3a, b), under-
scoring the power of scRNA-seq to delineate malignant sub-
populations not detected by bulk approaches. The presence of
multiple cell subpopulations with distinct CNV profiles was evi-
dent at all disease stages (Fig. 3a and Supplementary Fig. 3a, b).
This, therefore, suggests that genomic diversification of tumours
begins early in the evolution of myeloma, similar to what has
been described in humans9,36, and continues throughout
progression.

The above analysis supports that the malignant cell compart-
ment of Vκ*MYC mice exhibits intra and intertumoural
heterogeneity, despite being driven by the same oncogenic
MYC transgene. However, it also reveals several CNVs that are
shared by subpopulations of malignant cells throughout the
disease spectrum, most notably, loss of chr5. To better under-
stand the biological underpinnings of chr5 loss in Vκ*MYC mice,
we performed enrichment analysis using genes differentially
expressed between cells with chr5 deletion (del(5)) and cells with
wild-type chr5 (chr5WT) (Supplementary Data 6, 7). Not
surprisingly, this analysis revealed activation of processes related
to chromosomal instability in cells with del(5) including “DNA
double-strand break response”, “Recruitment of ATM-mediated
phosphorylation of repair and signalling proteins at DNA double-
strand breaks”, “Processing of DNA double-strand break ends”
and “DNA Damage/Telomere Stress Induced Senescence”
(Supplementary Fig. 3c). To gain insight into how the loss of
chr5 may translate to human myeloma patients, we performed
mouse-to-human mapping of orthologous genes (Supplementary
Fig. 3d and Supplementary Data 8). The vast majority of genes on
mouse chr5 mapped to three human chromosomes: chr4, chr7,

and chr12 (930/1196 genes). However, a subset of genes also
mapped to human chromosomes reportedly deleted in precursor
myeloma patients (chr1p, chr2q, and chr13q)37, suggesting that
these genes may mediate the pathogenic effects of chr5 loss in
Vκ*MYC mice and in turn play a role in myeloma progression
from precursor disease.

Inferred CNV analysis of our scRNA-seq data supports the
existence of intratumoural heterogeneity, which is a well-
established phenomenon in cancer. However, whether these
events drive transcriptional heterogeneity and the resulting
biological effects are less understood. Therefore, we mapped
CNV-defined subpopulations to transcriptional clusters (Fig. 3b)
determined by unsupervised clustering of scRNA-seq data from
Vκ*MYC mice with active-MM. Similar to our CNV analysis,
transcriptional clustering revealed that the malignant cell
compartment of Vκ*MYC mice is comprised of multiple
molecular subpopulations per mouse (3–13 transcriptional
clusters, Fig. 3b). The fact that samples with a similar number
of cells did not have the same number of transcriptional clusters
(e.g., AMM2 and AMM4, AMM6 and AMM7) supports that the
range in the number of transcriptional clusters is not just an
artifact of differences in the number of cells profiled across
samples. We then evaluated whether this transcriptional hetero-
geneity was driven by the subclonal CNVs inferred above by
exploring the distribution of CNV-driven subpopulations within
each transcriptional cluster. In doing so, we observed instances of
majority CNV-driven transcriptional clusters (Fig. 3c, d). For
example, in AMM1, transcriptional cluster 4 was largely
comprised of cells from CNV subpopulation 3, defined by
del(5) and del(12). Similarly, in AMM4, transcriptional cluster 0
was largely comprised of cells from CNV subpopulation 1,
defined by subchromosomal gain of chromosome 9. This
supports that subclonal CNVs can have a significant effect on
the formation of distinct transcriptional clusters. However, the
majority of CNV-driven subpopulations were distributed across
several transcriptional clusters (Fig. 3d) and we did not find a
significant correlation between the number of CNV-driven
subpopulations and the number of transcriptional clusters
(R=−0.597, P= 0.1567, Supplementary Fig. 3e). Moreover, this
transcriptional heterogeneity was retained when potentially
confounding genes associated with dissociation38 and mitochon-
drial/ribosomal/cell cycle genes were removed (Supplementary
Fig. 4). Thus, our data robustly support that transcriptional
variability must be driven by additional sources beyond subclonal
CNV events. In turn, we next focused on defining the biological
pathways associated with transcriptional clusters in mice with
active-MM.

Conserved transcriptional programs in Vκ*MYC tumours. To
further explore drivers of heterogeneity in the transcriptional
clusters defined in Fig. 3b, we combined DE and enrichment
analysis to define cluster-specific pathways within Vκ*MYC
tumours (Supplementary Data 9, 10). Significantly enriched
pathway terms for each transcriptional cluster were then com-
pared pairwise to all other cluster-specific pathway terms using a
Jaccard Similarity Index, which revealed two distinct transcrip-
tional programs with representative clusters from all seven active-
MM mice (Fig. 4a): Similarity Program A (11 clusters, mean
Jaccard Index = 0.641) and Similarity Program B (9 clusters,
mean Jaccard Index = 0.660). The remaining 21 clusters dis-
played limited similarity (mean Jaccard Index= 0.054), sup-
porting that transcriptional divergence is a characteristic feature
of disease progression. As depicted in Supplementary Fig. 5, the
molecular processes associated with these divergent clusters
included the immune system (innate immunity, cytokine
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signalling), cellular responses to stress (heat stress, metal ions),
and signal transduction through mediators such as MAP kinase,
nuclear receptors, and WNT. Thus, in addition to CNV-level
events, transcriptional heterogeneity in the malignant compart-
ment of Vκ*MYC mice is also driven by other mechanisms,
which likely include external contributions from the tumour
microenvironment.

Although myeloma tumours undergo transcriptional diver-
gence during progression, certain biological processes were

shared by a subpopulation of cells common to all tumours. We,
therefore, sought to investigate the biological processes driving
these shared transcriptional programs. Previous single-cell cancer
studies have identified a recurrent cell proliferation-related
transcriptional program in many human cancers39 and thus we
explored whether either of the shared transcriptional programs
were associated with this process. Indeed, Similarity Program B
clusters were enriched for pathway terms related to the cell cycle
including “Chromosome Maintenance”, “Cell Cycle Checkpoints”

Fig. 3 Drivers of intratumoural heterogeneity in the malignant cell compartment of Vκ*MYC mice. a Heatmap of genome-wide copy number variations
(CNVs) inferred from scRNA-seq data of malignant plasma cells as determined using InferCNV34. Columns represent genome position across
chromosomes. Rows represent CNVs averaged by intra-sample CNV subpopulation, which were identified using the ward.D2 hierarchical clustering/
random forest method implemented by analysis_mode= ‘subclusters’ in inferCNV. CNV-driven subpopulation sizes ranged from 1 to 979 cells (median
44). The height of each CNV subpopulation is proportionate to its fractional composition within a given tumour. b UMAP visualization of malignant cells
from each active-MM mouse coloured by transcriptional cluster. Gene expression-driven cluster sizes ranged from 10 to 474 cells (median 79). c UMAP
visualization of malignant cells from each active-MM mouse coloured by CNV subpopulation. d Bar plot showing the distribution of CNV subpopulations
(fill) across transcriptional clusters (x-axis). Results for (b–d) are organized for each active-MM mouse in columns, with subject names and the number of
cells/transcriptional clusters listed above. Source data are provided in SourceData_Fig. 3.xlsx. EMM: early-MM, IMM: intermediate-MM, AMM: active-
MM.
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and “Cell Cycle, Mitotic” (Supplementary Data 10), expressed
high levels of canonical cell cycle genes such as Mki67 and Top2a
(Fig. 4a), and were predominantly comprised of cycling cells
(Fig. 4a, mean G2/M 73.99 ± 11.16% in Similarity Program B
clusters vs. 2.95 ± 4.28% for all other clusters). This is consistent
with the subpopulation of highly proliferative malignant cells
reported in MM patients, which typically constitutes ~2% of the
tumour40. Although this population is more prevalent in
Vκ*MYC mice (mean 12.9 ± 7.7%, Supplementary Fig. 6a),
similar ranges have been observed in MM patients, with higher
proliferative indexes correlating to worse outcomes41. These
results may therefore reflect the adverse effects of MYC
dysregulation in myeloma biology. Finally, these proliferative
clusters were comprised of multiple CNV subclones suggesting
that proliferative programs have a stronger effect on gene
expression than subclonal CNV events (Supplementary Fig. 6b).

We next investigated the other set of terms shared by a
subpopulation of cells in all active-MM tumours (Similarity
Program A), which revealed an interesting pattern of biological

pathways including “Translation” and “Response of EIF2AK4 to
amino acid deficiency” (Fig. 4b and Supplementary Data 10).
GCN2 (the protein encoded by EIF2AK4) represents one arm of
the Integrated Stress Response (ISR) pathway, whereby cells adapt
to various stresses such as viral infection, heme deprivation,
unfolded protein response (UPR) and, in the case of GCN2,
amino acid deprivation42 (Supplementary Fig. 6c). Activation of
the ISR pathway, in turn, promotes cellular adaptation to
overcome these stress conditions. Thus, activation of the ISR-
GCN2 pathway may represent a stress response pathway and
protective mechanism employed by a subset of malignant cells in
MM. Notably, a similar set of terms related to ISR-GCN2 was also
detected using non-negative matrix factorization (Supplementary
Fig. 6d), as were a separate set of terms related to proliferative
processes akin to Similarity Program B described above
(Supplementary Fig. 6e), further supporting the existence of
these subclonal malignant programs in Vκ*MYC tumours.

To understand how the ISR-GCN2 pathway relates to disease
progression, we quantified activation of this pathway in

Fig. 4 Molecular programs driving intratumoural heterogeneity in Vκ*MYC mice with active-MM. a Heatmap of Jaccard Index between significantly
enriched Reactome terms across 41 intra-tumour malignant cell clusters. Groupings of clusters with increased similarity (Similarity Programs) were
determined according to the complete linkage method for hierarchical clustering and are labelled below the heatmap. Columns are annotated with
information related to sample identity, cell cycle phase, and Mki67/Top2a expression. b Map of Reactome terms with significant enrichment in malignant
cell clusters from Similarity Program A (ISR-GCN2). The full hierarchy of each Reactome pathway is shown for context but only significantly enriched
shared pathways are highlighted in orange. c Gene set scoring for indicated Reactome signatures calculated using Seurat’s AddModuleScore across disease
groups in Vκ*MYC data (Control= 264 cells, early-MM= 168 cells, int-MM= 443 cells, active-MM= 5,969 cells). Boxplots within violin plots represent
the distribution of each measurement within defined groups, where the central rectangle spans the interquartile range, the central line represents the
median, and “whiskers” above and below the box show the value 1.5× the interquartile range. Statistical comparison of multiple groups (normal PCs vs.
each Vκ*MYC disease group) was performed using the Wilcoxon rank-sum test (two-sided) corrected for multiple testing (Benjamini−Hochberg). Source
data are provided in SourceData_Fig. 4.xlsx.
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malignant cells from all Vκ*MYC mice using the “Response of
EIF2AK4 to amino acid deficiency” gene set (ISR-
GCN2 signature, n= 87 genes, Supplementary Fig. 6f, Supple-
mentary Data 11). Not only was the ISR-GCN2 pathway
upregulated in malignant cells from all disease groups compared
to normal plasma cells, but the highest level of ISR-GCN2
activation was also observed in malignant cells from mice with
the earliest stages of disease (early-MM) (Fig. 4c). Notably,
activation of ISR-GCN2 was not positively associated with the
UPR pathway, nor did it positively correlate with other arms of
the ISR pathway such as PERK (Fig. 4c and Supplementary
Fig. 6g). However, ISR-GCN2 activity was strongly correlated
with protein translation (R= 0.847, P= 2.2e−16, Fig. 4c, Sup-
plementary Fig. 6g), supporting that activation of ISR-GCN2 and
protein translation are related. Given the role of MYC in
promoting protein synthesis, these results put forth a model of
disease in Vκ*MYC mice whereby ISR-GCN2 activation occurs
early in disease pathogenesis to tolerate cellular stress caused by
MYC activation and the resulting excessive protein translation
(Supplementary Fig. 6c). However, since MYC remains activated
throughout Vκ*MYC progression, the subsequent decrease in
ISR-GCN2 activity in int-MM mice (Fig. 4c) and the subclonal
nature of ISR-GCN2 activation in active-MM mice (Fig. 4a)
suggests that GCN2 activation may be regulated by other
mechanisms that drive amino acid deficiency. In myeloma, we
speculate that this could be caused by excess production of
immunoglobulin proteins, which is a hallmark physiological
process in myeloma.

The observation that ISR-GCN2 activation is subclonal in
active-MM mice, but has the highest activity in early-MM mice
suggests that molecular variability in advanced disease may reflect
residual programs from precursor disease. To support this model
of progression, we scored the transcriptional clusters in active-
MM mice using highly expressed genes in int-MM mice derived
from our longitudinal analysis (“Peak-Intermediate”, Fig. 2e). In
doing so, we found that “Peak-Intermediate” genes were highly
expressed in only a subset of cells from active-MM mice
(Supplementary Fig. 6h) and that the pathways associated with
these clusters were also related to immune processes (Supple-
mentary Fig. 5, Program C). Thus, these data suggest that gene
expression programs that once defined the landscape of
malignant cells in precursor disease stages become subclonal in
advanced disease as tumours diversify (Fig. 5).

GCN2 inhibition represents an anti-MM therapeutic strategy.
Since ISR-GCN2-driven subclones were detected in all mice with
active-MM, we next evaluated whether this pathway has relevance
in human myeloma disease. To do this, we scored publicly-
available expression data from primary BM plasma cell samples
using the ISR-GCN2 gene signature. This included bulk expres-
sion data from Chng et al.43 (134 samples: 15 healthy donor, 22
MGUS, 24 SMM, 73 newly diagnosed MM) and a scRNA-seq
data set from Ledergor et al.12 (35 samples: 11 healthy donors, 6
MGUS, 6 SMM, and 12 MM). In both data sets, a significant
progressive increase in ISR-GCN2 scores was detected across
disease stages from MGUS to MM (Fig. 6a, b), suggesting that
activation of this transcriptional program is associated with
progression from precursor disease to overt MM. Considering
each patient individually, our analysis also supports that the ISR-
GCN2 pathway is more highly active in a subset of patients with
MM (Supplementary Fig. 7a, b). Similar to Vκ*MYC mice, acti-
vation of ISR-GCN2 was strongly associated with protein trans-
lation in both Chng et al. and Ledergor et al. data sets
(Supplementary Fig. 7c, d), but not with UPR or PERK-related
ISR (Supplementary Fig. 7c, d). Taken together, these results

confirm that the ISR-GCN2 pathway is highly active in a subset of
myeloma patients, correlates with increased levels of protein
translation, and is associated with disease progression. Thus, we
next assessed whether this pathway is necessary for myeloma cell
survival.

GCN2 has recently emerged as a promising drug target in solid
tumours and haematological malignancies43–47, but it is unknown
whether this pathway represents a therapeutic vulnerability in
MM. We, therefore, treated a panel of human myeloma cell lines
(HMCLs, n= 9) with the small molecule GCN2 inhibitor,
GCN2iB44, to assess whether myeloma cells rely on the ISR-
GCN2 pathway for survival. This analysis revealed that treatment
with GCN2iB has anti-myeloma activity, but induced a range of
responses in HMCLs (Fig. 6c), which we hypothesized may
correlate with differences in basal ISR-GCN2 pathway activation.
Indeed, by scoring publicly-available HMCLs expression data
using the ISR-GCN2 signature, we found a statistically significant
inverse association between ISR-GCN2 score and viability after
treatment with GCN2iB (R=−0.605, P= 0.028, Fig. 6d),
supporting that cell lines with higher ISR-GCN2 activity are
more sensitive to GCN2iB. Notably, MYC signature scores
determined for each HMCL did not correlate with GCN2iB
response (R=−0.067, P= 0.829, Supplementary Fig. 8a) or ISR-
GCN2 activity (R= 0.077, P= 0.802, Supplementary Fig. 8b),
suggesting that ISR-GCN2 activation may not be uniquely related
to MYC dysregulation in human myeloma. Nonetheless, in
further support of a role for the ISR-GCN2 pathway in myeloma
survival, GCN2iB-sensitive HMCLs, as well as Vκ*MYC tumours
(Vκ12598), undergo apoptosis upon treatment with GCN2iB
(Fig. 6e, f, and Supplementary Fig. 8c, d). Consistent with these
effects, genetic knockout of GCN2 in GCN2iB-sensitive HMCLs,
RPMI-8226 and OPM2, reduced cell viability (Fig. 6g and
Supplementary Fig. 8e), but had no effect on the viability of
GCN2iB-insensitive HMCLs, MM1S, and XG7 (Supplementary
Fig. 8e, f). Thus, our data support that cellular responses to stress
via the ISR-GCN2 pathway are active in a subset of HMCLs, and
in turn, may represent an important process driving the
progression of plasma cell neoplasms. These findings not only
provide an anti-myeloma target, but also an accompanying
biomarker that can guide personalized therapeutic utility.

Discussion
Recent single-cell12,13 and large-scale genomic6,48–50 studies
profiling the spectrum of myeloma progression have revealed a
highly complex molecular landscape within and between patients.
This in turn has made defining mechanisms by which myeloma
evolves from a precursor stage to active disease challenging. In the
current study, we extensively characterized the molecular com-
position of the malignant cell compartment during disease evo-
lution by profiling the inferred CNV status and cellular states of
individual cells in the Vκ*MYC mouse model. This allowed for a
controlled, systematic comparison of gene expression programs
across disease stages in a model that is highly faithful to human
disease and is universally driven by a homogeneous transforming
event. Using a longitudinal single-cell transcriptional analysis
across the disease progression spectrum, we revealed patterns of
transcriptional divergence at distinct disease stages and identified
overlapping subpopulation-level gene expression programs. We
also demonstrated the clinical relevance in myeloma patients of a
shared transcriptional program identified from analysis of
Vκ*MYC tumours using publicly available human single-cell and
bulk gene expression data sets and showed that targeting this
program has anti-MM activity.

Although tumour heterogeneity is well established in myeloma,
our integrated analysis of single-cell CNVs and transcriptional
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profiles demonstrates further complexity that is likely to drive
progression and mechanisms of resistance. Indeed, even in a
model where host, environment, and initial oncogenic driver are
homogeneous, we unexpectedly observed extensive molecular and
phenotypic intra and intertumoural heterogeneity. To better
understand if and how these features contribute to differences in
disease trajectories and rates of progression, future studies could
consider exploring molecular changes that influence disease
progression within an individual mouse via serial sampling. This
approach could also enable the characterization of continuous
changes such as cancer cell plasticity that may contribute to
intratumoural heterogeneity and could further remove biological
variability between mice that may have impacted our DE analysis
across disease stages. Nonetheless, we found that Vκ*MYC
tumours are comprised of 4–8 distinct subpopulations of malig-
nant cells when defined using inferred CNV profiles, which is
consistent with previous whole-exome sequencing and single-cell
genetic analyses that uncover evidence for 2–6 subclones at
myeloma diagnosis51. Interestingly, when we defined subclones in
Vκ*MYC mice using transcriptional variability, we observed
more substantial intratumoural heterogeneity (3–13 clusters)
compared to when defined by CNV profile. We acknowledge the
possibility that these differences may be a result of different
clustering algorithms used to group the data. However, it
is notable that our finding of lack of overlap between some

Fig. 6 ISR-GCN2 pathway is progressively activated in myeloma patients and supports myeloma cell survival. a ISR-GCN2 gene signature scoring in
publicly-available microarray patient data from Chng et al.43 calculated by taking the mean of scaled expression values for genes from the ISR-GCN2 gene
set. b ISR-GCN2 gene signature scoring calculated using Seurat’s AddModuleScore in publicly-available scRNA-seq patient data from Ledergor et al.12

across disease groups. Statistical comparisons of multiple groups (Healthy vs. each disease group) in (a) and (b) were performed using the Wilcoxon rank-
sum test (two-sided) corrected for multiple testing (Benjamini−Hochberg). Boxplots in (a) and (b) represent the distribution of each measurement within
defined groups, where the central rectangle spans the interquartile range, the central line represents the median, and “whiskers” above and below the box
show the value 1.5× the interquartile range. c MTT analysis of GCN2iB treatment in HMCLs (1 μM, 72 h). Data represent the mean of biological replicates
(n= 2 for MY5, JJN3, XG6, AMO1, and RPMI8226; n= 3 for XG7, OPM2; n= 4 for MM1S, U266) with error bars representing standard deviation shown
for samples with more than two biological replicates. d Pearson correlation (cor.test, two-sided) between the ISR-GCN2 gene signature score (x-axis) and
viability relative to DMSO (1 μM GCN2iB, y-axis). The linear regression line is plotted in black with confidence interval shaded grey. Each dot represents
one HMCL. e Flow cytometric analysis of apoptosis in U226 cells after 48 h treatment with 5 μM GCN2iB. f Flow cytometric analysis of apoptosis in
Vκ12598 tumour cells (CD138+/B220−) after 48 h treatment with 5 μM GCN2iB. Scatter plots in (e) and (f) are representative of multiple independent
experiments (see Supplementary Fig. 8c, d). Quadrants corresponding to viable tumour cells are highlighted in red. g Bar plots depicting cell survival, as
determined by trypan blue assay, in GCN2 knockout HMCLs. Bar heights represent mean relative viability from two independent experiments (as shown by
individual data points). Source data are provided in SourceData_Fig. 6.xlsx.

Fig. 5 Proposed model for patterns of tumour heterogeneity during
myeloma disease progression in Vκ*MYC mouse model. Graphics created
in part using BioRender.com.
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CNV-level subpopulations and transcriptionally-defined sub-
clones is consistent with the recent findings from Fan et al.52.
This, in turn, supports that genetic events are not the sole drivers
of divergent malignant programs and that molecular hetero-
geneity is likely driven by additional non-genetic factors such as
epigenetic regulators or differences in the tumour micro-
environment. Thus, the results demonstrate the utility of our
approach for unravelling the complexity of myeloma tumours
that interplay in cancer progression.

In this study, we attempted to define longitudinal changes in
the molecular programs of malignant cells, however, we found
very few genes that were differentially expressed between each
stage of disease progression. It is possible that minor differences
in disease burden between early-MM and int-MM and/or biolo-
gical variability between mice may account for the lack of broad
differences in gene expression between these disease stage groups.
However, our observations are consistent with those reported by
Storti et al. who performed bulk microarray profiling of CD138-
selected cells from patient BM and similarly found that the
transcriptomic profile of myeloma cells remains substantially
unchanged throughout progression10. We can further conclude
that the lack of change in gene expression profiles is not due to
contaminating normal plasma cells that may have been present in
the Storti et al. study, since we were able to remove these cells
from our data in silico. Rather, we suspect that failure to detect
substantial transcriptional changes between disease stages is the
result of intra and intertumour heterogeneity. Indeed, we show
that the malignant cell compartment is comprised of multiple
CNV-driven and transcriptional subpopulations, even in mice
where disease is not yet detected by conventional methods. Thus,
it is possible that genetic changes associated with disease pro-
gression lie in distinct tumour subclones that may be obscured in
bulk sequencing analysis. It would follow therefore that deci-
phering predictive biomarkers of progression will require large-
scale single-cell studies of progressing and non-progressing pre-
cursor patients.

We acknowledge that the small cell numbers profiled from
mice with earlier disease confounds our estimation of intratu-
moural heterogeneity at these time points. This limitation can
and should be addressed in future studies by experimentally
enriching for malignant cells prior to scRNA-seq profiling.
Nonetheless, our inferred CNV analysis supports the presence of
distinct malignant cell populations at all stages of disease and
further shows that these subclones persist throughout disease
progression. This pattern of progression is consistent with the
“static model” recently proposed by Bolli et al.6 In this model,
subclonal architecture is retained as disease progresses from SMM
to MM, such that progression reflects the time it takes to accu-
mulate sufficient disease burden, rather than the acquisition of an
additional oncogenic hit. Thus, findings from our study may be
most applicable to tumours from SMM patients that follow this
evolutionary path to progression. The persistence of certain
subclonal CNVs, such as loss of chr5, throughout progression
supports the notion that disease evolution in the Vκ*MYC model
is shaped by positive selection, as recently suggested by Diamond
et al.53. However, our findings add an additional layer to these
models whereby transcriptional divergence is a characteristic
feature of progression that reflects previously dominant molecular
programs that may have been selected against during progression
(Fig. 5). This supports the use of preventative treatment strategies
in the precursor setting, when tumours are less molecularly
complex and potentially easier to target.

Inferred CNV analysis revealed a high prevalence of subclonal
chr5 loss, which occurred before the disease could be detected by
conventional serum markers. Previous studies have demonstrated
the loss of chr5 in the Vκ*MYC model35,54, but we refine this

observation by showing that chr5 loss is an early and subclonal
event. It is therefore highly likely that loss of chr5 is a secondary
hit that occurs shortly after the initial transforming event of MYC
dysregulation (Fig. 5). We also show that loss of chr5 is a highly
recurrent event in Vκ*MYC tumours and more common than
previously reported by Chesi et al. who found an incidence of
approximately 50%35,54. The discrepancy in incidence may reflect
differences in technologies employed for the analyses (scRNA-seq
vs. array-based comparative genomic hybridization on bulk
plasma cells, respectively). Alternatively, the universality of chr5
loss reported in our study may be explained by the use of
Vκ*MYC mice backcrossed onto C57BL/KaLwRij mice since
tumours derived from this strain (5TMM) also demonstrate loss
of chr535,54,55. Nonetheless, the recurrent and early nature of chr5
loss in Vκ*MYC mice suggests the presence of one or more driver
genes that may be implicated in promoting disease progression.
Although we cannot ascertain the human-equivalent of chr5 loss
in mice from our analysis, many of the genes on mouse chr5
genes are located on human chromosomes 13, the most com-
monly reported CNV in precursor disease37. Future work should
therefore focus on elucidating the corresponding alternation to
mouse chr5 in human myeloma patients and further character-
izing its role in myeloma biology.

Although Vκ*MYC mice with active-MM demonstrated sig-
nificant molecular divergence, we identified a subpopulation of
cells in every tumour with a shared transcriptional program
related to protein translation and the response to amino acid
deprivation via the stress-sensing kinase GCN2. We in turn show
that inhibition of GCN2 has anti-myeloma activity in a panel of
HMCLs, consistent with previous studies that show GCN2 to be
critical for cancer cell survival in solid tumours under conditions
of nutrient deprivation44,56. Our findings lend relevance to the
model of myeloma whereby hallmark characteristics of long-lived
BM plasma cells like secretory function and protein production
are retained during myelomagenesis and in turn, represent highly
effective therapeutic vulnerabilities57. Although the exact role of
GCN2 in myeloma disease progression remains to be established,
it is possible that GCN2 activation may represent an adaptive
response to amino acid deprivation during increased immu-
noglobulin production. Alternatively, GCN2 activation may be a
downstream consequence of tumour-associated immune cell-
induced amino acid shortages in the tumour
microenvironment58,59, which if dissected could reveal combi-
natorial immune strategies for MM patients. Thus, follow-up
studies including those that incorporate tumour-associated
immune cells are warranted to delineate the role of GCN2 in
myeloma biology.

Given that MYC promotes global protein synthesis and drives
malignant transformation in the Vκ*MYC model, it is tempting
to speculate that there is a functional interaction between MYC
and GCN2 in myeloma. Indeed, previous studies have described
MYC-induced activation of the ISR-GCN2 pathway60. However,
several of our findings support that activation of the ISR-GCN2
pathway is not directly regulated by MYC in the Vκ*MYC model
and human myeloma. For instance, constitutive activation of the
MYC transgene in Vκ*MYC mice is the transforming event and
thus, present in all cells. However, we observed low or subclonal
levels of ISR-GCN2 activation in malignant cells from mice with
int-MM and active-MM, respectively. Similarly, our in vitro
studies revealed that activation of ISR-GCN2 in HMCLs was not
correlated with MYC signature scores and that response to GCN2
inhibition was dependent on baseline ISR-GCN2 activation, not
MYC activity. We suspect that the high level of ISR-GCN2
activity in Vκ*MYC mice with early disease reflects an adaptive
mechanism employed by myeloma cells to cope with cellular
stress associated with transformation, but whether this is directly
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mediated by MYC has yet to be determined. Nonetheless, given
the demonstrated importance of MYC dysregulation in myeloma
biology and progression18–22, future studies should seek to better
understand the interplay between MYC and GCN2 in this disease.

In conclusion, we present a longitudinal single-cell depiction of
tumour progression using the Vκ*MYC model of myeloma. Our
analysis highlights the utility of single-cell technologies for pro-
filing the genetic and transcriptional heterogeneity of malignant
cells and underscores the need for their incorporation in studies
aimed at understanding cancer biology. These findings have
important implications for designing targeted therapies against
multiple and diverse nodes driving malignant cell subpopulations
that are present in active disease. Although the hypothesis-
generating portion of our study was performed using a mouse
model of myeloma, the extension of our findings to myeloma
patients further supports that the Vκ*MYC model is highly
recapitulative of myeloma pathogenesis. Moreover, this work
provides the rationale for future studies to evaluate nominated
targets like GCN2 as therapeutic vulnerabilities and molecular
biomarkers associated with the progression of precursor disease
to overt myeloma.

Methods
Mice handling and bone marrow specimen processing. Animals used in this
study were housed in pathogen-free facilities at either the Montreal University
Health Centre or University Health Network under the following conditions: 21 °C
ambient temperature, 40–60% humidity, 12 hour dark/light cycle. All related
experiments were approved by institutional Animal Care Committees and per-
formed in accordance with the Canadian Council on Animal Care Guidelines
(University Health Network Protocol #958.23, Montreal University Health Centre
Protocol #2012-7242). For scRNA-seq experiments, Vκ*MYC transgenic mice17

were cross-bred onto C57BL/KaLwRij given the latter model’s increased propensity
for developing spontaneous monoclonal gammopathies and bone disease24,25.
Myeloma disease burden was monitored throughout the lifespan of the animals
using serum protein electrophoresis (SPEP) of M-protein in the serum. Mice were
assigned to disease groups for scRNA-seq profiling according to age and M-protein
levels (not underlying biological characteristics of the tumour) as follows (Fig. 1a
and Supplementary Data 1): early disease (early-MM: 27–33 weeks, no detected/
trivial M-protein), intermediate-MM (int-MM, 49 weeks, trivial M-protein), and
active-MM (61–74 weeks, major M-protein). To control for the possible effects of
aging, non-transgenic age-matched C57BL/KaLwRij mice (55–72 weeks) were also
included. At the indicated time points, mice were sacrificed and their hind leg
bones dissected. BM material was extracted by flushing femurs and tibias with ice-
cold PBS. Cells were then dissociated by passing through a 23-gauge needle. The
resulting single-cell suspensions were subject to debris removal (35 µm cell strai-
ner) and red blood cell lysis (ACK buffer) and then washed and resuspended in the
appropriate buffer for downstream analyses.

Disease monitoring by serum protein electrophoresis. To monitor disease in
mice, 50 μL of tail vein blood was collected into microcuvettes (Sarstedt Inc,
Newton, NC, USA) and centrifuged for 5 min at 10,000 × g to separate serum.
Collected serum was transferred into eppendorf tubes and stored at −20 °C until
testing. SPEP was performed with 0.5–1 μL of serum using the QuickGel System
(Helena Laboratories, Beaumont, Texas, USA) according to the manufacturer’s
instructions. Densitometric quantification of bands was performed using Image J
software (NIH, Open Source) as M-protein/total protein.

Single-cell RNA-sequencing
Preparation of single-cell suspensions and sequencing. Single-cell suspensions were
obtained from BM as described above and examined for cell number and viability
using trypan blue and a Countess II automated counter (Thermo Fisher Scientific,
Burlington, ON, Canada). Cell viability was greater than 70% for all samples
described in this study. Single-cell libraries were constructed using the V2 chem-
istry kit from 10X Genomics (Pleasanton, CA, USA) according to the manu-
facturer’s instructions. Libraries were sequenced on an Illumina HiSeq 2500
targeting 60,000 reads/cell. The 10X Genomics CellRanger software suite (v2) was
used for processing raw sequencing reads, alignment, and to generate a digital gene
expression (DGE) matrix of gene-by-cell counts. To account for the human MYC
transgene in Vκ*MYC mice, the 10X Genomics GRCm38 genome reference
package was supplemented with the GRCh38 MYC sequence and gene annotation.
The resulting raw DGE matrices were used as input for downstream analyses using
R v3.6.1.

DGE matrix pre-processing and filtering. Total read counts for each cell barcode
were calculated with BAMTagHistogram (Drop-seq Cookbook v1-2.1261) and used
as input for cell barcode calling using findInflectionPoint (dropbead v0.362). DGE
matrices containing cell-associated barcodes only were then merged for multi-
sample analyses. Low-quality cells (<500 genes, <1000 transcripts (unique mole-
cular identifier (UMI)), and/or >15% mitochondrial UMIs) and lowly expressed
genes (expressed in less than 0.1% of the average number of cells per sample) were
identified and removed from the analysis. Finally, suspected doublets were removed
from the dataset if identified using doubletFinder63 (v2.0.3). A summary of scRNA-
seq metrics is provided in Supplementary Data 1.

Single-cell RNA-seq data clustering and visualization. All subsequent steps in the
clustering analysis were performed using Seurat v3.2.164 unless otherwise stated.
Log-normalized expression values were calculated for each cell (Ei,j) by dividing
UMI counts for gene i by the sum of the UMI counts in cell j, to normalize for
differences in coverage, multiplying by 10,000, and finally computing ln(Ei,j+ 1).
The 3000 most variably expressed genes were then determined using the “vst”
method in FindVariableFeatures and scaled using ScaleData with regression on the
proportion of mitochondrial UMIs (mt.percent). RunPCA was used to compute the
top principal components using variably expressed genes. Significant principal
components were identified using KneeArrower (v0.1.0) and used as input for
visualization with non-linear dimensionality reduction methods (t-SNE65,
UMAP66), and for graph-based clustering as implemented by Seurat. Batch
effect correction was applied to B cell lineage cells using Harmony67 with
group.by.vars = sequencing batch and theta = 0.5 (see Supplementary Data 1
for sequencing batch).

For the full BM scRNA-seq data set (n= 104,880 cells), clustering was
performed using a resolution of 2.0, which clearly separated the major
hematopoietic lineages present in the BM. Annotations were applied using SingleR
(v1.0.6) with ref=immgen (Immgen bulk gene expression reference from highly-
purified hematopoietic and immune cell types: GSE15907, GSE37448)27. Cell labels
for scRNA-seq data were selected from the “main.label” category of the Immgen
reference. Clusters where more than 50% of cells were assigned to “main.label” B
cell or pro-B cell were annotated as B_PC lineage and subset for downstream
analyses.

A multi-resolution clustering approach was employed for the B cell lineage
scRNA-seq data set and for malignant cells from each of the seven Vκ*MYC mice
with active-MM. This provided a systematic and biologically driven method to
select the optimal clustering parameters using a range of resolutions (res= 0.4–1.4
for active-MM malignant cells, res= 1–2 for B cell lineage). For each resolution
tested, DE analysis was performed between clusters. Only resolutions that
produced clusters with a minimum specified number of differentially expressed
genes were kept (5 for active-MM malignant cells, 15 for B cell lineage). The
optimal clustering resolution was then selected as having the greatest median
silhouette value across all clusters.

Cell cycle scoring. Cell cycle scores were generated using an established analysis
workflow recommended in the Seurat software documentation (https://
satijalab.org/seurat/v2.4/cell_cycle_vignette.html). Briefly, cell-level scores were
generated based on the expression of previously published G2/M and S-phase gene
signatures using the CellCycleScoring function in Seurat. G2/M and S phases were
assigned based on the highest positive score, while G1-phase was assigned if both
G2/M and S-phase gene scores were less than 0.

Single-cell gene signature scoring. Gene signature activity in single cells was esti-
mated using the AddModuleScore function from Seurat, which calculates the
average expression level of each signature on a single-cell level, and then subtracts
this by the aggregated expression of control feature sets (n= 25). All analyzed
features are binned based on averaged expression, and the control features are
randomly selected from each bin. Gene sets used for signature scoring are listed in
Supplementary Data 11 and when necessary, mapped to mouse orthologues using
Ensembl BioMart.

Differential expression analysis. Differential expression (DE) analysis was per-
formed on scRNA-seq data using the Wilcoxen rank-sum test implemented in
FindAllMarkers/FindMarkers functions in Seurat. Genes were only tested if
detected in over 30% of either of the two populations being compared and if their
average expression exceeded 0.5-fold difference (log-scale) between the two groups,
unless otherwise specified. Significance (p-value) adjustment was performed using
Bonferroni correction and final results included if FDR < 0.05. The pseudo-
count.use argument, which is added to the averaged expression values when cal-
culating logFC, was adjusted to 1/number of cells in the DE analysis.

Defining a core malignant program in Vκ*MYC tumour cells. To define a core
malignant program in Vκ*MYC mouse tumours regardless of disease stage, we
performed DE analyses between malignant cells from each disease stage group and
normal plasma cells. Overlapping upregulated and downregulated genes were then
identified between all three disease stage groups. Core positively and negatively
enriched pathways were identified from overlapping up and downregulated genes
using C2, C6, and H gene sets from MSigDB (FDR < 0.05).
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Temporal patterns of gene expression throughout the progression. To define distinct
gene expression programs for each disease stage group, we performed DE analysis
between the malignant cells from each sample of a given disease stage group and
malignant cells from the other disease stage groups (e.g., malignant cells from
EMM1 vs. malignant cells from IMM and AMM mice, see Supplementary Fig. 2b).
Upregulated DE genes were removed if present in over 30% of cells from the other
disease stage groups. We then identified DE genes that overlapped in all mice from
a given disease group and compared the mean sample-wide expression of each gene
across disease groups. Statistical comparison of means was performed using an
unpaired t-test with p-values adjusted using Bonferroni correction (P < 0.05).

Malignant programs of active-MM clusters. DE analysis was performed for each
active-MM mouse to define cluster-specific marker genes (as determined by
resolution-optimized unsupervised clustering described above). Genes were only
tested if detected in over 25% of either of the two populations being compared and
if their average expression exceeded 0.25-fold difference (log-scale) compared to all
other cells. Cluster-specific pathways were then identified for each set of cluster-
specific markers using gene set enrichment analysis (Reactome68, FDR < 0.05).
Overlap (similarity) between enriched pathways for each cluster was determined by
computing Jaccard similarity indices. Similarity groups were determined by hier-
archical clustering implemented by the ComplexHeatmap R package69. Non-
negative matrix factorization (NMF) was performed to validate the subclonal
malignant programs identified above. NMF programs were identified by running
the optimizeALS function from Liger70 on the scaled dataset using k= 20. The top
50 features from NMF programs 1–20 were then used as input for Reactome
enrichment and the result explored for similarity to programs identified by the
Jaccard similarity analysis.

Single-cell CNV analysis. Single-cell CNV profiles were inferred using the inferCNV
R package (v1.2.1)34, which computes gene expression intensities across genomic
positions from malignant cells in comparison to a set of reference cells (normal
plasma cells). Input data including raw counts matrix, annotations file, and
positions file (provided in SourceData_Fig. 3.xlsx) were prepared as recommended
by inferCNV authors. The algorithm was run with the following arguments:
cutoff=0.1, HMM_type= ‘i3’, cluster_by_groups=TRUE, denoise=TRUE,
HMM= TRUE. CNV-level subpopulations were determined using analy-
sis_mode= ‘subclusters’, which attempts to partition cells into groups having
consistent patterns of CNVs. Enrichment analysis of del(5) cells was performed
using marker gene analysis (logfc= 1.0, FDR < 0.05) and gene set enrichment
(Reactome68, FDR < 0.05) using CNV-partitioned cells with predicted chr5 state of
1 compared to all other malignant cells. Mouse-human orthologues were deter-
mined by mapping mouse chr5 genes (GRCm38.p6) to the full human genome
(GRCh38.p13) using Ensembl BioMart (Ensembl Genes 101).

Acquisition and analysis of public genomic datasets. All publicly available
patient data were downloaded from the Gene Expression Omnibus. scRNA-seq
count data from Ledergor et al.12 (GSE117156) were filtered according to para-
meters specified in the original manuscript and processed using Seurat. Signature
scores were calculated using the Seurat AddModuleScore function for each gene
set. Raw data from Chng et al.43 (GSE6477) were log2-quantile normalized prior to
scoring. RNA-seq data for HMCLs was obtained from the Keats Lab repository
using https://www.keatslab.org/data-repository (HMCL66_Gene_Ex-
pression_FPKM). Signature scores for Chng et al. and HMCL expression data were
calculated using the mean scaled expression of gene set genes.

Human myeloma cell lines. Experiments using human myeloma cell lines
(HMCLs) XG7, XG6, MM1S, MY5, JJN3, OPM2, U266, AMO1, and RPMI-8226
were performed in L-glutamine free Iscove’s Modified Dulbecco’s Medium
(IMDM, Gibco, Grand Island, NY, USA) supplemented with 5% fetal bovine serum
(FBS) (Hyclone, Logan, UT, USA), 100 μg/ml penicillin and 100 μg/ml strepto-
mycin (Gibco, Grand Island, NY, USA). Cell lines were maintained routinely in a
humidified chamber at 37 °C and 5% carbon dioxide. Transplantable Vκ12598
cells71 were generously provided by Dr. Marta Chesi.

GCN2 guide RNA cloning and lentivirus production. To generate guide RNA
(gRNA) targeting GCN2 expression, we employed the LentiCRISPR v.2 vector
system (Addgene, Watertown, MA, USA). Constructs were designed to maximize
on-site specificity and minimize off-target activity using a publicly-available online
CRISPR design algorithms72. RNA guides were cloned into LentiCRISPR v.2
puromycin-resistant backbone and selected by ampicillin resistance in Stbl3 bac-
teria according to the Lentiviral CRISPR Toolbox standard protocol from the
Zhang Lab73,74. GCN2 guide and control RNA lentiviral particles were produced
by transfecting HEK293T cells (obtained from ATCC) using the Lipofectamine
3000 transfection reagent (Thermo Fisher Scientific, Burlington, ON, Canada). The
medium was replaced with IMDM medium containing 10% FBS 12 h after
transfection, and medium containing viral particles was collected 48 and 72 h after
initial transfection. Media was filtered using a 0.45 μM filter, aliquoted, and stored
at −80 °C. DNA oligonucleotides used for GCN2 knockout experiments are
described in Supplementary Table 1.

Generation of GCN2−/− knockout HMCLs. RPMI-8226 and OPM2 cells were
stably transduced with lentiviral LentiCRISPR v.2 expressing VAS9 gene and
gRNAs targeting GCN2 or control lentivirus for 24 h at 37 °C in antibiotic-free
IMDM with polybrene. Lentivirus media was removed and replaced with fresh
IMDM media including antibiotic (1% penicillin-streptomycin) and incubated for
48 h. Stably transduced cells were then selected using 2 μM puromycin for 3 days
and GCN2 knockouts validated by western blotting using anti-GCN2 (Cell Sig-
nalling Technologies, cat.3302, 1:1000 dilution), anti-TOM40 (Proteintech,
cat.18409, 1:1000 dilution) and anti-β-Tubulin (Cell Signalling Technologies,
cat.2146, 1:1000 dilution). HRP-conjugated anti-rabbit was used as a secondary
antibody (Cytiva, cat.NA934, 1:1000 dilution). GCN2 knockout and control vector
HMCLs were cultured in IMDM media without L-glutamine and after 5 days,
viability was analyzed using trypan blue (0.4% Trypan Blue Solution, Gibco, Grand
Island, NY, USA). Two independent constructs were used for CRISPR knockout
experiments and viability measurements were obtained in duplicate.

In vitro analysis of GCN2iB in HMCLs and Vκ12598. The GCN2 inhibitor
GCN2iB44 was obtained from MedChemExpress (Monmouth Junction, NJ, USA)
and dissolved in DMSO as per the manufacturer’s recommendations. At the time
of experiments, stock solutions were thawed and diluted in culture medium
(DMSO vehicle controls were prepared at the same volumes, such that the final
solutions contained the same percentage DMSO). Cell death of HMCLs was
assessed by flow cytometric analysis of apoptosis using the FITC Annexin V
Apoptosis Detection Kit (BD Biosciences, cat.556547) according to the manu-
facturer’s instructions. Cell death of Vκ12598 cells was assessed by flow cytometric
analysis of CD138+/B220- cells using CD138-APC (BD Biosciences, cat.558626,
clone.281-2) and B220-PE (BD Biosciences, cat.553089, clone.RA3-6B2) according
to the manufacturer’s instructions. All samples were analyzed on a BD FACS Canto
II flow cytometer (BD Biosciences, San Diego, CA, USA), with data collected by
FACSDiva v8.0.1 and results analyzed using Flowjo v10.7.1. Cell viability after
treatment with GCN2iB was assessed by MTT assay (Roche Molecular Biochem-
icals, Boehringer, Germany) according to the manufacturer’s instructions. Dye
absorbance was read at 570 nm (reference wavelength; 650 nm) using the OptiMax
microplate reader (Molecular Devices, Sunnyvale, CA, USA).

Statistics. Statistical tests performed are indicated in figure legends. The sample
size was determined by the availability of subjects for scRNA-seq, but a minimum
of three samples for each disease stage group was decided upon upfront to capture
biological heterogeneity between tumours. Measurements were taken from distinct
samples unless otherwise stated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study have been deposited as raw bam files and as
processed gene expression matrices at the National Centre for Biotechnology
Information Gene Expression Omnibus with accession numbers SRP214856 and
GSE134370. Source data for all figures are also provided for this paper. Previously
published data sets are available without restriction from the Gene Expression Omnibus
(GSE117156 and GSE6477). Source data are provided with this paper.

Code availability
Code supporting this study is available at https://github.com/pughlab/scVkMYC_mPC.
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