
ARTICLE

Estimating disease prevalence in large datasets
using genetic risk scores
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Nicholas J. Thomas 1,2,6✉

Clinical classification is essential for estimating disease prevalence but is difficult, often

requiring complex investigations. The widespread availability of population level genetic data

makes novel genetic stratification techniques a highly attractive alternative. We propose a

generalizable mathematical framework for determining disease prevalence within a cohort

using genetic risk scores. We compare and evaluate methods based on the means of genetic

risk scores’ distributions; the Earth Mover’s Distance between distributions; a linear combi-

nation of kernel density estimates of distributions; and an Excess method. We demonstrate

the performance of genetic stratification to produce robust prevalence estimates. Specifically,

we show that robust estimates of prevalence are still possible even with rarer diseases,

smaller cohort sizes and less discriminative genetic risk scores, highlighting the general utility

of these approaches. Genetic stratification techniques offer exciting new research tools,

enabling unbiased insights into disease prevalence and clinical characteristics unhampered by

clinical classification criteria.
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The development and refinement of polygenic analysis
techniques is greatly increasing our understanding of many
diseases. Using polygenic risk has allowed insights into

disease etiology and through Mendelian randomization evalua-
tion of causality1. Clinically, capturing polygenic susceptibility
through genetic risk scores (GRS) can be used to determine
individuals at the highest risk of a disease2–4. This paper con-
centrates on an innovative use of polygenic risk to genetically
estimate disease prevalence (proportion of individuals with and
without a disease) within a cohort. Currently estimating disease
prevalence is difficult as it requires robust clinical classification.
Disease-specific investigations are rarely available in population-
level data and inaccuracies associated with self-reported diagnosis
are well recognized5,6. Given the increasing availability of
population-level genetic data, novel polygenic estimates of disease
prevalence are an extremely attractive alternative.

The basis of genetically determining disease prevalence is
fundamentally that the distribution of a specific disease GRS
within a cohort will reflect the mixture of GRS of those with the
disease (cases) and those without (non-cases). This mixture GRS
distribution will lie between reference groups of cases and non-
cases and will reflect the relative proportion of cases to non-cases
(Fig. 1a). The location of the mixture cohort’s GRS distribution in
comparison to the GRS distribution of known cases and non-
cases allows the respective proportion of each group to be
determined which provides a genetic-based estimate of disease
prevalence. Furthermore, using the genetically calculated pro-
portion of a disease within a cohort allows the additional benefit
of associated clinical features of the genetically defined disease
cohort to be determined. It is worth emphasising that in almost
all polygenic risk situations, even those at the highest genetic risk
are unlikely to develop the relevant disease and therefore this
concept does not remain valid at an individual level. Nonetheless,
at a group level the average GRS will be higher in a cohort with
disease versus those without.

In this paper we assess, the performance and utility of poly-
genic stratification as a tool for determining disease prevalence.
Through simulated scenarios and real-world data, we evaluate
different mathematical techniques for determining disease pre-
valence based on the GRS distribution within a cohort. The
generalizability and robustness of genetic stratification have been
investigated through a systematic evaluation of the cohort char-
acteristics required for estimates to remain robust. Specifically,
the impact on the performance of the prevalence of the disease,
the mixture cohort size and the strength of genetic predisposition
for a disease. Finally, in order to highlight the utility of the
proposed framework we apply our methodologies in the context
of identifying the prevalence of undiagnosed coeliac disease
within a cohort adhering to a gluten-free diet.

Genetic stratification summary. We present three methods
developed to estimate the proportions of cases and non-cases in
an unknown mixture cohort using GRS distributions and com-
pare them with the published Excess approach7. The methods’
performance characteristics are evaluated over clinically relevant
parameter ranges using GRS for type 1 diabetes (T1D), type 2
diabetes (T2D) and coeliac disease, as well as synthetic data.
Clinical sample sets were taken from the following cohorts: T1D
(n= 1,963) and T2D (n= 1,924) from the Wellcome Trust Case
Control Consortium (WTCCCC)8, Coeliac disease reference cases
(n= 12,018) from a combination of European studies9 with non-
cases (controls) and mixture (gluten-free diet) cohorts from UK
Biobank (n= 12,000 and n= 12,757, respectively)10.

To compare the methods under different conditions, the
T1DGRS data were split in half to form reference cohorts and an

independent hold-out set for generating parameterised mixture
cohorts (Figs. 2 and 3). In these analyses, mixtures were
constructed by sampling with replacement, enabling larger
mixture sizes to be used than the size of the hold-out sets from
which they were derived11,12. Synthetic data sets were also
constructed from Gaussian distributions of equal standard
deviations (set to 1) but different means (see Table 1 and Fig. 4).
For the reference cohort of cases, RC, the mean of the generating
distribution was always 0 while the mean for the non-cases
cohort, RN, was systematically varied in order to investigate the
effect of differences in discriminability signified by the area under
the curve (AUC) of the GRS distribution. For further details of
the data sets, see “Methods”.

In each method, two cohorts consisting of the GRS of
individuals with and without a particular polygenic disease were
taken as references, denoted RC (the reference cohort of cases)
and RN (the reference cohort of non-cases). The proportions of
individuals from these reference cohorts (denoted pC and pN
respectively) who comprise an unknown mixture cohort ( eM) were
estimated based on the properties of the reference cohorts. When
only one proportion is mentioned, this is pC (i.e. relative to the
reference cohort of cases, RC), unless otherwise stated. The cohort
characteristics used are dependent upon the particular method
employed as illustrated in Fig. 1 and are detailed below.

Throughout this paper, we assume that the unknown mixture
cohort is composed solely of the samples that come from the two
reference cohorts (blue and red dots in Fig. 1). In practice, this
means that pN (prevalence of non-cases) and pC (prevalence of
cases) sum to one, pN þ pC ¼ 1, and so accordingly, the
proportion of non-cases was calculated as: pN ¼ 1� pC. Further-
more, the presented Earth Mover’s Distance (EMD) and Kernel
Density Estimation (KDE) methods make it possible to check if
this assumption is satisfied. We revisit details of such checks in
the discussion and supplementary information.

Finally, our methods are all based on the assumption that
between the reference and mixture cohorts, cases and non-cases
are genetically equivalent. This assumption must hold true for
estimates to be valid and becomes less certain if the mixture
cohort is derived from a different population than those used for
reference. For this reason, we recommend these methods should
be used to estimate disease prevalence within a subset of a
population where reference cases and non-cases can be derived
from the same population, for example, UK Biobank. This does
not completely exclude using reference cohorts derived from
different datasets, particularly where robust disease cases may be
difficult to define7, but in this context, extreme caution should be
exercised prior to applying the methods and around the
interpretation of the generated estimates. Using reference cohorts
from a different population from the mixture analysis should only
be undertaken following close examination of the selection
criteria and demographics of the reference and mixture cohorts to
ensure equivalence. This is of particular importance when
studying different geographical populations where allele frequen-
cies are known to vary13,14. Accordingly, in this manuscript all
analyses are restricted to white Europeans; the populations that
the reference GRS distributions were derived from. Where
possible, the GRS of the reference non-cases (controls) and cases
should be compared with the GRS of known non-cases and cases
within the same population the mixture has been taken from.
This could be done, for example, by means of a statistical test
appropriate for the assessment of the observed GRS distributions.
An example of the importance of this and how it can be detected
is demonstrated by the T2DGRS for a reference T2D population
from the WTCCC8. The WTCCC cohort was largely selected
based on a positive family history of T2D or early disease onset
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Fig. 1 Illustration of a mixture population drawn from two reference populations and the four proportion estimation methods. a This mixture population
emulates the real-world scenario of a population composed solely of individuals drawn from each subpopulation of non-cases (RN, blue) and cases (RC,
red). Mixture ( eM) cohort possesses features of both reference cohorts. Each method uses different characteristics of the mixture and reference cohorts to
estimate the proportion of constituents of the mixture cohort (pC and pN). The Excess method (b) considers the number of cases above the mixture
median in excess of those expected in a pure control (non-cases) reference cohort. The Means method (c) uses the normalised difference of the mixture
cohort’s mean and the two reference cohorts’ means. The Earth Mover’s Distance method (d) uses the weighted costs of transforming the mixture
distribution into the reference distributions. The Kernel Density Estimation method (e) fits smoothed templates to each of the reference distributions and
then fits a weighted sum of these templates to the mixture distribution, adjusting the amplitudes of each with the Levenberg–Marquardt algorithm. Figure
generated using artificial data.
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and is therefore enriched for T2D risk variants. As shown in
Supplementary Fig. 1 the distribution of T2DGRS of unselected
T2D cases from population data in UK Biobank is significantly
lower than the T2DGRS in the WTCCC T2D reference. The
T2DGRS in UK Biobank population T2D cases only becomes
equivalent to the WTCCC when the same case selection criteria
are mirrored. If this WTCCC cohort was used as a reference T2D
population when evaluating the prevalence of T2D in a cohort in
the UK biobank, it would have influenced the accuracy of
estimates since it does not constitute a representative T2D cohort.

The Excess method. This estimates the proportion from the
number of excess disease cases above the mixture cohort’s
median score compared to the equal numbers expected in a pure
control cohort (Fig. 1b). We illustrate the method as introduced
in ref. 7.

The Means method. This compares the mean GRS of the mixture
cohort to the means of the two reference cohorts and estimates
the mixture proportion according to the normalised difference
between the two (Fig. 1c).

The Earth Mover’s Distance (EMD) method. This uses the
weighted cost of transforming the mixture distribution into each
reference distribution (more formally, the integral of the differ-
ence between the cumulative density functions, i.e., the area
between the curves). This method allows pN and pC to be com-
puted independently (Fig. 1d) and so provides a way to validate
the assumption that the mixture is composed solely of the sam-
ples from the two reference cohorts, p̂N þ p̂C ¼ 1; if the sum is
significantly different from 1, then the assumption is not satisfied.
In this study, we use the mean of the two estimates for pEMD

C and
1� pEMD

N as the estimate of the p̂C.

Fig. 2 A comparison of the four methods prevalence estimates and confidence intervals for varying proportion of cases and for three sample sizes.
Mixture distributions of non-cases and T1D patients from WTCCC8 were constructed with pC ¼ 0:1;0:4;0:8f g (shown in blue, grey and red respectively)
and n ¼ 500; 1000; 5000 (shown in panels (e–f), (c–d), (a–b) respectively). a, c, e The constructed mixture distributions and reference distributions (RC,
shaded red and RN, shaded blue) from which they were constructed. b, d, f Prevalence estimates, p̂C (bullseye) obtained by each of the four methods for
varying pC (x-axis) and cohort size, n (rows). Each estimated p̂C value is shown together with a violin plot illustrating the distribution of the 100,000
estimates of prevalence (p0C) in the bootstrap samples and with confidence intervals (α ¼ 0:05) shown as horizontal lines with vertical bars at the ends.
Dashed vertical lines indicate reference prevalence values pC. In all the cases, for the Excess method we observe a large offset between the violin plots
(including confidence intervals) and the p̂C value. This offset is a result of the systematic bias of the Excess method. The other three methods generally
show much less bias. Sample sizes: RC – cases WTCCC T1D (n ¼ 982), RN – non-cases WTCCC T2D (n ¼ 962), mixtures – sampled with replacement
from a holdout half of the RC (n ¼ 981) and RN (n ¼ 962) samples.
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The Kernel Density Estimation (KDE) method. This method fits
a smoothed template to each reference distribution (by convol-
ving each sample with a Gaussian kernel) and builds a model of
the mixture as a weighted sum of these two templates. The
method then adjusts the proportion of these templates with the
Levenberg–Marquardt (damped least squares) algorithm until the
sum optimally fits the mixture distribution (Fig. 1e), noting that
the algorithm could find one of the potentially several local
minima. In other words, the method finds (one of) the linear
(convex) combination(s) of the reference distributions that best
fits the mixture distribution.

Results
Performance of genetic stratification. We start by using the T1D
GRS (AUC= 0.882) to evaluate the performance of all four
methods on artificially constructed (synthetic) mixtures. The
mixtures are generated by sampling with replacement from half
of the reference data (holdout subset), to ensure the reference and

mixture cohorts are independent and identically distributed (for
details see “Methods”). Figure 2 demonstrates that genetic stra-
tification allows robust estimates of disease prevalence (propor-
tion of cases to non-cases) around known values. The accuracy
(defined as deviation from the true proportion) and precision
(defined as confidence interval width) of estimates are dependent
on the following variables: proportion of cases and non-cases
within the mixture, the mixture size and the discriminative ability
of the GRS. For each method, we describe how each of these
variables affects the accuracy and/or precision of prevalence
estimates.

What is impact of the proportion of cases to controls in the
mixture cohort? In all methods except the Excess, away from
extremes of proportion, varying the proportion of cases to con-
trols has no impact on the accuracy or precision of prevalence
estimates (Fig. 2). Using heat maps we illustrate the combined
effect of gradually changing both proportion and mixture size on

Fig. 3 A comparison of the four methods with prevalence estimates and confidence intervals for varying proportion of disease and cohort sizes using
the (Type 2 GRS) from the WTCCC dataset: T1D n ¼ 1;963ð Þ;T2Dðn ¼ 1;924Þ. (Top row) Estimate of prevalence (p̂C) in the constructed mixtures.
(Second row) Bias of the prevalence estimates (p̂C) across the constructed mixtures. (Third row) Deviation from the true proportion (pC � p̂C) across the
constructed mixtures. (Bottom row) The width of confidence intervals (CIU � CIL) of the estimates across the constructed mixtures. The purple colour
(bottom row) indicates regions in which the confidence interval did not include the true value (pC), CIL ¼ CIU or the confidence interval was undefined
(both latter cases can happen if p̂C ¼ 0 or p̂C ¼ 1). Sample sizes: RC – cases WTCCC T2D (n ¼ 962), RN – non-cases WTCCC T1D (n ¼ 982), mixtures –
sampled with replacement from a hold-out half of the RC (n ¼ 962) and RN (n ¼ 981) samples; see “Methods” for details.
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the accuracy of estimates (Fig. 3 and Supplementary Fig. 2). At
extremes of proportion accuracy significantly reduces, tending to
underestimate at high proportions and overestimate at low pro-
portions. Increasing sample size reduces the extent to which
proportions are classed as extremes thereby improving accuracy
and precision for estimating the prevalence of rarer diseases. This
is demonstrated by Fig. 2, a mixture size of 500 gives imprecise
estimates around a 10% disease prevalence (proportion 0.1) and
includes zero. Increasing the mixture size to 5,000 significantly
improves the precision around the same 10% prevalence allowing
a meaningful estimate of disease prevalence.

What is the impact of the size of the mixture cohort? With all
but the smallest cohort sizes, prevalence estimates remain valid.
Not surprisingly, increasing cohort size leads to an improvement
in the precision of estimates, (Figs. 2 and 3). Increasing mixture
size improves precision because larger cohort sizes can be seen to
represent the characteristics of the reference distributions more
accurately. Where larger mixtures cohort sizes are not possible,
Fig. 3 clearly demonstrates that for all methods except the Excess,
accurate albeit less precise, estimates of disease prevalence can
still be achieved with lower case numbers. Figure 2 shows that
using a T1DGRS and a mixture of just 500 cases can still provide
accurate and clinically informative estimates around a disease
prevalence of 40%, e.g., determining the prevalence of T1D in
diabetes cases rapidly requiring insulin (clinical PPV of ≈50% for
identifying T1D15).

How predictive does a GRS need to be? Accuracy and precision
of estimates for all four methods reduce when using less dis-
criminative GRS. However, excluding the Excess method, robust
estimates of proportion are possible even when using GRS with
AUC around 0.6 or above. This is demonstrated in Fig. 4 where
we create artificial GRS with the area under the ROC curve
(AUC) varying from completely non-discriminative (AUC= 0.5)
to fully discriminative (AUC= 1). Reducing GRS AUC leads to
widening of confidence intervals around evaluated disease pre-
valence’s of 10% and 25%. The reduction in precision can be
entirely mitigated by increasing the mixture cohort size. This is
emphasised by Table 1, which shows the minimum mixture size
required to give an estimated precision of 0.1 (CIU � CIL) around
a prevalence of 0.1 with increasing AUC. For instance, using the

EMD method a mixture size of 25,500 (2,550 cases and 22,950
non cases) and an AUC of 0.6 allows robust precision around a
10% disease prevalence. A real-world clinical example is shown in
Supplementary Fig. 5 accurately estimating the proportion of
T2D cases in participants with self-reported glaucoma in UK
Biobank using a less discriminative GRS (T2DGRS AUC 0.65,
calculated in this study).

What is the relative performance of the different methods? We
find that the Means, KDE and EMD methods perform well in
estimating prevalence. Their accuracy and precision are largely
comparable and all outperform the Excess method. The Excess
method demonstrates reduced performance and exhibits strong
bias (difference between the estimated prevalence p̂C and the
median of the bootstrap values p0C) typically underestimating the
true prevalence. Figure 3 shows that regardless of the mixture
size, the Excess method is practically unusable for any but the
highest AUC. The relatively comparable performance of the
Excess method in Fig. 2 is a consequence of the high AUC of the
T1DGRS (0.882) and the strong asymmetry of the reference
distributions.

Clinical example estimating prevalence of coeliac disease.
Finally, we illustrate a worked example asking the question of
how much-undiagnosed coeliac disease is present within a
population adhering to a gluten-free diet (Fig. 5) using a coeliac
disease GRS (CDGRS). This is important as whilst people observe
a gluten-free diet for a number of reasons, it is possible that
without getting a formal diagnosis people with undiagnosed
coeliac disease eliminated gluten from their diet using trial and
error to alleviate abdominal symptoms. For each method we: (1)
compute an estimate of prevalence (2) use modelled mixtures and
bootstrapping to calculate its confidence intervals. All meth-
odologies provide estimates of the proportion of individuals with
coeliac disease with their 95% CIs shown in square brackets:
Excess= 15.0% [13.4%, 17.7%]; Means= 15.1% [13.5%, 16.6%];
EMD= 15.1% [13.5%, 16.7%]; KDE= 13.2% [11.6%, 14.7%]. In
this same population in the UK biobank10 adhering to a gluten-
free diet, 13.9% of individuals were known coeliac cases (self-
reported or ICD10 code; see “Methods” for details). Our results
suggest an absence of undiagnosed coeliac disease in all patients

Table 1 The minimum mixture size required to give precision of ±0.05 around a prevalence of 0.1 with increasing AUC.

Method/AUC 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Excess – – – – 3200 3100 3100
Q25: – Q25: – Q25: – Q25: – Q25:3000 Q25:2900 Q25:3000
Q75: – Q75: – Q75: – Q75: – Q75:3400 Q75:3300 Q75:3200
87/100 62/100 42/100 19/100 13/100 2/100 3/100

Means 26,500 11,500 6200 3700 2500 1700 1100
Q25:25,850 Q25:11,100 Q25:6000 Q25:3600 Q25:2400 Q25:1600 Q25:1100
Q75:27,300 Q75:11,700 Q75:6375 Q75:3900 Q75:2525 Q75:1700 Q75:1200
4/100 1/100 1/100 0/100 3/100 4/100 1/100

EMD 25,500 10,800 5700 3400 2200 1500 1000
Q25:24,600 Q25:10,400 Q25:5550 Q25:3300 Q25:2100 Q25:1400 Q25:1000
Q75:26,300 Q75:11,200 Q75:6000 Q75:3600 Q75:2300 Q75:1500 Q75:1000
0/100 0/100 0/100 1/100 0/100 2/100 0/100

KDE 38,250 17,000 9000 5500 3400 2100 1300
Q25:37,000 Q25:16,000 Q25:8500 Q25:5300 Q25:3300 Q25:2100 Q25:1300
Q75:39,500 Q75:18,000 Q75:9125 Q75:5700 Q75:3500 Q75:2200 Q75:1400
54/100 17/100 15/100 4/100 3/100 0/100 0/100

The table shows the median minimum mixture size, 25% quantile, 75% quantile, and the number of misses (coverage probability)—when the confidence interval at the minimum mixture size did not
contain the true prevalence value (pC ¼ 0:1); the minimum mixture size is based on 100 estimation runs (see Methods—Varying mixture size). The estimates based on the Excess method do not
converge to pC ¼ 0:1 with increasing sample size for AUC = {0.6, 0.65, 0.7, 0.75}. The number of misses quickly increases to 100, showing that the estimates converge to a value much smaller than 0.1.
The estimates based on the KDE method converge to pC ¼ 0:1 for AUC= 0.6. For further details of the computations see “Methods”.
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adhering to a gluten-free diet and not known to have the
condition.

Discussion
We present analysis of a novel approach to disease classification
based on genetic predisposition. We demonstrate genetic strati-
fication produces robust prevalence estimates even in the context
of: rarer diseases, smaller cohort sizes and less discriminative
GRS, highlighting the general utility of the proposed approaches.
This was demonstrated through head-to-head evaluation of four
methods including the original Excess methodology published by
Thomas et al.7. The presented examples illustrate the perfor-
mance and utility of these method across a range of different
scenarios highlighting improved accuracy of the new approaches

over the original Excess method. We supplemented the estima-
tion methods by combining Monte Carlo11 sampling and
bootstrap12 methods to quantify uncertainty around the estimate
and compute realistic confidence intervals.

Distribution of GRS can be used to estimate disease prevalence
within a cohort. Our results show that robust estimates of pre-
valence are possible using differences in distributions of GRS
between cohorts of cases and non-cases. Our methods build on
the previously published genetic stratification by Thomas et al.7.
This novel concept is important, as when coupled to the ever-
increasing availability of population-level genetic datasets, it
allows fresh insights into disease epidemiology without requiring
extensive investigations or unreliable self-reported diagnosis5,6.
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Fig. 4 A comparison of the four methods using an artificial genetic risk score with increasing discriminative ability as measured by AUC, from
AUC= 0.5 (no discriminative ability) through to AUC= 1, (complete differentiation). a The estimated proportion (+ marker) with confidence intervals
(vertical lines with shading) around pC ¼ 0:1 (blue) or pC ¼ 0:25 (red) for each of the methods (Excess, Means, EMD, KDE) are shown using mixture size,
n ¼ 5;000. b The constructed mixture distributions and reference distributions (RC, shaded red and RN, shaded blue) from which they were constructed
for AUC = {0.5, 0.75, 1}. c Dependence of the width of CI (CIU � CIL) on the number of points in the mixture sample for AUC = {0.6, 0.7, 0.8, 0.9} and
pC ¼ 0:1. Curves and shading show median ± standard deviation of the width of CI. The plot for the Excess method for AUC= {0.6, 0.7} is omitted
because the method does not converge to pC ¼ 0:1. This figure is generated using artificial data: N(μ,σ) is a normal distribution with mean μ= {0.0, 0.08,
0.15, 0.22, 0.29, 0.37, 0.44, 0.51, 0.59, 0.66, 0.74, 0.82, 0.91, 0.99, 1.09, 1.19, 1.29, 1.4, 1.52, 1.65, 1.81. 1.98, 2.19, 2.47, 2.91, 7} and standard deviation σ = 1
and eM is a mixture of the two normal distributions (RC is always N(0,1)). Both reference samples have n ¼ 2;000. For AUC=0.5, means of the
constructed mixture samples (for pC ¼ 0:1 and pC ¼ 0:25) were smaller than both means of the reference samples, in these cases the prevalence estimate
from the Means method is assumed to be p̂C ¼ 0 and confidence intervals are undefined due to undetermined acceleration value.
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The permanence associated with genetic risk makes these meth-
ods potentially very powerful tools for clinical researchers and
enables accurate evaluation where cases are difficult to differ-
entiate clinically.

Rare diseases and small mixture cohorts can be evaluated.
Accurate estimates were possible with mixture cohorts containing
as few as 500 individuals and away from extremes of proportion
disease prevalence had little impact. Precision around estimates
improved with increasing cohort size. Larger mixture cohorts,
readily achievable in modern-day population datasets (UK Bio-
bank has genotyped ≈500,000 individuals10), almost entirely
mitigated for the reduced precision observed with using less
discriminative GRS (lower AUC). When disease prevalence is
extremely low, robust estimates can still be achieved through
mixture enrichment. This enrichment will inevitably be to the
detriment of smaller mixture sizes but because proportions are
moved away from extremes, in this situation accuracy is still
improved.

Estimates remain robust in diseases with less discriminative
GRS. Whilst accuracy and precision are higher when utilising a
more discriminative GRS, we show that clinically meaningful
estimates can still be obtained using GRS with AUC as low as 0.6.
While in theory our methods could be used in diseases with
minimal genetic predisposition (AUC < 0.6) our analysis would
suggest extreme caution in these scenarios and that extremely
large mixture sizes would be required to generate any clinically
meaningful confidence around estimates. The performance of the
Means, EMD and KDE methods is very good in the case of
normal GRS distributions with equal standard deviations e.g.,
diseases with polygenetic risk arising from a large number of
causal variants, each with tiny effects, e.g., T2D. In diseases where
certain variants predominate, e.g., HLA in autoimmune disease,
the GRS will be skewed to account for this, e.g., T1D. In this
instance, the EMD and KDE methods will be more accurate, as
they are able to utilise the unequal skewness (or other properties
such as standard deviations or kurtosis) even when the means of
the reference distributions are close, see Supplementary Fig. 7. In
diseases where one variant has the predominant effect on genetic
risk, e.g., HLA-DQ in coeliac disease, it might be possible to
estimate prevalence using just this variant. However previous
work has shown a GRS including the predominant variant as well

as smaller effect variants has better discriminative ability than the
predominant variant alone9.

Different methods have different advantages. In most settings,
the best approaches are the Means, EMD and KDE methods. The
overall performance of these three methods is comparable across
different parameters (mixture size, mixture proportional makeup
and GRS AUC). At extreme proportions, the KDE method
exhibits the smallest bias. A key advantage of the Means method
is that it is very straightforward to apply, allowing rapid evalua-
tion of disease prevalence within a cohort. Alternatively, the EMD
and KDE methods have the benefit of being able to estimate the
prevalence in cases where the Means method cannot be used, e.g.,
if the reference cohorts have very similar means (Supplementary
Fig. 7). Finally, the KDE and EMD methods can be used to test
the assumption that the mixture is only composed of two cohorts
(Supplementary Note 2).

As noted in the original article by Thomas et al.7 the Excess
method inherently underestimates the proportion of cases
because typically both reference cohorts have values below the
median value of RN. Taking distinct approaches, the new methods
eliminate this inaccuracy and even with decreasing genetic
discrimination, these are still interpretable, reflecting the
improved generalizability of these methods. We note that the
Excess method could be modified to improve its accuracy (e.g., by
choosing another quantile rather than the median) but these
changes would require case-by-case fine-tuning and at best
achieve equivalence to the proposed alternative methods.

Utility of using polygenic approaches to estimate prevalence
within a group
Prevalence. We highlight the clinical utility of the presented
concept with a clinical question around the prevalence of
potentially undiagnosed coeliac disease within a cohort adhering
to a gluten-free diet. This question would be unanswerable using
the traditional clinical approach of endoscopy to confirm the
coeliac disease, as once observing a gluten-free diet findings are
often normal16. We showed the prevalence of coeliac disease
determined genetically and reported clinically were comparable,
suggesting that there is no undiagnosed coeliac disease within this
gluten-free cohort. Whilst this finding is not unexpected, it could
not be robustly shown before and highlights the general applic-
ability of the proposed framework to quantitatively answer novel
and difficult-to-answer questions.

Fig. 5 Coeliac disease dataset worked example. A comparison of the four methods applied to a gluten-free cohort from the UK biobank (mixture
population eM). a The reference and the mixture distributions (RC, shaded red, RN, shaded blue, eM shaded grey, respectively). b A receiver operating
characteristic (ROC) curve for the two reference distributions (blue). c Estimated values of prevalence p̂C (grey bullseye) and 95% confidence intervals
(horizontal lines with vertical bars at the ends) are plotted on the right showing estimates of Excess= 15.0%, Means= 15.1%, EMD= 15.1%, KDE= 13.2%.
The violin plots show the distribution of the 100,000 estimates of prevalence (p0C) in the bootstrap cohorts. The proportion of participants adhering to a
gluten-free diet and reporting coeliac disease is shown as a dashed vertical line. Sample sizes: non-cases UK Biobank (n ¼ 12;000), cases coeliac disease
reference cohort (n ¼ 12;018), mixture self-reported gluten-free diet UK Biobank (n ¼ 12; 757).
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Defining clinical characteristics of a genetically defined subgroup.
A further advantage of the proposed methodologies over tradi-
tional clinical classification arises from the fact that clinical
characteristics are not used to define cases. It is therefore possible
to estimate both binary and continuous clinical characteristics of
the genetically defined disease group within the mixture cohort.
Using BMI as an example:

�xBMI
C ¼ �xBMI

M � p̂N�x
BMI
N

p̂C
ð1Þ

where p̂N and p̂C represent the estimated proportions and �xBMI
N ,

�xBMI
M and �xBMI

C represent the mean BMI of each of the non-cases,
mixture and cases (disease) groups respectively. This approach
was used in7 to show rates of Diabetic Ketoacidosis to be the same
in T1D diagnosed above and below 30 years of age. We note that
all the same limitations of the Means method apply. The EMD
and KDE methods could allow for reconstruction of the full
distribution of the clinical characteristic, however, evaluation of
this approach is beyond the scope of this study.

Testing of proposed clinical discriminators. Another utility of these
genetic discrimination techniques is to test the performance of
clinical classification criteria and allow more precise stratification
of a population. Whilst the increasing availability of population
datasets generated from routinely collected data allow large-scale
population analysis, robust classification can become more diffi-
cult leading to bias which is difficult to quantify6. Treating the
clinically defined cohort as a mixture would allow rapid estima-
tion of the correctly and incorrectly classified proportions within
the cohort, thus allowing for bias adjustment and optimisation of
classification criteria.

Cautions. The use of genetic data in the context of genetic strati-
fication means certain assumptions must hold true for the estimates
to be valid. The same assumptions required for Mendelian
randomisation1,17 should be met here. Key to the accuracy of
estimates is the equivalence assumption which states that cases and
non-cases in the mixture reflect their respective reference cohorts.
The importance of meeting this assumption and the implications if
it is not met, are highlighted by our example of a raised T2DGRS
for an enriched reference T2D population from the WTCCC8. For
this reason, to help ensure equivalence is maintained we recom-
mend these methods are used in subsets of a cohort allowing
reference cases and non-cases to be derived from the same dataset.
If these methods are to be used with reference cohorts from dif-
ferent datasets, as was done previously7, the equivalence assumption
should be rigorously tested prior to analysis. This must initially
involve a detailed assessment of the selection criteria for the mixture
and reference cohorts and available literature, followed by com-
parison of the GRS between definite non-cases and cases from
within the mixture and their respective references.

Careful GRS comparison between the reference cohorts and
definite cases and non-cases from the mixture will also help
mitigate any potential impact of unrecognized genotype–phenotype
interactions, which may arise when selecting subgroups. This is
highlighted by Supplementary Fig. 6 showing a reduction in
performance of estimates with higher disease prevalence owing to a
subtle difference in GRS between type 2 diabetes cases with and
without microalbuminuria. We recommend careful investigation
for overlapping genetic associations and pleiotrophy using standard
Mendelian Randomisation approaches17,18. Genotype–phenotype
interaction is also relevant to think about the criteria used to
originally select cases and controls in the genome-wide association
study (GWAS) from which a GRS is derived from, as cases may
have been enriched to improve variant discovery. However, this will

have minimal impact on the methods’ estimates provided that
genetic equivalence has been maintained between reference and
mixture cases and controls. Clearly, this would not be the case if the
enriched GWAS population was used as the case reference
population, as highlighted by our type 2 diabetes example above.

Finally, all our methodologies assume that the mixture consists of
only the two genetic reference cohorts such that pC þ pN ¼ 1. Both,
the EMD and KDE methods provide a way to check if this mixture
assumption is satisfied. In the case of the EMD method we could
use the independent estimates of p̂N and p̂C to check how much
their sum deviates from 1. For the KDE method, the validation
could be based on the residuals of the least-square fitting procedure.
To check if the deviation from pC þ pN ¼ 1 is significant we again
suggest the use of the bootstrap methodology. We present some
details and an example of such checks in the supplementary
information, however a detailed analysis of this aspect of the
proposed methodology is beyond the scope of this paper.

In summary, we propose novel approaches that use population
distributions of GRS to estimate disease prevalence. We show that
the proposed Means, EMD and KDE approaches improve upon
the existing Excess method, performing similarly across different
mixture cohorts, with robust estimates possible even when using
GRS with reduced discriminative ability. Utilising these concepts
will allow researchers to gain novel unbiased insights into
polygenic disease prevalence and clinical characteristics, unham-
pered by clinical classification criteria.

Methods
Participants. Type 1 diabetes cases: Cases (n= 1,963) were taken from the
WTCCC8. The WTCCC T1D patients all received a clinical diagnosis of T1D at
<17 years of age and were treated with insulin from the time of diagnosis.

Type 2 diabetes cases: Cases (n= 1,924) were taken from the WTCCC8. The
WTCCC T2D patients all received a clinical diagnosis of T2D.

Clinical examples.

(1) Coeliac Disease
Coeliac disease reference cases: Cases (n= 12,018) Cases consisted of those
from a combination of European studies. Cases were diagnosed according to
standard clinical criteria, including compatible serology and small intestinal
biopsy19.
Coeliac non-cases: Non-cases (n= 12,000) a cohort was randomly selected
from those within the UK biobank (total n= 366,326) defined as unrelated
individuals of white European descent without a diagnosis of coeliac disease
and not reporting a gluten-free diet.
Gluten-free diet: Gluten-free cases (n= 12,757) were taken from unrelated
individuals of white European descent in the UK biobank reporting
adherence to a gluten-free diet.
Reported coeliac cases in biobank: Coeliac disease cases (n= 1,772) were
defined based on self-reported questionnaire answers and/or an ICD10
record from hospital episode statistics data.

(2) Microalbuminuria
Type 2 diabetes reference cases: Cases (n= 13,268) were defined as non-
insulin-treated participants of White European descent either self-reporting
diabetes or with an HbA1C ≥ 48 mmol mol−1 at recruitment to UK Biobank
without microalbuminuria.
Type 2 diabetes non cases: Non cases (n= 10,000) were randomly selected
from all participants (n= 339,385) of white European descent without
microalbuminuria not self-reporting diabetes and with an HbA1C < 48
mmol mol−1 at recruitment to UK Biobank.
Microalbuminuria cases: Cases (n= 17,868) were taken from unrelated
individuals of white European descent in the UK Biobank. We used the
albumin creatinine ratio (ACR) calculated from the baseline assessment. In
UKBB, a continuous measure of ACR was derived using urinary measures of
albumin and creatinine. Microalbuminuria was defined based on interna-
tional cut-offs ≥ 2.5 mgmmol−1 in males and ≥ 3.5 mgmmol−1 in females.
Any self-reported insulin-treated diabetes cases were excluded as evaluating
the proportion of type 2 diabetes cases.
Micro-albuminuria cases with type 2 diabetes: Cases (n= 2,509) were
defined as white European participants with type 2 diabetes and
microalbuminuria as defined by the aforementioned criteria.

(3) Glaucoma
Type 2 diabetes reference cases: Cases (n= 15,128) were defined as non-
insulin-treated participants of White European descent either self-reporting
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diabetes or with an HbA1C ≥ 48 mmol mol−1 at recruitment to UK Biobank
without either self-reported glaucoma or a glaucoma code in hospital
episode statistic data.
Type 2 diabetes non cases: Non cases (n= 10,000) were randomly selected
from all participants (n= 345,534) of white European descent without
glaucoma not self-reporting diabetes and with an HbA1C < 48mmol mol−1

at recruitment to UK Biobank.
Glaucoma cases: Cases (n= 9,857) were taken from unrelated individuals of
white European descent in the UK Biobank self-reporting glaucoma or with
a glaucoma code in the hospital episode statistic data. Any self-reported
insulin-treated diabetes cases were excluded.
Glaucoma cases with type 2 diabetes: Cases (n= 650) were defined as white
European participants with type 2 diabetes as defined by the aforementioned
criteria and self-reported glaucoma or a glaucoma code in hospital episode
statistic data.

Calculating GRS. T1DGRS: The T1DGRS was generated using published variants
known to be associated with the risk of T1D. We generated a 30 SNP T1D-GRS
from variants present in the WTCCC cohort. We followed the method as described
by Oram et al.2 using tag variants rs2187668 and rs7454108 to determine HLA DR
haplotype and ascertain the HLA-haplotype component of each individual’s
score20. This was added to the score of the remaining variants, generated by
summing the effective allele dosage of each variant multiplied by the natural log
(ln) of the odds ratio.

T2DGRS: The T2DGRS was generated using published variants known to be
associated with risk of T2D21. We generated a 77 SNP T2D-GRS in both the
WTCCC cohort and UK Biobank consisting of variants present in both data sets
and with high imputation quality (R2 > 0.4). The AUC (0.65) for discriminating
T1D and T2D was calculated within the study as this 77 SNP GRS was created
specifically to allow comparison between WTCCC cohort and UK Biobank. The
score was generated by summing the effective allele dosage of each variant
multiplied by the natural log (ln) of the odds ratio.

CDGRS: The 46 SNP coeliac GRS was generated using published variants
known to be associated with risk of Coeliac disease19,22,23. The log-additive CDGRS
was generated using a weight as the natural log of corresponding odds ratios. For
each included genotype at the DQ locus, the odds ratio was derived from a case-
control dataset19. For each non-HLA locus, odds ratios from existing literature
were used, and each weight was multiplied by individual risk allele dosage9,19.

Excess method. Following on from the previous work7, the Excess method cal-
culates the reference proportions in a mixture cohort according to the difference in
expected numbers either side of the reference cohort’s median. The reference
median in question was taken to be the closest to the mixture cohort’s median. The
proportion was then calculated according to: p̂C ¼ # x > mf g � # x ≤ mf g

n

�� ��, where m is
the median of the reference cohort, n is the size of the mixture cohort and x is an
individual participant in the mixture cohort, hence # x > mf g represents the
number of cases above the median and # x ≤mf g represents the number of cases
below the median.

Means method. The mean GRS were computed for each of the two reference
cohorts and the mixture population. The proportions of the two reference cohorts
were then calculated according to the normalised difference of the mixture
cohorts’s mean (μM) and the means of the two reference cohorts (μRC

and μRN
):

p̂C ¼ μM � μRN
μRC � μRN

��� ���. If the mean of the mixture cohort is bigger (or smaller) than both

means of the reference cohorts then the estimate is defined as 1 (or 0) depending
on the closest reference mean.

Earth Mover’s Distance (EMD) method. Intuitively, the Earth Mover’s Distance
(EMD) is the minimal cost of work required to transform one ‘pile of earth’ into
another; with each ‘pile of the earth’ representing a probability distribution.
Mathematically, the (EMD) is a Wasserstein distance and has been widely used in
computer and data sciences24,25. For univariate probability distributions, the EMD
has the following closed-form formula:26

EMDðPDFCðzÞ; PDFNðzÞÞ ¼
Z

z
jCDFCðzÞ � CDFNðzÞdzj ð2Þ

Here, PDFC and PDFN are two probability density functions with support in set Z,
and cumulative density functions, CDFC and CDFN, are their respective cumulative
distribution functions.

To compute the EMD, we first find the experimental CDFs of GRS for each of
the two reference cohorts and the mixture cohort. These CDFs are then
interpolated at the same points for each distribution, with the points being the
centres of the bins obtained when applying the Freedman-Diaconis rule27 to the
combined reference cohorts (such that h ¼ 2 IQR

n1=3
). As a support set, we take an

interval bounded by the minimum and maximum value of the GRS in all three

cohorts. The proportions were then calculated as:

pEMD
x ¼ 1� EMD Rx; eM� �

=EMD RC;RN

� �
;

where x is either C or N. Since the two estimates are independent, deviation of their
sum from one, pEMD

C þ pEMD
N � 1

�� �� can be used to test the assumption that
pC þ pN ¼ 1, dispersion of the deviation can be computed during bootstrapping
and compared with the value observed in the analysed cohort. However, under the
assumption that pC þ pN ¼ 1, we adapted the method by taking the average of the
estimated proportions as follows:

p̂C ¼ pEMD
C þ ð1� pEMD

N Þ
2

¼ EMD RC;RN

� �þ EMD RN; eM� �� EMD RC; eM� �
2 � EMD RC;RN

� � :

Kernel Density Estimation (KDE) method. Individual GRS were convolved with
Gaussian kernels, with the bandwidth set to the bin size obtained when applying
the Freedman-Diaconis rule27 in the same way as for the EMD method. This forms
two reference distribution templates and a mixture template, KDEC, KDEN and
KDEM for each dataset. A mixture model was then defined as the weighted sum of
the two reference templates (with both weights initialised to 1). This model was
then fit to the mixture template (KDEM) with the Levenberg-Marquardt (Least
Squares) algorithm28, allowing the weights (wC and wN) to vary. The proportions
were then calculated according to: p̂C ¼ wC

wC þ wN
. Admissible values of the weights

are limited to the [0, 1] interval.

Simulated mixtures. To simulate a range of real-world scenarios, we constructed
artificial mixture cohorts by randomly sampling with replacement GRS from the
reference cohorts of cases (RC) and non-cases (RN) in specified proportions, pC and
total mixture sizes, n. To construct the mixtures, we use the WTCCC8 T1D
(n= 1,963) and T2D (n= 1,924) data. We used half of the available samples as
reference cohorts (first n= 982 and n= 962 points, respectively) and the other half
(last n= 981 and n= 962, respectively) is a hold-out set used to construct the
mixtures. To obtain any required mixture size we sampled with replacement from
the hold-out data.

For the heatmaps, Fig. 3 and Supplementary Figs. 2–4, the proportion and
cohort size were systematically varied, with pC ranging from 0 to 1 in 0.01 (1%)
steps while n ranged from 100 to 2,500 in steps of 100 samples. All four methods
were applied to each combination of these parameters. At each point in the
parameter space, we estimated the prevalence (p̂C) and its confidence interval and
then compared it with the model proportion (pC) used to generate them.

Figure 3 (top row) illustrates how the randomness of the simulated mixture
cohort affects the variability of each method’s estimates. This variability reflects the
randomness that is inherently present in the mixture cohort. Supplementary Fig. 2
shows how this variability decreases for more discriminative GRS, while
Supplementary Note 1 and Supplementary Figs. 3–4 compare the performance of
the methods once the randomness of the composition of the mixture cohort is
eliminated.

For Supplementary Figs. 5–6, we used the GRS of the T2D cases and non-cases
in the mixture cohort, eM, to construct (random sampling with replacement) 21
artificial mixture distributions, (n ¼ 2;500, each) with prevalence of T2D varying
from 0 to 100% (with of 5% step). To estimate the proportions in the constructed
mixture cohorts we used reference cohorts as specified in Clinical examples
section above.

Synthetic GRS data. To generate synthetic GRS in Fig. 4 and Supplementary Fig. 7 we
used pseudorandom number generators. As references, we used two samples
(n= 2,000, each) from normal distributions with mean 0 and standard deviation 1, N(0,
1); the means and standard deviations of the reference samples were μ ¼ �0:002; σ ¼
0:999 and μ ¼ �0:008; σ ¼ 1:001. The reference samples are generated only once. To
change the AUC for the reference samples, we added a value to one distribution of them
to change its mean. The mixtures are generated using different pseudorandom number
generators for each proportion (pC) and AUC value. For example, to generate mixture
with n= 5,000, pC ¼ 0:1 and AUC= 0.7 we: (1) draw 500 samples from N(0, 1) and
(2) we draw n= 4,500 samples from N(0, 1) and add 0.74 to them. The mixture and
reference samples are generated separately.

Varying mixture size. To investigate the dependence of the width of the CIs on
the mixture size (Fig. 4c) and find the minimum mixture size required for CIs
width <0.1 (Table 1) we used the same synthetic GRS distributions with pC = 0.1 as
described above. For the Excess, Means and the EMD methods, we varied mixtures
sizes between 100 and 10,000 (30,000 for AUC < 0.7) with a step of 100 points.
Since the KDE method is more computationally expensive, we tested mixture sizes
between 100 and 6,500 with a step of 100 points and between 7,000 and 10,000
(40,000 for AUC= 0.6, 30,000 for AUC= 0.65) with a step of 500 points. For each
considered mixture size, we repeated the estimation of the CIs 100 times. We
disregarded estimates for which the CIs do not include pC ¼ 0:1. As the minimum
mixture size, we took a median of the mixture sizes (over the 100 runs) at which we
first observed the CI width <0.1.
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Calculating confidence intervals. In order to estimate confidence intervals and
any systematic bias of the methods, we used Monte Carlo11 and bootstrap
methods12,29. We combined the two approaches to capture variability of the esti-
mate resulting from the mixture size and features of the reference distributions.

First, we stochastically modelled the process of generating the mixture. To do
so, we modelled NM new mixtures, by sampling with replacement from the
reference cohorts. Each modelled mixture has the same size as the original cohort
and the composition given by the initial estimate p̂C based on the original mixture.
For example, if the original cohort has 1,000 values and the estimate was p̂C ¼ 0:3
then each modelled mixture would contain 300 values sampled with replacements
from the cases reference sample (RC) and 700 values from the non-cases reference
sample (RN). Next, we resampled each of the NM new mixtures generating NB
bootstrap samples, see also Supplementary Fig. 8.

Following, chapters 2 and 5 from ref. 12 we used all the NM � NB cohorts to
compute the bias and confidence intervals of the estimate. The systematic median
bias of the method is defined as a difference between medðffp0CgBgMÞ the median
value of the NM � NB bootstrapped estimates of p0C and the estimate p̂C:

B ¼ medðffp0CgBgMÞ � p̂C: ð3Þ
We used bias corrected and accelerated bootstrap confidence intervals (BCa CI)

which we computed as described in ref. 30. Bootstrap confidence intervals assume
that the spread of the distribution of the bootstrap estimates p0C can be used to
estimate the CI. The BCa CI take into account median bias and skewness
(acceleration) of the distribution of the bootstrap estimates p0C and allows
calculation of corrected quantiles representing a chosen confidence level, α.

Throughout this section Φ is a normal standard (μ ¼ 0; σ ¼ 1) CDF and Φ�1 is
its inverse and T�1

n is an inverse CDF of a Student’s t-distribution with n degrees
of freedom.

The computation takes the following steps:

1. Estimate the median bias correction factor z0:

z0 ¼ Φ�1 #ðp0C ≤ p̂CÞ
NM � NB

� �
: ð4Þ

2. Estimate the acceleration correction factor â:

â ¼ 1
6

∑n
i¼1U

3
i

ð∑n
i¼1U

2
i Þ3=2

: ð5Þ

where Ui values are calculated using the jackknife influence function:

Ui ¼ ðn� 1Þðp̂C � p̂iÞ; ð6Þ
here p̂i is an estimate based on the reduced mixture sampleeMi ¼ GRS1;GRS2; ¼ ;GRSi�1;GRSiþ1; ¼GRSn

� �
with score i removed.

3. To counteract the narrowness bias we additionally expand the confidence
level29

α0 ¼ Φ T�1
n�1 αð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= n� 1ð Þ� �q� �

: ð7Þ

4. Use bias and acceleration factors to compute the BCa confidence levels:

αBCa αð Þ ¼ Φ z0 þ
z0 þΦ�1 α0ð Þ

1� â � z0 þ Φ�1 α0ð Þ� � !
: ð8Þ

5. Take αBCaðα=2Þ quantile of the p0C samples to obtain the lower confidence
limit CIL and αBCað1� α=2Þ quantile to obtain the upper confidence limit
CIU. If the median bias is very strong the BCa CI are undefined. For
example, if the p̂C is outside of the range of the distribution of the bootstrap
estimates p0C; z0 is infinite and both limits of the CIs are equal to the
maximum or minimum value the p0C samples.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
UK Biobank data can be obtained after completing an online application, see details at
http://www.ukbiobank.ac.uk/using-the-resource/ Wellcome Trust Case Control Consortium
genotype data can be obtained through by application to the Wellcome Trust Case Control
Consortium Data Access Committee. The procedure is described in more detail at https://
www.wtccc.org.uk/info/access_to_data_samples.html.

Code availability
The Distribution Proportion Estimation software (v1.0.0) used to analyse the data was
developed and tested in Python 3.8.2 and Matlab release 2020b (that includes other
algorithms mentioned in the manuscript). The Distribution Proportion Estimation
software (v1.0.0) implementing these methods is archived at https://doi.org/10.5281/
zenodo.5512651. The code is open-source and available under version-control here:
https://github.com/bdevans/DPE.
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