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Physics-informed deep learning characterizes
morphodynamics of Asian soybean rust disease
Henry Cavanagh1, Andreas Mosbach2, Gabriel Scalliet 2, Rob Lind3 & Robert G. Endres 1✉

Medicines and agricultural biocides are often discovered using large phenotypic screens

across hundreds of compounds, where visible effects of whole organisms are compared to

gauge efficacy and possible modes of action. However, such analysis is often limited to

human-defined and static features. Here, we introduce a novel framework that can char-

acterize shape changes (morphodynamics) for cell-drug interactions directly from images,

and use it to interpret perturbed development of Phakopsora pachyrhizi, the Asian soybean

rust crop pathogen. We describe population development over a 2D space of shapes

(morphospace) using two models with condition-dependent parameters: a top-down Fokker-

Planck model of diffusive development over Waddington-type landscapes, and a bottom-up

model of tip growth. We discover a variety of landscapes, describing phenotype transitions

during growth, and identify possible perturbations in the tip growth machinery that cause this

variation. This demonstrates a widely-applicable integration of unsupervised learning and

biophysical modeling.
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Quantifications of cell shape changes (morphodynamics)
can reveal key developmental transitions and behavioral
strategies, as well as modes of action of drugs by com-

parison with known drug-phenotype mappings1,2. Although
recent progress in automated image analysis has popularized
static descriptors beyond mean growth rates and metabolic
fluxes3, the incorporation of dynamics can provide more com-
plete system descriptions4 and may also aid the development and
validation of mechanistic models5. Here, we developed such a
framework and used it to interpret how fungicides affect the
morphodynamics of Phakopsora pachyrhizi, the pathogen that
causes rust disease in the soybean crop worldwide. Spores land on
soybean leaves, grow germ tubes, penetrate the plant using
appressoria, and subsequently form haustoria that extract
nutrients6, as sketched in Fig. 1a. This little-understood pathogen
can cause economically devastating yield losses of up to 80%7 and
is fast resistance evolving8.

Current methods for quantifying organism morphodynamics
typically rely on a low-dimensional space of interpretable
features9. Although existing methods have uncovered remarkable
behavioral patterns, revealing chemotactic strategies, temporal
processing, and social cooperation in a range of organisms10–13,
typical shortcomings are as follows: first, they are often based on
particular shape descriptors (e.g., one-dimensional centerlines),
restricting analysis to a narrow range of morphologies, often
requiring sophisticated feature extraction algorithms. Second,
they focus on stereotyped behaviors, which may not be char-
acteristic of early development. Finally, states are often discretized
and transition probabilities extracted, which obscures the con-
tinuous nature of morphodynamics. Alternatively, statistical
analysis can be based on thousands of behavioral features to
cluster and classify compounds, and compare the results with
known modes of action, but results can be difficult to interpret2.
In contrast to statistical correlates, interpretable continuous and
stochastic models can be considered, but are not yet associated
with morphodynamics. For instance, in Waddington’s epigenetic
landscape, cells begin at the top as pluripotent and subsequently
develop into a number of differentiated states, represented as
lower-level valleys14. Despite many applications15–19, to our
knowledge, such landscapes have only been uncovered at
steady state.

A major method for image analysis, dimensionality reduction,
and inference is deep learning20. Feedforward deep neural net-

works are composed of a series of interconnected layers of arti-
ficial neurons, which transform inputs through a series of
nonlinear operations21. Network parameters are updated through
stochastic gradient descent and its variants in order to minimize a
human-defined objective (the loss). These networks have been
proven capable of approximating any function, given a sufficient
number of parameters22. To link data analysis and modeling, two
types of network are particularly important: first, autoencoders,
which are capable of capturing low-dimensional structure in data
through a constrained reconstruction task23. Due to their high
flexibility, autoencoders have many advantages over non-
parametric t-distributed stochastic neighbor embedding and lin-
ear principal component analysis algorithms. Second, physics-
informed neural networks (PINNs). Although forward problems
can be solved fast with grid-based methods, PINNs can solve
inverse (inference) problems for a wide range of differential
equations24,25.

Here, we aimed to extract morphodynamic characterizations for
intuitive comparison across compounds. Specifically, we analyzed
P. pachyrhizi, germinating in vitro in a control compound and
several fungicides, by first using an autoencoder to uncover a
single two-dimensional (2D) morphospace of salient features from
high-throughput images of fixated fungi (Fig. 1a, b). We then
fitted two minimal models of dynamics over this morphospace
and took their condition-dependent parameters as informative
characterizations (Fig. 1c, d). The two models approach the
dynamics from opposite directions: the first is a top-down model
that utilizes a Fokker–Planck description to uncover the global
morphodynamic driving forces in the form of Waddington-type
landscapes, and the second is a bottom-up persistent random walk
model of the growth zone at the tip. We used a PINN to infer the
landscapes and approximate Bayesian computation (ABC), in
conjunction with a morphospace-derived similarity metric, to
infer the parameter posteriors of the tip growth model. The
uncovered landscapes show that morphodynamics are diffusion-
dominated until the germ tube begins to bend, at which point
deterministic forces begin to drive trajectories apart. Fungicide-
induced deformations include barriers, plateaus, and canalized
pathways, which may arise from differing stabilities of the growth
zone. To avoid “black-box” methods, we analyzed our PINN to
interpret the convergence. Our work shows how intuitive system
characterizations can be acquired directly from images, by inte-
grating unsupervised learning and biophysical modeling.

Fig. 1 Morphodynamics of the Asian soybean rust pathogen, P. pachyrhizi, are characterized through condition-dependent dynamics over a global
morphospace. a P. pachyrhizi burrows into soybean leaves to extract nutrients, as sketched (top). Image sets at nine time points under six conditions
(bottom) are processed to yield aligned, single-fungus images. b An autoencoder learns the biophysical degrees of freedom from the images, discovering a
2D morphospace. c Dynamics are characterized using two models: a top-down landscape (U(x)) model, where a physics-informed neural network fits the
Fokker–Planck equation to the morphospace embeddings, and a bottom-up persistent random walk model of the growth zone, with parameters fitted using
approximate Bayesian computation with a morphospace-derived similarity metric. These yield d interpretable, condition-dependent characterizations in the
form of Waddington-type landscapes and tip growth parameter posteriors.
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Results
A global morphospace reveals perturbed morphodynamics.
Manual categorization of phenotypes is time consuming and
limited to discrete human-defined features (Fig. 2a). In contrast,
manifold-based dimensionality reduction can provide a con-
tinuous low-dimensional space where dynamics are as simple as

possible26. This is because an imaged dynamic system with n
degrees of freedom traces out an n-dimensional manifold within
the higher-dimensional pixel space, irrespective of the image
dimensionality.

To learn such a morphospace for P. pachyrhizi growth, we
carried out a high-throughput imaging assay of distinct populations
at nine equally spaced time points, between 90 and 210min after
mixing with different compounds (code names used henceforth
given in brackets): a dimethylsulfoxide control (DMSO), methyl
benzimidazol-2-ylcarbamate at 1.1mg L−1 (carbendazim, Com-
pound A), PIK-75 hydrochloride at 3.3 mg L−1 (Compound B),
benzovindiflupyr (Compound C) at 0.041 and 10mg L−1, and
Compound X (a Syngenta research compound related to
trifluoromethyloxadiazoles27; see Supplementary Fig. 7 for the
chemical structure) at 1.1 mg L−1. These compounds were
identified at pre-screening to show a range of phenotypes. We
henceforth refer to each combination of compound and concentra-
tion as a condition. We extracted single-fungus images from the
snapshot data sets, aligned such that the initial growth directions
coincided, using automated processing, which yielded ~600,000
images in total (with mean and SD across snapshots of ~11,000 and
3000, respectively). In order to validate the inferred Fokker–Planck
model parameters and to motivate the tip growth model, we also
gathered a small number of time-lapse videos of individual fungi for
each compound (3–8, see Supplementary Movies 1–5) and aligned
these manually. High-throughput analysis is not carried out with
time-lapse videos in industry due to technical limitations. See
“Methods” and Supplementary Note 1 for details on the
compounds, imaging and image processing, and Supplementary
Fig. 4a for an example time-lapse sequence.

The morphodynamics are perturbed differently in different
conditions and so the manifold traced out by a P. pachyrhizi
population is condition-dependent (as sketched in the inset of
Fig. 2b). To pull the condition-dependent manifolds together into
a global morphospace, we trained a convolutional autoencoder
(CAE)28, an architecture specialized for images, with a 2D code
space on images from all conditions and times (see Supplemen-
tary Note 1 for details on the architecture and training). To
ensure the CAE used the morphodynamic manifolds to solve this
reconstruction task, we selected the network complexity and
training time that provided the simplest trajectories for embed-
dings associated with a small number of single-fungus videos.

Figure 2b shows the distribution of features over the morpho-
space, found by propagating morphospace coordinates on a grid
through the decoder. Distance from the spore embedding loosely
captures lengthening and angle captures variation in final shape.
Figure 2c shows the 210 min embeddings for all conditions,
revealing how fungicides can perturb dynamics over the
morphospace. Some introduce novel features, e.g., the branching
by Compound B, whereas others change the distribution over
wild-type features, e.g., the increased prevalance of straightening
induced by Compound X. To move from coarse-grained
qualitative insights to quantitative characterizations, we next
fitted two simple models of dynamics over the morphospace.

Emergent landscapes show the morphodynamic driving forces.
Condition-dependent Waddington-type landscapes are intuitive
morphodynamic characterizations that can be inferred from the
snapshot embeddings evolving over the morphospace. We model
each condition as inducing a time-independent field of driving
forces, F(x; c, λ), which depends on the compound concentration,
c, and any pharmacophores, captured in a parameter vector, λ. In
the absence of any curl, as we assume for early development, the
force field can be associated with the gradient of a quasi-potential,
U, via F=−∇U, which we take as the developmental landscape.

Fig. 2 Global morphospace learned by a convolutional autoencoder.
a Human categorization of P. pachyrhizi phenotypes is time consuming and
introduces human biases and unnatural discretization. b A convolutional
autoencoder addresses these shortcomings by learning the manifold
associated with each condition, sketched inset. Morphospace features are
shown by propagating morphospace coordinates on a grid through the
decoder. c 210min embeddings for all conditions show that fungicides can
induce perturbed dynamics over the morphospace, which therefore
represents for an expressive space for differentiating
morphodynamics upon.
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For cases where the underlying force field does have a curl,
landscapes can still be uncovered by splitting the force into curl-
free and curl-containing components, yielding a “potential and
flux” description15.

To enable the inference of landscapes, we connected the
evolving snapshot embeddings to the driving forces through a
Fokker–Planck model. These embeddings were transformed into
probability density functions (PDFs) on a grid using kernel
density estimation (KDE, Fig. 3a)29. The Fokker–Planck partial
differential equation (PDE) is used to separate out a system’s
driving forces and stochastic processes, and model statistical
ensembles of Brownian particles. Each particle moves over the
landscape according to the following stochastic differential
equation:

dx ¼ �∇UðxÞdt þ σðx; tÞdW; ð1Þ
where x and t are the position in 2D space and time, σ(x, t) is a
noise matrix, and dW is the Wiener process. σ(x, t) has diagonal
entries

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dðx; tÞ

p
and zeros elsewhere, with D being the

diffusivity. The Fokker–Planck equation for the evolution of the
PDF of the particle positions, p(x, t), is then

∂pðx; tÞ
∂t

¼ ∑
2

i¼1

∂

∂xi

∂UðxÞ
∂xi

pðx; tÞ þ ∂

∂xi
½Dðx; tÞpðx; tÞ�

� �
: ð2Þ

To learn the Fokker–Planck landscapes (and diffusivities) given
the PDF data, i.e., solve the inverse problem, we used a PINN24.
These learn PDE solutions by optimally matching PDF data,
minimizing the magnitude of the PDE residual, and satisfying any
further constraints, e.g., boundary conditions. PINNs have several
favorable properties over alternative methods for solving the
inverse problem25. First, in going from the forward to the inverse

problem, the only change required is the addition of extra
learnable parameters; second, they can infer the governing
equation with only sparse data, as they solve the inference of
the full PDF and governing equation as a joint task30; third, they
learn a continuous fully differentiable solution, which means
other variables of interest can be calculated directly from the
learned variables, without numerical approximation (e.g., useful
when transitioning between potential and force); and fourth, they
learn progressively more complex functions as training pro-
gresses. As we show, this is a useful property when combined with
early stopping if the required function complexity is not known a
priori. Finally, they scale more favorably with system dimension-
ality than grid-based methods, which can often perform well only
for low-dimensional problems. This final property will prove
especially useful when extending this work to higher-dimensional
morphospaces.

We used one network to learn each of the PDF, diffusivity, and
potential (Fig. 3b). The outputs of these (p̂ðx; tÞ, D̂ðx; tÞ and ÛðxÞ,
respectively) are put through a series of differential operators (N )
that outputs the Fokker–Planck residual,

N ðp̂; Û ; D̂Þ ¼ � ∂p̂
∂t

þ ∑
2

i¼1

∂

∂xi

∂Û
∂xi

p̂þ ∂

∂xi
ðD̂p̂Þ

� �
; ð3Þ

which is incorporated into the loss so that the solution obeys
the PDE.

The total loss to be minimized (Ltotal) is the sum of four terms
(shown in full in “Methods”). The first three are calculated over
randomized mini-batches. They are the mean-squared error
between the data and learned PDF (LPDF), the mean-squared PDF
at the boundary (LBC), and the mean-squared PDE residual
(LPDE). The final term ensures the PDF is normalized and is the
squared difference between unity and a numerical integration

Fig. 3 Morphodynamic landscapes learned by the PINN. a Morphospace embeddings are transformed into probability density functions (PDFs), p(x, t),
using kernel density estimation (KDE), yielding nine snapshots per condition. b A physics-informed neural network (PINN) learns the landscapes by fitting
the Fokker–Planck equation to the PDFs. For each condition, the architecture comprises a neural network to learn each of the PDF, p̂ðx; tÞ, diffusivity, D̂ðx; tÞ,
and landscape, ÛðxÞ. The outputs of these are put through a series of differential operators that outputs the Fokker–Planck residual,N , and the architecture
is trained to match the data (LPDF), minimize the magnitude of the residual (LPDE), satisfy the boundary conditions (LBC), and learn a normalized PDF
(Lnorm). c The architecture is trained over a series of mini-batches, with lower-frequency solutions explored first. d Landscapes with simulated particles,
from 90min (pink) to 210min (blue) after mixing with compounds, are shown, colored by the gradient magnitude, ∥F∥ (in terms of morphospace units,
m.u.). These are analogous to Waddington’s epigenetic landscape, as sketched in the inset. The black outlines show the contour where the PDF learned by
the PINN is 10−3 for DMSO and each condition. The inner region therefore highlights areas with high data density, with the remaining areas shown to
facilitate connection with the morphospace and outer tendencies. Contour lines are plotted along equal landscape values, with spacings of 0.11, 0.08, 0.07,
and 0.09m.u.2 min−1 for the landscapes from left to right. Morphodynamics are diffusion-dominated until the germ tube begins to bend, at which point
deterministic forces begin to drive trajectories apart. Fungicide-induced deformations including barriers, plateaus, and canalized pathways. This
susceptibility to deformation, combined with the generality of the model, make the Fokker–Planck model well-suited for system characterization.
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over the full grid at a randomly selected time point (Lnorm). The
relative importance of these terms is determined by hyperpara-
meters a, b, c, and d,

Ltotal ¼ aLPDF þ bLBC þ cLPDE þ dLnorm; ð4Þ
and lower-frequency functions are explored first (Fig. 3c31), in
alignment with Occam’s razor. An ablation analysis also confirms
that both space and time-dependent diffusion are required for the
best model fit (Supplementary Fig. 1a).

Letting the PINN train to convergence would result in
overfitting. This is the phenomenon where a neural network’s
function pushes beyond the problem-dependent desired complex-
ity; e.g., in image classification, the network begins to learn
spurious patterns and to generalize poorly to new data. In the
context of inference from independent snapshots, overfitting
corresponds to fitting to differences between individual snapshots
that arise from variability between P. pachyrhizi batches.
Although having independent snapshots is beneficial in that it
shows a wider range of dynamics, this can result in features such
as a non-monotonically decreasing fraction of spores, which
should not be captured in the model. The PINN learns trends
common to all snapshots first and we stop training before
overfitting begins, identified by monitoring the spore region (as
shown in Supplementary Fig. 1b, c for three training repeats).
This regularization technique is known as early stopping. We
note that the loss exponentially decays after an initial period of
fast improvement. Hence, reasonable results can be achieved
using much earlier stopping points than used here, if computa-
tional time is limited. Further details on the PINN architecture,
hyperparameters, and optimization can be found in “Methods”
and Supplementary Note 2.

Figure 3d shows the landscapes learned by the PINN, as well as
a sample of forward simulations of Eq. (1) (see “Methods” for
details on the forward simulations), and the correspondence
between the landscapes and morphospace is shown in Supple-
mentary Fig. 2. The overfitting point described above approxi-
mately corresponds to 30, 30, 30, 20, 25, and 25 h of training for
DMSO and Compounds A, B, C (0.041 mg L−1), C (10 mg L−1),
and X, respectively. Diffusion over the landscapes has two
sources: (i) morphodynamic diffusion, i.e., the fundamental
unpredictability of morphology change from one time step to
the next on the 2D morphological data manifold; and (ii)
embedding noise, which arises because variations in image
resolution, segmentation, and alignment induce perturbations
away from the manifold, and the complexity of the autoencoder’s
embedding function means these perturbations are not always
just mapped to the closest point on the 2D manifold. As the same
image pre-processing algorithms were used on all conditions,
differences in the Fokker–Planck diffusion over the same region
of morphospace will be morphodynamic in nature rather than
arising from the embedding noise.

The condition-dependent landscapes are highly interpretable
(Fig. 3d). DMSO development begins in a metastable region of
spores where diffusion dominates, with a threshold energy
required for germination, and annealing diffusivity capturing a
subpopulation of spores that never cross this threshold
(Supplementary Fig. 2a). This may be similar to germination
mechanics in fission yeast, where a polar cap stochastically
wanders as the spore grows and ultimately breaks out once a
critical strain is passed32. Morphodynamics are diffusion-
dominated until the germ tube begins to bend, at which point
deterministic forces begin to drive trajectories apart. Compound
A introduces a plateau in the region where tip bending begins,
revealing growth stunting, and also opens up new features with
numerous bends. Extreme cases of heteregeneous growth, e.g., the
difference between fungi with dramatically slowed growth and

others with completely unhindered growth, are captured by the
Fokker–Planck model through plateaus followed by abnormally
high gradients, shown in dark red. Compound B opens up a new
branching feature region immediately following germination.
Some fungi do develop normally, but without significant bending
and with reduced growth rates. Compound X canalizes
trajectories through only a subset of the features expressed in
DMSO, namely straightening, with fungi closely following the
landscape, before stunting occurs at a common location for most.
Supplementary Figs. 1 and 2 show that Compound C at
0.041 mg L−1 inhibits growth slightly, primarily through reduced
diffusion rather than reduced landscape gradients, and increasing
the concentration to 10 mg L−1 drastically increases the stability
of the spore region.

The data PDFs compare well with PDFs generated by a KDE of
simulated trajectories for all conditions, validating the solution
accuracy (Supplementary Fig. 3). Images from the videos can also
be embedded in the morphospace and the mean-squared
displacements of the video trajectories with those of the
simulations show good agreement (Supplementary Fig. 4b, c).
Furthermore, the entropy of the simulations always increases
(Supplementary Fig. 4d). To get a measure of the uncertainty in
the inferred landscapes and diffusivities, we trained the PINN
three times for each compound, which exposed the algorithm to
different data mini-batches. For each condition, the total losses
decreased at similar rates (meaning the solutions are equally good
at each training time), with overfitting occurring at approximately
the same point. We therefore quantified uncertainty through the
SD of the fields across repeats at the early stopping times
described above (Supplementary Fig. 1b–f). The landscapes
therefore provide intuitive comparisons of morphodynamics
across conditions.

Landscape deformations are caused by perturbations in the tip
growth machinery. The morphospace can also be used for data-
driven development of a minimal mechanistic model to reveal
potential causes of the landscape deformations discovered above.
Having a single model with condition-dependent parameters
provides further cell-mechanical characterization. We developed
such a model for tip growth under all but Compound B and
Compound C at 10 mg L−1 (we excluded these because Com-
pound B induces branching, which cannot be captured under the
proposed model, and Compound C at 10 mg L−1 does not permit
a significant germ tube to develop). The morphospace reveals
final shape and associated lengthening to be the primary degrees
of freedom across the populations, motivating equations for
length, L, and tip bending. From the videos, we observed three
core features of lengthening (Supplementary Fig. 5a) as follows:
that germination time is variable, that length increases approxi-
mately linearly with time, and that this growth rate is variable.
We therefore modeled germination time, tg, and subsequent
linear growth rate, α, as lognormally distributed, with growth rate
distributed according to a reversed lognormal distribution trun-
cated at zero. The lognormal distribution is widely used to model
skewed phenomena across biology, including heterogeneous
sensitivity to fungicides33. We compared three models for tip
bending as follows: a simple random walk in growth direction,
θglobal (Fig. 4a); a random walk in the curvature of the growth
path, κ; and a persistent random walk in κ with parameters for
stochasticity, σ, and relaxation to straight growth, τ−1 (see
“Methods” for the mathematical expression of each model).
Dynamics in κ are a simple way to capture the effects of a dif-
fusing growth zone, as has been described in fission yeast, where
it is directed by landmark proteins concentrated at microtubule
end points34. This connection can be made slightly more explicit
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by the introduction of an angular growth zone position, θtip, and a
mapping κ= f(θtip). Although f is unknown, this function is likely
monotonically increasing and passing through the origin (i.e., a
central growth zone corresponds to straight growth). Supple-
mentary Fig. 5b shows θglobal variation in time for the three
models, for some intuition on the dynamics.

For both parameter inference and model selection, we used
ABC with sequential Monte Carlo (ABC-SMC, details on the
SMC are in “Methods”)35. In ABC, parameters are selected from a
prior distribution and simulations are run. If the simulations are
within some threshold of similarity with the data, then the
parameters are stored. The density over the stored parameters
forms the posterior distribution. For model selection, model
index is introduced as an additional parameter and the posterior
distribution is found over the joint space of model index and
parameters, with the marginal distribution over model index
giving the model probabilities. This biases towards low-
dimensional parameter spaces, favoring the most parsimonious
models. For the parameters involved in lengthening, we used
histograms of fungus lengths at each snapshot (see Fig. 4b for
three of the nine DMSO snapshots). For the bending parameters,
we then simulated fungus images using maximum a posteriori
probability (MAP) lengthening parameters and compared

histograms of their morphospace embeddings with those of the
210 min snapshot data (Fig. 4c for DMSO). Further details can be
found in “Methods.” Compound A data were used for model
selection, as it covered the full spectrum of features. Only Model 3
could reproduce the data with high accuracy (in particular the
multiple bends, where relaxation to central growth is required to
reproduce the alternating bending direction). This match is
shown by the probabilities of the three models and MAP
simulations (Supplementary Fig. 5c, d). The equations governing
dynamics after germination are therefore

for t > tg
dL ¼ αdt

dκ ¼ �τ�1κdt þ σdW

�
; ð5Þ

where dW is the Wiener process, and for t ≤ tg, we have
L= κ= 0.

Figure 4d shows the cumulative density functions of germina-
tion time and PDFs of growth rate associated with MAP
parameters for each condition. Germination time is strongly
skewed, with fungicides inducing premature germination and
reducing subsequent germination frequency. Growth rates are
less skewed, and both the maximum and mean growth rates are
reduced by all fungicides. The bending posterior distributions
(Fig. 4e) have linear shape, showing that for all conditions, the

Fig. 4 A persistent random walk model of the growth zone is fitted to image data. a Tip growth is described with variables for length, L, linearly increasing
in time, and path curvature, κ, which undergoes a persistent random walk, with relaxation to straight growth (i.e., a central growth zone). Dynamics of κ may be
the result of a diffusing growth zone, shown with angular location θtip, which causes a changing direction of growth, described by θglobal in the lab frame. b All
parameters were fitted using approximate Bayesian computation with sequential Monte Carlo (ABC-SMC). Lengthening parameters were fitted using length (L)
histograms at nine equally spaced time points (three of the nine DMSO snapshots are shown here, with data in gray and simulations in black), between 90 and
210min after mixing with solution. c Bending parameters were fitted by comparing morphospace embeddings of the 210min snapshot data with those of
images simulated with MAP lengthening parameters, as shown here for DMSO. dMAP germination time cumulative density functions (CDFs) and growth rate
probability density functions (PDFs) show typical perturbations include premature germination, reduced germination frequency, and reduced maximum and
mean growth rates. e Bending parameter posteriors (for stochasticity, σ, and relaxation to straight growth, τ−1) show final morphologies depend primarily on the
ratio of the two bending parameters and fungicides can both increase and decrease this ratio. Accepted parameters of the final ABC-SMC population are plotted
in white, with MAP values in red. Source data are provided for d, e.
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morphology depends primarily on the ratio of τ−1 to σ.
Compounds A and X induce decreased and increased ratios of
relaxation to stochasticity, respectively. Comparisons of MAP
simulations with data for all conditions are shown in full in
Supplementary Fig. 6.

Discussion
Phenotypic screens are often used to identify drug efficacy and
mode of action by comparing visible features such as morphol-
ogy. However, such screens are often limited to human-defined
and static features, and any incorporation of dynamics typically
focuses on stereotyped behaviors. Here we characterized mor-
phodynamics of the Asian soybean rust crop pathogen, P.
pachyrhizi, germinating in vitro in the presence of different
fungicides, directly from image sets. We found that morphody-
namics are diffusion-dominated until the tip begins to bend, at
which point deterministic forces begin to drive trajectories apart.
Fungicide-induced landscape deformations include barriers, pla-
teaus, and canalized pathways. These features may arise from
physical perturbations including premature but lower-frequency
germination, reduced growth rates, and both increased and
reduced stabilities of the growth zone. The global morphospace
therefore allowed us to extract meaningful morphodynamic
parameters directly from images, revealing perturbed driving
forces in the Fokker–Planck model, and providing a similarity
metric for the tip growth model. For both models, the nonlinear
embedding affords crucial interpretability through visualization.
Moreover, the two models give complementary views of the
dynamics. Taking Compound X as an example, the landscape
model reveals low diffusion following germination when com-
pared with DMSO. Hence, once germinated with Compound X,
fungi grow at very similar rates, with little bending, tightly fol-
lowing the underlying landscape. The tip growth model similarly
shows a narrowed distribution of growth rates and reduced
bending, and these observations are confirmed when reviewing
the time-lapse videos after the analysis.

Despite many benefits, the analysis in its current form has
limitations. For systems with higher-dimensional dynamics, a 2D
morphospace may be unsuitable. For instance, we omitted a
compound that induced blistering along the germ tube, which
expanded the compound’s morphospace beyond two dimensions.
For such cases, the bottom-up mechanistic model parameter fitting
can be done in higher dimensions but at the cost of increased
computation time and reduced interpretability. For the
Fokker–Planck model, higher-dimensional systems may still be
characterized in terms of networks of attractors18 and the marginal
dynamics of pairs of morphological degrees of freedom could still
be visualized in 2D. Such characterizing of dynamics over non-
linear representations may be most powerful when different con-
ditions cover similar features, such that differences have a physical
rather than algorithmic origin. As well as being able to characterize
dynamics across multiple conditions, these simple models are
useful for systems without a priori established dynamics.

Do the landscapes correspond to any physical quantities
beyond representing a distilled statistical representation? The
potentials represent the deterministic part of the motion, e.g.,
extension of the germ tube from turgor pressure and vesicle
delivery (the potentials largely drive in the direction of increasing
length). Furthermore, diffusion captures features that vary at
single-fungus level, including the precise growth rate, and the
direction of bending (potentially caused by a diffusing growth
zone or noise34). The observed phenotypes are certainly plausible
based on putative modes of action of the drugs in terms of
inhibiting microtubules, kinases, and gene expression (see Sup-
plementary Note 4).

An interesting area for future work is to extend unsupervised
morphodynamic analysis beyond minimal characterizations, to
more detailed models. This could be achieved by joint learning of
the underlying representation and equations of motion, e.g., by
minimizing the prediction error and complexity of the equations
of motion. Such approaches have been shown capable of reco-
vering physical laws in Cartesian coordinates from warped video
footage36 and it would be interesting to extend this to complex
biological systems, where the underlying laws are less clear.
Modeling of cell growth in terms of generalized shape coordinates
is an area of active research, with one promising model balancing
dissipative, mechanical, and active forces37. Another interesting
area for future work is to better understand the connection
between internal mechanics and morphodynamics. This could be
achieved by joint modeling morphology and organelles (using
flourescent markers), conditional on various pharmacophores.
Interesting organelles and molecular processes may include
secretory vesicles for membrane delivery, small GTPases for
growth cone labeling, and motor and cytoskeletal proteins for
transport and structure38. Interpretable representations for each
could be found using nonlinear dimensionality reduction, as done
here for morphology39.

Although often hailed as the future of deep learning, use of
unsupervised learning techniques within the natural sciences
often stops at low-dimensional data visualizations. We hope the
work presented here may stimulate further work leveraging the
discovery power of unsupervised methods within interpretable
physical models.

Methods
Algorithms were run in Python and packages used are detailed in Supplementary
Methods.

Imaging and image processing. For the snapshot data, spores were mixed in each
of the six treatment solutions and imaged in 96-well plates on the Opera QEHS
running Opera Software 2.0 (EvoShell, Opera CHKN/QEHS Red Ver. 2.0.0.12017
Rev.: 89046, PerkinElmer, Inc.). At nine equally spaced times between 90 and
210 min, cell walls were stained with Calcofluor White solution with KOH, which
fixated the fungi. Each snapshot was therefore of a different batch of spores. The
staining procedure enabled the collection of two images for each well and time
point, using different excitation wavelengths, one showing the spores and another
showing the germ tubes. For the time-lapse videos, images were taken at 3 min
intervals on the JuLI Stage Real Time Cell History Recorder running JuLI Stage V.
2.0.1 and JuLI EDIT V. 1.0.0.0 (NanoEnTek, Inc.), without staining, meaning only
one image was collected for each well and time, showing the full fungi. All imaging
was done at ×10 magnification. Full details on the imaging can be found in Sup-
plementary Information. The snapshots and time-lapse videos were processed
differently, because (a) the snapshots had spores and germ tubes separated, which
we took advantage of to automate alignment, and (b) the small number of time-
lapse videos meant we could manually align these for higher precision.

For processing the snapshot images, we used adaptive binarization (to account
for lighting defects) to get two images for each view: one of germ tube contours,
another of spore contours. Adding these together then gave an image with full
fungi. Contours with an area above a threshold found by trial and error were
removed as obvious overlapping fungi and the remaining ones were cropped by
finding the minimum bounding rectangle. These regions of interest were rotated to
align with the pixel grid and padded so all were 200 × 200 pixels, to fit the largest
fungi in the set. Incomplete fungi were also removed at the image borders. We then
used a supervised convolutional network, trained on a sample of hand-labeled
images, to remove contours that contained overlapping fungi. Remaining
individual fungi were then translated and rotated so the initial growth directions
coincided, and a flip was executed if the right-most point of the fungus was higher
than the germination point (see Supplementary Note 1). Finally, we replaced all
spores with identical circles, so as to prioritize modeling of the germ tube; the
resulting morphospace point is then widened into a spore region through the KDE.

For the time-lapse videos, we again binarized the frames (non-adaptive this
time, as there were not significant lighting defects). We then found a series of
contours across frames, whose centers of mass were closest, and manually looked
through these series to find those that corresponded to tracking an individual
fungus. We then manually aligned these so that the initial growth directions
coincided, this time using ImageJ and Gimp. Before being inputted into the
autoencoder, snapshot and time-lapse video pixels were assigned to a value in the
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set {0, 1}. Full details on the image processing can be found in Supplementary
Note 1.

Neural networks. For the autoencoder’s encoder, we used four convolutional
layers with 16, 32, 64, and 16 feature maps, all with 3 × 3 kernels, Rectified Linear
Unit (ReLU) activations, batch normalization, and alternating stride sizes of 1 and
2 in PyTorch. The decoder’s structure mirrored the encoder’s, but with transposed
convolutions. We used a sigmoid output activation and binary cross entropy loss,
over mini-batches of 50 images, and trained for 4 epochs using the Adam
optimizer40 with a learning rate of 10−4, which took 2 h with a Quadro RTX 6000
GPU card. Training was stopped at the point at which the trajectories of the single-
fungus videos were least complex.

For the PINN, the loss function to be minimized comprises four terms, with the
first three calculated over random mini-batches of N data points and the final one
over the full spatial grid of M data points. The first is the mean-squared difference
between the learned PDF, p̂ðxj; tjÞ, and data p(xj, tj),

LPDF ¼
1
N

∑
N

j¼1
½p̂ðxj; tjÞ � pðxj; tjÞ�2; ð6Þ

with {xj, tj} in the nine snapshots. The second is the mean-squared PDF at the
boundary,

LBC ¼ 1
N

∑
N

j¼1
½p̂ðxj; tjÞ�2 ð7Þ

with {xj, tj} selected from 106 uniformly distributed boundary points, and the third
term is the mean-squared PDE residual (N , given in Eq. (3)),

LPDE ¼ 1
N

∑
N

j¼1
½N ðp̂ðxj; tjÞ; D̂ðxj; tjÞ; ÛðxjÞÞ�2; ð8Þ

with {xj, tj} selected from 106 points uniformly distributed over the whole domain.
The final term ensures the PDF integrates to one:

Lnorm ¼ ∑
M

j¼1
Δx1Δx2p̂ðxj; tÞ � 1

� �2
; ð9Þ

with xj covering the full spatial grid and t randomly selected. For the total loss (Eq.
(4)), we used hyperparameters of 1, 1, 500, 0.01 for a, b, c, and d, with reasons
discussed in Supplementary Note 2.

The three PINN neural networks had 5 fully connected layers, each with 50
neurons, with residual skip connections, and swish activations between layers.
Output variables that share inputs (e.g., the PDF and diffusivity) can be outputted
from a single neural network if they are likely to have similar features, for increased
computational efficiency. We used the Adam optimizer40 with a learning rate of
5 × 10−4 and batch sizes, N, of 8000. To speed up training, the DMSO landscape
was first trained for 10 h and PINNs for the other conditions were initialized with
these weights (known as transfer learning). For forward simulations over the
landscapes, particle starting positions were sampled from the initial PDF learned by
the PINN and then simulations were run by evaluating the potential and diffusivity
on a 1000 × 1000 spatial grid, with 20 snapshots in time for the diffusivity, and
simulating Eq. (1) with a time step of 0.01 min.

Tip growth model. The three-parameter lognormal PDF is given by

f ðx; s; σ2; locÞ ¼ 1

σ
ffiffiffiffiffi
2π

p ðx � loc Þ exp
log 2 x� loc

s

� �
2σ2

ð10Þ

where σ is a shape parameter, s is a scale parameter (also the median), and loc is a
location parameter (the lower bound). The two-parameter distribution has loc set
to zero.

We modeled germination time, tg, as distributed according to
tg � lognormalðstg ; σtg ; loctg Þ, and growth rate, α, as distributed according to

α= locα− x, with x ~ lognormal(sα, σα, 0) and resampling for negative α. Length
data were extracted by summing the binarized fungus images, and both the
lengthening and bending parameters were fitted using ABC-SMC35. This is a
computationally efficient implementation of ABC, identifying intermediate
distributions over a series of populations, and gradually decreasing the acceptance
threshold. All histograms were compared using the summed absolute distance and
we trained the autoencoder for an extra two epochs with simulations generated
randomly from the prior distribution to get coverage of any novel features.

We compared three models for tip bending, with Model 3 found to reproduce
the data best. For all of the following, σ is a noise parameter that was fitted and dW
is the Wiener process. Figure 4a shows a schematic with the bending angles and
curvature. Model 1 was a random walk in the global direction, θglobal, a simple
model commonly used in the literature:

dθglobal ¼ σdW: ð11Þ
Model 2 was a random walk in the curvature of the growth path, κ, in order to
connect to cell tip mechanics:

dκ ¼ σdW: ð12Þ

Model 3 was a persistent random walk in the curvature, with an additional
parameter, τ−1, for relaxation to straight growth, motivated by work analyzing
fission yeast tip growth mechanics34:

dκ ¼ �τ�1κdt þ σdW: ð13Þ
See Supplementary Note 3 for details on the creation of the simulation images and
settings used for running ABC-SMC.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The image data that support the findings of this study have been deposited at http://
cellimagelibrary.org/groups/54615. The figure data generated in this study are provided
in the Supplementary Information. Source data are provided with this paper.

Code availability
The code used, along with a subset of images, are available at https://github.com/
hcbiophys/morphodynamics41.
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