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Convergence of oncogenic cooperation at single-
cell and single-gene levels drives leukemic
transformation
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Cancers develop from the accumulation of somatic mutations, yet it remains unclear how

oncogenic lesions cooperate to drive cancer progression. Using a mouse model harboring

NRasG12D and EZH2 mutations that recapitulates leukemic progression, we employ single-cell

transcriptomic profiling to map cellular composition and gene expression alterations in

healthy or diseased bone marrows during leukemogenesis. At cellular level, NRasG12D induces

myeloid lineage-biased differentiation and EZH2-deficiency impairs myeloid cell maturation,

whereas they cooperate to promote myeloid neoplasms with dysregulated transcriptional

programs. At gene level, NRasG12D and EZH2-deficiency independently and synergistically

deregulate gene expression. We integrate results from histopathology, leukemia repopula-

tion, and leukemia-initiating cell assays to validate transcriptome-based cellular profiles. We

use this resource to relate developmental hierarchies to leukemia phenotypes, evaluate

oncogenic cooperation at single-cell and single-gene levels, and identify GEM as a regulator

of leukemia-initiating cells. Our studies establish an integrative approach to deconvolute

cancer evolution at single-cell resolution in vivo.
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Cancers evolve as a consequence of the accumulation of
somatically acquired mutations, and their malignant
properties reflect the functional cooperation of these

mutations1. Genetic interactions are central to the selection of
variant subclones during cancer evolution, resulting in the
acquisition of biological attributes that drive cancer progression
and pathogenesis2. This is evident in acute myeloid leukemia
(AML) and the preleukemic myelodysplastic/myeloproliferative
neoplasms (MDS/MPN), a group of genetically and clinically
heterogeneous hematological diseases. Recent genomic profiling
studies revealed that the vast majority of AML samples harbor
approximately a dozen of recurrent genomic alterations with an
average of three oncogenic driver lesions per AML genome3–6.
Although co-occurring somatic mutations are frequently detected
in AML patients, it remains elusive how distinct oncogenic dri-
vers cooperate to dysregulate gene expression and cellular dif-
ferentiation to drive disease progression.

Oncogenic cooperation between different driver mutations has
been observed in cell line and mouse models7. Specific combi-
nations of AML-associated disease alleles, such as FLT3 and
TET2 mutations, confer unique biologic characteristics linked to
adverse outcomes8,9. However, a major challenge in studying
oncogenic cooperation is the lack of high-throughput and high-
resolution analysis of molecular changes during the course of
cancer progression. Advances in single-cell-based profiling pro-
vide opportunities to dissect the molecular processes and cellular
state transitions at unprecedented throughput and resolution10.
While single-cell transcriptomic profiling is widely used to dissect
differentiation trajectories in mammalian development, few stu-
dies were conducted to interrogate disease progression in vivo
using genetically defined model systems10.

We previously generated a genetic mouse model with oncogenic
mutations in signaling (NRasG12D) and epigenetic (EZH2) regulators
commonly found in human hematopoietic malignancies11. While
mice harboring NRasG12D alone developed indolent myeloprolifera-
tive neoplasms (MPNs) and EZH2 deletion alone had minimal
effects on hematopoiesis, combined NRasG12D and EZH2 mutations
cooperatively induced MPN progression to lethal AML11. This
genetic model permits not only the identification of molecular
pathways controlling MPN progression to acute leukemia but also
the analysis of the functional cooperation between distinct oncogenic
drivers in disease pathophysiology, especially at the single-cell level.
Furthermore, the preceding MPN phase in these mice reflects an
early stage of cancer development that is inaccessible in most cancer
models12, and their disease course over an extended period of time
provides a unique opportunity for longitudinal studies.

In this work, we employ single-cell transcriptomic profiling to map
the cellular states and gene expression alterations of bone marrow
(BM) hematopoietic stem/progenitor cells in healthy or diseased mice
containing single or combined oncogenic mutations at discrete stages
of leukemia progression. We integrate results from histopathology,
flow cytometry, leukemia repopulating activity, and leukemia-
initiating cell assays to validate the transcriptome-based cellular
profiles. We use these approaches to relate developmental hierarchies
to leukemia phenotypes, to evaluate functional cooperation between
distinct oncogenic drivers at single-cell and single-gene levels, and to
identify regulators of leukemia-initiating cells.

Results
Single-cell transcriptomic profiling of HSPCs during leukemia
progression. To determine the functional cooperation between
oncogenic mutations in signaling and epigenetic molecules in leu-
kemia, we previously generated mice harboring hematopoietic-
selective and pIpC-induced (by Mx1-Cre) activation of oncogenic
RAS (NRasG12D) and inactivation of EZH2, the histone H3-Lys27

methyltransferase11 (Fig. 1a). Mice with activation of NRasG12D+/−

alone (Mx1-Cre+;NRasG12D+/−, hereafter G12D) developed chronic
myeloproliferation with long latency (median survival >365 days),
consistent with an MPN-like phenotype13, whereas mice deficient for
EZH2 alone (Mx1-Cre+;Ezh2f/f, hereafter E2-KO) had little effect on
hematopoiesis. In contrast, combined NRasG12D activation and
EZH2 deficiency (Mx1-Cre+;NRasG12D+/−;Ezh2f/f, hereafter G12D/
E2-KO) significantly accentuated disease progression from indolent
to lethal MPN and acute leukemia with a shortened survival (median
86 days and mean 103 ± 53 days; P < 0.0001 vs. G12D or E2-KO;
Fig. 1a). The moribund G12D/E2-KO mice developed severe sple-
nomegaly and hepatomegaly with destructive myelodysplasia not
seen in age- and sex-matched wild-type mice (WT; Mx1-Cre-) or
mice with either mutation alone11 (Fig. 1b). We also validated MPN
progression to AML by flow cytometry and histopathological ana-
lyses in previous studies11, thus establishing a genetically defined
leukemia model induced by functional cooperation between onco-
genic signaling and epigenetic dysregulation.

NRasG12D and EZH2-deficiency-induced leukemia presents
important features that recapitulate human AML with preceding
preleukemic conditions, including the presence of an indolent
MPN phase and the disease course over an extended period of
time. We reasoned that the longitudinal analysis of single-cell
transcriptomes of evolving hematopoietic cells at different stages of
disease progression may allow dissection of the underlying cellular
programs and functional cooperation between distinct oncogenic
drivers in vivo. To this end, we performed single-cell RNA
sequencing (scRNA-seq) analysis of c-Kit+ hematopoietic stem/
progenitor cells (HSPCs) isolated from WT, G12D, E2-KO, and
G12D/E2-KO mouse BMs (Fig. 1c). Since c-Kit is expressed on all
hematopoietic stem and early progenitor cells14, the use of c-Kit-
enriched HSPCs allows an inclusive approach that preserves the
relative abundance of progenitor cell states15. More importantly,
we isolated HSPCs from distinct stages of leukemia development at
disease initiation (2 weeks after pIpC-induced NRasG12D activation
and/or EZH2 KO; T1, Fig. 1a), evolving MPN (2 months post-
pIpC; T2), and blast phase post-MPN leukemia (4 months post-
pIpC; T3). Comparing single-cell transcriptomes at discrete time
points allowed the analysis of temporal changes during leukemia
progression. In addition, comparing cellular and gene-level
changes across different genotypes uncovers oncogenic changes
caused by either or both oncogenic mutations (Fig. 1c).

We first validated the histopathology of evolving leukemic
transformation in G12D/E2-KO mice 4 months post-pIpC. We
observed leucoerythroblastic anemia in peripheral blood (PB),
increased myeloid:erythroid (M:E) ratio and myelodysplasia in
BM, elevated white:red pulp in spleen, and destructive myelo-
dysplasia in spleen and liver (Supplementary Fig. 1a), consistent
with previous findings11. Moreover, immunohistochemistry
analysis of BM and spleen sections revealed the presence of
10–20% or higher c-Kit-positive leukemic blasts, indicating
evolving leukemic transformation consistent with post-MPN
leukemia (Supplementary Fig. 1a). None of these histological
aberrations were observed in pIpC-induced and aged-matched
WT, G12D, or E2-KO mice. We next employed a 10× Genomics
platform and captured 2519 to 5998 single-cell transcriptomic
profiles of BM HSPCs in each genotype at each time point, with a
total of 38,331 single cells analyzed at discrete stages of
leukemogenesis. After filtering doublets and low-quality cells,
we obtained 7583, 7975, 10,611, and 9428 high-quality single-cell
transcriptomes from WT, E2-KO, G12D, and G12D/E2-KO for
comparative analyses, respectively (Supplementary Data 1).

Identification of hematopoietic hierarchies in healthy mouse
BM. To identify cellular states and gene expression alterations
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underlying leukemia progression, we developed a custom pipeline
to process scRNA-seq data, annotate cell populations, infer
developmental hierarchies, and evaluate oncogenic cooperation at
single-cell and single-gene levels (Supplementary Fig. 1b). We
first identified baseline cellular heterogeneity in BM HSPCs from
healthy (WT) mice at time points consistent with evolving leu-
kemia development (T1–T3; Fig. 1a, c). Total 7583 cells from WT

HSPCs were grouped into 32-cell clusters using the Louvain
algorithm from SCANPY16 (Fig. 1d; Supplementary Fig. 1c). We
next merged 32 clusters into 11 main cell populations based on
the topology and transcriptomic similarity of different clusters
(Fig. 1d), and annotated cell populations by the expression of
established hematopoietic marker genes15 (Fig. 1e; Supplemen-
tary Data 2). For instance, the hematopoietic stem cell (HSC)/
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multipotent progenitor (MPP) population was identified based on
the high level expression of a gene signature consisting of Msi2,
Flt3, Hoxa9, Gcnt2, and Hlf, whereas the megakaryocyte-
erythroid progenitor (MEP) population was annotated by the
expression of both megakaryocytic (Pf4, Vwf, Itga2b, Rab27b,
Sdpr, and Gp1bb) and erythroid (Apoe and Gata2) marker genes.
All major hematopoietic cell types were captured in WT HSPCs,
including HSC/MPP, MEP, granulocyte–macrophage progenitors
(GMP), pro-monocytes (ProMo), lymphocytes (Lym), mega-
karyocytes (Meg), erythroid progenitors (EryP), early and late
erythroid (Ery) cells, and early and late granulocytes (GN)
(Fig. 1e; Supplementary Data 2).

To explore the relationships between the identified cell
populations, we visualized the captured HSPCs using the K-
nearest-neighbor (KNN)17 and the uniform manifold approx-
imation and projection (UMAP)18 approaches, respectively
(Fig. 1f, g). Both methods revealed ordered differentiation
trajectories starting from HSC/MPP to myeloid, erythroid and
lymphoid lineages with a continuum of cells in intermediate
states (Fig. 1f, g), consistent with the recent scRNA-seq-based
analyses of hematopoietic landscapes15,19. Moreover, HSPCs
from different time points displayed strong concordance when
projected onto the differentiation trajectories, suggesting that the
cell state compositions and transitions are largely comparable at
these time points in healthy BMs (Supplementary Fig. 1d, e).

Gene expression changes between and within states in mutant
HSPCs. Having established the cell populations and their rela-
tionships within differentiation trajectories, we next examined the
cellular compositions of HSPCs from E2-KO, G12D, and G12D/
E2-KO mutant mice at three time points (T1–T3). We reasoned
that the evolving leukemia development may acquire new cellular
states or altered differentiation trajectories of the existing cellular
states compared to WT HSPCs. To distinguish between these
possibilities, we adapted a method with the rationale that the new
cellular state would cause widespread gene expression changes in
mutant relative to WT HSPCs, and that the differences in gene
expression between new and existing cellular states would be
comparable to the differences between different existing cellular
states20 (Fig. 2a).

To this end, we annotated single cells from mutant HSPCs by
mapping them to their nearest neighbor cells in WT HSPCs, and
identified differentially expressed genes (DEGs) within the same
cell states between different genotypes (‘within state’ DEGs in WT
vs. E2-KO, G12D or G12D/E2-KO). Compared with DEGs
between distinct cell populations in WT HSPCs (‘between state’
DEGs), the numbers of ‘within state’ DEGs among WT and
mutant genotypes were significantly less than the numbers of
‘between state’ DEGs in WT HSPCs (Fig. 2a, b; Supplementary
Data 3). Using the same criteria across all genotypes and time
points, we consistently observed more ‘between state’ DEGs than

‘within state’ DEGs. Of note, though, the numbers of ‘within state’
DEGs increased modestly in E2-KO and G12D/E2-KO HSPCs at
late stages of leukemia development (T2 and T3), consistent with
a direct role of EZH2 in regulating gene expression during
leukemia progression11,21,22 (Fig. 2b).

We next combined HSPCs from all genotypes and visualized
the differentiation trajectories using KNN-based clustering.
Consistent with the results from DEG analysis, we found no
new cell clusters with aberrant expression patterns compared to
WT HSPCs (Fig. 2c, d). Similar to WT HSPCs (Fig. 1f), KNN
analysis of combined HSPCs from 12 samples also occupied a
continuum of cellular states with the undifferentiated HSC/MPP
population at the core, from which differentiating myeloid,
lymphoid, and erythroid lineages appeared (Fig. 2c). Lineage-
defining marker genes showed higher expression in terminally
differentiated cell states compared to early progenitor cells located
closer to the undifferentiated core (Supplementary Fig. 2a). Cell
types in mutant HSPCs were annotated according to their nearest
neighbor cells in WT HSPCs as described above. When KNN
clustering was colored on the basis of different cell types, we
observed that mutant cells located in proximity to their WT
counterparts, with cells in the same annotated cellular states
positioned adjacent to each other (Fig. 2c, d). Finally, we
examined the expression of Ezh2 in single-cell transcriptomes
from all samples, and confirmed the significantly lower or absent
Ezh2 expression in the vast majority of E2-KO and G12D/E2-KO
HSPCs at three time points (Fig. 2e; Supplementary Fig. 2b).

Together, by single-cell transcriptomic profiling of HSPCs at
distinct stages of leukemia development, we found that oncogenic
NRasG12D and/or EZH2-deficiency preserved the overall struc-
ture of hematopoietic differentiation trajectories similar to HSPCs
in healthy BMs; however, more genes displayed altered expression
during advanced stages of leukemia progression especially in
EZH2-deficient HSPCs.

NRasG12D and EZH2-deficiency cooperate to dysregulate
hematopoietic lineage differentiation. To investigate the dif-
ferences in cell state compositions and/or transitions between WT
and mutant HSPCs, we calculated the frequency of each cell type
in different genotypes (Fig. 3a). Of note, EZH2 loss in E2-KO and
G12D/E2-KO HSPCs increased the frequency of HSC/MPP
(Fig. 3b). G12D HSPCs showed expanded myeloid lineage cells
relative to erythroid and megakaryocytic lineages relative to WT
or E2-KO (Fig. 3c, d), consistent with the chronic myeloproli-
ferative phenotypes caused by NRasG12D activation (Fig. 1). The
myeloid differentiation bias was also apparent in G12D/E2-KO
HSPCs (Fig. 3c, d). These results demonstrate that NRasG12D

activation led to skewed hematopoietic differentiation towards
myeloid at the expense of erythroid and megakaryocytic lineages.
Interestingly, while G12D and E2-KO alone had little effect on
the frequency of MEPs which give rise to both megakaryocytes

Fig. 1 Single-cell transcriptomic profiling of leukemia progression in vivo. a Kaplan–Meier survival curves of WT, G12D, E2-KO, G12D/E2-KO mice. P
values were calculated using the log-rank (Mantel–Cox) test. scRNA-seq was performed on HSPCs of WT, G12D, E2-KO, and G12D/E2-KO mouse bone
marrows from distinct stages of leukemia development at disease initiation (2 weeks post-pIpC; T1), evolving MPN (2 months post-pIpC; T2), and blast
phase post-MPN leukemia (4 months post-pIpC; T3) as indicated by dash lines. b Spleen and liver weight of the indicated genotypes were measured at
10 weeks post-pIpC or when the mice were moribund. Results are mean ± SD (N= 9, 6, 6, and 12 for spleen and N= 7, 7, 7, and 10 for liver of WT, G12D,
E2-KO, and G12D/E2-KO mice, respectively) and analyzed by one-way ANOVA with multiple comparisons. c Schematic illustration of the comparative
analysis of single-cell transcriptomes between different genotypes (oncogenic changes) or time points (temporal changes). d Louvain clustering analysis of
single-cell transcriptomes in WT HSPCs. Heatmap is shown for the pairwise Pearson correlations between 32 clusters based on the average expression
profiles. Clusters were merged into 11 cell populations based on topology and transcriptional similarity. e Expression of the selected cell-type-specific genes
in 7583 WT HSPCs ordered by the Louvain-defined clusters. Heatmap shows the normalized gene expression levels. f KNN visualization of single-cell
transcriptomes in WT HSPCs. Each dot represents a single cell. Cells are colored according to the cell-type annotations. g UMAP visualization of single-cell
transcriptomes in WT HSPCs. Source data are provided as a Source Data file.
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and erythroid cells, G12D/E2-KO HSPCs had significantly and
progressively increased frequency of MEPs from T1 to T3
(Fig. 3e). Moreover, the ratio of megakaryocytes to erythroid cells
also progressively increased from T1 to T3 during leukemia
progression (Fig. 3f).

We validated the single-cell transcriptomic profiles by flow
cytometry-based analyses using established lineage markers for
myeloid (Gr1+Mac1+), erythroid (Ter119+CD71+) and mega-
karyocytic (Lin−c-Kit+CD150+CD41+) cells in mice 4 months
post-pIpC (Fig. 3g; Supplementary Fig. 3a). Of note, while
NRasG12D activation modestly increased myeloid cells and
EZH2-deficiency had no effect, combined NRasG12D and EZH2-
deficiency in G12D/E2-KO HSPCs significantly induced the
expansion of myeloid lineage cells. Furthermore, while G12D or
E2-KO alone had no effect on the frequencies of erythroid cells and
megakaryocytes, G12D/E2-KO BM had significantly decreased
erythroid cells and increased megakaryocytic progenitors (Fig. 3g).
Together with the single-cell analyses, these results illustrate the
skewed lineage differentiation of MEPs toward megakaryocytic

over erythroid lineages due to the functional cooperation between
NRasG12D activation and EZH2-deficiency in HSPCs.

G12D/E2-KO-induced MPNs are characterized by extensive
primary myelofibrosis (PMF) in the BM, spleen and liver during
advanced stages of disease progression (Supplementary Fig. 3b),
however the underlying mechanisms remained unclear11. BM
fibrosis is the most aggressive form of MPNs associated with
more severe diseases, leukemic transformation, and poorer
prognosis13,23,24. PMF in G12D/E2-KO hematopoietic tissues
displayed coarse trichrome-positive collagen fibrosis, dense
reticulin fibers with extensive interactions, and osteosclerosis
(Supplementary Fig. 3b), consistent with advanced PMF11,13.
Abnormal megakaryocyte proliferation plays a critical role in the
pathogenesis of myelofibrosis25–27. Megakaryocytic dysplasia/
hyperplasia activates the release of inflammatory cytokines and
growth factors such as IFN-γ, CCL5, CXCL5, TGF-β and PDGF
that stimulate aberrant proliferation of stromal cells to induce
myelofibrosis25–28. Therefore, our single cell profiling, flow
cytometry, and histopathology uncovered a functional

a

E2-KO, G
12D, or G

12D/E2-KO

WT

between stateswithin states

b

c

d

e

0-4
00

50
0-8

00

90
0-1

20
0

13
00

-16
00

17
00

-20
00

>2
00

0

100

80

60

40

20

0

%
 o

f S
ta

te
s

100

80

60

40

20

0

100

80

60

40

20

0

Number of Differentially Expressed Genes

100

80

60

40

20

0

%
 o

f S
ta

te
s

100

80

60

40

20

0

100

80

60

40

20

0

G12D vs WT
(T1)

G12D vs WT
(T2)

G12D vs WT
(T3)

100

80

60

40

20

0

%
 o

f S
ta

te
s

100

80

60

40

20

0

100

80

60

40

20

0

E2-KO vs WT
(T1)

E2-KO vs WT
(T2)

E2-KO vs WT
(T3)

G12D/E2-KO vs WT
(T1)

G12D/E2-KO vs WT
(T2)

G12D/E2-KO vs WT
(T3)

Between States
Within States

HSC/MPP
Lym

ProMo
GMP

Early GN

Late GN

MEP

Meg

EryP
Early Ery

Late Ery

All samples
35,597 cells

WT vs all
(T1)

WT vs all
(T2)

WT vs all
(T3)

E2-KO vs all
(T1)

E2-KO vs all
(T2)

E2-KO vs all
(T3)

G12D vs all
(T1)

G12D vs all
(T2)

G12D vs all
(T3)

G12D/E2-KO vs all
(T1)

G12D/E2-KO vs all
(T2)

G12D/E2-KO vs all
(T3)

N = 2,350 N = 2,844 N = 2,389

N = 2,445 N = 2,944 N = 2,586

N = 5,648 N = 2,412 N = 2,551

N = 3,044 N = 3,767 N = 2,617

0

2

3

T1 T2 T3

E
zh
2  

Ex
pr

es
si

on

WT

T1 T2 T3

E2-KO

T1 T2 T3

G12D

T1 T2 T3

G12D/E2-KO

1

0-4
00

50
0-8

00

90
0-1

20
0

13
00

-16
00

17
00

-20
00

>2
00

0
0-4

00

50
0-8

00

90
0-1

20
0

13
00

-16
00

17
00

-20
00

>2
00

0
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between WT and mutant HSPCs within each cell state (red) or between different cell states (blue). c KNN visualization of all single cells by combining
12 samples. Each dot represents a single cell. Cells are colored by cell-type annotations. d KNN visualization of single cells from each sample. Each plot
shows cells from the indicated genotype and time point (red) against all cells from other genotypes and time points (gray). e Violin plot is shown for Ezh2
mRNA expression in WT or mutant HSPCs at different time points (T1–T3).
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Fig. 3 Functional cooperation between NRasG12D and EZH2-deficiency impaired hematopoietic lineage differentiation. a The frequencies of annotated
cell populations in WT or mutant HSPCs at different time points (T1–T3) are shown. b EZH2-deficiency increased the frequency of HSC/MPP population in
E2-KO and G12D/E2-KO HSPCs. Bars indicate the mean % of HSC/MPP cells of all time points and colored circles represent individual time points. c
Expression of NRasG12D increased the frequency of myeloid cells in G12D and G12D/E2-KO HSPCs. d Expression of NRasG12D increased the myeloid to
erythroid cell ratio in G12D and G12D/E2-KO HSPCs. Bars indicate the mean ratio of myeloid cells of all time points and colored dots represent individual
time points. e NRasG12D and EZH2-deficiency increased the frequency of MEPs in G12D/E2-KO HSPCs. f NRasG12D and EZH2-deficiency increased the
megakaryocytic (Meg) to erythroid (Ery) cell ratio in G12D/E2-KO HSPCs. g The frequencies of myeloid (Mac1+Gr1+), erythroid (Ter119+CD71+) and
megakaryocyte progenitor cells (MkP, Lin−c-Kit+CD150+CD41+) were determined by flow cytometry in mouse bone marrows at 10 weeks post-pIpC or
moribund. Results are mean ± SD (N= 6 mice per genotype for myeloid and erythroid cells and N= 7 mice per genotype for MkP) and analyzed by one-
way ANOVA with multiple comparisons. h Differentiation pseudotime of myeloid and erythroid lineages predicted by PAGA. The KNN plot is color-coded
by pseudo-temporal order starting from the most immature HSC/MPP cells to mature cells of different lineages. i Comparisons of cell density distribution
in E2-KO (or G12D) and WT HSPCs along the HSC/MPP-to-myeloid differentiation pseudotime at T1–T3 time points. Pie charts show the cellular
composition of the enriched cell populations in E2-KO or G12D HSPCs at T3. j The cell density distribution along the HSC/MPP-to-myeloid differentiation
pseudotime is shown for the indicated genotypes at T3. Pie chart shows the cellular composition of the enriched cell populations in G12D/E2-KO HSPCs at
T3. Source data are provided as a Source Data file.
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cooperation between NRasG12D activation and EZH2-deficiency
to induce MEP expansion and skewed lineage differentiation
towards megakaryocytes, leading to the development of advanced
myelofibrosis in G12D/E2-KO mice.

Altered myeloid differentiation by oncogenic cooperation
between NRasG12D and EZH2-deficiency. Given the observed
alterations in myeloid lineage differentiation, we analyzed cells
along the myeloid differentiation path in more detail. Specifically,
cells from all samples were combined and colored according to
their differentiation pseudotime predicted by partition-based
graph abstraction (PAGA)29 (Fig. 3h). Comparisons of cell den-
sity distributions along the HSC/MPP-to-myeloid differentiation
pseudotime showed the accumulation of immature myeloid cells
in E2-KO HSPCs at various stages from T1 to T3 (Fig. 3i),
consistent with the analysis of cell-type frequencies (Fig. 3a). Of
note, G12D HSPCs exhibited a different pattern of cell density
distribution with the predominant accumulation of earlier pro-
genitor cells along the myeloid differentiation pseudotime
(Fig. 3i). We then analyzed the cellular composition of enriched
populations in E2-KO and G12D HSPCs at T3, respectively. The
predominantly accumulated cell populations in E2-KO consisted
of GMPs (35.0%) and early granulocytes (31.6%), indicating a
critical role of EZH2 in the maturation of myeloid lineage cells.
By contrast, pro-monocytes (ProMo, 73.2%) and GMPs (25.1%)
were the major expanded cell populations in G12D HSPCs
(Fig. 3i).

Our results are consistent with previous findings that NRasG12D

targets the monocytic lineage cells to induce myelomonocytic
proliferation, and that NRAS mutations are frequently identified
in patients with chronic myelomonocytic leukemia (CMML) and
juvenile myelomonocytic leukemia (JMML)30–33. To determine
the combined effects of NRasG12D activation and EZH2-
deficiency, we analyzed the myeloid differentiation pseudotime
in all groups at T3 when post-MPN leukemia was observed in
G12D/E2-KO mice. Compared to WT, E2-KO or G12D alone,
G12D/E2-KO HSPCs displayed accumulation of both myeloid
progenitors (GMP and ProMo) and immature granulocytes and
decreased mature myeloid cells (Fig. 3j). Finally, we examined the
underlying temporal changes in HSPC composition during
leukemia progression by comparing their density distributions
along the HSC/MPP-to-myeloid differentiation trajectory at
various stages from disease initiation (T1), progression (T2), to
blast phase post-MPN leukemia (T3). We observed a gradual
accumulation of myeloid progenitors and immature myeloid cells
in G12D/E2-KO mice, consistent with the kinetics of evolving
MPN progression to leukemic transformation. By contrast, no
consistent changes in cell density distribution were observed in
WT, E2-KO, and G12D mice (Supplementary Fig. 3c).

Therefore, NRasG12D and EZH2-deficiency have distinct effects
on cellular composition along the myeloid differentiation
trajectory by expanded myelomonocytic progenitors and impaired
myeloid maturation, respectively, and they functionally cooperate
to promote the accumulation of both myeloid progenitors and
immature myeloid cells in G12D/E2-KO mice.

Evolving leukemia cells co-express stem cell and myeloid
priming genes. Acquiring stem cell gene signatures (or ‘stemness’) is
a hallmark of cancer stem cells34. In MLL-rearranged AML, leukemia
stem cells (LSCs) possessed an immunophenotype and gene
expression profile similar to that of normal GMPs but also reacti-
vated a subset of genes highly expressed in normal HSCs. Coexistence
of lymphoid-primed multipotent progenitor (LMPP)-like and GMP-
like LSCs was observed in other AMLs35. To determine whether the
evolving leukemia cells within G12D/E2-KO HSPCs acquired

features of aberrant stemness, we examined the expression of marker
genes for HSC/MPP, GMP, and differentiated granulocytes along the
HSC/MPP-to-myeloid differentiation pseudotime. In control mice
(WT, E2-KO, and G12D) without leukemia development, single cells
were segregated into three distinct groups with a largely exclusive
expression of marker genes in HSC/MPP, GMP, and differentiated
granulocytes (Fig. 4a). By contrast, HSC/MPP, GMP, and granulo-
cyte marker genes were frequently co-expressed in the same G12D/
E2-KO cells, resulting in less distinct segregation of HSC/MPP, GMP,
and granulocyte groups along the myeloid differentiation pseudotime
(Fig. 4a). We further compared the kinetics of marker gene expres-
sion at different time points during leukemia progression. G12D/E2-
KO HSPCs displayed progressive changes in marker gene expression
resulting in more cells co-expressing HSC/MPP and GMP genes,
whereas control HSPCs from WT, E2-KO, or G12D mice showed
largely invariant expression patterns with 3 groups segregated across
different time points (Supplementary Fig. 4a–d). Further analyses
revealed significantly increased frequencies of cells co-expressing
HSC/MPP and GMP (or GMP and granulocyte) marker genes
(Supplementary Fig. 4e, f), suggesting that oncogenic mutations in
NRAS and EZH2 act cooperatively to impair HSC/MPP to myeloid
lineage differentiation, resulting in accumulation of cells arrested at
development stages co-expressing HSC and GMP (or GMP and
granulocyte) genes.

To validate the gene expression patterns at single-gene and
single-cell levels, we focused on the HSC/MPP-specific Gcnt2 gene
and the myeloid-specific Mpo gene. In WT HSPCs, a small subset
(3.6%) of HSPCs co-expressed Gcnt2 and Mpo genes. G12D
activation had no effect on Gcnt2 andMpo co-expression, whereas
E2-KO modestly decreased the frequency of Gcnt2 and Mpo co-
expressing cells. Of note, the frequency of Gcnt2 and Mpo co-
expressing HSPCs was significantly increased to 6.4% in G12D/
E2-KO mice (Fig. 4b, c). Together, the analyses of global and
single-gene expression revealed that the evolving G12D/E2-KO
leukemic cells progressively elevate the expression of stemness and
myeloid priming genes during leukemia progression.

Convergence of gene expression alterations by distinct onco-
genic drivers. Leukemias evolve from the functional cooperation
between driver mutations, which contribute to the biologic and
phenotypic properties of the resulting leukemia cells1,2. Different
oncogenic drivers may cooperate to promote disease progression
by acting on the same oncogenic pathways or by the convergent
effects on independent pathways perturbed by individual muta-
tions. We previously observed that NRasG12D and EZH2-
deficiency converge to reprogram branched-chain amino acid
(BCAA) metabolism to drive leukemic transformation by mod-
ulating the enzyme and metabolic substrate for BCAA
metabolism11. Here, we explored whether NRasG12D and EZH2-
deficiency may act on independent pathways at the single-cell
level to promote leukemia progression.

We first analyzed bulk RNA-seq in HSPCs isolated from
control (WT, E2-KO, or G12D) or G12D/E2-KO mice 2 weeks
post-pIpC11 (Fig. 4d). We found that Hmga2 was highly
upregulated in E2-KO HSPCs, whereas Flt3 was one of the top
upregulated genes in G12D HSPCs. Importantly, both genes were
significantly upregulated in G12D/E2-KO relative to WT HSPCs
(Fig. 4d), indicating the convergent effects on gene expression due
to G12D and E2-KO mutations. FLT3 is one of the most
frequently mutated genes in AML and the majority of FLT3
mutations involve an internal tandem duplication in the
juxtamembrane region, resulting in constitutive activation of
downstream signaling pathways36. Increased expression of FLT3
is also a risk factor in AML by activating AKT and MAPK
pathways, resulting in anti-apoptosis, increased cell survival and
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Fig. 4 Convergence of dysregulated transcriptional programs in single cells. a Expression of marker genes for HSC/MPP, GMP, and granulocytes (GN)
along the HSC/MPP-to-myeloid differentiation pseudotime at T3. Heatmap shows normalized gene expression levels. b Scatter plots are shown for the
expression of Gcnt2 and Mpo. Each dot represents a single cell. c Increased frequency of cells co-expressing Gcnt2 and Mpo in G12D/E2-KO HSPCs. Left
graph shows the frequency of cells co-expressing Gcnt2 and Mpo. Results are mean ± SD of downsampling iterations (N= 1000 cells for 10 iterations).
Right graph shows the expression of Gcnt2 andMpo in cells from different genotypes. Boxes show median of the data and quartiles, and whiskers extend up
to 1.5× of the interquartile range. P values were calculated by a two-sided t test. d Volcano plots are shown for bulk RNA-seq. Hmga2 and Flt3 were
upregulated in E2-KO and G12D HSPCs, respectively. Both Hmga2 and Flt3 were upregulated in G12D/E2-KO HSPCs. The x-axis shows the log2 fold
changes of gene expression and the y-axis shows the negative log10 adjusted P values. e Dot plot shows the expression of Flt3 and Hmga2. The size of the
dot indicates the fraction of Flt3 or Hmga2-expressing cells and the color indicates average mRNA levels. f Violin plots for Flt3 and Hmga2 expression. Flt3-
expressing HSC/MPP and ProMo cells and Hmga2-expressing HSC/MPP and MEP cells were used. g Increased frequency of Flt3 and Hmga2 co-expressing
cells in G12D/E2-KO HSPCs. The graphs were prepared as in panel c. h Experimental scheme to determine the effect of HMGA2 knockdown and/or FLT3
inhibition on colony-forming ability of HSPCs. i Knockdown of HMGA2 was validated by qRT-PCR. Results are mean ± SD (N= 4 independent
experiments) and analyzed by a one-way ANOVA. ***P < 0.001; ****P < 0.0001. j Combined HMGA2 depletion and FLT3 inhibition by AC220 led to more
significant defects in colony-formation ability than individual treatments in G12D/E2-KO HSPCs. Results are mean ± SD (N= 5 independent experiments)
and analyzed by a two-way ANOVA. ***P < 0.001; ****P < 0.0001. Source data are provided as a Source Data file.
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abnormal cell proliferation36. On the other hand, HMGA2 is
directly regulated by EZH2-catalyzed H3K27me3, whereas
elevated HMGA2 expression is associated with adverse outcomes,
serving as a prognostic marker in AML37,38. Moreover, HMGA2
plays a crucial role in myeloid differentiation and HMGA2
silencing induces the differentiation of myeloid leukemia
cells39,40. Based on these findings, we hypothesized that Flt3
upregulation by NRasG12D leads to aberrant activation of
oncogenic signaling to promote cell proliferation, whereas Hmga2
activation due to EZH2-deficiency causes myeloid differentiation
block, consistent with the altered HSC/MPP-to-myeloid differ-
entiation caused by each mutation (Fig. 3h–j).

To test this, we first determined the cell types that express Flt3
and Hmga2 using single-cell transcriptomic profiles. We observed
that both genes were predominantly expressed in HSC/MPP cells,
with Flt3 expression also detected in ProMo cells and Hmga2
detected in MEPs, respectively (Fig. 4e). We next examined Flt3
and Hmga2 expression in HSC/MPP, MEP, or ProMo cells, and
detected increased numbers of Hmga2-expressing cells in E2-KO
and Flt3-expressing cells in G12D, respectively (Fig. 4f, g),
consistent with bulk RNA-seq results (Fig. 4d). More importantly,
combined G12D and E2-KO led to a 3.0-fold increase in Hmga2
and Flt3 co-expressing cells relative to WT, or 1.6- and 1.8-fold
increases relative to E2-KO and G12D alone (Fig. 4g), suggesting
that the functional cooperation between EZH2-deficiency and
NRasG12D results in the convergence of gene expression
alterations at the single-cell level.

Finally, we determined the functional relevance of Hmga2 and
Flt3 co-expression in G12D/E2-KO HSPCs by measuring the
colony-forming activity, which is commonly used to assess
hematopoietic or leukemia stem cell activity, with or without
FLT3 inhibition and/or HMGA2 depletion (Fig. 4h). We found that
depletion of Hmga2 by two independent shRNAs impaired EZH2-
deficient but not G12D HSPCs, resulting in significantly decreased
colony-forming activities in E2-KO and G12D/E2-KO HSPCs
(Fig. 4i, j). Likewise, FLT3 inhibition by an established FLT3
inhibitor AC22041 significantly decreased the colony-forming
activities of NRasG12D-expressing (G12D and G12D/E2-KO)
HSPCs but had little effect on EZH2-deficient cells (Fig. 4j). More
importantly, HMGA2 knockdown or FLT3 inhibition alone
impaired the clonogenic potential of G12D/E2-KO HSPCs, whereas
combining HMGA2 depletion and FLT3 inhibition led to near
ablation of the colony-forming activity (Fig. 4j).

Therefore, by integrating single-cell transcriptomics and
functional assays, our studies demonstrate that distinct oncogenic
drivers promote leukemia progression by activating independent
oncogenic pathways in leukemia-initiating cells, and the con-
vergence of different oncogenic pathways in single cells is
required for the activity of leukemia-initiating cells.

Synergistic activation or repression of gene expression by
cooperating oncogenic drivers. The above analyses illustrate that
distinct oncogenic drivers can act on different sets of genes in
single cells; however, it remains unknown whether they may also
cooperate to dysregulate the same genes additively or synergis-
tically at the single-cell level. To explore this further, we adapted a
quantitative metric previously employed to analyze chromatin
accessibility42 and calculated the interactions between NRasG12D

and EZH2-deficiency on target gene expression using the single-
cell transcriptomic profiles (Fig. 5a). Specifically, we computed
the expression changes for each gene in the single mutant (E2-KO
or G12D) relative to WT HSPCs, and the expected additive gene
expression changes in G12D/E2-KO HSPCs. We next compared
the expected to the observed expression changes in G12D/E2-KO
HSPCs and calculated the interaction score, which is defined as

the difference between observed and expected gene expression
changes (Fig. 5a). Therefore, for any given gene, if the observed
expression change in G12D/E2-KO HSPCs matched the expected
expression change from the combined effects of each mutation
alone, the gene was defined as not being affected by the inter-
actions between NRasG12D and EZH2-deficiency. Conversely, if
the observed and expected expression changes significantly dif-
fered in G12D/E2-KO HSPCs, the gene was defined to be regu-
lated synergistically or antagonistically due to interactions
between NRasG12D and EZH2-deficiency (Fig. 5a).

Using this quantitative metric, we measured the interaction
scores for all detected genes using single-cell transcriptomic
profiles (Fig. 5b). To compute the permuted background, the
observed and expected expression changes for all genes were
randomly shuffled, and the differences between all permuted
pairs were calculated. We then identified genes significantly
affected by interactions between NRasG12D and EZH2-deficiency
by comparing the interaction scores with a null distribution
generated by permuted gene pairs. Genes with interaction scores
beyond 95% of the null values (e.g. top and bottom 5%) were
identified to be significantly affected by the antagonistic or
synergistic interactions between NRasG12D and EZH2-deficiency
(Supplementary Fig. 5a).

By this analysis, we observed that more genes were regulated by
progressively increased interactions between NRasG12D and
EZH2-deficiency during disease progression from T1 to T3
(Fig. 5b, c). The top enriched cellular pathways for genes
upregulated by G12D and E2-KO interactions included platelet
development and chemokines (Fig. 5d), consistent with the
skewed megakaryocyte differentiation and the development of
myelofibrosis in G12D/E2-KO mice (Fig. 3e–g). Conversely,
interferon and cytokine, immune response, and B and T
lymphoid cell-related pathways were enriched in the down-
regulated genes by the interactions between oncogenic mutations
(Fig. 5d), consistent with the progressively decreased B and T cell
populations in G12D/E2-KO mice (Fig. 3a). Finally, we analyzed
the interaction scores for the platelet and B cell signature genes at
different stages of disease progression and observed progressively
increased interaction scores for the upregulated platelet genes and
decreased interaction scores for the downregulated B cell genes
(Fig. 5e). By further analyzing cell frequency and gene expression
levels in different genotypes, we observed that the upregulation of
platelet genes was due to the combined effects on cell frequency
and/or gene expression (Supplementary Fig. 5b). Similar results
were obtained for the downregulated B cell genes (Supplementary
Fig. 5c). These results, together with global gene expression
analysis (Fig. 5a–d), illustrate that distinct oncogenic drivers
functionally cooperate at single-gene levels to activate or repress
gene expression during leukemia progression.

Identification of candidate regulators of leukemia-initiating
cells. AML is characterized by a loose differentiation hierarchy
sustained by the self-renewing LSCs or leukemia-initiating cells
(LICs) that give rise to a larger population of more mature leu-
kemic blasts34,43,44. The presence of LICs contributes to disease
prognosis and post-treatment relapse in AML patients34,44,45. To
determine the regulatory mechanisms by which NRasG12D and
EZH2-deficiency cooperate to control aberrant LIC activity, we
focused on genes synergistically activated by G12D and E2-KO in
HSC/MPP cells, which are known to enrich for LICs46.

We first adapted a random forest machine learning method47 to
identify genes specifically expressed in HSC/MPP cells and
dysregulated in G12D/E2-KO HSPCs (Fig. 6a and Supplementary
Fig. 6a). We identified 32 HSC/MPP-enriched genes that displayed
significant alterations in G12D/E2-KO HSPCs, including a number

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26582-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6323 | https://doi.org/10.1038/s41467-021-26582-4 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


of known AML-associated genes such as Gata2, Ly6e, Igfbp7, Crip1,
and Pdgfrb3–6. More importantly, we also identified several genes
whose functional roles in HSCs or LICs are unknown, including
Gem, a member of the RGK family of GTP-binding proteins within
the RAS superfamily48,49, and Cpa3, a member of the carbox-
ypeptidase A family of zinc metalloproteases50. Gem is significantly
and progressively upregulated in G12D/E2-KO HSPCs due to
synergistic activation during leukemia progression (Fig. 6b, c).
Expression of GEM is also significantly upregulated in human
primary CD34+ AML cells relative to CD34+ HSPCs from healthy
donors (Fig. 6d). Increased GEM expression is significantly
associated with adverse European LeukemiaNet (ELN) risk groups
and poorer overall survival in independent AML cohorts51,52

(Fig. 6e, f). Moreover, GEM expression is increased in AML
samples containing PRC2 and/or RAS mutations or higher RAS
expression (Supplementary Fig. 6b, c).

Similarly, Cpa3 is significantly upregulated in G12D/E2-KO
HSPCs due to synergistic interactions (Supplementary Fig. 6d, e).

CPA3 expression is also upregulated in human CD34+ AML cells
relative to control HSPCs and increased CPA3 correlates with
poorer overall survival in AML (Supplementary Fig. 6f, g);
however, no significant correlation between CPA3 expression and
ELN risk groups was observed, likely due to its cell-intrinsic and
-extrinsic roles as a carboxypeptidase secreted to extracellular
space. Out of 32 LIC-associated genes, we noted that higher
expression of a number of genes, including CRIP1, FABP5,
GATA2, HSPE1, RNABP1, GEM and CPA3 is significantly
associated with poorer survival when analyzed individually or
in combination (Supplementary Fig. 6h–o). Together these results
uncover a set of candidate regulators of AML-initiating cells.

GEM is activated by oncogenic cooperation in leukemia-
initiating cells. The functional and mechanistic roles of GEM in
leukemia development and LIC activity have not been previously
investigated. We, therefore, determined how Gem is activated by
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Fig. 5 Synergistic regulation of gene expression by cooperating oncogenic drivers in leukemia-initiating cells. a Schematic of the analysis of interactions
between E2-KO and G12D based on the observed and expected gene expression changes in HSPCs containing single or double mutations. b Scatter plots
are shown for the observed and expected gene expression changes in G12D/E2-KO HSPCs at three-time points (T1–T3). Each dot represents a single gene.
Red dots indicate significantly perturbed genes by the interactions between G12D and E2-KO. c The frequencies of genes regulated by G12D and E2-KO
interactions are shown at each time point. Upregulated genes were affected by the synergistic interactions of G12D and E2-KO, whereas the downregulated
genes were affected by the antagonistic interactions of G12D and E2-KO. d The top enriched functional pathways regulated by G12D and E2-KO
interactions. The y-axis shows the GO terms for the enriched pathways, and the x-axis shows the negative log10 (FDR). e Interaction scores for platelet
(left) and B cell genes (right) at different time points in G12D/E2-KO HSPCs are shown.
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cooperative activation of NRAS and EZH2 mutations. We first
observed that NRasG12D activation upregulated Gem expression
in G12D relative to WT and E2-KO HSPCs, and Gem is further
upregulated in G12D/E2-KO HSPCs (Fig. 6g and Supplementary
Fig. 7a). The RAS/MAPK signaling cascade drives aberrant gene
expression through its downstream effector proteins, among
which the ETS-family transcription factor ETS1 is particularly
important53. We hypothesized that NRasG12D may activate Gem
expression through its downstream ETS-family transcription
factors in leukemia-initiating cells. Consistent with this, we
identified multiple distal regulatory elements marked by

enhancer-associated H3K27ac and H3K4me1 located down-
stream of Gem in multiple murine leukemia cell lines including
MEL (E1–E3; Fig. 6h). More importantly, ETS1 strongly associ-
ates with these candidate enhancers, in particular E3 located
~17 kb downstream of the Gem transcriptional start site (TSS), by
ChIP-seq analysis (Fig. 6h). These results suggest that ETS1 may
function to activate Gem transcription by regulating its distal
enhancer elements.

To directly establish the role of the RAS–ETS1 axis in Gem
regulation, we examined ETS1 chromatin occupancy at the
candidate Gem enhancers by ChIP experiments in WT, E2-KO,

Fig. 6 Identification of new candidate regulators of leukemia-initiating cells. a Identification of genes highly expressed in HSC/MPP and synergistically
activated in G12D/E2-KO HSPCs (red dots). Each dot represents a single gene. The x-axis depicts the log-transformed expression fold changes between
G12D/E-KO and WT HSC/MPP. The y-axis depicts the correlation to HSC/MPP prediction scores. b Violin plot is shown for Gem expression in HSC/MPP
from different genotypes. c The interaction scores of G12D and E2-KO on Gem expression at different time points. d GEM expression is upregulated in
human AML cells relative to control HSPCs in the Beat AML cohorts. Each dot indicates an independent sample (N= 19 and 451 for healthy and AML
samples). Boxes show the median of the data and quartiles (log2 RPKM), and whiskers extend to 1.5× of the interquartile range. P values were calculated by
a two-sided t-test. e Increased GEM expression is associated with adverse ELN risk groups in AML. Boxes show the median of the data and quartiles (log2
RPKM), and whiskers extend to 1.5× of the interquartile range. P values were calculated by a two-sided t test (N= 19, 117, 150, and 162 for healthy,
favorable, intermediate, and adverse samples, respectively). f Increased GEM expression associated with poor survival in AML. AML patients were ranked
by GEM mRNA levels and divided into GEM-low (bottom 50%) and GEM-high (top 50%) groups. P values were calculated using the log-rank
(Mantel–Cox) test. g Gem expression is shown on the UMAP graph of the indicated genotypes at T3. Each dot represents a single cell. Color scale shows
Gem expression level. h Browser view of Gem locus with H3K27ac, H3K4me1, and ETS1 ChIP-seq in MEL cells. Candidate Gem enhancers (E1, E2, and E3)
and neighboring control regions (C1–C3) are indicated. i ETS1 associates with candidate Gem enhancers in HSPCs. Results are mean ± SD and analyzed by
two-way ANOVA. j, ETS1 depletion impairs Gem expression in G12D/E2-KO HSPCs. Results are mean ± SD and analyzed by one-way ANOVA. Source data
are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26582-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6323 | https://doi.org/10.1038/s41467-021-26582-4 |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


G12D, and G12D/E2-KO HSPCs. Compared to neighboring
control genomic regions (C1–C3), the chromatin occupancy of
ETS1 is significantly higher at the candidate Gem enhancers
(Fig. 6h, i). The binding signals at E2 and E3 are further increased
in NRasG12D-expressing G12D and G12D/E2-KO HSPCs (Fig. 6i).
Furthermore, we observed that shRNA-mediated Ets1 depletion
significantly impaired Gem expression in G12D/E2-KO HSPCs
(Fig. 6j). These results provide direct evidence that NRasG12D

activation contributes to Gem expression at least in part through
its downstream effector ETS1-mediated transcriptional regulation
of candidate Gem enhancers.

To determine whether and how EZH2/PRC2 regulates Gem
expression, we first surveyed EZH2-catalyzed H3K27me3 at the
Gem locus but did not observe any enrichment of H3K27me3
ChIP-seq signals in various hematopoietic and leukemia cell
types, suggesting that EZH2 may not directly regulate Gem
transcription through epigenetic mechanisms. Of note, Gem is
primarily expressed in HSC/MPP based on our scRNA-seq
studies (Fig. 6a, g, and Supplementary Fig. 7a), and EZH2 KO led
to the accumulation of HSC/MPP cells in E2-KO and G12D/E2-
KO samples (Fig. 3b). These results suggest that EZH2 loss may
contribute to Gem expression through impaired lineage differ-
entiation, causing accumulation of Gem-expressing HSPCs.
Moreover, G12D/E2-KO HSPCs showed higher Gem expression
at the single-cell level compared to G12D HSPCs (Fig. 6b),
indicating that there are still yet unknown mechanisms under-
lying the effect of EZH2 deficiency on Gem expression. Taken
together, our results support a model whereby NRAS and EZH2
mutations activate Gem expression through differential effects on
gene transcription and cell differentiation, respectively, and
distinct oncogenic mutations may act cooperatively to deregulate
gene expression programs in leukemia-initiating cells.

GEM is a regulator of leukemia-initiating cells. To establish the
functional role of the identified candidate regulators of LICs based
on single-cell analysis, we focused on GEM for detailed studies. We
first performed an RNA-seq analysis of WT and G12D/E2-KO
HSPCs containing control (shLuc) or GEM depletion (shGem) to
determine the cellular pathways regulated by GEM. We found that
GEM depletion in WT HSPCs leads to only modest changes in gene
expression (19 downstream and 42 upregulated genes; FDR-
adjusted P ≤ 0.01 and log2 fold-change ≥0.2) but significant gene
expression changes in G12D/E2-KO LICs (249 and 406 down- and
upregulated genes; Fig. 7a, b; Supplementary Data 4). GEM
depletion in G12D/E2-KO LICs significantly increased the expres-
sion of gene signatures associated with apoptotic signaling, response
to oxidative stress, mitochondrial organization, and cell cycle
checkpoint. By contrast, gene signatures associated with Ras, Rho,
and small GTPase-mediated signal transduction, HSC proliferation,
and leukemia stem cells (LSC) 54,55 are significantly downregulated
(Fig. 7c, d). Consistent with the RNA-seq results, we observed that
GEM depletion in G12D/E2-KO LICs significantly increased cell
apoptosis and cell cycle arrest (Fig. 7e, f), illustrating a critical role
for GEM in the proper control of cell proliferation, cell cycle pro-
gression, and apoptosis signaling in LICs. By contrast, depletion of
GEM or its regulator ETS1 had little effect on apoptosis or cell cycle
of WT HSPCs (Supplementary Fig. 7b–d), consistent with minimal
gene expression changes upon GEM depletion in WT HSPCs
(Fig. 7a, b). Of note, hematopoietic-selective Ets1 knockout (by
Vav-Cre) in mice had no effect on normal HSPCs except the
impaired T cell development56, suggesting that ETS1 and GEM are
selectively required for the propagation of G12D/E2-KO LICs.

To directly examine the functional roles of GEM in LICs, we
performed a series of ex vivo and in vivo studies. We first
measured the colony-forming activity of G12D/E2-KO HSPCs

upon serial replating (Fig. 7g). While control HSPCs (shLuc)
showed efficient colony-forming activity during three rounds of
plating, GEM-depleted HSPCs (Gem-sh1 and Gem-sh2) were
significantly impaired in clonogenic activity, resulting in
progressive loss of the colony-forming ability (Fig. 7g). We next
determined the requirement of GEM for leukemia development
in vivo by transplantation of control (shLuc) or GEM-depleted
G12D/E2-KO HSPCs (CD45.2) to congenic recipient (CD45.1)
mice (Fig. 7h). Notably, GEM depletion ameliorated G12D/E2-
KO-induced leukemic phenotypes and delayed disease progres-
sion in transplanted recipient mice, resulting in significantly
reduced leukemic burden in hematopoietic tissues (PB, BM and
spleen) and prolonged survival (Fig. 7i–k). Finally, we measured
LIC cell activity by limiting dilution and transplantation assays
(Fig. 7h). GEM depletion significantly impaired LIC activity of
G12D/E2-KO HSPCs, resulting in 6.3- to 7.9-fold decreases in
LIC frequency relative to control (shLuc) HSPCs (P= 0.00782
and 0.00344, respectively; Fig. 7l).

Given that mutations of epigenetic regulators (e.g. EZH2) often
co-occur with mutations in signaling (e.g. NRAS) or lineage-
regulating transcriptional factors to drive clonal progression of
myeloid malignancies57, our results suggest that the aberrant
upregulation of GEM may be generally observed in AML through
combinations of oncogenic mutations. Consistent with this
notion, GEM expression is also increased in AML cases contain-
ing other genetic lesions, such as TET2 and ASXL1 mutations, in
the ECOG 1900 cohorts3,58. More importantly, GEM expression
is significantly increased in high risk lesions such as monosomy 7,
EVI1-positive, del(5q), and complex karyotype (Supplementary
Fig. 7e). These findings establish GEM as not only a regulator of
AML-initiating cells, but also a potential prognosis biomarker for
stratification of AML risk groups and/or clinical management.

Taken together, by integrating single-cell transcriptomics,
leukemia phenotypes and repopulating activity, and leukemia-
initiating cell assays, we uncovered functional cooperation
between distinct oncogenic drivers at single-cell and single-gene
levels. Our findings support a model whereby cooperating
oncogenic mutations act on the same and distinct pathways to
control progressive alterations of cellular differentiation, whereas
the convergence of oncogenic cooperation at single-cell and
single-gene levels rewires gene programs to promote leukemia-
initiating cell activity and cancer progression.

Discussion
A long-standing question in cancer biology is how distinct
oncogenic mutations cooperate to promote cancer pathogenesis
and malignant properties. Oncogenic cooperation has been stu-
died historically using cell line or animal models7,59. While cell
lines provide convenient tools for manipulating tumor cells
in vitro, they lack the contextual interactions required for cancer
development in their in vivo microenvironment. On the other
hand, genetically engineered mouse models provide opportunities
to examine the functional effects of predefined oncogenic muta-
tions in relevant cell types in vivo. Moreover, bulk tumor-based
analyses can be limiting for understanding molecular alterations
caused by oncogenic interactions within and between cell types or
single cells. As such, a major challenge has been the lack of high-
throughput, high-resolution, and longitudinal analysis of onco-
genic cooperation during cancer progression.

In this study, we leveraged a genetic mouse model recapitu-
lating leukemia progression driven by oncogenic cooperation
between signaling (NRasG12D) and epigenetic (EZH2) alterations,
and performed time-resolved single-cell transcriptomic profiling
to interrogate the molecular and cellular changes during leukemia
development. We compared BM HSPCs in healthy and diseased
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Fig. 7 GEM is a candidate regulator of AML-initiating cells. a Scatterplots of differentially expressed genes in GEM depleted (shGem) relative to control
(shLuc) WT or G12D/E2-KO HSPCs. The numbers of downregulated (blue dots) or upregulated (red dots) genes are shown. b Venn diagrams of
differentially expressed genes overlapped between WT and G12D/E2-KO HSPCs upon GEM depletion. c Top enriched gene signatures upon GEM
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increased apoptosis (Annexin V+) in G12D/E2-KO LSK cells. Results are mean ± SD (N= 3 experiments) and analyzed by one-way ANOVA. **P < 0.001. f
GEM depletion led to cell cycle arrest in G12D/E2-KO LSK cells. Results are mean ± SD (N= 3 experiments) and analyzed by two-way ANOVA.
**P < 0.001; ***P < 0.0001. g Experimental scheme to determine the effect of GEM knockdown on G12D/E2-KO HSPCs (top). Colony formation assays of
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26582-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6323 | https://doi.org/10.1038/s41467-021-26582-4 |www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


mice containing single or combined oncogenic mutations at
distinct stages of leukemia development from disease initiation,
evolving MPN, to post-MPN leukemia. Comparing single-cell
transcriptomes across different genotypes with or without leu-
kemia development provides insights into dysregulated cellular
differentiation and gene programs responsible for the malignant
phenotypes. In addition, the analysis of time-resolved single-cell
gene expression kinetics provides an unprecedented view of cel-
lular state transitions and altered differentiation trajectories
during the course of leukemia progression.

Co-occurring mutations in epigenetic regulators and signaling
factors are common in human myeloid malignancies57. Our
focused studies on EZH2 and NRAS mutations provide an
opportunity to dissect how distinct oncogenic pathways converge
at the single-cell and single-gene levels to cause aberrant gene
expression and leukemia progression. Specifically, at the cellular
level, we found that NRasG12D led to accumulation of myeloid
progenitors and skewed hematopoietic differentiation towards
myeloid lineage at the expense of erythroid/megakaryocytic
lineages, whereas EZH2-deficiency impaired myeloid cell
maturation along the HSC to myeloid differentiation axis
resulting in accumulation of immature myeloid cell populations.
These results revealed distinct mechanisms by which individual
oncogenic drivers impact hematopoietic lineage differentiation at
single-cell levels. More importantly, combined NRasG12D and
EZH2-deficiency significantly and progressively enhanced the
expansion of myeloid cell compartments, resulting in accumula-
tion of myeloid progenitors, immature myeloid cells and mega-
karyocytes, but decreased lymphoid and erythroid cells,
illustrating that the oncogenic cooperation between NRasG12D

and EZH2-deficiency manifested a more profound impact on
hematopoietic differentiation to drive leukemia progression.

At the gene level, we showed that NRasG12D and EZH2-
deficiency individually regulated a set of independent gene targets
such as Flt3 and Hmga2; however, combined NRasG12D and
EZH2-deficiency resulted in the convergence of dysregulated
transcriptional profiles in the same cells that contributed to the
malignant properties of HSPCs in double mutant mice. More
importantly, we provided evidence that NRasG12D and EZH2-
deficiency also acted synergistically to control the expression of
the same genes, such as genes required for platelet and B cells, by
acting on gene transcription and/or cell differentiation. These
synergistically dysregulated transcriptional profiles were super-
imposed on mutation-specific alterations in malignant progeni-
tors, resulting in conflated stemness and myeloid gene expression
programs. The identification of gene signatures synergistically
regulated by NRasG12D and EZH2-deficiency also provided a
mechanistic explanation for leukemia-associated histopathologi-
cal features, including abnormal megakaryocyte proliferation,
primary myelofibrosis, and impaired lymphoid development, in
the combined but not single mutant animals. Hence, these find-
ings provide insights into the fundamental question of how
cooperating mutations in epigenetic and signaling factors may be
positively selected during clonal evolution to drive leukemic
transformation. Our studies also emphasize the importance of
cross comparisons at single-cell levels between different geno-
types or time points for the identification of biologically relevant
molecular changes in cancer progression.

AML contains a loose differentiation hierarchy consisting of
leukemia-initiating cells (LICs) and more mature leukemic
blasts34,43,44. LICs are capable of repopulating the disease and
have been implicated in post-treatment relapse in leukemia
patients34,44,45. We reasoned that correlating single-cell tran-
scriptome-based developmental hierarchies with leukemia phe-
notypes may identify the underlying gene programs responsible
for the aberrant LIC activity. Through the random forest-based

machine learning approach47 we identified a set of candidate
genes such as Gem that are highly expressed in HSC/MPP but
dysregulated due to the oncogenic cooperation between
NRasG12D and EZH2-deficiency. Furthermore, using serial
replating colony-formation, leukemia repopulation, and LIC
limiting dilution assays, we established the functional roles for
GEM as a regulator of LIC activity. Aberrant activation of GEM
was also observed in human AML associated with a spectrum of
genetic lesions and correlated with poor prognosis. Given that
GEM expression is highly enriched in normal HSC/MPP and
significantly upregulated in LICs, the observed correlation
between GEM expression and AML phenotypes may reflect an
expansion of GEM-expressing hematopoietic stem and/or pro-
genitor cells in high-risk leukemia. These results demonstrate that
the integrative analysis of single-cell transcriptomic profiles,
annotation of cell populations and development trajectories,
leukemia phenotypes, and functional studies can reveal molecular
targets and cellular pathways required for cancer-initiating cell
function. Despite these advances, it is important to note that the
current study does not provide information about the combina-
torial effects caused by sequential acquisition of mutations during
disease progression, and more advanced mouse modeling that
recapitulates physiological disease trajectories would be necessary
in future studies.

In conclusion, we leveraged the genetically engineered cancer
models, high-resolution single-cell transcriptomics, histopathol-
ogy, and functional studies to investigate the cellular and mole-
cular alterations caused by oncogenic interactions during cancer
progression. Our findings reveal the altered cellular composition
and developmental hierarchies corresponding to leukemia phe-
notypes, uncover the aberrant transcriptional programs in evol-
ving leukemia cells, and identify regulators of leukemia-initiating
cells. These results support a model that distinct oncogenic
mutations cooperate at single-cell and single-gene levels, and the
convergence of dysregulated gene programs rewires differentia-
tion trajectories to promote leukemia progression. Hence, our
studies not only uncover cellular and gene programs controlling
leukemic transformation, but also provide an integrative
approach for in vivo analysis of cancer evolution.

Methods
Mice. Ezh2 floxed mice and NRasG12D mice containing the LSL-NRasG12D+/−

knock-in allele were generated as previously described11,60. Mx1-Cre mice were
obtained from the Jackson Laboratory. All mouse lines were maintained on a
C57BL/6 background. All mice were housed under a 12-h light–dark cycle, 75 °F,
and 35% humidity in the Animal Resource Center at the University of Texas
Southwestern Medical Center (UTSW). All mouse experiments were performed
under protocols approved by the Institutional Animal Care and Use Committee
of UTSW.

RNA isolation and qRT-PCR analysis. RNA was isolated using Qiagen RNeasy
Mini or Micro Plus kit and reverse-transcribed using iScript cDNA Synthesis Kit
(Bio-Rad) following manufacturers’ protocols. Quantitative RT-PCR was per-
formed on CFX384 Touch Real-Time PCR Detection System (Bio-Rad). PCR was
performed in triplicates with the iQ SYBR Green Supermix (Bio-Rad) with the
following parameter: 95 °C (3 min), 45 cycles of 95 °C (15 s), 60 °C (30 s), and 72 °C
(30 s). Primer sequences are listed in Supplementary Data 5.

Flow cytometry and MACS cell separation. Flow cytometry analyses of BM cells
were performed as described previously with modifications11,61. Briefly, BM cells
were obtained by crushing femurs, tibias, vertebrae and pelvic bones with a mortar
in Ca2+ and Mg2+-free Hank’s buffered salt solution (HBSS; Gibco) supplemented
with 2% heat-inactivated bovine serum (HIBS, Gibco). All cell suspensions were
filtered through 70 μm cell strainers and cell numbers were determined using a Vi-
CELL cell viability analyzer (Beckman Coulter). To enrich c-Kit+ cells, BM cells
were stained with c-Kit-APC780 followed by anti-APC-conjugated microbeads.
Cells were then separated by LS columns (Miltenyi Biotec) at 4 °C. CD2, CD3,
CD5, CD8, B220, Gr1 and Ter119 antibodies were used to exclude lineage-positive
cells. DAPI (4,6-diamidino-2-phenylindole) or PI (propidium iodide) was used to
distinguish live or dead cells in flow cytometry assays. FACSAria or FACSCanto
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flow cytometer (BD Biosciences) was used for flow analysis. Cell sorting data were
acquired and analyzed by FACSDiva (BD Biosciences). All antibodies used for cell
isolation and flow cytometry are listed in Supplementary Data 6.

scRNA-seq Library preparation and sequencing. G12D/E2-KO mice had disease
progression from indolent to lethal MPN and acute leukemia with a shortened
survival (median 86 days and mean 103 ± 53 days; range 41–223 days). Given that
we administered pIpC to mice at around 6-week old, the post-pIpC survival was
median 44 and mean 61 days. We, therefore, chose 2 weeks (T1), 2 months (T2),
and 4 months (T3) post-pIpC-induced NRasG12D activation and EZH2 inactivation
to represent disease initiation (T1), MPN progression (T2), and leukemia trans-
formation (T3). BM c-Kit+ enriched cells from WT, E2-KO, G12D, and G12D/E2-
KO mice at each time point were immediately processed for library preparation
using the 10x Genomics Chromium Single Cell 3′ Reagent Kit following manu-
facturer’s protocols. Libraries were quantified using the double-stranded DNA
High-Sensitivity Assay Kit (Invitrogen) on the Qubit fluorometer and the Agilent
2200 TapeStation systems. Indexed libraries were pooled and sequenced on an
Illumina NextSeq 500 system following the recommended sequencing parameters
from 10x Genomics.

scRNA-seq data processing and filtering. Raw sequencing reads were first pre-
processed with 10× Genomics Cell Ranger v2.0.2 pipeline and aligned to the mouse
mm10 reference genome. Each sample was processed separately. Putatively stressed
or dying cells with >10% of their transcripts coming from mitochondrial genes
were excluded for analysis. Putative doublets were removed by Scrublet62. After cell
filtering, we detected the following numbers of cells, respectively: WT T1, 2350;
G12D T1, 5648; E2-KO T1, 2445; G12D/E2-KO T1, 3044; WT T2, 2844; G12D T2,
2412; E2-KO T2, 2944; G12D/E2-KO T2, 3767; WT T3, 2389; G12D T3, 2551; E2-
KO T3, 2586; G12D/E2-KO T3, 2617. The detailed quantitative analysis of scRNA-
seq datasets is shown in Supplementary Data 1.

Clustering and annotation of cell populations in WT HSPCs. 7583 WT HSPCs
from T1–T3 time points were clustered into 32 cell clusters using the Louvain
algorithm from SCANPY16. Louvain is a hierarchical clustering algorithm that
recursively merges communities into a single node and executes the modularity
clustering on the condensed graphs (https://neo4j.com/docs/graph-algorithms/
current/algorithms/louvain/; https://github.com/vtraag/louvain-igraph; https://
doi.org/10.5281/zenodo.595481). The topology of different clusters was visualized
by PAGA, which provides an interpretable graph-like map of the arising data
manifold based on estimating connectivity of manifold partitions and preserving
the global topology of data29. Then 32 cell clusters were further merged into 11 cell
populations based on similarities in transcriptomes and the topology of cell
clusters.

KNN and UMAP visualization. Two dimensionality reduction methods, KNN17

and UMAP18, were used to visualize single-cell RNA-seq data. SPRING63 was
employed to generate KNN graph which connects each cell to its five nearest-
neighbor cells based on their transcriptomic similarity. KNN graph was visualized
in two-dimensional space by SPRING using a force-directed layout. For UMAP
visualization, we used Seurat v3.2.0 implementation in R with default parameters64.

Annotation of cell populations in mutant HSPCs. Cells from mutant HSPCs (E2-
KO, G12D, and G12D/E2-KO) were projected into the same principal component
space as the WT HSPCs and mapped to their most similar WT neighbors as
previously described15. Briefly, gene counts in each cell were normalized by the
total counts. Highly variable genes were z-score normalized and used to identify the
top 50 principal components in WT HSPCs. Then mutant HSPCs were z-score
normalized and transformed into the WT principal component space. Lastly, each
mutant cell was mapped to its closest WT neighbor in principal component space
(Euclidean distance). We tried an alternative approach by the integration and label
transfer function implemented in Seurat64, which also projects the PCA structure
of a reference onto the query to predict the cell types of queried mutant cells, and
got similar results. DEGs between different cell states in the same genotype or
within the same cell state in different genotypes were identified by Wilcoxon rank-
sum test implemented by Seurat with adjusted P value < 0.01.

Analysis of single-cell differentiation trajectories. We used PAGA in SCANPY
v1.4 to infer the differentiation pseudotime29. The graph abstraction algorithm
reconciles clustering and trajectory inference by explaining data variability in terms
of both discrete and continuous latent variables. First, we processed the data fol-
lowing the steps suggested by SCANPY, including total count normalization, log1p
logarithmization, highly variable genes extraction, a potential regression of con-
founding factors of genes counts, and mitochondria gene percentage, a scaling to z-
scores, and PCA analysis. We then computed a neighborhood graph among data
points and used layout ‘fa’ to generate a topologically graph. We represented the
graph in diffusion map space to denoise the graph. Then Louvain clustering was
performed with resolution= 1.0. PAGA was performed and the trajectory was
constructed using layout ‘fa’. We chose a root cell for diffusion pseudotime and

computed diffusion pseudotime using n_dcs= 10. Lastly, cells from myeloid
lineages were extracted and cell density distribution along HSC/MPP-to-myeloid
differentiation pseudotime was calculated and ranked from the most undiffer-
entiated (0%) to the most differentiated (100%) states for each genotype and
time point.

Identification of genes affected by the oncogenic interactions between G12D
and E2-KO. Normalized gene expression (log-transformed TPM) was calculated in
each sample. For each gene, we compared its expression level in WT and G12D (or
E2-KO) HSPCs to calculate the expression change in single mutant samples.
Expected expression change in double mutant (G12D/E2-KO) samples was cal-
culated as an additive change in expression level from single mutant (G12D and
E2-KO) samples. Observed expression change in the double mutant (G12D/E2-
KO) sample was obtained from the comparison between WT and G12D/E2-KO
samples. For each gene, the expected and observed expression change was com-
pared. In G12D/E2-KO sample, if the observed expression change of a gene
matched the expected expression change based on the combined effect of each
mutation alone, we concluded that the expression of the gene was not affected by
oncogenic interactions between G12D and E2-KO. Conversely, if the observed
expression change of a gene was significantly different from the expected expres-
sion change based on the combined effect of each mutation alone, we concluded
that the expression of the gene was affected by oncogenic interactions between
G12D and E2-KO. To identify genes significantly affected by the oncogenic
interactions between G12D and E2-KO, we randomly shuffled the observed and
expected values of gene expression changes and calculated the differences between
shuffled values. We considered genes with interaction degrees below the bottom 5%
or above top 5% of randomly shuffled interaction degrees as the genes significantly
affected by G12D and E2-KO interactions.

Identification of cell-type-specific genes by random forest classifier. Random
forest algorithm is a machine learning method used for data classification, which
works for datasets with many samples, many features, and multiple different
classes47. For a given sample, a random forest algorithm can generate a probability
for each class and the one with the highest probability would be the predicted class
for the given sample. We applied a random forest algorithm in single-cell RNA-seq
data to identify cell-type-specific genes by treating cells as samples, genes as fea-
tures, and different cell types as different classes. We used the RandomFor-
estClassifier package from scikit-learn v0.20.2 to build a random forest classifier
and classify single cells into 11 different cell types annotated in WT HSPCs. To
train a random forest classifier, feature selection was first performed by training a
random forest classifier on all 15,721 expressed genes that were detected in more
than three cells. We selected the 1000 most informative genes based on overall gene
importance in the classifier to train the random forest classifier. We then per-
formed 5-fold cross-validation to evaluate the performance of our trained classifier
and obtained the prediction accuracy of 0.94 (Extended Data Fig. 6b). To identify
HSC/MPP-specific genes in G12D/E2-KO HSPCs, we predicted the probabilities of
each cell in HSC/MPP using the trained random forest classifier. We then calcu-
lated the correlation for each gene with HSC/MPP probabilities. Genes with high
correlation to HSC/MPP prediction score were identified as HSC/MPP pre-
ferentially expressed genes.

RNA-seq and ChIP experiments. For GEM knockdown, lineage-negative cells were
transduced with shRNA viruses against luciferase (shLuc) or GEM (shGem). Trans-
duced cells (GFP+) were FACS-sorted 72 h post-transduction and subjected to RNA-
seq library preparation. RNA-seq library was prepared using the SMARTer stranded
total RNA-seq pico input v2 kit (Takara). Sequencing reads were aligned to the mouse
reference genome (mm10) by STAR 2.7.3.a with default parameters in the 2-pass
mode65. Counts for each gene were generated using htseq-count v0.6.1. DEGs were
identified by DESeq2 v1.14.166. ChIP-qPCR experiments were performed in FACS-
sorted LSK cells from WT, G12D, E2-KO, or G12D/E2-KO mouse BM67.

Apoptosis and cell cycle analyses. Lineage negative cells were transduced with
shRNA viruses against luciferase (shLuc) or GEM (shGem). After 72 h, cells were
stained with antibodies against lineage markers (CD2, CD3, CD5, CD8, B220, Gr1, and
Ter119), c-Kit, Sca-1, and Annexin V. Dead cells were excluded by DAPI positive
staining. GFP+AnnexinV+DAPI− LSK cells were counted as apoptotic cells. For cell
cycle analysis, cells were stained with antibodies against lineage markers, c-Kit, and Sca-
1, and fixed with 4% paraformaldehyde. Cells were then incubated with DAPI (1mg/
ml) before flow cytometry analysis of cell cycle in GFP+ LSK cells.

BM transplantation. BM transplantation experiments were performed as pre-
viously described with modifications11,61. Briefly, recipient mice (CD45.1) were
irradiated using an XRAD 320 X-ray irradiator with two doses of 540 rad at least
3 h apart. Cells were injected through the tail vein of anesthetized recipients.
Transplanted mice were maintained on antibiotic water for 4 weeks. For transplant
with GEM shRNAs with the GFP reporter, lineage negative cells from donor BM
and splenic cells from moribund primary recipients were magnetically separated
and transduced with two rounds of spin infection. c-Kit+GFP+ cells isolated by
FACS sorting (5 × 105 cells) together with supporting BM cells (CD45.1; 5 × 105
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cells) were injected into lethally irradiated recipient mice (CD45.1). Leukemia-
initiating cell activity was measured by limiting dilution assay in NSG (NOD-scid
L2Rgnull) mice at 10, 100, or 1000 cells per mouse. The log-log plot and LIC
frequencies were calculated using the ELDA tool11.

Colony formation assays. LSK cells were isolated by FACS sorting and maintained
in Prime-XV Mouse Hematopoietic Cell Medium (Irvine Scientific) with 50 µM β-
Mercaptoethanol, 1% FBS, 50 ng/ml SCF, and 50 ng/ml TPO. Cells were transuded
with shRNA viruses by two rounds of spin infection within 48 h. c-Kit+GFP+ cells
(500 cells) were sorted and plated in methylcellulose (Cat# M3434, StemCell
Technologies) with control (DMSO) or AC220 treatment (20 nM). Colonies were
counted on day 7. In serial replating experiments, cells were collected and resus-
pended in IMDM media from plates of the previous round and seeded to the new
plates as single-cell suspensions.

Histology and immunohistochemistry (IHC). May–Grunwald–Giemsa staining
was used to analyze smear of PB or BM cells as described previously68. BM, spleen,
and liver samples were fixed in formalin, dehydrated in gradient ethanol, and
embedded in paraffin. Sectioned slides were rehydrated in gradient ethanol and
visualized by standard H&E staining. For IHC analysis, antigen retrieval was
performed by heating slides at 90–100 °C for 20 min in 10 mM sodium citrate
buffer. Slides were cooled down to room temperature followed by washing with
PBST twice. Slides were then treated with 3% H2O2 in methanol for 20 min and
blocked with 5% goat serum. Slides were incubated with c-Kit (CD117) antibody
(Biolegend, Cat# 105802) overnight and detected with the Elite ABC kit and DAB
substrate (Vector Laboratories). Trichrome and reticulin staining was performed
by the Molecular Pathology Core facility at UTSW.

Statistical and reproducibility. Statistical details including N, mean, and statistical
significance values are provided in the text, figure legends, or relevant methods. Error
bars represent SEM or SD from either independent experiments or independent bio-
logical samples. Statistical analyses were performed using GraphPad Prism using sta-
tistical methods specified in figure legends or methods. The numbers of independent
experiments or biological replicate samples and P values (n.s. not significant, *P < 0.05,
**P < 0.01, ***P < 0.001) are provided in individual figures. P < 0.05 was considered
statistically significant. Panels in Supplementary Figs. 1a and 3a show a representative
image of at least three independent replicate samples. No statistical method was used to
predetermine sample size in animal studies and the experiments were not randomized.
The investigators were not blinded to allocation during experiments and outcome
assessment.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw and processed scRNA-seq and bulk RNA-seq data are available in the Gene
Expression Omnibus (GEO): GSE179084. Other public genomic datasets are listed in
Supplementary Data 7 and deposited under accession numbers GSE112995 and
GSE49847. Source data are provided with this paper.

Code availability
Raw scRNA-seq data was processed using Cell Ranger v2.0.2. Single cells were clustered
using Louvain algorithm from SCANPY v1.4. KNN and UMAP visualization were
performed by Spring and Seurat v3.2.0. Analysis of single-cell differentiation trajectories
was conducted by PAGA from SCANPY v1.4. The custom code for random forest
classification is available from GitHub (https://github.com/Yuxuan0060/
Random_forest_classification). Bulk RNA-seq data analysis was conducted using STAR
2.7.3.a and DESeq2 v1.14.1. Code for analyses using other indicated software is available
from the websites of the corresponding software.
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