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Bone marrow derived stromal cells from
myelodysplastic syndromes are altered but not
clonally mutated in vivo
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The bone marrow (BM) stroma in myeloid neoplasms is altered and it is hypothesized that

this cell compartment may also harbor clonal somatically acquired mutations. By exome

sequencing of in vitro expanded mesenchymal stromal cells (MSCs) from n= 98 patients

with myelodysplastic syndrome (MDS) and n= 28 healthy controls we show that these cells

accumulate recurrent mutations in genes such as ZFX (n= 8/98), RANK (n= 5/98), and

others. MDS derived MSCs display higher mutational burdens, increased replicative stress,

senescence, inflammatory gene expression, and distinct mutational signatures as compared

to healthy MSCs. However, validation experiments in serial culture passages, chronological

BM aspirations and backtracking of high confidence mutations by re-sequencing primary

sorted MDS MSCs indicate that the discovered mutations are secondary to in vitro expansion

but not present in primary BM. Thus, we here report that there is no evidence for clonal

mutations in the BM stroma of MDS patients.
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While there has been substantial progress in the identi-
fication of the molecular landscape and pathogenesis
of myelodysplastic syndrome (MDS)1–3, increasing

evidence has also suggested that MDS may not only be a disease
of hematopoiesis but also of the surrounding bone marrow (BM)
microenvironment, also termed BM niche or stroma4,5. An active
role of the BM niche in MDS but also other myeloid neoplasms
such as MPN or AML has been demonstrated in several experi-
mental approaches6–9. In patient-derived xenograft experiments,
we have previously shown that primary MDS samples were
dependent on the interaction with BM-derived mesenchymal
stroma cells (MSCs) for their propagation10. This led to the
hypothesis that MDS hematopoietic cells may re-educate their
BM niche to create a supportive environment for their pre-
ferential growth. In support of this hypothesis, several studies
have described aberrant gene expression and epigenetic profiles of
MDS-derived MSCs7,10–14. The selective introduction of muta-
tions to non-hematopoietic cellular compartments of the BM
niche such as osteolineage cells15–17 was able to disrupt hema-
topoiesis, induce MDS-like diseases, and control leukemic
propagation18. Inflammatory programs mediated by S100A
family proteins7 and Toll-like receptor 4 (TLR4)19 in mesench-
ymal precursors have further been shown to drive genotoxic
stress in hematopoietic stem- and progenitor cells, proposing a
mechanism of accumulation of genetic mutations in hemato-
poietic cells. Moreover, especially aging-related changes in the
BM stroma are hypothesized to confer growth advantages for
putatively pre-malignant hematopoietic subclones carrying typi-
cal mutations of early clonal hematopoiesis of indeterminate
potential (CHIP)20 such as DNMT3A21.

An open question in the field is, therefore, whether there may
also be acquired mutations in the BM stroma compartment of
MDS patients, which act as causative or contributing pathogenic
factors in the disease. Previous studies have identified chromo-
somal aberrations in ex vivo expanded MSC cultures from MDS
and AML patients22–25. However, little validation has been per-
formed so far to address whether such molecular lesions were not
merely clonal outgrowths resulting from the strenuous and
massively expansive cell culture procedures.

We and others have previously used MDS-MSCs as highly
purified germline controls for genomic profiling of the MDS
hematopoietic clones10,26.

In this work, we present comprehensive data from whole-
exome sequencing of in vitro expanded MSCs from n= 98 MDS
patients and n= 28 healthy age-matched individuals to inter-
rogate the question of acquired mutations in MSCs from MDS
patients. While recurrent mutations can be detected in ex-vivo
expanded MDS MSCs, these are not reproducible in serial BM
aspirations from the same patients and do not remain stable in
serial culture passages. Ultimately, high confidence mutations
detectable in ex vivo MDS MSC cultures cannot be backtracked
by targeted re-sequencing of primary sorted BM MSCs from the
same patients. While MDS MSCs are biologically and functionally
altered in comparison to healthy MSCs, our data indicate that
there is no evidence for clonal somatically acquired mutations in
non-hematopoietic BM stromal cells in MDS patients in vivo.

Results
In vitro cultured MDS MSCs carry more recurrently acquired
mutations than healthy MSCs. Within the scope of previous
molecular studies on MDS10,26, we have used in vitro cultured
MSCs as germline controls for exome sequencing of paired
hematopoietic cell fractions. In order to address the question of
whether MDS patient-derived MSCs also carry acquired mole-
cular lesions, we took advantage of this data by performing a

reversed bioinformatics approach using the corresponding
hematopoietic fraction as a germline control for the MSC exome
sequencing data. With this approach, we analyzed whole-exome
sequencing results of MSCs derived from a total of n= 98 MDS
patients (Fig. 1a; Table 1). The purity of the expanded MSCs was
routinely confirmed to be completely depleted of residual
hematopoietic cells (CD45 and lineage markers CD2, CD3, CD4,
CD7, CD8, CD10, CD11b, CD14, CD19, CD20, CD56, and
CD235a), and largely negative for endothelial CD31. Both healthy
control- and MDS-MSCs showed positive expression for stroma
cell markers such as CD146, CD271, CD105, CD73, and CD90
that were not significantly differentially expressed between these
two groups (Supplemental Fig. 1a, b).

The initial whole-exome sequencing dataset of 98 MSC
samples produced a predominantly low-level mutational spec-
trum with a median variant allele frequency (VAF) of 5.3% in all
called mutations (Fig. 1b). By additional filtering for an exome-
sequencing typical VAF cutoff of >10%, we identified a total of
n= 9857 somatically acquired mutations (9419 SNVs and 438
Indels) in the MDS MSCs (Fig. 1c). Of note, as MDS-derived
hematopoietic cells can carry acquired copy number changes, this
was carefully accounted for by excluding affected genomic regions
from analysis in the respective samples on an individual basis. In
total, this data adjustment led to a marginal loss of region
coverage of a mean of 1% per sample (Supplemental Data 2). In
order to identify high confidence candidate mutations, we plotted
the number of mutations against the estimated mutational
significance determined by the MutSigCV tool27 (Fig. 1b, c,
Supplemental Data 3). Based on biological parameters such as
functional genomic location, protein damage prediction, and
others, this tool estimates the chance that a gene is mutated more
often than expected by chance after adjusting for background
mutational processes. Using this approach, we aimed to identify
all genes with a combination of high recurrence, high MutSigCV
scores, and high VAFs. Genes identified with a high recurrence
but low MutSigCV significance values were likely to be biological
or technical artifacts either due to the large size of the coding
regions of these genes or local genomic susceptibility to
mutation27. Among such low significance genes were TTN
(n= 19, 19%), LRP2 (n= 10, 11%), or MUC16 (n= 10, 10%),
of which recurrence increased further up to n= 60 when
removing the 10% VAF cutoff.

The most preeminent recurrently mutated genes were zinc-
finger protein X-linked (ZFX) (n= 8, 8% p= 0.0008), and RANK
(Tumor necrosis factor receptor superfamily member 11A,
TNFRSF11A, n= 5, 5%, p= 0.02; Fig. 1d, e, Supplemental
Data 3). All mutations in the ZFX gene were either stop-gain
or frameshift mutations with SIFT prediction of deleterious
amino acid substitutions. ZFX is X-chromosome-linked and
mutations were exclusively found in male patients. All five
mutations discovered in RANK were predicted with deleterious
impact to protein conformation (4/5) or affected a splice site,
suggesting loss of function mutations (Fig. 1e).

To evaluate whether the acquisition of such mutations in
cultured BM MSCs of MDS patients was possibly associated with
myeloid neoplasia we also performed exome-sequencing on MSC
cultures in a control cohort of n= 28 healthy age-matched
individuals with their paired hematopoietic BM. In this dataset,
we were also able to detect high confidence mutations. When
applying 10% VAF cutoff we detected overall fewer mutations in
this healthy control group as compared to the MDS cohort
(median n= 36 per sample in MDS versus n= 26 per sample in
healthy, p= 0.0005) (Fig. 1f). Notably, this difference was not
accountable to the differential age distribution of the cohorts
(Fig. 1g, Table 1). Moreover, in the unfiltered data sets, the overall
VAF of detected variants was lower in healthy cells as compared
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to MDS (median VAF 5.3% for MDS versus 2.0% for healthy,
p= 2.2e−16, Fig. 1h). The most frequently mutated genes in the
healthy cohort were TTN and SYNE1 (in 6 and 5/28 cases, 21 and
17%). Also, other genes detected in the MDS cohort such as
MUC16 or LPR2 were frequently mutated in the healthy cohort.
All recurrently mutated genes in the healthy control cohort were
summarized in Supplemental Data 4. Of note, the most
significantly mutated genes from the MDS cohort (RANK or
ZFX) were not found to be mutated in the healthy control group.

Since most detected mutations in MSCs had low-level VAFs we
performed several lines of validation experiments to confirm the

robustness of the above-described results. Firstly, we performed
custom amplicon-based targeted deep re-sequencing (TDS) of a
total of n= 120 mutations in n= 117 genes in n= 12 samples
(Supplemental Data 5). Thereby, we confirmed a strong
correlation of VAFs between exome sequencing and TDS (Fig. 2a,
r= 0.85, p < 0.0001). Notably, all mutations in ZFX and RANK
were confirmed by TDS. Next, we exemplarily validated the
strategy of exome sequencing MSCs versus BM MNCs as
germline control compared to another potential germline speci-
men such as sorted CD3-positive T-cells from peripheral blood or
buccal swab DNA from the same patient (Fig. 2b). We observed a
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Fig. 1 Recurrent mutations in MDS-derived MSCs. a Scheme of the experimental workflow. P0/P1/P2= number of culture passages, FSC forward scatter.
b Summary of all detected recurrently mutated genes in MSCs of 98 MDS patients (n= 34,855 variants). The number of recurrences is displayed on the x-
axis while the estimated biological significance calculated by MutSigCV is displayed on the y-axis (two-sided MutSigCV p-value, transformed as −log10).
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the total number of mutations per sample, MDS n= 34,855 mutations, healthy n= 4506 mutations. Source data are provided as a Source Data file.
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strong overlap for the called mutations with only 1 call (2%)
being exclusive to the BM versus MSC comparison. Finally, to
confirm the clonality of the detected mutations we genotyped
CFU-Fs derived from pre-expanded MSCs from P1 in n= 4
patient cases in a total of 23 colonies. This functional clonality
assay likewise confirmed the previously detected mutations in
corresponding ratios (Fig. 2c, d).

MDS derived MSCs are functionally and molecularly altered in
comparison to healthy MSCs. The preceding data showed that
MDS-derived MSCs seemed to be more susceptible to acquire
mutations when in culture as compared MSCs from healthy indivi-
duals. We, therefore, performed functional analyses on MSCs from
these cohorts to elucidate possible explanations for this higher rate of
mutation acquisition. Since genotoxic stress in the HSC-stromal cell
interaction induced by inflammatory phenotypes of MSCs was
described to play a central role in the pathogenesis of human myeloid
disease7, we assessed these phenotypes in our MSC cultures. Thereby,
we found markers for genotoxic stress such as frequency of γH2AX
foci28 or phosphorylation of replication protein A (RPA)29 to be
significantly increased in MDS-derived MSCs as compared to healthy
MSCs (Fig. 3a–c). γH2AX staining correlated with the frequency of
mutations in the interrogated MDS samples (Fig. 3d). Moreover, as
expected from previous studies30–32, MDS-derived MSCs presented

with increased senescence markers such as overall reduced telomere
lengths and increased β-galactosidase levels as compared to healthy
MSCs (Fig. 3e–h). Senescence is frequently coupled with an altered
secretory phenotype referred to as senescence-associated secretory
phenotype (SASP)33. We, therefore, analyzed RNA sequencing
data from an extended group of n= 8 MDS MSC samples and
n= 6 healthy MSC samples (partly previously published10,
EGAS00001000716) and observed higher expression of inflammatory
markers of SASP in MDS MSCs (Fig. 3i).

These molecular perturbations in the bone marrow of myeloid
neoplasms are frequently associated with an inflammatory
phenotype in the bone marrow of myeloid neoplasms4,34. We
could confirm this in MSCs from our cohorts by asserting
increased gene expression levels of inflammatory genes such as
IL-6 in our MDS MSCs versus healthy MSCs in a group of n= 32
MDS and 19 healthy cases (Fig. 3j–l).

Next, we asked whether these broadly observed phenotypic
changes of increased DNA damage and increase of SASP profiles
were possibly linked to differential mechanisms of mutation
acquisition in MSCs and therefore determined the predominating
COSMIC mutational signatures according to Alexandrov et al.35

(Fig. 3m). Such mutational signatures resemble characteristic
combinations of mutation types arising from various mutagenesis
processes such as DNA replication infidelity, genotoxic exposures,
or defective DNA repair. Most frequently, we found COSMIC
signature 1, corresponding to spontaneous deamination of
5-methylcytosine35 in 45/98 (46%) of MDS cases (Fig. 3m).
Other frequently detected signatures were 24 and 29 in 40/98
(40%) of MDS cases, respectively.

While the signature data was markedly heterogeneous with
almost all COSMIC signatures being present in at least one
sample, there was a clear separation of healthy MSCs from MDS
MSCs due to a significant over-representation of signatures 6, 12,
and 15 in the healthy cells as compared to MDS derived MSCs
(p < 0.001, Fig. 3m, n). This enabled a clear prediction of sample
origin by the extracted mutational signatures (Fig. 3o), (AUC=
0.96). Collectively these data suggested that MDS MSCs were
molecularly and functionally altered and acquired heterogeneous,
yet distinct mutational profiles as compared to healthy MSCs.

Finally, since RANK is one of the central regulators of bone
morphogenesis36, we analyzed, whether RANK mutated MSCs
possibly had altered differentiation dynamics. Upon in vitro
osteogenic differentiation of n= 2 RANK mutated cases versus
n= 2 RANK wild-type MDS cases we observed a higher
osteogenic propensity of RANK mutant MSCs as compared to
RANK wild-type MDS MSCs (Fig. 3p, q). These data suggest
proof of principle that in vitro cultured MSCs may underlie
functional differences in dependency of acquired mutations
during culture expansion. Nevertheless, this generally also has
to be evaluated in the context of the biological significance of
recurrent mutations as performed above with the MutSigCV tool.
Therefore, we also compared the mutational profiles with the
RNA sequencing data from cultured MSCs. Table 2 lists the mean
gene expression by fragments per kilobase of exon per million
reads mapped for the most frequently mutated genes in MDS
MSCs of this study. This analysis showed that the most frequently
mutated genes such as TTN, MUC16, or LRP2 were not expressed
in MDS MSCs. Vice versa, we correlated the mutational matrix
against genes that showed significant expression in expanded
MSCs. This set of genes was mostly comprised of structural
proteins including Collagen 6A3 and 4A2 (mutated in 6 and 4
cases, respectively), Filamin B (FLNB, 5 mutated cases), Tenascin
C (TNC, 4 mutated cases). Yet, as predicted by MutSigCV, such
mutations most likely resemble non-specific mutational hits
(p > 0.2) and were only considered to have low to moderate
impact on protein structure.

Table 1 Patient and healthy donor characteristics.

MDS cohort
n= 98

Healthy control
n= 28

p-value

Population data
Age, mean (range) 70.8 (44–86) 71.4 (36–84) 0.78*
Sex
Male 65 14 0.13#

Female 33 14
WHO 2016
aCML 2
CMML 3
del5q-MDS 15
MDS-MLD 33
MDS/MPN-U 2
MDS-EB1 12
MDS-EB2 12
MDS-MLD-RS 9
MDS-MLD-RS-T 1
MDS-U 3
sAML 4
tMN 2
Bone marrow cytogenetics
Normal 52
Complex aberrant 14
del5q 17
del7q 1
del9 1
trisomy 8 4
Other 4
n.a. 5
Treatment prior to MSC sampling
ESA 14
Lenalidomide 14
Post cytotoxic
therapy

3

Post HMA 16
No treatment 51

ESA erythropoiesis stimulating agents, HMA hypomethylating agents.
*Two-sided students t test.
#Two-sided Fisher exact test.
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The occurrence of MSC specific mutations is related to in vitro
culture. Since most of the detected acquired mutations in the
MSCs were subclonal, we interrogated their dependency on cul-
ture parameters to address to which extent mutations in MSCs
were possibly a result of selection during in vitro culture. We
found a moderately positive correlation of the number of muta-
tions with the duration of in vitro expansion of MDS-derived
MSCs (Fig. 4a; r= 0.25, p= 0.03). Moreover, primary MDS
MSCs that were cultured for an additional passage (P2) showed
an increased number of mutations with VAFs >10% (Fig. 4b;
median 26 (P1) vs. 90 (P2) mutations/sample, p < 0.0001).

To further and more directly address the question of the
dynamics of mutational acquisition and stability in MSC culture,
we analyzed mutational profiles during serial in vitro culture and
compared chronological passages P0 and P1 of the same cultures,
and calculated mutational clusters using the SciClone tool37.
Thereby, we derived distinct clones based on independently
sequenced serial samples (Fig. 4c–i). While there were some cases,
in which we could detect relatively prominent and stable
mutations with VAFs > 30% in both passages (Fig. 4c, d) (ZFX
p.Gly727, DNAH7 p.G862C), most mutational clusters were
characterized by low VAFs (<25%) and exclusiveness for either
the early or the later passage (Fig. 4e–i). In addition, we
performed sequential exome sequencing of two MSC cultures
from the same patients from independent BM aspirations in five
cases. We found that the mutations were mutually exclusive in all
5 cases, also for frequently mutated genes such as e.g., TTN or
DCH2. Nevertheless, mutational signatures clustered pairwise for
the individual patients in four of the five sample pairs (Fig. 4j).
This observation further supported the notion that patient-
specific conditions determine the mutational signatures. Collec-
tively, these data indicate that the majority of mutations were
expanded randomly and highly dynamically during the course of
the in vitro expansion of the MSCs.

MSC culture-specific mutations cannot be backtracked to pri-
mary bone marrow stroma cells. While the serial timepoint ana-
lyses of MSCs in culture revealed that most mutations in
subpopulations were expanded during in vitro culture, we still aimed
to pursue the relevance of higher confidence mutations in vivo in
humans. Mutations such as in ZFX, DNAH7, and others (Fig. 4c, d)
could have expanded from pre-existing non-hematopoietic clones in
the BM with higher VAFs and remained stable in culture. We,
therefore, performed another targeted sequencing approach to vali-
date and backtrack these mutations in primary, non-expanded
stroma cells of the same patients. We sorted viable CD45− CD235a
− CD31− CD271+ cells from primary BM aspirates (Fig. 5a) from
the same BM aspiration and subjected them to targeted re-
sequencing. This procedure confirmed previously published experi-
ences of inherent difficulties to isolate sufficient numbers of primary
BM stroma cells from primary BM samples11. From n= 7 cases we
were able to sort a median of 7829 cells per patient (range
417–74,698). Since low cell numbers in this range are even challen-
ging to re-sequence in a targeted amplicon-based NGS approach, we
have previously verified that we could technically quantify low VAF
SNPs in samples with low cell number input material26. In addition,
we analyzed DNA from a less stringent isolation strategy comprising
CD45−, CD235a−, CD271+/−, CD31+/− cells, therefore also
including the CD31+ endothelial cell population (Fig. 5a) for n= 9
cases. We performed this targeted approach to sort these sub-
populations from primary BM for a total of nine cases with 1–9 high
confidence mutations each (Fig. 5b–j). For some patients, we were
also able to perform this analysis from chronologically later BM
specimen 1–3 years later after the initial sample acquisition (Fig. 5g,
j). In all cases, high confidence mutations detectable in ex vivo MSC
cultures were neither significantly detectable in the stringently pri-
mary sorted CD45− CD235a−, CD271+, CD31− stromal cell
fraction nor the less stringently sorted non-hematopoietic fraction
including endothelial cells (CD45− CD235a− CD271+/−, CD31+/
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−), or in the corresponding hematopoietic fraction. Finally, for four
patients we replated BM from the same bone marrow aspiration used
for initiation of the exome sequenced bulk cultures. In DNA from a
total of 34 CFU-F colonies, we re-sequenced a total of 24 high
confidence genes including RANK and ZFX. Only in 1/34 (3%)
CFU-Fs, a ZFX mutation was detectable (Table 3), thus further
confirming that even the highest confidence mutations detected in
ex vivo expanded MDS MSCs did not originate from clonal stroma
cell populations in vivo.

Discussion
The scientific background and rationale for this investigation were an
increasing body of evidence suggesting the pathogenesis of MDS and
other myeloid neoplasms such as MPN or AML not only takes place
in the hematopoietic compartment but also in the BM micro-
environment. This conception is supported by a multitude of dif-
ferent studies and approaches describing altered phenotypes of bone
marrow stroma components of malignant myeloid disease such as
features of increased senescence and impaired proliferation

Fig. 3 Phenotypic differences in mutated MSCs. a Representative immunofluorescence images from MDS and control MSCs upon γH2AX staining. DAPI
in blue, γH2AX antibody in green, scale bar represents 10 µm. b, c Quantification of γH2AX and RPA foci in at least 50 cells analyzed per sample, two-sided
Mann–Whitney test. Data are presented as mean and individual values. d Correlation of γH2AX foci and number of mutations in exome sequencing.
Pearson r, two-sided p value. e Quantification of the relative difference in telomere length in MDS and control MSCs using qPCR to interrogate n= 28
MDS, n= 22 healthy, and n= 3 cord blood, biologically independent mononuclear cell (MNC) samples, two-sided Mann–Whitney test. Data are presented
as mean and individual values. f, g Representative β-galactosidase staining, and flow cytometry result of C12FDG, a fluorogenic substrate of β-galactosidase.
scale bar represents 100 µm. h Quantification of C12FDG mean fluorescence intensity (MFI) for MDS and control MSCs, two-sided Mann–Whitney test.
Data are presented as mean and individual values. i Gene expression heatmap of genes associated with the inflammatory senescence-associated secretory
phenotype (SASP) derived from RNA sequencing. j RNA Sequencing read counts for IL6 in expanded MSCs. Data are presented as mean and individual
values. k, l qPCR and ELISA validation of IL6 expression in a cohort or n= 32 MDS- and 19 healthy MSCs, two-sided Mann–Whitney test. Data are
presented as mean and individual values. m COSMIC mutational signatures in MSC samples with >20 mutations for signatures and more than a total 10%
occurrence in the cohort. Relative contribution is color-coded. Sig: COSMIC Signature. n Cumulative (cum.) proportion of COSMIC signatures 6, 12, and 15
per group, two-sided Mann–Whitney test. Data are presented as median and individual values. o Receiver operating curve (ROC) for classification of MDS
and healthy according to COSMIC signatures 6, 12, and 15. AUC area under the curve. p, q Quantification of ossification as quantified by von Kossa-Staining
upon a 21d osteogenic differentiation protocol of MDS-MSCs with or without RANK mutation, each dot represents an independent differentiated aliquot.
two-sided Mann–Whitney test. Data are presented as mean and individual values, error bars represent SEM. Mutations were confirmed in differentiated
osteoblasts by Sanger sequencing. Source data are provided as a Source Data file.
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capacity11,30,38,39, increased inflammatory phenotypes11,40,41, globally
transcriptionally10,11,31, and epigenetically aberrant profiles14,30,42

and hematopoietic support12,30,43,44 (reviewed in refs. 4,5,45). More-
over, several genetic mouse models have repeatedly shown proof of
principle data that isolated genetic manipulation of BM niche com-
ponents could induce MDS-like or myeloproliferative diseases and
influence propagation of malignant hematopoietic clones15–18,46.
Therefore, we here aimed to clarify a long-standing question, as to
whether primary MSCs of MDS patients carry somatically acquired
mutations with clonal relevance in vivo.

Several lines of work have addressed this hypothesis before and
revealed chromosomal and mutational events in MSCs derived
from MDS or AML patients24,25,47. However, it has never been
entirely ruled out that such molecular lesions were not secondary
to the highly expansive in vitro cultures, which are necessary to
obtain these cells.

The ideal experiment to address the question of acquired muta-
tions in BM stroma of MDS patients would therefore be explorative
sequencing performed in sorted primary non-hematopoietic cells
from primary bone marrow samples. However, to date, there is still
uncertainty on the immunophenotypic profiles the target cells for this
experiment should have. Human BM-derived mesenchymal stem
cells have previously been defined as CD45−, CD235a−, CD31−,
and CD271+, CD146+, CD105+18. However, from the few studies
that have performed molecular analyses on such highly purified and
scarce cells it has become clear, that so far, it has not been successful
to reproducibly isolate enough of these cells to perform robust
explorative whole-genome or exome sequencing on a representative
cohort. Therefore, also in our study, we have made the compromise
to begin analysis on in vitro expanded MSCs of MDS patients. To
this end, we have analyzed a representative cohort of n= 98 MDS
and myeloid neoplasia derived BM MSCs as well as n= 28 healthy
controls and used their own paired hematopoietic cells as germline
controls. By standard bioinformatic evaluation, accounting for LOH
in the hematopoietic germline fraction, we detected a large number of
acquired mutations in genomes of ex vivo expanded MDS MSCs and
even enrichment of recurrent events with frequencies of up to 19%.
Interestingly, MDS MSCs clearly presented with more mutations and
a higher mutational burden than the healthy control group sug-
gesting that MDS or myeloid neoplasia-derived MSCs may be
functionally altered in comparison to healthy MSCs. We performed
several lines of characterization experiments with the MSCs from our
study demonstrating that MDS-derived MSCs had indicators for
higher replicative stress, increased senescence, and increased levels of

inflammatory IL-6 as compared to healthy MSCs. Moreover, MDS
MSCs had significantly different COSMIC mutational acquisition
signatures35, which possibly resulted from mutational processes
specific to in vitro cultivation48. Together with previously published
data of increased levels of reactive oxygen species (ROS) in the BM
niche of myeloid neoplasms49–53, these results corroborate the above-
described notion that MSCs in myeloid neoplasia are molecularly and
functionally altered. The observed replicative stress, activation by
inflammation, and ROS may induce higher cell division rates and
increased baseline genomic instability of MSCs derived from myeloid
diseases and therefore explain higher disease-associated mutagenesis.

Most of the detected mutational events in MSCs had low-level
VAFs and were mostly accumulated in sites with higher mutability
during the in vitro expansion such as, e.g., TTN27, which is known to
be frequently mutated in explorative WES studies and most likely
does not represent a clonal driver mutation. Therefore, we hypo-
thesized that these events were largely secondary due to expansion in
culture rather than true driver lesions originating from clonal
mutations in the non-hematopoietic BM compartment. To follow
this hypothesis we performed additional experiments that asked the
question whether patient individual profiles detected in standard
MSCs cultures (P1) were also measurable in the earliest possible
in vitro culture passages (P0) and whether they remained stable in
measurements of serial culture passages. Both approaches revealed
that most mutational events occurred in minor clone sizes and were
largely not even stably passed on from P0 to P1, precluding them
from the potential discovery of real driver mutations. Nevertheless,
this was not necessarily applicable to all mutations. For instance, ZFX
stood out as a possible true mutational driver event due to its
recurrence (n= 8 cases), its higher VAF of up to ~35%, and its stable
detectability during serial cultures. The same was true for other high
confidence candidate mutations such as DCHS1 or RANK54,55, of
which the latter also had a functional impact on in vitro osteogenic
capacity in our hands, which was in line with previous work56,57. Due
to the putatively higher relevance of these mutations, we attempted to
backtrack them in the primary BM of the patients, in which they
were detected. These high confidence candidate mutations were
neither detectable via TDS in the unselected whole bone marrow
samples, nor in the primary sorted and non-expanded CD45-,
CD235a-, CD31- and CD271+ cells as well as the less stringently
sorted CD45−, CD235a−, CD271+/−, CD31+/− fractions. We
have previously confirmed the technical validity of our applied
amplicon-based deep re-sequencing approach on low DNA amounts
from low cell number samples by serial dilution spike-in
experiments26. As an alternative method, we also re-cultured the
original MSC samples by CFU-F assays and performed genotyping of
the candidate mutations in single colony sequencing. Thereby, the
top recurrent candidate mutations could also not be detected. From
these results, we finally concluded that there were no relevant clonal
mutations in the BM stroma fractions of these MDS patients and that
even the high confidence mutations detected in serial MSC culture
samples rather reflect outgrowth of particularly fit clones originating
probably of single cells selected by the culture conditions. This is also
in line with previous approaches using lentiviral barcoding, which
have shown that culture expansion of MSCs is associated with
massive clonal selection and loss of clonal complexity58. Since pre-
vious mechanistic experiments in murine models had shown proof of
concept that ectopic molecular alterations of the BM niche could
induce MDS like phenotypes, we also interrogated, whether we could
detect stromal alterations known to induce MDS in murine models
such as PTPN1117, β-catenin16, DICER15, Sbds15, or RARγ59 in MDS
MSCs but found no relevant mutations in these genes in our data.

While we ruled out the evidence for acquired clonal mutations
in the stroma compartment of MDS patients, the possibility for
other molecular differences such as increased inflammatory sta-
tus, epigenetic, transcriptional, senescence, and disturbed niche

Table 2 RNA seq. gene-expression data from MDS MSCs.

Ensemble ID Gene symbol Mutated cases Mean FPKM
in
in vitro MSC

ENSG00000198034 RPS4X 4 471
ENSG00000163359 COL6A3 6 357
ENSG00000134871 COL4A2 4 316
ENSG00000041982 TNC 4 153
ENSG00000136068 FLNB 5 54
ENSG00000005889 ZFX 8 23
ENSG00000115317 HTRA2 4 17
ENSG00000130702 LAMA5 8 1.11
ENSG00000154358 OBSCN 8 1.06
ENSG00000155657 TTN 17 0.09
ENSG00000141655 RANK 5 0.08
ENSG00000081479 LRP2 10 0.03
ENSG00000181143 MUC16 10 0
ENSG00000173976 RAX2 4 0

FPKM indicates fragments per kilobase of exon per million reads mapped.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26424-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6170 | https://doi.org/10.1038/s41467-021-26424-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


interaction of MDS derived MSCs, of course, remain6,7,9–14,30,60.
Furthermore, from our data, we cannot exclude the possibility
that on a confined local level of the bone marrow there may be
clusters of clonally mutated stroma cells.

Nevertheless, collectively this comprehensive analysis leaves little
doubt that if acquired mutations in the stroma of MDS patients play
a role in MDS disease initiation at all, then at such a low clonal and
possibly locally confined level, that they are not detectable with
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currently feasible sample acquisition and methodology. In our cur-
rent study, we discovered no evidence for acquired mutations as
disease initiators for MDS.

Methods
Patient and healthy donor samples. The study cohort consisted of n= 98 MDS
and MDS associated myeloid neoplasia cases, who were treated at the Department

of Hematology and Oncology of the Medical Faculty Mannheim, Heidelberg
University, Germany (median age 73 years, range: 44–86). As healthy controls, a
cohort of n= 28 healthy BM samples was acquired from patients undergoing hip
replacement surgery (median age 75 years, range: 36–84). These healthy donor
samples all had normal blood counts, absence of active or prior malignancy, and
other confounding co-morbidity. All experiments were performed after written
informed consent in accordance with the Declaration of Helsinki and approved by
the Medical Ethics Committee of the Medical Faculty Mannheim. Detailed clinical
characteristics of patients and healthy donors are provided in Table 1.

MSC cultivation. MSCs were expanded adherently on plastic dishes by seeding
100 µm-filtered full BM fragments and additionally seeding 5 × 10e6 mononuclear cells
in StemMACS MSC Expansion Medium XF (Miltenyi Biotec) in T25 flasks (P0). After
2 days, the medium was changed and non-adhesive cells were removed. Cells were then
further expanded with weekly medium changes. At 80% confluency, this initial culture
was trypsinized and split into 2–4 T75 flasks, corresponding to P1 with yields of
approximately 60,000 cells per flask. Of note, the in vitro culture was carried out for the
shortest possible period of time to obtain sufficient cell numbers for bulk DNA isola-
tion. Cells were harvested before senescence or confluence. The median time of in vitro
expansion before DNA preparation was 34 days, (95% confidence interval (CI):
22–50 d).

Whole-exome sequencing. A subset of n= 45 MSC exome sequence data sets of
this cohort was previously used as germline control for mutational analyses of BM
in a prior study26. The additional n= 43 cases were sequenced de novo for the
current study. To interrogate somatically acquired mutations in MSCs we reversed

Table 3 Genotyping of CFU-f formed by seeding of BM
MNCs from culture initiating BM aspirations.

Patient Mutations tested CFU-F

WT mut

UPN79 ZFX, PRR14L, ZNF112 9 1 (ZFX only)
UPN417 C22orf42, DOCK9, HMMR, KMT2D,

MMP27,SERPIND1, SHCBP1L,
UNC5A, ZNF853

6 0

UPN247 RANK, ASCL5, FLVCR5 10 0
UPN23 AQP2, RALGAPB, WDR2, TRPM2,

MUC16, SH3BP2, LRRN4, HIRA, DACH2
8 0
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the bioinformatic settings and defined the hematopoietic cells as germline controls,
which is described in detail in the supplemental methods section. Median coverage
of exome sequencing was 81× (range 19–140×) for the MDS MSCs and 164×
(range: 118×–215×) for the healthy cohort.

Mutational significance was calculated with MutSigCV (v1.4)27 from maf files
after vcf2maf (https://github.com/mskcc/vcf2maf) conversion from the mskcc
repository. We used publicly available context files for coverage, covariates, and
mutational dictionaries. Mutational signatures were extracted using the vcfs
generated previously according to Maura et al.61 using the R (v3.6.3)
MutationalPattern (v1.10) package62. For extraction of COSMIC signatures
whichSignatures from the deconstructSigs63 (v1.9) were applied to vcfs with context
normalization and default trinucleotide counts.

RNA sequencing. For RNA sequencing analyses, polyA libraries from n= 5 MDS
samples and n= 3 healthy sequenced in a previous study10 were combined with de
novo sequenced samples from an additional n= 3 MDS patients and n= 3 healthy
donors in the current study. All samples were prepared equally and finally added up to
a combined cohort of n= 8 MDS samples and n= 6 healthy samples. In brief, 500 ng
RNA was subjected to the Illumina Stranded TruSeq RNA protocol and sequenced to a
median of 94 million reads per sample. The bioinformatic analysis consisted of map-
ping hisat2 v2.04 to hg38 and cufflinks—cuffdiff v2.2.1 for transcript assembly and
differentially expressed gene analysis according to the vignette with default settings.

Sorting of primary MSCs and deep sequencing validation of candidate
mutations. Validation of high confidence candidate mutations was carried out in
the original samples as well as in primary, non-expanded MSCs, which were FACS
sorted from viably frozen BM specimen of the corresponding patient samples, in
whose MSC cultures the mutations were detected. Viable cells were stained and
sorted for the parameters Sytox®−, CD45−, CD235a−, CD31−, CD271+ (CD45-
HI30, BD Bioscience, PerCP-Cy 5.5, Cat No: 564106, 1:100; CD235a-GA-R2, BD
Bioscience, APC, Cat No 551336, 1:100; CD31-WM59, Biolegend, APC.C7 Cat No
56365, 1:1000; CD271-ME20.4, Biolegend, FITC Cat No 345104, 1:20; Sytox®,
Thermo Fisher) on a BD FACS Melody sorting device. In addition, a second FACS
strategy (Sytox−, CD45−, CD235a−, CD31+/−) was employed to enrich non-
hematopoietic cells. Cells were directly sorted into Qiagen ALT lysis buffer and the
whole genome amplified with the Qiagen repliG Kit in the majority of cases. For
validation with targeted deep sequencing, single PCRs surrounding mutational sites
(Primers in Supplemental Data 1) were carried out with subsequent library gen-
eration using the Nextera XT kit (Illumina). Samples were pooled and sequenced
with MiSeq v3 chemistry at a mean coverage of 8699x. Quantification was then
derived from bamfiles after bwa mem (v0.7) and picard MarkDuplicatevs (2.20).
For further detailed methods, please see the Supplemental methods section.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA Sequencing, Exome-Sequencing and targeted resequencing data generated in
this study have been deposited in the EGA archive under accession codes
EGAD00001006968 (exome sequencing, RNA sequencing, and targeted resequencing of
this study) and EGAS00001000716 (RNA sequencing reported by10). These data are
available under restricted access for scientific research-only use. Access can be obtained
through Daniel.Nowak@medma.uni-heidelberg.de. Responses can be expected within
72 h. Access can also be requested via EGA. Source data are provided with this paper.
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