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Volumetric extrusive rates of silicic supereruptions
from the Afro-Arabian large igneous province
Jennifer E. Thines 1✉, Ingrid A. Ukstins 2, Corey Wall3 & Mark Schmitz3

The main phase of silicic volcanism from the Afro-Arabian large igneous province preserves

some of the largest volcanic eruptions on Earth, with six units totaling >8,600 km3 dense

rock equivalent (DRE). The large volumes of rapidly emplaced individual eruptions present a

case study for examining the tempo of voluminous silicic magma generation and emplace-

ment. Here were report high-precision 206Pb/238U zircon ages and show that the largest

sequentially dated eruptions occurred within 48 ± 34 kyr (29.755 ± 0.023Ma to

29.707 ± 0.025Ma), yielding the highest known long-term volumetric extrusive rate of silicic

volcanism on Earth. While these are the largest known sequential silicic supereruptions, they

did not cause major global environmental change. We also provide a robust tie-point for

calibration of the geomagnetic polarity timescale by integrating 40Ar/39Ar data with our
206Pb/238U ages to yield new constraints on the duration of the C11n.1r Subchron.
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Many of the largest silicic eruptions on Earth occur in
large igneous provinces (LIPs), with total eruptive
volumes often exceeding 1000 km3 dense rock equiva-

lent (DRE) for individual events (e.g., ~132Ma Paraná-Etendeka,
~30Ma Afro-Arabia, ~1.6 Ga Gawler Range), which are likely to
be emplaced in rapid succession1–3. Although LIPs are generally
considered to represent the most productive magmatic systems
on Earth4, uncertainty about volume estimates and imprecise or
inaccurate age data for individual events preclude robust esti-
mates of magma flux and volcanic output1,5. The silicic compo-
nent of LIPs is largely understudied relative to their mafic
counterpart and long-term rates of silicic magma generation have
important implications for the energy budget and thermal evo-
lution of the Earth. The Northern Yemen section of the Afro-
Arabian LIP is an ideal testbed for using high-precision 206Pb/
238U zircon dating to quantify the long-term volumetric extrusive
rate of a series of flood volcanic eruptions, with three silicic
supereruptions (1015 kg or ~450 km3 of magma6,7) occurring
within a 70–310 kyr timeframe at ca. 29.7 Ma8–10.

Oligocene volcanism in Northern Yemen (Fig. 1) has been
divided into three phases based on field observations, whole-rock
geochemical correlations, and 40Ar/39Ar dating8–10: Main Basalts
(31–29.7 Ma), Main Silicics (29.7–29.5 Ma), and Upper Bimodal
(29.6–27.7 Ma). The Main Basalts phase is characterized by
effusive basaltic volcanism and volumetrically represents 60–70%
of the total erupted volume of Afro-Arabian lavas9,11. The Main
Silicics phase saw the rapid emplacement of seven silicic pyr-
oclastic units and the Upper Bimodal phase includes small-
volume basaltic and rhyolitic eruptions9. The Northern Yemen
section has excellent exposure and well-characterized strati-
graphic relationships from field mapping, paleomagnetic studies,
and correlations with distal deep sea co-ignimbrite ash
deposits8,9,12, while the Ethiopian section has been extensively
faulted from active rifting with significant erosion around the
volcanic plateau margin13.

We focus on the Main Silicics phase, which contains some of
the largest known silicic eruptions on Earth, with an estimated
minimum total eruptive volume of ~8600 km3 DRE emplaced in
present-day Yemen and Ethiopia over a period from 29.7 to
29.5 Ma1,9. Volcano–stratigraphic correlations in Yemen9 suggest
the emplacement of the Jabal Kura’a Ignimbrite (1600 km3 DRE;
~29.6 Ma) and Escarpment Ignimbrite (360 km3 DRE; ~29.6 Ma)
was followed by a brief period of subsidence and erosion and then
the rapid emplacement of the Green Tuff (60 km3 DRE; 40Ar/
39Ar age= 29.59 ± 0.12Ma8; Fig. 2), SAM Ignimbrite (2300 km3

DRE; 40Ar/39Ar age= 29.47 ± 0.14 Ma10, Sana’a Ignimbrite
(1600 km3 DRE; ~29.5 Ma; Fig. 2), and Iftar Alkalb caldera
collapse mega-breccia (2700 km3 DRE; 40Ar/39Ar
age= 29.48 ± 0.13 Ma8; Fig. 2). The Green Tuff has been inter-
preted as representing the initial airfall deposit preceding the
emplacement of the SAM Ignimbrite based on the sharp upper
contact between the units with no evidence of a time gap during
emplacement9. These bracketed 40Ar/39Ar ages indicate that all
four units, with a cumulative estimated minimum total eruptive
volume of ~6700 km3 DRE, were emplaced in rapid succession
within a timeframe of 70–310 kyr8–10, but there are no robust
estimates of magma generation rates or magma flux over this time
interval.

Previous paleomagnetism and 40Ar/39Ar studies8,9 indicate
that the Main Silicics phase eruptions are a set of normal to
reversed polarity units that encompass the duration of the
C11n.1r Subchron, although overlapping ages for individual
eruptions, due to analytical uncertainties, are currently unable to
distinguish between the geomagnetic polarity time scale (GPTS)
of Cande and Kent14 and Huestis and Acton15. While there are
several cooling events identified in the Oligocene δ18O and δ13C

chemostratigraphy16,17, the uncertainties of these ages also hinder
the correlation of the Afro-Arabian silicic eruptions to any iso-
topic perturbations. In contrast to existing 40Ar/39Ar ages, the
0.1% precision of state-of-the-art chemical abrasion thermal
ionization mass spectroscopy (CA-TIMS) U-Pb ages of zircons18

can distinguish between the ages of these units outside analytical
uncertainty. These new high-precision 206Pb/238U zircon ages are
crucial to quantifying the rapid emplacement of voluminous
Afro-Arabian silicic magmas in order to understand the transient
nature of silicic supereruptions, demonstrating that these erup-
tions had little to no observed impact on long-term climate
change, and constraining the duration of the C11n.1r Subchron.

Results
Zircon morphology. Zircon crystals from the Escarpment, SAM
and Sana’a Ignimbrites, and Iftar Alkalb were analyzed by cath-
odoluminescence (CL) imaging and laser ablation inductively
coupled mass spectrometry (LA-ICP-MS) in order to distinguish
petrochemical populations prior to CA-TIMS dating. The
Escarpment Ignimbrite contains elongate prismatic crystals
(typically 50–120 μm in length and, rarely, up to 150 μm) and
smaller equant crystals (50–75 μm in length). Some prismatic
crystals have oscillatory zoning with U-rich non-luminescent
cores (CL dark). The SAM Ignimbrite contains elongate prismatic
crystals that are both smaller (30–75 μm, rarely up to 125 μm)
and less numerous than those found in the Escarpment Ignim-
brite. Few crystals have subtle oscillatory zoning and one larger
crystal ~120 μm in length has a non-luminescent, oscillatory
zoned core with a lighter overgrowth rim. Crystals in the SAM
Ignimbrite have a weakly paramagnetic behavior, likely due to
abundant Fe-Ti oxide and apatite inclusions. The Sana’a Ignim-
brite contains small elongate prismatic crystals (30–75 μm) with
subtle to no oscillatory zoning. Zircon is abundant in Iftar Alkalb
as anhedral to euhedral elongate prismatic and equant crystals
that range in length from 30 to 120 μm. Internal morphologies are
variable in Iftar Alkalb with populations of non-luminescent and
luminescent zircon crystals with no oscillatory zoning, crystals
with non-luminescent cores and lighter rims, and a few crystals
with strong oscillatory zoning (see Supplementary Information
for CL images).

In total, 273 laser ablation spot analyses were conducted on 79
crystals from the Escarpment Ignimbrite, 46 crystals from the
SAM Ignimbrite, 31 crystals from the Sana’a Ignimbrite, and 95
crystals from Iftar Alkalb to identify xenocrysts (crystals that are
several million years older than the relevant magma pulse and
considered unrelated to the magma system19) and antecrysts
(crystals that grew earlier and were incorporated in a later
pulse19,20). The median uncertainty of a single LA-ICP-MS
206Pb/238U spot analysis is 3Ma, too imprecise to distinguish
antecryst populations for this magmatic system but adequate to
determine older xenocrystic zircon crystals. Every unit except the
Escarpment Ignimbrite contains >10% zircon crystals with LA-
ICP-MS 206Pb/238U ages >33Ma. The Sana’a Ignimbrite and Iftar
Alkalb contain significant proportions of older zircons (30 and
29%, respectively), although in the Sana’a Ignimbrite this may be
due to the low sample number (n= 31). There is no correlation
between age and trace element (U, Th, Y, HREE) concentrations.
CL dark zircon crystals in the Escarpment Ignimbrite and Iftar
Alkalb have among the highest HREE concentrations and
europium anomalies (Eu/Eu*) in each respective unit and the
ages of the cores and rims of the few zircon crystals with clear
zonation were indistinguishable outside uncertainty (Supplemen-
tary Data). The evolution of Eu/Eu* in zircons from the
Escarpment, SAM and Sana’a Ignimbrites, and Iftar Alkalb
requires 50–60% fractional crystallization of feldspar to produce
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Fig. 1 Samples profiles of the Northern Yemen volcanic units. a Schematic volcanic stratigraphy and paleomagnetic sampling profiles of volcanic units
emplaced during Oligocene bimodal volcanism in Northern Yemen (modified from Ukstins Peate et al.9). Unit thicknesses and lithologies are from Ukstins
Peate et al.9 and paleomagnetic data are from Riisager et al.8. Section abbreviations, from west to east, are: Esc Escarpment, BM Bayt Mawjan, A Section A,
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polarity data8 where white and black are reverse and normal polarity, respectively. Sites outlined in boxes denote those dated by 40Ar/39Ar (refs. 8,10,13) or
206Pb/238U geochronology (data presented here) and ages are shown in detail in Fig. 2. Ages and sites denoted with an asterisk (*) are from correlative
units in Ethiopia10. Sampling locations are shown in b9 with the Sana’a region, Yemen indicated with a star.
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the observed range of zircon compositions. These findings are
consistent with previous modeling of whole-rock compositions of
ash shards from correlated deep-sea tephras (Fig. 2), which
required a minimum of 60% fractional crystallization of
plagioclase, anorthoclase, augite, magnetite, and ilmenite to
generate the observed compositional variation12.

CA-ID-TIMS geochronology. Thirty-two grains that showed no
sign of inclusions and yielded consistent U-Pb laser ablation dates
were plucked from their respective grain mounts for high-
precision CA-ID-TIMS geochronology (Supplementary Data).
Preference was given to zircon crystals that captured the full range
of compositions found in each unit. Six zircon crystals from the
Escarpment Ignimbrite yielded a weighted mean 206Pb/238U date
of 29.755 ± 0.023Ma (mean squared weighted deviation
(MSWD)= 0.62; Fig. 3). Excluding the oldest zircon crystal from
the SAM Ignimbrite (which was older than the 206Pb/238U age of
the underlying unit and inferred to be an antecryst), the remaining
eight zircon crystals yielded a weighted mean date of
29.728 ± 0.017Ma (MSWD= 0.34). Six zircon crystals from the
Sana’a Ignimbrite yielded a weighted mean date of
29.707 ± 0.025Ma (MSWD= 0.65; Fig. 3), excluding three zircon
crystals older than 29.745Ma, also inferred to be antecrysts. The
weighted mean 206Pb/238U dates have been interpreted as
the eruption age of each respective unit. Weighted mean dates for
the SAM and Sana’a Ignimbrites calculated with the older zircon
crystals are 29.733 ± 0.030Ma (MSWD= 2.40) and 29.793 ± 0.042
(MSWD= 8.96), respectively.

Although Iftar Alkalb is the stratigraphically youngest unit
dated, nine zircon crystals were consistently older
(29.731 ± 0.089–30.320 ± 0.094Ma; Fig. 3) than the weighted
mean ages of the other units and so no date was assigned. We
attribute this to the emplacement mechanism of the caldera
collapse breccia with abundant mega-clasts of underlying
stratigraphy contributing xenolithic material or antecrysts that
are recording an earlier stage of zircon crystallization. Zircon
morphologies (Supplementary Information) and compositions
(Fig. 4 and Supplementary Data) were highly variable for Iftar
Alkalb and further work is necessary to evaluate these
complexities.

40Ar/39Ar age recalculations. Sanidine from the Green Tuff,
SAM Ignimbrite, and Iftar Alkalb were previously dated via the
40Ar/39Ar method8,10. Those dates have been recalculated using a
28.201 Ma monitor age for the Fish Canyon Tuff sanidine21.
Recalculations (Supplementary Information) yield a
29.78 ± 0.12 Ma age for the Green Tuff, 29.66 ± 0.14 Ma age for
the SAM Ignimbrite, and 29.67 ± 0.08 Ma age for Iftar Alkalb
(Fig. 2). Previous 40Ar/39Ar ages8,10,11 from the Shibam Kawka-
bam Ignimbrite (30.35 ± 0.13Ma), Kura’a Basalt
(30.22 ± 0.26Ma), Akraban Andesite (29.80 ± 0.08Ma), an over-
lying small-volume rhyolitic tuff (28.58 ± 0.14Ma) and ignimbrite
(28.18 ± 0.10Ma), and the Bayt Mawjan Ignimbrite
(27.85 ± 0.12Ma) have also been recalculated. The 206Pb/238U
zircon ages are in agreement with the recalculated 40Ar/39Ar ages
and are compiled and presented here as a revised chronostrati-
graphy of the Northern Yemen flood volcanics (Fig. 2).
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Discussion
Elements that are normally incompatible during magma differ-
entiation (e.g., U, Nb, Th, Y, and Hf) and the europium anomaly
(Eu/Eu*) in rare earth element patterns resulting from feldspar
fractionation are useful indicators of magma differentiation.
Assuming that both elements remain incompatible, more differ-
entiated rhyolites will evolve towards higher Th/Y ratios while
Eu/Eu* will decrease with continued feldspar crystallization22.
With a few exceptions, zircons dated via CA-TIMS for these units
show the same trend: the least evolved zircon with the highest Eu/
Eu* and lowest Th/Y values are older than the most evolved
zircon by 0.01 ± 0.16Ma in the Escarpment Ignimbrite,
0.02 ± 0.09Ma in the SAM Ignimbrite, and 0.07 ± 0.17 Ma in the
Sana’a Ignimbrite (Fig. 4). Thus, ages for zircon crystals spanning
the full geochemical ranges are statistically indistinguishable,
suggesting that these large volume magmas were rapidly differ-
entiated within 103–104 years once the magmas reached Zr

saturation. These estimates are based on LA-ICP-MS single-spot
analyses and whole-grain CA-TIMS zircon ages because the small
crystal sizes and presence of mineral inclusions made multiple
spot analyses difficult. Eu/Eu* and Th/Y are not correlated for
zircons in Iftar Alkalb and there is no age relationship between
the most and least evolved zircons (Fig. 4), further supporting
that the zircons in Iftar Alkalb are of a mixed xenolithic or
antecrystic origin.

Magma flux rates (km3/yr) were calculated for 100 and 400 kyr
of residence for the Escarpment, SAM, and Sana’a Ignimbrites
based on the age difference between the most and least evolved
zircon crystals in each unit. For 100 kyr residence, magma flux
rates are 3.6 × 10−3 km3/yr, 2.4 × 10−2 km3/yr, and
1.6 × 10−2 km3/yr for the Escarpment, SAM, and Sana’a Ignim-
brites, respectively. For 400 kyr residence, magma flux rates are
9.0 × 10−4 km3/yr, 6.0 × 10−3 km3/yr, and 4.0 × 10−3 km3/yr for
the Escarpment, SAM, and Sana’a Ignimbrites, respectively.
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Upper estimates of 3.6 × 10−3–2.4 × 10−2 km3/yr for 100 kyr
residence are similar to those calculated for other rapidly
assembled large-volume silicic systems (e.g., Yellowstone
supereruptions23,24 and Fish Canyon Tuff25). The most con-
servative estimates using 400 kyr residence
(9.0 × 10−4–6.0 × 10−4 km3/yr) are similar to but lower than the
minimum calculated magma flux from Yellowstone
(2.8 × 10−3 km3/yr for the 280 km3 Mesa Falls Tuff23) and sig-
nificantly lower than that of Taupo (>0.33 km3/yr for the 530 km3

Oruanui eruption26).
U-Pb zircon dating shows that three sequential eruptions of

Afro-Arabian silicic volcanics—the Escarpment Ignimbrite,
the Green Tuff and SAM Ignimbrite, and Sana’a Ignimbrite—
were collectively emplaced within a timespan of 48 ± 34 kyr
(calculated using the square root of the sum of the uncertainties),
yielding a long-term volumetric extrusive rate of 5.27 × 10−2–
3.08 × 10−1 km3/yr for 4320 km3 DRE. The estimated minimum
total eruptive volume for the entirety of the Main Silicics phase is
8620 km3 DRE over a duration of 130 ± 150 kyr, constrained by
the ages of the Akraban Andesite and Iftar Alkalb, which yield a
lower extrusive rate of 3.05 × 10−2–6.63 × 10−2 km3/yr. Northern
Yemen unit volume estimates1,9 are minimum values accounting
for the lateral distribution and measured thickness in the studied
field areas (Fig. 1) and correlations to Indian Ocean deep-sea
tephra layers located >2700 km away from Yemen12. While there
was wide-scale silicic volcanism following the termination of the
main pulse of flood basalt emplacement13,27, unit volume esti-
mates outside of Northern Yemen remain sparse. Extrusive rates
for other regions of the Afro-Arabian province, such as the
Ethiopian stratigraphy, are difficult to constrain due to pervasive
post-emplacement faulting. Notably, a series of silicic super-
eruptions in the Tana Basin, Ethiopia28 have recently been dated
at 31.108 ± 0.020–30.844 ± 0.027Ma with an estimated minimum
eruptive volume of 2000–3000 km3, corresponding to a long-term
volumetric extrusive rate of 0.8–1.1 × 10−2 km3/yr.

Long-term volumetric extrusive rates of basaltic and ande-
sitic systems are thought to be higher than those of silicic
systems by up to two orders of magnitude4. Average extrusive
rates in silicic systems are calculated to be highest for con-
tinental arcs (4.90 ± 0.15 × 10−3 km3/yr) followed by oceanic
arcs (4.50 ± 0.79 × 10−3 km3/yr), continental rifts (4.48 ±
0.86 × 10−3 km3/yr), continental hotspots (1.29 ± 0.25 ×
10−3 km3/yr), and continental volcanic fields (6.47 ±
1.96 × 10−4 km3/yr). The extrusive rate of the Main Silicics
phase of the Northern Yemen section of the Afro-Arabian
province is most similar to—but notably higher than—the
extrusive rates of the central Taupo volcanic zone
(1.28 × 10−2 km3/yr; ref. 29), the silicic portion of Kamchatka
(1.05 × 10−2 km3/yr; ref. 30), and Quaternary phonolites from
the Kenya rift valley (1.20 × 10−2 km3/yr; ref. 31). Our findings
are consistent with observations at other large-volume silicic
systems that record rapid periods of differentiation and
magma reservoir assembly superimposed on lower back-
ground fluxes. While some silicic systems have produced more
voluminous individual eruptions (e.g., Fish Canyon Tuff with
4500 km3 DRE32) and larger cumulative eruptive volumes over
longer time intervals (e.g., Paraná-Etendeka LIP with
20,000–35,000 km3 over 6 Myr33,34), the eruptions of the Main
Silicics phase in Northern Yemen represent the largest long-
term volumetric extrusive rate of silicic volcanism on Earth.

Some volcanic provinces appear to coincide with major global
environmental change and mass extinctions (e.g., Siberian Traps,
Karoo-Ferrar, Emieshan, and Central Atlantic LIPs), yet others, even
those with silicic supereruptions (e.g., Paraná-Etendeka LIP), do
not35. Models for volcanism-driven environmental change predict
years of cooling from SO2 injection into the stratosphere from a

single eruption and/or tens of thousands of years of warming from
CO2 emissions36. Several of the Afro-Arabian silicic supereruptions
have been correlated to 10–15 cm-thick tephra layers located
>2700 km away in the Indian Ocean12 (Fig. 2), suggesting volcanic
fallout on a near-global scale. However, the timing of these super-
eruptions in relation to several Rupelian-aged cooling events that
have been identified in Chrons C12 (Oi1a, Oi1b, and Oi237,38) and
C10 (Oi2* and Oi2a37,38) indicate that the perturbations in δ18O and
δ13C pre-date the eruptions16,17 (Fig. 2). Other silicic supereruptions,
such as the ~31Ma caldera-forming eruptions in the Tana Basin28

and ~28Ma eruption of the Fish Canyon Tuff32, likewise do not
coincide with global cooling events. The correlation between volcanic
eruptions and isotopic perturbations rely on the precision of the
eruption ages, resolution of the climate proxy data (±0.2‰)16, and
the sensitivity of the climate proxies to the effects of individual vol-
canic eruptions. While the Afro-Arabian Main Silicics phase erup-
tions represent the largest known long-term volumetric extrusive rate
of silicic volcanism, they did not cause major global climate change at
the current resolution of these data. Challenges remain in discerning
the various roles of the tempo, volatile budget, eruption mechanism,
and volume of magma extruded from LIPs and their effect on global
environmental change. However, robust temporal constraints con-
tinue to provide critical insight into this relationship.

Previous efforts have been made to correlate Oligocene Afro-
Arabian volcanic deposits with the GPTS8,39 but those were
unable to unambiguously distinguish between the GPTS of Cande
and Kent14 and Huestis and Acton15. Recent studies on the
Oligocene magnetic polarity sequence have utilized astronomical
age models38, radio-isotope age models37, recalculations of the
Cande and Kent14 GPTS using updated 40Ar/39Ar flux monitor
ages40, and a combination of all three37. One of the lingering
issues with distinguishing between an appropriate method for
determining the Rupelian age (33.9–28.1 Ma) is the lack of tie
points from radio-isotopic dates. The Rupelian/Chattian bound-
ary Global Boundary Stratotype Section and Point records a
nearly continuous record of astronomically tuned magnetos-
tratigraphy for the Oligocene but only provides one tie point for
the Rupelian for the uppermost Chron C12r with a gap between
31.8 ± 0.2 and 27.0 ± 0.1 Ma37,41. The 2012 Geologic Time Scale
for the Paleogene37 favored an integrated radio-isotope, GPTS,
and cyclostratigraphy model with sixth-order polynomial fit to
produce a complete C-sequence. The C11n.1r Subchron is esti-
mated to have a duration of 0.050 Ma with a −0.654Ma dis-
crepancy between radio-isotopic and astronomic age models37.
The only discrepancy between the combined age model of the
2012 Geologic Time Scale and new 2020 Geologic Time Scale for
the time range of interest is a shift of the base of Chron C12n to
30.977 from 31.034Ma37,42.

We propose that the 29.728 ± 0.017Ma 206Pb/238U zircon age of
the SAM Ignimbrite and 29.67 ± 0.13Ma 40Ar/39Ar sanidine age of
Iftar Alkalb—further constrained to 29.67 ± 0.13Ma by the
29.707 ± 0.025Ma 206Pb/238U age of the Sana’a Ignimbrite—can be
used as tie points for the GPTS. Our chronostratigraphy and mag-
netostratigraphy are definitively in agreement with the Cande and
Kent14 GPTS (Fig. 2). Discrepancies between our results and the
2020 Geologic Time Scale arise from the sparsity of radio-isotope
dates for the Rupelian coupled with the short duration of the
C11n.1r Subchron. Our findings are within the 0.654Ma dis-
crepancy between the radio-isotopic and astronomic age models and
could thus serve as robust tie points for future time scale calibrations.

Methods
Samples from the Sana’a area of Northern Yemen were previously collected and
described in Ukstins Peate et al.9 (Fig. 1). Paleomagnetic data was measured on 587
oriented drill cores collected at 71 sites8 (Fig. 1). Zircon U-Pb petrochronology was
undertaken at the Boise State University Isotope Laboratory. Zircon crystals from
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the Escarpment, SAM and Sana’a Ignimbrites, and Iftar Alkalb were separated
using standard magnetic and heavy liquid techniques and annealed at 900 °C for
60 h. Zircons were imaged using a JEOL T-300 scanning electron microscope fitted
with a Gatan Mini CL detector and JEOL back-scattered electron detector under
15 kV probe current and 2 mA accelerating voltage operating conditions (Sup-
plementary Information). Trace element analyses and preliminary U-Pb dating for
31–95 crystals per unit (Supplementary Data) were performed using a Thermo-
Electron X-Series II quadrupole ICP-MS and New Wave Research UP-213
Nd:YAG UV (213 μm) laser ablation system with a 10 Hz at 5 J/cm2 pulsed laser
and 15 μm spot size. NIST SRM-610 and SRM-612 glasses were used as standards
for trace element concentrations and Plešovice zircon standard43 was used for
U-Pb calibration. Zircon standards were measured every 10 unknowns; glass
standards were analyzed at the beginning of two 109-spot cycles.

A total of 32 crystals from the 4 units were selected for CA-TIMS analysis on the
basis of morphology, zoning, chemistry, and preliminary 206Pb/238U dates. Zircon
crystals were chemically abraded18 in 120 μL of 29M hydrofluoric acid (HF) at
180–200 °C for 12 h and then rinsed in 3.5M HNO3 in an ultrasonic bath for 60min.
The residual crystals were rinsed twice in ultrapure H2O and transferred to Teflon
PFA microcapsules and spiked with ET535 mixed U-Pb isotope tracer solution44,45.
The spiked residual crystals were dissolved in Parr vessels in 120 μL of 29M HF at
220 °C for 48 h, dried, and redissolved in 6M HCl at 180 °C overnight46. Pb and U
were purified from the chloride matrix using HCl-based anion-exchange chromato-
graphy and dried with 2 μL of 0.05 N H3PO4. High-precision isotope dilution U and
Pb isotope ratio measurements were made using a single Re filament silica gel
technique on an Isotopx Isoprobe-T multi-collector TIMS equipped with an ion-
counting Daly detector (Supplementary Data). Dates are calculated using the decay
constants of Jaffey et al.47. Analytical uncertainties on dates are reported to be 2σ and
propagated using the algorithms of Schmitz and Schoene48.

Data availability
Supplementary Information contains cathodoluminescence (CL) images of zircon
crystals analyzed by LA-ICP-MS and CA-TIMS and details on the recalculation of 40Ar/
39Ar ages. Supplementary Data contains details on the LA-ICP-MS trace element
concentrations and 206Pb/238U dates for zircon crystals dated by CA-TIMS. The full
dataset of LA-ICP-MS trace element concentrations for all zircon crystals analyzed in this
study are available in the PANGAEA database. Samples collected by I.A.U. are housed at
the University of Auckland.
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