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Spectral analysis of climate dynamics with
operator-theoretic approaches
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The Earth’s climate system is a classical example of a multiscale, multiphysics dynamical

system with an extremely large number of active degrees of freedom, exhibiting variability on

scales ranging from micrometers and seconds in cloud microphysics, to thousands of kilo-

meters and centuries in ocean dynamics. Yet, despite this dynamical complexity, climate

dynamics is known to exhibit coherent modes of variability. A primary example is the El Niño

Southern Oscillation (ENSO), the dominant mode of interannual (3–5 yr) variability in the

climate system. The objective and robust characterization of this and other important phe-

nomena presents a long-standing challenge in Earth system science, the resolution of which

would lead to improved scientific understanding and prediction of climate dynamics, as well

as assessment of their impacts on human and natural systems. Here, we show that the

spectral theory of dynamical systems, combined with techniques from data science, provides

an effective means for extracting coherent modes of climate variability from high-dimensional

model and observational data, requiring no frequency prefiltering, but recovering multiple

timescales and their interactions. Lifecycle composites of ENSO are shown to improve upon

results from conventional indices in terms of dynamical consistency and physical interpret-

ability. In addition, the role of combination modes between ENSO and the annual cycle in

ENSO diversity is elucidated.
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Ever since the discovery of phenomena such as ENSO1 and
the Madden-Julian Oscillation (MJO)2, the objective iden-
tification and characterization of coherent modes of climate

variability have been vigorously studied across the disciplines of
Earth system science. In the face of dynamical complexity and
event-to-event diversity, the state of large-scale patterns of cli-
mate dynamics is typically described through a reduced repre-
sentation provided by climatic indices, constructed using physical
understanding and/or statistical approaches. For example, ENSO
is an oscillation with a broadband periodicity of 2–7 years,
commonly monitored using so-called Niño indices3. The latter
are defined as spatial and temporal averages of sea surface tem-
perature (SST) anomalies over the equatorial Pacific source region
of ENSO. Such indices are employed for a multitude of diagnostic
and prognostic purposes, including lifecycle composites4 and
prediction skill assessment5.

Clearly, the success of these efforts depends strongly on the
properties of the indices employed to characterize the phenomenon
of interest. In general, it is desirable that a climatic index be as
objective as possible, i.e., reveal an intrinsic pattern of climate
dynamics independent of subjective choices such as data prefilter-
ing, or details of the observation modality. For oscillatory patterns
such as ENSO and MJO, it is important that the indices reveal the
full cycle as a sequence of observables, e.g., SST fields in the case of
ENSO. Yet, despite their widespread use, conventional approaches
for defining climatic indices have inherent limitations, obfuscating
the properties of the phenomenon under study, and sometimes
yielding inconsistent results6. Empirical Orthogonal Function
(EOF) analysis7, for example, is perhaps the most commonly used
statistical technique for identification of climatic indices, yet it is
well known to exhibit timescale mixing and poor physical inter-
pretability due to EOF invariance under temporal permutations of
the data, even in idealized settings8. In the context of ENSO, scalar
Niño indices do not provide full information about the state of the
cycle because the index could be increasing or decreasing.

In contrast to EOF analysis and related approaches, which
identify patterns based on eigendecomposition of covariance
operators, spectral analysis techniques for dynamical systems
employ composition operators, such as Koopman and transfer
operators9–11. A key advantage of this operator-theoretic form-
alism is that it transforms the nonlinear dynamics on phase space
to linear dynamics on vector spaces of functions or distributions,
enabling a wide variety of spectral techniques to be employed for
coherent pattern extraction and forecasting. Indeed, starting from
early spectral approximation techniques for Koopman12,13 and
transfer14–16 operators in the 1990s, there has been vigorous
research on operator-theoretic approaches applicable to broad
classes of autonomous17–22 and non-autonomous systems23–28.
In addition, recently developed methods29–37 combine Koopman
and transfer operator theory with kernel methods for machine
learning38–40 to yield data-driven algorithms adept at approx-
imating evolution operators and their spectra.

In this paper, we show that the operator-theoretic framework
provides an effective route for identifying slowly decaying
(equivalently, slowly decorrelating) observables of the climate
system as dominant eigenfunctions of transfer/Koopman opera-
tors and their generator. These eigenfunctions directly describe
coherent climate phenomena such as ENSO, with higher dyna-
mical consistency and physical interpretability than indices
derived through conventional approaches. The principal distin-
guishing aspects of this analysis, illustrated in Figs. 1, 2, 3, and 4,
can be summarized as:

1. Identification of cycles from spatio-temporal information:
Our spectral approach is based on dynamical systems
techniques, providing a superior basis for extracting

persistent cyclic behavior. We transform the underlying
full nonlinear dynamics to a larger linear space, yielding a
complete linear picture for our spectral analysis. This
transformation is built directly from physical spatio-
temporal fields such as SST snapshots. Complex pairs of
eigenvalues and their eigenvectors directly reveal persistent
cycles (see outer panels of Fig. 1) and their periods.

2. Dynamical rectification: The underlying oscillations in ENSO
are clearly revealed in a “rectified” two-dimensional (2D) phase
space provided by a complex eigenvector. Temporal evolution
of the oscillation is well described by a harmonic oscillator,
represented by motion at a fixed speed around a circle in 2D
phase space, with the oscillation frequency α determined by the
complex eigenvalue. Importantly, this property holds true even
if the dynamics of the full system is chaotic. See Figs. 2, 3, and
4, and accompanying animations in Supplementary Movies 1
and 2 for illustrations. Our thorough treatment of rectification
clearly shows the asymmetry of ENSO, and enables an estimate
of the “local speed” of the ENSO cycle.

3. Phase equivariance: If the 2D phase space is partitioned into S
“wedges”, each corresponding to a lifecycle phase, then the
dynamical evolution of the samples starting in any given
phase over a time interval of 2π/(Sα) maps them consistently
to the next phase. See Fig. 1 (center) and Fig. 5 for examples
of this behavior with S= 8. An important consequence of
equivariance combined with slow decay is that it endows the
identified phases with higher predictability, while enabling the
discovery of new mechanistic relationships between physical
fields because of a more accurate lifecycle. Our improved
phasing suggests that ENSO has a more significant cyclical
component than previously thought.

Results
The perspective adopted here is to view a climatic time series
x0; x1; ¼ ; xN�1 2 Rd as an observable of an abstract dynamical
system representing the evolution of the Earth’s climate. That is,
we envision that there is an (unobserved) state space Ω and a
function X : Ω ! Rd such that xn= X(ωn), where ωn∈Ω is the
climate state underlying snapshot xn. Moreover, we consider that
there is an (unknown) dynamical evolution law Φt :Ω→Ω, such
that Φt(ω0) is the climate state reached at time t starting from an
initial state ω0. In particular, the climate states underlying the
observed data are given by ωn=Φn Δt(ω0), where Δt is a fixed
sampling interval. In the analyses that follow, X will correspond
to monthly averaged SST, sampled at d Indo-Pacific gridpoints at
a monthly sampling interval Δt.

Given the data xn, our goal is to identify a collection of obser-
vables (eigenfunctions) gj : Ω ! C with two main features: cycli-
city and slow correlation decay. First, the observables are cyclic in
the sense that there is an associated period over which they
approximately return to their original values. Second, the obser-
vables are slowly decaying (or “persistent” or “coherent”) in the
sense that their norm decreases slowly under forward evolution of
the dynamics. In the context of this work, “slowly decaying” and
“slowly decorrelating” observables are synonymous notions.

From a machine-learning perspective, this task corresponds to
an unsupervised learning problem aiming to identify slowly
decaying cyclic observables. Note that cyclicity is a significantly
different objective than variance maximization performed in the
Proper Orthogonal Decomposition (POD), EOF analysis, and
related techniques7,41,42. Complex EOF analysis43, Principal
Oscillation Pattern (POP) analysis44 and spectral analysis of
autoregressive models45 seek to identify oscillatory modes from
time series, though generally through the restrictive lens of linear
state space dynamics. Operator-theoretic approaches are able to
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consistently extract cyclicity and coherence from nonlinear
systems30,46–48, without invoking a specific modeling ansatz such
as linear dynamics.

In the present work, to cope with the high-dimensional data
spaces resulting from climatic variables (e.g., SST fields), these
operators will be learned using geometrical kernel methods
combined with delay-embedding methodologies49–51. Delay-
coordinate maps are also leveraged for analysis of climatic time
series by extended EOF (EEOF) analysis52, Singular Spectrum
Analysis (SSA)53–55, and related approaches, which extract tem-
poral principal components (PCs) and associated spatiotemporal
patterns (EEOFs) through singular value decomposition of a
trajectory data matrix in delay-coordinate space. The success of
these methods at recovering oscillatory patterns, including ENSO,
has been interpreted from both state space55 and operator-
theoretic perspectives33,37. Ultimately, however, the extracted PCs
from EEOF analysis/SSA are constrained to be linear functions of
the delay-embedded data, and do not provide direct spectral
information about evolution operators acting on observables.

Operator-theoretic formalism. Similar to classical methods such
as EOF analysis, our approach assumes that the dynamics Φt on
Ω is a stationary, ergodic process. We note that while the climate
system is not strictly stationary, our methods perform well in
extracting the dominant cycles on interannual or shorter time-
scales. Mathematically, the stationarity is governed by a prob-
ability measure μ on Ω, which is preserved by the dynamics;
formally μ(Φ−t(A))= μ(A) for any measurable set A⊆Ω. The
ergodicity assumption is an indecomposability hypothesis: there
are no non-trivial Φt-invariant sets, meaning that Ω cannot be
decomposed into separate subsystems.

Operator-theoretic approaches shift attention from studying the
properties of the (generally, nonlinear) flow Φt on state space to
studying its induced action on linear spaces of (generally, nonlinear)
observables. We denote by F the space of complex-valued
functions on Ω. The space F has the structure of an infinite-
dimensional linear (vector) space equipped with the standard
operations of function addition and scalar multiplication, but the
elements of F need not be linear functions. We will consider the

Fig. 1 Operator-derived lifecycle of the El Niño Southern Oscillation (ENSO). Left: Schematic representation of the canonical ENSO lifecycle recovered
from a control integration of the Community Climate System Model version 4 (CCSM4). Center panel: 2D phase space associated with the real and
imaginary parts of the eigenfunction g of the generator representing ENSO. Each point in the 2D phase space represents an ENSO state. Dynamical
evolution progresses in an approximately cyclical manner via counter-clockwise rotation. The period of the cycle is equal to 2π/α≈ 4 yr, where α is the
imaginary part of the eigenvalue corresponding to g. The 2D phase space is partitioned into S= 8 “wedges” of equal angular extent (distinguished by
different solid colors), each corresponding to a distinct ENSO phase. Outer panels: The panels linked to each wedge are phase composites of sea surface
temperature (SST) (colors) and surface wind anomaly fields (green arrows). Collectively, they reveal a complete ENSO cycle, starting from a mature El
Niño in Phase 1, and progressing to an El Niño to La Niña transition in Phase 3, mature La Niña in Phases 4–5, and La Niña to El Niño transition in Phase 7.
The identified phases are equivariant, meaning that they each span a time interval of 2π/(Sα)≈ 0.5 yr, and under forward dynamical evolution by 0.5 yr the
samples making up phase i correlate strongly with the samples making up phase i+ 1. By virtue of this property, the generator-based ENSO lifecycle
captures the duration asymmetry between the El Niño to La Niña and La Niña to El Niño transition. This is evidenced by the fact that the strongest La Niña
anomalies occur in Phase 4, as opposed to Phase 5 (which would be expected for a time-symmetric oscillation). Right: Flow chart of the computational
approach for identification of slowly decaying cycles through eigenfunctions of transfer/Koopman operators. Red-, blue-, and orange-shaded boxes
represent input, computation, and output, respectively.
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subspace of observables H ¼ ff 2 F :
R
Ω jf j2 dμ<1g. Intuitively,

thinking of μ as the climatological distribution of the system, the
space H consists of all observables with finite climatological mean
and variance.

The dynamics acts naturally by composition on each element
f0∈H. For invertible Φt, the composition operator, ft≔ Ptf0=
f0∘Φ−t, known as the transfer operator, evolves f0 forward t units
of time to the function ft. Dual to (and here, the inverse of) the
transfer operator Pt, is the Koopman operator defined by
Utf0≔ f0∘Φt. Traveling forward in time along a trajectory
fΦtðω0Þgt ≥ 0, the observations recorded by f0 along this trajectory
are f0(Φt(ω0))= (Utf0)(ω0).

Ergodicity may be equivalently characterized by the constant
function 1 being the unique (normalized) fixed point of Ut.
Ergodicity implies (via Birkhoff’s Ergodic Theorem or the strong
law of large numbers) that sufficiently long trajectories in Ω will
well sample μ. This will be important in this paper because we are
using a single trajectory as our input data. We note that many
operator-theoretic algorithms may also use information from
multiple trajectories and are not restricted to using a single time
series. Similar operator constructions can be carried out in other
functional settings, notably there is a well-developed spectral

theory for infinite compositions of different transfer operators
arising from non-autonomous dynamical systems24,56–58.

We now describe how the spectral properties of Pt and Ut provide
natural notions of persistent almost-cyclic functions and observa-
tions. We distinguish between methods applicable for discrete- and
continuous-time dynamics. Discrete-time approaches are based on
approximations of the time-1 transfer/Koopman operators, whereas
continuous-time approaches target the infinitesimal generators of the
transfer/Koopman evolution semigroups. In the present setting of
observables in the Hilbert space H associated with the invariant
measure, the Koopman and transfer operators are unitary, and are
duals to one another under operator adjoints, i.e., Pt*=Ut. Thus,
working with Pt vs. Ut is merely a matter of convention.

Persistent cycles from the spectrum: discrete time. Let P= P1 be
the time-1 transfer operator on H. If Pg=Λg, with g≢ 0, we call
Λ 2 C an eigenvalue and g an eigenfunction. One has11

that ∣Λ∣= 1, ∣g∣ is constant, and the collection of all eigenvalues of
P, denoted σe(P), is a subgroup of the unit circle (if Λ; Λ̂ 2 σeðPÞ
then ΛΛ̂ and Λ=Λ̂ are both in σe(P)). As a simple example, if our
phase space is S1 (a circle of circumference 2π) and Φ=Φ1

rotates the circle by an angle α, then P has eigenvalues Λk= eikα

Fig. 2 Comparison of EOF (covariance) eigenfunctions (a–d) and transfer operator eigenfunctions (e–h) for extraction of approximately cyclic
observables of the Lorenz 63 (L63) chaotic system. a The principal component (PC) corresponding to the leading EOF as a scatterplot (color is the EOF
value) on the L63 attractor computed from a dataset of 16,000 points along a single L63 trajectory, sampled at an interval of Δt= 0.01 natural time units.
The black line shows a portion of the dynamical trajectory spanning 10 time units, corresponding to the time series shown in d, h and phase portraits in c, g.
b The phase angle on the attractor obtained by treating the leading two PCs as the real and imaginary parts of a complex observable. The black line depicts
the same portion of the dynamical trajectory as the black line in a. c A 2D projection associated with the leading two EOF PCs for the same time interval as
d. Since these PCs correspond to linear projections of the data onto the corresponding EOFs, the evolution in the 2D phase space spanned by PC1, PC2 has
comparable complexity to the “raw” L63 dynamics, exhibiting a chaotic mixing of two cycles associated with the two lobes of the attractor. e–h The
corresponding results to a–d, respectively, obtained from the leading non-constant eigenfunction g1 of the transfer operator Pϵ (see Methods). f
The argument of the complex-valued g1 (color is the argument) evaluated at the 16,000 points in the trajectory. Notice that there is a cyclic “rainbow” of
color as one progresses around each individual L63 attractor wing in phase space. g Plots of these same arguments of g1, now in the complex plane,
demonstrating that the output of g1 lies approximately on the unit circle. h The real part of the trajectory in g plotted versus time, illustrating approximately
simple harmonic motion. Thus, the second eigenvector g1 of the transfer operator Pϵ extracts the dominant cyclic behavior of L63 on the attractor’s wings.
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with corresponding eigenfunctions eikθ for k 2 Z and θ∈ S1.
Analogous results hold for the Koopman operator U=U1.

Numerical estimation of P or U inevitably introduces
perturbations or “noise” to the operators, and leads to finite-
dimensional representations which cannot exactly comply with
the above theory. In particular, numerical representations of P are
often not unitary. Nevertheless, numerical schemes such as
projected restrictions of P or U onto subspaces of H spanned by
locally supported or globally supported basis functions have been
highly successful17,23,29,59 and in certain settings, convergence
results for the spectrum and eigenfunctions have been
proven14,15,22,60–62. In these schemes, the spectrum of the
approximate P is contained in the unit disk fz 2 C : jzj≤ 1g,
rather than lying on the unit circle fz 2 C : jzj ¼ 1g. This
addition of noise, which may also be done theoretically, for
example by convolution with a stochastic kernel15,62,63, is
frequently harnessed to easily select the most important
eigenvalues from the typically infinite collection σe(P), namely
those eigenvalues with large magnitude (close to 1).

Let Pϵ denote this perturbed operator and consider an
eigenfunction g(ϵ) corresponding to an eigenvalue Λ(ϵ) of large
magnitude. Because ðPϵÞtgðϵÞ ¼ ðΛðϵÞÞtgðϵÞ, these eigenfunctions
g(ϵ) decay slowly under iteration of Pϵ relative to the decay rates of
eigenfunctions corresponding to eigenvalues of smaller magni-
tude. It is these “leading” or “dominant” eigenfunctions that will
persist over long timescales and will accurately describe the
evolution of the dynamics over similarly long timescales.

Returning to our example Φ rotating the circle by an angle α,
the eigenfunctions of Pϵ with least decay will be approximations
of (and for carefully chosen approximations, equal to) e±iθ

(k= ±1) because they are the most regular, and persist longest
under continued perturbation. The corresponding eigenvalues are
ΛðϵÞ

± 1 ¼ Rϵe
± iαϵ � Rϵe

± iα, for 0 < Rϵ⪅ 1, which correspond to
rotation by ±α with small decay rate of Rϵ per unit time. Thus, the
eigenvalues of Pϵ of greatest magnitude (excluding the eigenvalue
1) automatically identify the rotation angle α. See Methods for a
description of our numerical approach for approximating P.

Persistent cycles in continuous time. In continuous time one can
consider generators for the transfer and Koopman operators.

These generators are time-derivatives of Pt and Ut, and are given
by Gf ¼ limt!0

1
t ðPtf � f Þ and Vf ¼ limt!0

1
t ðUtf � f Þ, respec-

tively. The operators G and V are defined on a dense subspace of
H, and are skew-symmetric duals to one another, i.e., G=V*=
−V. One has that σe(G)= σe(V) are additive subgroups of iR
(the eigenspectrum lies on the imaginary axis in C); that is, if
λ; λ̂ 2 σeðGÞ ¼ σeðVÞ then λþ λ̂ and λ� λ̂ are both in σe(P).
Eigenvalues of G and V are interpreted as rates of rotation per
unit time. If our phase space is S1, and Φt rotates the circle at a
rate α, then G and V have eigenvalues λk= ±ikα and corre-
sponding eigenfunctions eikθ for k 2 Z and θ∈ S1.

The operators G and V “generate” the semigroup of operators
Pt and Ut by Pt= etG and Ut= etV, and the spectral mapping
theorem connects their spectra: σeðPtÞ ¼ etσeðGÞ and σeðUtÞ ¼
etσeðVÞ (if Φt is not invertible, the spectral value 0= e−∞ is treated
separately). For example, the relationship Λ= eλ links the
eigenvalues Λ of the discrete-time operators with the eigenvalues
λ of their continuous-time counterparts.

As in the discrete-time setting, one may perturb the generators
by addition of a diffusion process or through a numerical scheme.
In the former case, if Φt is governed by a vector field then natural
“diffused” versions Gϵ and Vϵ of G and V are provided by
normalized forward and backward Kolmogorov equations,
respectively. In the latter case, one may apply various numerical
schemes26,30,34,36,64. The scheme34 is outlined in the Methods
section. The eigenvalues of Gϵ and Vϵ are in general complex
numbers with zero or negative real part. For the same reasons as
in the discrete-time setting, one seeks eigenvalues with real part
closest to the imaginary axis, which describe the slowest decay
rate. In our example of a circle rotation with rotation rate α, the
eigenfunctions of least decay rate are e±iθ (k= ±1) with
corresponding eigenvalues λðϵÞ± 1 ¼ �rϵ ± iαϵ � �rϵ ± iα, for
rϵ⪅ 0 (rϵ is analogous to logRϵ from the discrete-time setting).

Eigenvalue frequency analysis of monthly-averaged Indo-
Pacific SST. We analyze model and observational SST data over
the Indo-Pacific domain 28∘E–70∘W, 60∘S–20∘N. This domain
was selected as a representative region of activity for several large-
scale modes of climate variability on seasonal to decadal

Fig. 3 Leading generator eigenvalues λj computed from CCSM4 (a) and ERSSTv4 (b) Indo-Pacific SST data, highlighting eigenvalues corresponding to
seasonal, interannual, decadal, and trend modes. The vertical and horizontal axes show the frequency νj ¼ Im λj=ð2πÞ and growth rate, Re λj, respectively.
Note that complex eigenvalues occur in complex-conjugate pairs as appropriate for describing oscillatory signals at the corresponding eigenfrequencies.
Moreover, negative values of Re λj correspond to decay. Lines connecting eigenvalues serve as visual guides for the seasonal (periodic), trend, and ENSO
branches of the spectra. The annual (dark blue) and ENSO (red) eigenfrequencies indicated in the spectra correspond, through their imaginary parts, to the
frequencies νannual and νENSO discussed in the main text. Note that decadal modes are present in the CCSM4 spectrum, but they have larger decay rates,
�Re λj , than the range depicted in a. See Supplementary Table 3 for a listing of the leading 25 generator eigenvalues extracted from CCSM4 and ERSSTv4.
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timescales, including ENSO, ENSO combination modes65, and
the Interdecadal Pacific Oscillation (IPO)66. The model data
comprise 1300 yr of monthly-averaged SST fields from a pre-
industrial control integration of the Community Climate System
Model Version 4 (CCSM4)67, sampled at the model’s native
ocean grid of approximately 1∘ resolution. As observational data,
we use monthly averaged SST fields at 2∘ resolution from the
Extended Reconstructed Sea Surface Temperature Version 4
(ERSSTv4) reanalysis product68 over the period January 1970 to
February 2020. The resulting SST data vectors xn have dimension
d= 44,771 and 4868 for CCSM4 and ERSSTv4, respectively.

Our numerical approach builds an approximation of the
generator in a data-driven basis consisting of eigenvectors of a
kernel matrix. The kernel matrix, K, has size ~N ´ ~N , where
~N ¼ N � Qþ 1, and is constructed from delay-embedded SST
fields over a window of Q− 1= 48 lags of length Δt= 1 month,
corresponding to an interannual time interval of Q Δt= 4 years.
Its eigenvectors represent temporal patterns that can be thought
of as nonlinear generalizations of the PCs obtained via EEOF
analysis. Previously69–71, such kernel eigenvectors were shown to
successfully recover physically meaningful modes from monthly
averaged SST data in both Indo-Pacific and Antarctic domains.
For our purposes, however, the eigenvectors and eigenvalues of K

are employed to construct a data-driven version of the regularized
generator Vϵ, and extract dominant modes by solution of an
associated eigenvalue problem (see Methods). The approximation
basis formed by the eigenvectors of K is (i) learned from the high-
dimensional SST data at a feasible computational cost; (ii) is
refinable, in the sense of having a well-defined asymptotic limit as
the amount of data N increases; and (iii) as the delay window
Q Δt increases, it is provably well-adapted to representing
eigenfunctions of the generator33,37. The results we obtain are
not particularly sensitive to the precise choice of kernels and lags,
nor to the use of the generator or transfer operator. For example,
similar results can be obtained with the transfer operator PΔt

constructed using a single lag (Q= 2) of length ℓ= 12 months
(see Methods). A summary of the dataset attributes and
numerical parameters employed in our computations is displayed
in Supplementary Tables 1 and 2.

Figure 6 and Supplementary Table 3 show eigenvalues λ0, λ1,…
of the generator Vϵ computed from the CCSM4 and ERSSTv4
datasets, arranged in order of decreasing real part (i.e., increasing
decay rate). The leading eigenvalues form distinct branches
corresponding to (i) the annual cycle and its harmonics; (ii)
ENSO and its combination modes with the annual cycle; and (iii)
low-frequency (decadal) modes with vanishing oscillatory

Fig. 4 Rectification of a variable-speed oscillator by eigenfunctions of the generator. The dynamics is chosen such that the speed dθ
dt is faster when θ lies

in the interval Θfast≔ (0, π) and slower for θ∈Θslow≔ (π, 2π), resulting in the time series for cosðθðtÞÞ shown in c. a The state space of the original
oscillator, i.e., the unit circle S1 consisting of all phase angles θ∈ [0, 2π), colored by the value of the real part of the function forig(θ)= eiθ, namely
Re forigðθÞ ¼ cos θ. In an analogy with ENSO, θ= 0 and π (green dot) would correspond to El Niño and La Niña climate states, respectively, while cos θ
would correspond to a Niño index. The asymmetry in rotation speed then mimics the fact that El Niño–La Niña transitions take a shorter amount of time
than La Niña–El Niño transitions. In d we push down to rectified state space and show in color the real part of forig∘h−1. Note that La Niña (green dot)
appears earlier in this constant-speed cycle on rectified space; this compensates for the variations of speed of the original oscillator. It is this
representation, i.e., the original “ENSO index” mapped to the rectified state space, that we focus on in Fig. 5. e The real part of the eigenfunction
grectðθ0Þ ¼ eiθ

0
(color) on rectified space, which appears as a pure cosine wave in f. The evolution of the phase angle in the rectified state space is that of a

harmonic oscillator with constant angular frequency 2π/T; note the period is T= 4 years in analogy with ENSO. Finally, in b we pull the function grect back
to the original space and display the real part of grect∘h (color).
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frequency. In the case of the observational data, the spectrum also
contains a trend-like mode representing climate change, as well as
combination modes representing the modulation of the annual
cycle by the trend (see Supplementary Fig. 1).

In interpreting the results in Fig. 6 and Supplementary Table 3,
it should be kept in mind that, modulo a small amount of
numerical drift, the CCSM4 data are generated by autonomous
dynamics associated with fixed (pre-industrial) concentrations of

Fig. 5 ENSO lifecycle for CCSM4 (a–h) and ERSSTv4 (i–p), reconstructed using lagged Niño 3.4 indices fnino and the complex eigenfunction gj of the
generator. a, e, i, m The evolution of the ENSO state in the 2D phase spaces determined from the Niño- (a, i) and generator-based (e, m) indices. For
clarity of visualization, in a we show the evolution over a 100-year portion of the 1300-year dataset. Significant historical El Niño and La Niña events are
marked in red and blue lines in m for reference. b, j (resp. (f, n)) show scatterplots of the original (resp. rectified) Niño- and generator-based lifecycle
colored by the Niño 3.4 index. These plots are analogous to the original and rectified oscillator plots in Fig. 4 (d, e), respectively. c, g, k, o The Niño 3.4 time
series (c, k) and the real part of gj (g, o), plotted over a 30-year portion of the available data. These time series are analogous to those in Fig. 4 (c, f)
respectively. d, h, l, p The phase angles determined from fnino (d, l) and gj (h, p). Note that the slope in h, p is approximately constant, consistent with the
automatic rectification process, namely that trajectories precess around the origin at a fixed angular speed. This regular rectification from our complex
eigenvector is in strong contrast to the irregular angular behavior of the lagged Niño 3.4 index in d, l.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26357-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6570 | https://doi.org/10.1038/s41467-021-26357-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


greenhouse gases and perfectly periodic radiative forcing
representing the seasonal cycle. In particular, the phase of the
seasonal cycle is implicitly represented in the delay-embedded
SST data. The autonomous techniques employed in this paper
are therefore rigorously applicable in this dataset; see Supple-
mentary Note 1 for further details. In contrast, the ERSSTv4 data
are subject to different natural and anthropogenic external
forcings (e.g., volcanoes and greenhouse gas emissions, respec-
tively), so strictly speaking our autonomous methodology does
not formally apply here. Nevertheless, our spectral decomposi-
tion separates the trend (corresponding to a real eigenvalue)
from the periodic and approximately periodic cycles (corre-
sponding to complex eigenvalues), which are by definition
trendless. In fact, we posit that an advantage of our approach is
that it is capable of extracting trendless cyclical modes in
ERSSTv4 without ad hoc detrending of the data, which is
oftentimes performed in the context of EOF analysis and related
approaches.

In both CCSM4 and ERSSTv4, the seasonal-cycle modes occur
first in our ordering, which is consistent with the fact that these are
purely periodic modes remaining correlated for arbitrarily long
times. Two pairs of eigenfrequencies νj :¼ Im λj=ð2πÞ in this family
are accurately identified by the data-driven eigenvalue problem,
namely the annual (1 yr−1) and semiannual (2 yr−1), eigenfre-
quencies where the numerical results agree with the true values to
within 1% and 4%, respectively (see Supplementary Table 3). The
third (triannual) harmonic is not identified as accurately, being
assigned an eigenfrequency of≃2.5 yr−1 as opposed to the expected
3 yr−1. This discrepancy is at least partly due to finite-difference
errors in our numerical approximation of the generator; this is
discussed in more detail in the Methods section. Other contributing
factors to approximation errors for the eigenfrequencies include the
Nyquist limit (which imposes a limit of 1/(2Δt)= 6 cycles/yr on the
maximum frequency that can be resolved with a monthly sampling
interval) and the addition of diffusion (which in general perturbs

Fig. 6 ENSO phases for CCSM4 (a, b) and ERSSTv4 (d, e), identified using lagged Niño 3.4 indices fnino (a, d) and generator eigenfunctions gj (b, e).
Phases are selected by partitioning the 2D phase space into eight angular sectors of uniform angular extent (equal to 45∘), and then selecting the samples
with the m largest distances (corresponding to ENSO amplitudes) from the origin in each sector. We use m= 200 and m= 20 for CCSM4 and ERSSTv4,
which corresponds to ~1.5% and 3% of the available data per phase, respectively. The selected data points in each phase are marked by distinct colors, with
red corresponding to the El Niño phase, Phase 1. Progression from Phase 1 to Phase 8 takes place in a counter-clockwise sense. The La Niña phases in the
Niño 3.4 and generator representation are Phases 5 (blue) and 4 (pink), respectively. Gray lines show the phase space evolution over the entire 1300-year
(a, b) and 50-year (d, e) analysis intervals. c and f The rectified generator angle (y-axis) against the Niño-3.4 angle (x-axis). The yellow curves fit the data
points and by construction pass through the origin (0,0), which corresponds to El Niño for both the Niño-3.4 and generator representations. Note that
according to the yellow curve in c, El Niño for the Niño-3.4 representation, occurring at angle π on the x-axis, corresponds to an angle of≈3π/4 on the y-
axis for the rectified cycle. This quantifies the more rapid transition between El Niño and La Niña in CCSM4, in comparison to the reverse transition.
Although less noticeable in the yellow curve in f, the ERSSTv4 results display a similar El NiñoLa Niña transition asymmetry, manifested by the tendency of
La Niñas (dark blue dots) to occur below the diagonal dashed line. The speed of transition is indicated at the finer level of phases by the green lines, which
are spaced equally on the x-axis according to Niño-3.4 phase boundaries. Wider (resp. narrower) spacing of the horizontal green lines corresponds to a
slower (resp. faster) transition between phases.
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the eigenvalues along both the real and imaginary axes) in the
construction of the regularized generator Vε.

Beyond the seasonal cycle branch, the CCSM4 spectrum exhibits
a branch of eigenvalues consisting of a pair of fundamental modes
with an interannual frequency ν7≃ 0.25 yr−1= : νENSO, as well as
combination frequencies νj, j= 9, 11, 13, 15, approximately equal to
νENSO+mνannual, where νannual= 1 yr−1 is the annual-cycle
frequency, and m is an integer taking values in the set
{−2,−1, 1, 2}. Note that the spacing of 2 in the index j is due to
restricting to positive frequencies in this discussion; see Supple-
mentary Table 3.

We will shortly interpret the eigenfunction corresponding to
the eigenvalue νENSO as representing the fundamental ENSO
cycle. We note that this choice is unambiguous as the eigenvalue
with largest real part and frequency close to 0.25 yr−1. Similarly,
the frequencies νENSO+mνannual are naturally interpretable as
combination modes, consistent with the group structure of the
generator spectrum described above. Further notable aspects of
these results are that (i) distinct generator eigenvalues correspond
to distinct combination frequencies (as opposed to EOF analysis,
which mixes the combination and fundamental frequencies65);
and (ii) two harmonics are identified corresponding to the annual
and semiannual cycles. We have verified that the ENSO
eigenfrequencies extracted from the CCSM4 data remain
unchanged to two significant digits for embedding windows
ranging from 1 year (Q= 12) to 16 years (Q= 192); see
Supplementary Table 4.

ENSO and ENSO combination eigenvalues are also identified
in the ERSSTv4 spectrum, but these eigenvalues occur after an
eigenvalue with vanishing imaginary part that we interpret as a
representation of climate change trend. As shown in Supplemen-
tary Fig. 1(a), the eigenfunction time series corresponding to this
eigenvalue has a manifestly nonstationary character, which is
broadly consistent with accepted climate change signals such as
persistent warming from the 1980s to early 2000s, “hiatus” during
the mid to late 2000s, and accelerated warming during the early to
mid 2010s72. In addition, the trend eigenfunction time series is
found to correlate with area-averaged anomalies of Indo-Pacific
SST and global surface air temperature, with 0.83 and 0.78
correlation coefficients, respectively. As with ENSO, this trend
eigenfunction comes with its own “combination frequencies”
close to 1 yr−1 (since the trend frequency is zero), capturing the
modulation of the annual cycle by the trend (see Supplementary
Fig. 1(b)). Aside from this trend family, both the CCSM4 and
ERSSTv4 spectra contain additional modes with zero correspond-
ing eigenfrequency, representing internal decadal variability of
the Indo-Pacific69,70. The spectra also contain interannual modes
with higher frequencies than νENSO, notably a mode with an
approximately 3-year eigenperiod (see Supplementary Table 3).
In what follows, we will focus on the fundamental ENSO
eigenfunctions and the corresponding lifecycle analysis. These
correspond to eigenfunctions g7 and g6 in the CCSM4 and
ERSSTv4 ordering, respectively. Since the observational data are
sparser and noisier than the model data, we expect larger
(numerical) decay rates for the observational data as stronger
diffusion is needed to regularize the generator (see Methods).
This is borne out in Fig. 6, where the real parts of the generator
eigenvalues for ENSO and the ENSO combination modes are
more negative for the ERSSTv4 data than for CCSM4.

In summary, we have extracted ENSO eigenfunctions and
eigenfrequencies from two datasets (CCSM4 and ERSSTv4), using
two computational techniques (generator and transfer operator)
and a range of numerical parameters (lag and embedding window
length). Moreover, in each spectral analysis experiment, there is
no ambiguity in associating particular eigenfunctions with ENSO,
as discussed above.

Rectified cycles from eigenfunctions. As described above, when
nonzero eigenfrequencies exist, the dominant eigenfunctions
correspond to observables with approximately cyclic evolution,
even if the underlying flow Φt is aperiodic. Below, we will use this
idea to extract a rectified ENSO lifecycle from the spatiotemporal
SST data. We first describe the mathematical construction, using
idealized dynamical systems as examples.

Let ðUϵÞtgðϵÞ ¼ ðΛðϵÞÞtgðϵÞ as before. We follow an orbit in state
space Ω starting at some ω0. Evaluating both sides of ðUϵÞtgðϵÞ ¼
ðΛðϵÞÞtgðϵÞ at ω0, we obtain ððUϵÞtgðϵÞÞðω0Þ � gðϵÞðΦtðω0ÞÞ ¼
ðΛðϵÞÞtgðϵÞðω0Þ, where we have inserted the definition of Ut

0 as
the middle term, recalling we have Uϵ ≈U in some sense. Defining
the multiplicative action of a complex number Λ on another
complex number by MΛ : C ! C by MΛz=Λz, we have that
gðϵÞðΦtðω0ÞÞ � Mt

ΛðϵÞ ðgðϵÞðω0ÞÞ. Thus, we may think of the
eigenfunction g(ϵ) as an approximate projection (or factor map)
from Ω to C; this is summarized in the following (approximate)
commutative diagram:

Evolution under Φt on Ω is projected down (by g(ϵ)) to
approximately a fixed multiplicative action on C by Λ(ϵ). Further,
for ∣Λ(ϵ)∣ ≈ 1, we may consider the multiplicative action of MΛðϵÞ

as an approximate action on S1 :¼ fz 2 C : jzj ¼ 1g. Recalling
that ΛðϵÞ

± 1 � Rϵe
± iα with 0 < Rϵ⪅ 1, the multiplicative action of

MΛðϵÞ
± 1

corresponds to an approximate rotation on S1 by an angle

of ±α. Thus, for jΛðϵÞ
± 1j � 1, evolution under Φt on Ω is projected

down (by g(ϵ)) to approximately a fixed rotation on S1 by α. The
above statement is illustrated numerically for the Lorenz
equations in Fig. 2(e–g), where g(ϵ)(Φt(ω0)) is plotted for
t∈ [0, 160]. The evolution lies approximately on S1 � C
(Fig. 2(g)), rotating at an approximately fixed rate (Fig. 2(h)).
See Supplementary Movie 1 for a more direct visualization of
these results. Projections of this type for real eigenfunctions of the
transfer operator have been used to project out fast dynamics in
multiple time scale systems73.

The fact that the rotation on S1 occurs at close to a fixed rate is
a key aspect of our ENSO analysis, and so we emphasize this
property by discussing a simple example that is strongly
illustrative for climate cycles such as ENSO. We imagine a crude
model of the ENSO cycle with one-dimensional phase space
Ω= S1. The dynamics of this idealized model is given by a flow
Φt: S1→ S1, generated by a nonconstant velocity on S1. We
choose a sawtooth-like velocity field to model the observation that
the La Niña to El Niño transition is slower than the transition in
the other direction74; see Fig. 4(c) for the corresponding evolution
of a “normalized Niño 3.4” index vs. time and Supplementary
Movie 2 for the corresponding animation. In this situation there
is no need to “extract” a cycle in the dynamics, because the
dynamics is a cycle—but importantly with nonconstant speed.

Similar to above, let Mt
Λ denote the flow that advances the

angle on S1 by argðΛÞt, where argðΛÞ ¼ ð2πÞ=T and T is the
period of the cycle. The flow Mt

Λ has a constant velocity around
S1, namely 2π/T; see Fig. 4(f) for the corresponding cosine-like
evolution. Because Φt and Mt

Λ are both cycles of the same period,
there exists a homeomorphism h: S1→ S1 conjugating Φt and
Mt

Λ; that is, h �Φt ¼ Mt
Λ � h, summarized in the commutative
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diagram below:

We denote by θ the angle in the “original” cycle (the upper part of
the commutative diagram) and by θ0 the angle in the rectified
cycle (the lower part of the commutative diagram); by definition
θ0 ¼ hðθÞ. We set θ= 0 to represent the peak El Niño state in our
crude cyclic model of ENSO, and without loss of generality we fix
h(0)= 0 so that peak El Niño occurs at the same angle θ ¼ θ0 ¼ 0
in both the original and rectified cycles. We define θ= π as peak
La Niña, according to the original cycle, directly opposing El
Niño; this is represented by the green dot in Fig. 4(a).

The eigenfunction of the Koopman operator corresponding to
Mt

Λ with eigenvalue Λ is grectðθ0Þ :¼ eiθ
0
; this eigenfunction is

illustrated Fig. 4(e) where the value of the real part of eiθ
0
is colored.

By the above conjugacy, the function (grect∘h)(θ)= eih(θ) is an
eigenfunction of Ut with eigenvalue Λ; see Fig. 4(a). Because La
Niña is reached more quickly from El Niño than vice-versa in the
original flow, so too (by conjugacy) must this occur in the rectified,
constant-speed flow. Thus, La Niña in fact appears earlier than half-
way through the rectified cycle; see the green dot in Fig. 4(e), which
lies at the angle h(π). Finally, let forig(θ)≔ eiθ represent the complex-
valued function corresponding to our crude cyclic model of ENSO,
where θ= 0 is El Niño and θ= π is La Niña. We can map forig to
the rectified space by f orig � h�1ðθ0Þ ¼ eih

�1ðθ0 Þ; the real part of this
latter function is shown in Fig. 4(b). We will use versions of the
functions forig and forig∘h−1 as our main demonstration of our
rectification process in Fig. 5. These results are an example of the
automatic rectification performed by Koopman eigenfunctions
(Theorem 17.1111) for systems with discrete spectra. Operator-
theoretic approaches to different kinds of rectification have also
been explored75,76.

A rectified ENSO lifecycle from eigenfunctions. We now apply
the ideas from the previous two subsections to the CCSM4 and
ERSSTv4 data, where grect in those sections will be the generator
eigenfunctions g7 and g6, arising from these two datasets,
respectively. In the following we will refer to g6 and g7 collectively
as simply gj. Figure 5 compares several aspects of the gj to new,
lagged ENSO indices fnino derived from the Niño 3.4 index output
from the CCSM4 and ERSSTv4 data as follows. At each time
instance, fnino is a 2D vector consisting of the current Niño 3.4
value and its value ℓmonths in the past; that is, (Niño 3.4(t), Niño
3.4(t− ℓ months)). We choose ℓ to be the lag that gives the most
cycle-like behavior for fnino. If the Niño 3.4 index evolved as a
perfect cycle with a period of T= 4ℓmonths, the two components
of fnino would be in quadrature (90∘ phase difference), resulting in
a purely angular motion in the associated 2D phase space. This
situation would be analogous to the evolution of the forig obser-
vable depicted in Fig. 4(a), which is periodic but not of fixed
frequency. Yet, in Fig. 5(a, i), it is evident that the evolution of
fnino exhibits significant departures from an ~4-year cycle, fea-
turing both retrograde and radial motion, particularly in the case
of the ERSSTv4 data (Fig. 5i). In Fig. 5(d, l), we show the evo-
lution of the phase angle obtained by treating the components of
fnino as the real and imaginary parts of a complex number, ana-
logous to the L63 example in Fig. 2(b, f) (note that the latter
representations are in the full phase space). Here, an approxi-
mately cyclical evolution of fnino would induce an approximately

monotonic phase evolution (modulo 2π), which would addi-
tionally be linear for a constant-frequency cycle. While such a
behavior is discernible in Fig. 5(d, i), the phase evolution of fnino is
clearly corrupted by high-frequency noise due to retrograde/
radial motion.

Consider now the generator eigenfunctions gj. The time series
plots (Fig. 5(c, g, k, o)) demonstrate that the real part of gj is
positively correlated with the Niño 3.4 index (the first component of
fnino): large positive values of Re gj tend to coincide with large
positive values of the first component of fnino, including a number of
significant events in the recent observational record such as the
1997/98 and 2015/16 El Niños. Recall that despite the presence of a
climate-change signal in the ERSSTv4 data, the extracted ENSO
eigenfunctions are trendless. Figure 5(f, n) displays scatterplots of
the 2D phase spaces associated with the real and imaginary parts of
gj, colored by the Niño 3.4 index. These plots are analogous to the
scatterplots of Re ðf orig � h�1Þ in Fig. 4(d), and illustrate that the
very negative Niño 3.4 index values (deep blue) occur not directly
opposite the very positive Niño 3.4 index values (deep red), but
instead appear earlier in the rectified cycle. These facts and the fact
that the corresponding eigenfrequencies νj are interannual and well-
approximate νENSO, provide evidence that the gj provide a
representation of the ENSO lifecycle; a fact which will be
corroborated further below using phase composites. Before doing
that, however, we note two important aspects of the results in Fig. 5.

First, the generator eigenfunctions provide a significantly more
cyclic representation of the ENSO lifecycle than conventional
Niño indices. In Fig. 5e, m, the 2D phase space trajectories
associated with the real and imaginary parts of gj are seen to
undergo a predominantly polar evolution, with little to no
retrograde motion when gj is located sufficiently away from the
origin (∣gj∣ ≳ 1). As noted above, this is in contrast to the
retrograde and radial motion seen in the Niño 3.4-based fnino
index. Moreover, in separate calculations we have verified that the
generator eigenfunctions gj are also more cyclical than the two-
dimensional fnino indices constructed from the Niño 4, 3, and
1+2 indices. Two-dimensional phase space representations of the
ENSO state with approximately cyclical behavior can also be
constructed through multivariate indices, such as SST and
thermocline depth anomalies4, that reveal recharge–discharge
processes77, but these representations are also generally less
coherent than those provided by the generator eigenfunctions.

Second, the generator eigenfunctions “rectify” the ENSO cycle
in a manner analogous to the oscillator example in Fig. 4. In
Fig. 5(h), the phase angle associated with the CCSM4-derived gj
undergoes a near-linear evolution, with some excursions from
this behavior occurring. We observe that these deviations from
linear behavior occur when the Niño 3.4 (scalar) index is close to
zero (white color in Fig. 5(h, p)). Mathematically, deviations from
cyclic behavior are more likely when ∣gj∣ is small, which implies
Re gj is also small, and is in turn consistent with weak ENSO
amplitude. Visually, the rectification induced by gj can be seen in
the time series plots in Fig. 5(c, g), where a comparatively
uniform El Niño–La Niña cycling of Re gj (Fig. 5(g)) is contrasted
with slow La Niña to El Niño ramp ups followed by rapid El Niño
to La Niña decays in the fnino representation (Fig. 5(c)). In
Fig. 6(c), we examine the relationship between the phase angles
associated with fnino and gj through a curve fit of θ0 :¼ arg gj as a
function of θ :¼ arg f nino (shown in a solid yellow line). The fitted
curve provides an estimate of the homeomorphism function h
discussed above in the context of the oscillator example. When
θ= π (i.e., during La Niñas according to the Niño 3.4 index), the
fitted θ0 is less than π, which shows that La Niña events occur
earlier than half-way through the gj cycle, as in Fig. 4.
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A similar general behavior of the phase angle is observed for
the ERSSTv4 data (Figs. 5(l, p) and 6(f)), though as one might
expect the results are noisier than for CCSM4. Still, the phase
angle progression associated with gj (Fig. 5(p)) exhibits a
significantly more rectified behavior than its fnino counterpart
(Fig. 5(l)), particularly during significant El Niño/La Niña events
(highlighted with green star markers). Interestingly, the generator
angle arg gj corresponding to La Niña events following strong El
Niños (e.g., the 1973/74 and 1999/00 La Niñas in Fig. 5(n)) is
close to 90∘. This is consistent with the fact that strong
consecutive El Niño and La Niña events in the observational
record have a tendency to occur one year apart, corresponding to
a quarter of the 4-year ENSO cycle.

In summary, our spectral analysis extracts a canonical ENSO
cycle, and provides rectified coordinates representing the cycle as
an approximately fixed-speed oscillation. In rectified space it is
clear that the representation of the ENSO cycle in terms of Niño
indices (SST anomalies) is asymmetric because La Niña appears
earlier (in phase/angle space) around the one-dimensional cycle
(see Fig. 5(f, j)). Without the rectified representation, it would be
difficult to assign a characteristic speed/frequency around the
cycle. This notion of characteristic frequency will be useful below
for constructing phase composites, and should also be useful for
constructing reduced models. More broadly, we suggest that
rectification is an important conceptual construction, which
should be useful in a wide range of climate dynamics applications.

ENSO phases and their associated composites. We construct
reduced representations of the ENSO lifecycle by partitioning the
2D phase spaces associated with the generator eigenfunctions and
lagged Niño 3.4 index into angular phases, and then study the
properties of associated phase composites of relevant oceanic and
atmospheric fields. Figure 6(a, b, d, e) depicts the phase space
partitions over eight such phases for CCSM4 and ERSSTv4,
respectively. Each phase is constructed from samples at times for
which ∣gj∣ lies in the top m values in the corresponding 45∘ radial
sector, where m= 200 and 20 for CCSM4 and ERSSTv4,
respectively. Larger magnitude values of the eigenfunction gj
occur at times belonging to stronger ENSO cycles, and because we
seek a strong canonical ENSO cycle, we subsample at these times.
Mathematically, the phase composites constructed in this manner
can be interpreted as conditional expectations of observables (e.g.,
SST anomaly fields) with respect to a discrete variable πj:Ω→
{0, 1,…, 8} indexing the eight phases associated with eigenfunc-
tion gj. The inclusion of a “zero” phase nominally is to account for
states which are not ENSO-active, consistent with earlier
work24,78 that prioritizes larger values of real eigenfunctions and
equivariant functions; see Methods for further details.

It should be noted that in the eigenfunction-based representa-
tion, partitioning the phase space into phases of uniform angular
extent is a natural choice since the evolution is rectified and takes
place at an approximately constant angular frequency. In other
words, in the eigenfunction picture in Fig. 6(b, e), phases of
uniform angular extent correspond to phases of uniform
temporal duration, in this case approximately 4/8= 1/2 years.
In the case of the Niño 3.4-based representation in Fig. 6(a, d),
achieving a well-balanced partitioning is more challenging due to
variable/retrograde angular speed and significant radial motion.
Here, we have opted to employ a uniform partitioning scheme
which is common practice with many cyclical climatic indices,
including indices for the MJO and other intraseasonal
oscillations79. We note that this is already an improvement over
a characterization of ENSO phases based on scalar indices, since
such representation cannot distinguish the time tendency
(increasing or decreasing) of the oscillation.

In both the Niño 3.4- and eigenfunction-based representations,
the phases are numbered such that Phase 1 corresponds to El
Niño, and periodic cycling of the phases from 1 to 8 represents an
El Niño to La Niña to El Niño evolution. Turning back to the
Niño-3.4 representation in Fig. 5(b), Phase 5 is a La Niña phase
centered at angle π. On the other hand, in the generator
representation in Fig. 5(f), La Niña (deep blue, corresponding to
lowest Niño-3.4 values) occurs at Phase 4, centered at 3π/4, due to
the rectification. This means that the rectified generator
representation allocates more phases (Phases 5–8) in the La
Niña to El Niño portion of the ENSO lifecycle, thus yielding a
more granular description of ENSO initiation processes.

In Fig. 7, we examine phase composites of monthly averaged
SST and surface wind anomalies, constructed using the Niño 3.4
and generator phases from CCSM4 and ERSSTv4 depicted in
Fig. 7. In the the CCSM4 analysis we use surface wind data from
the atmospheric component of the model (CAM2). In the
ERSSTv4 analysis, the surface wind data is from the NCEP/
NCAR Reanalysis 1 product80. First, on a coarse level, both the
Niño- and generator-based composites recover the salient
features of the ENSO lifecycle. These include (i) the characteristic
El Niño “tongue” of positive SST anomalies in the Eastern
equatorial Pacific, together with its associated anomalous surface
westerlies, in Phase 1; (ii) meridional discharge in the ensuing
intermediate phases; and (iii) formation of negative SST
anomalies and easterly surface winds during the La Niña phases
(Phases 5 and 4 for the Niño- and eigenfunction–based
representations, respectively).

The Niño-3.4 and generator-based composites in Fig. 8 also
exhibit important differences, particularly in the La Niña to El Niño
transition phases. In both CCSM4 and ERSSTv4, Phases 6–8 of the
generator capture a reorganization of the large-scale surface winds
from a convergent configuration over the Maritime Continent in
Phase 6 to a divergent configuration initiating in Phase 7 with a
buildup of anomalous westerlies in the Western Pacific, developing
further in Phase 8. In particular, the anomalous westerlies in Phase
7 are consistent with the aggregate effect of higher-frequency,
stochastic atmospheric variability such as westerly wind bursts81

that trigger the development of El Niño events.
To examine this behavior in more detail, in Fig. 8 we show

phase-composited zonal wind profiles at the dateline for the
latitude range 40∘S–40∘N. These composites recover a number of
important atmospheric features of the ENSO lifecycle, including
(i) the mature El Niño state in Phase 1 characterized by strong
westerlies in the tropics maintaining positive SST anomalies in
the eastern part of the Pacific basin; (ii) El Niño decay in Phase 2
with decreasing easterly intensity and a southward shift82 of the
anomalous equatorial westerlies; (iii) La Niña initiation in Phase
3; (iv) La Niña growth, saturation, and decay in Phases 4–6; (v) El
Niño initiation in Phase 7, featuring a clear signal of anomalous
westerlies; and (vi) El Niño growth in Phase 8, cycling back to the
mature El Niño state in Phase 1. These features are resolved in
both the CCSM4 and ERSSTv4 datasets, though the observational
composites tend to display a higher degree of asymmetry between
the Northern and Southern hemispheres.

In contrast to the generator composites, the Niño-3.4-based
composites exhibit significantly more abrupt El Niño–La Niña and
La Niña–El Niño transitions, failing to recover a number of the
processes outlined above. In particular, Niño Phase 2 (which
represents El Niño decay in the generator picture), closely resembles
the mature El Niño phase in Phase 1. In Phase 3, the Phase 2
configuration is abruptly replaced by near-neutral conditions,
failing to capture the southward shift of the anomalous equatorial
westerlies associated with El Niño termination. The Niño-based
composites are characterized by a similarly abrupt La Niña to El
Niño transition in Phases 7 and 8, with weak negative SST
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anomalies in the eastern equatorial Pacific being replaced by well-
developed El Niño conditions. Importantly, there is no representa-
tion of anomalous westerlies during these phases. The more
physically informative reconstruction of the ENSO lifecycle
provided by the generator is likely due to the dynamical rectification
property discussed above, which enables phase partitioning in the
“intrinsic” phase of the oscillation. Beyond ENSO, we expect this
rectification property to be beneficial in diagnostic and mechanistic
studies of different climate phenomena.

Phase equivariance. Besides the diagnostic aspects described
above, an important requirement of an index representing a
coherent oscillatory phenomenon such as ENSO is that phase
progression is consistent with the temporal evolution of the
samples constituting each phase—this is the concept of phase

equivariance stated in the Introduction. In the particular setting
of the eight-phase ENSO reconstruction studied here, phase
equivariance means that the forward evolution of the samples
that constitute phase i by six months (the nominal duration of
each phase) should map these samples into the samples making
up phase i+ 1, modulo 8. Theoretically, this correspondence
should be exact for a purely periodic process such as the variable-
speed oscillator in Fig. 4, but for a chaotic oscillator such as ENSO
we expect it to hold only approximately. We will demonstrate
below that the indices based on the generator eigenfunctions g7
(CCSM4) and g6 (ERSSTv4) exhibit greater equivariance than the
lagged Niño 3.4 index fnino.

To test for equivariance in the Niño-3.4 and generator-based
representation of ENSO, in Fig. 9 we show this forward evolution in
the corresponding 2D phase spaces in six-month increments

Fig. 7 Phase composites of the ENSO lifecycle. The panels show composites of SST anomalies (K; colors) and surface wind (arrows) anomalies from a
CCSM4 and b ERSSTv4 and NCEP/NCAR Reanalysis, based on the Niño 3.4 (first and third columns from left) and generator phases (second and fourth
columns) from Fig. 6. Phases advance row-wise from Phase 1 (top row) to Phase 8 (bottom row).
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starting from Phase 7 (i.e., the phase most closely related to El Niño
initiation). There, it is evident that the generator lifecycle exhibits
phase equivariance on significantly longer intervals than the Niño
3.4 lifecycle, in both CCSM4 and ERSSTv4. In the case of the
generator, the centroid of the cloud of points making up the
forward evolution of Phase 7 has a phase angle consistent with
equivariant phase evolution over the examined 2-year interval.
While there is visible dispersion occurring by≃12 months, this
dispersion occurs predominantly in the radial direction and has a
limited effect on the phase classification. In contrast, the point
clouds corresponding to forward evolution of the Niño-based Phase
7 exhibit strong dispersion in both radial and angular directions,
decorrelating with the target phase expected from equivariance on
intervals as short as 6–12 months. The difference in equivariance

between the Niño 3.4 and generator lifecycle is most striking in the
ERSSTv4 data, where after a 1-year interval the forward-evolved
Phase 7 from Niño 3.4 has zero overlap with the expected Phase 1,
whereas in the case of the generator that overlap is close to 100%.
These results open the possibility that methods of characterizing
ENSO based on area-averaged anomalies (such as the lagged Niño
3.4 index fnino) may conflate unrelated parts of the cycle. This could
contribute to difficulties with ENSO prediction, as shown in
Fig. 9(a, b); (top) for fnino, where poorly chosen groupings mix
together unrelated ENSO phases, leading to rapid divergence of
these “false” groupings. Our results suggest that ENSO may have a
more significant cyclic component than previously realized.

As a more quantitative assessment of phase equivariance, in
Supplementary Fig. 2 we show the fractional sample overlap

Fig. 8 Phase-composited surface zonal wind profiles for CCSM4 (a) and ERSSTv4 (b). Each set of panels shows composites of surface zonal winds
sampled at the dateline along the meridional interval 40∘S–40∘N, based on the Niño 3.4 (top panels) and generator (bottom panels) ENSO phases from
Fig. 6.
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between the forward-evolved ENSO phases in CCSM4 in six-
month increments with the expected target phases from
equivariance. It is worthwhile noting that highest predictability
of the generator phases occurs for start phases near the El Niño/
La Niña peaks (Phases 1, 2, and 6), where the fractional overlap
remains above 0.5 for at least a year. The evolution initialized at
intermediate phases such as 3–5, 7, and 8 is somewhat less
equivariant, with the relative overlap dropping to smaller than 0.5
values after a year. This behavior may be a manifestation of the
ENSO spring predictability barrier83.

ENSO diversity. ENSO diversity, i.e., the tendency of El Niño/La
Niña events to differ from each other in terms of their spatial and
temporal characteristics, has been a topic of considerable interest
in the literature4,84–87. It is common to spatially classify El Niño
events as being of Eastern Pacific (EP) or Central Pacific (CP)
type, depending on the longitudinal location of the highest SST
anomalies4. Some studies have interpreted these patterns as being
the outcome of distinct temporal processes, with CP events
dominated by quasi-biennial (QB; 1.5–3 yr) components, and
strong EP events exhibiting both QB and low-frequency (LF)

Fig. 9 Evolution of ENSO Phase 7 at six-month increments for CCSM4 (a) and ERSSTv4 (b). Evolution of ENSO Phase 7 at six-month increments for a
CCSM4 and b ERSSTv4. In each set of panels, the top and bottom rows depict the phase evolution associated with the lagged Niño 3.4 indices fnino and
generator eigenfunctions gj, respectively. Bold yellow dots show the Phase 7 members (left column) and their forward images (right four columns) under
the dynamics. Dots colored in muted colors show the phase partitioning from Fig. 6 for reference. Observe that the generator-based evolution undergoes a
uniform phase progression with significantly smaller spread than the Niño-based evolution.
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components in the 3–7 yr band87. Other studies have classified
ENSO events as cyclic, episodic, or multiyear, depending on
whether they are preceded by the opposite, neutral, or same
phase, respectively86. In this section, we show how the generator
eigenfunctions extracted from ERSSTv4 can account for some
inter-event differences in period 1975–2020. That period saw the
occurrence of three strong EP El Niños (1982/83, 1997/98, and
2015/16), one moderate EP El Niño (1986/87), two CP El Niños
(1994/95 and 2009/10), and two events which were of mixed
character (1991/92, 2002/03)4.

Recall from Fig. 3(b) that the top part of the generator spectrum
exhibits the fundamental ENSO eigenfunctions (with a 4 yr
eigenperiod), the associated ENSO combination modes (with
various eigenperiods in the interannual to seasonal band), and also
a pair of eigenfunctions, g19 and g20, with a≃ 3 yr eigenperiod (not
shown in Fig. 3(b); see Supplementary Table 3). To assess the
contribution of these eigenfunctions in the variability of the Niño
3.4 index, we compute associated time series reconstructions, or
“modes”, using the standard approach employed in SSA, EEOF
analysis, and other comparable techniques utilizing delay
embedding55,69. Given a complex-conjugate pair of generator
eigenfunctions, {gj, gj+1}, this procedure produces a (real) time
series that represents the component of the Niño 3.4 index
reconstructed by the pair {gj, gj+1}. Moreover, the time series from
several such pairs can be added together to produce reconstruc-
tions of Niño 3.4 based on groups of generator eigenfunctions.
(See Methods for details of the reconstruction procedure.) In
Fig. 10(a), we present reconstructed Niño 3.4 time series based on
the fundamental 4-year ENSO mode (red line), the 3-year ENSO
mode (blue line), and the sum of the leading two ENSO
combination modes (green line). The sum of these ENSO-
related modes is also shown (orange line), and captures greater
variability than the fundamental ENSO mode alone. Shaded time
intervals indicate periods where the the 2-month running
correlation coefficient between the latter reconstruction and the
Niño 3.4 index is greater than 0.9.

First, it is readily apparent that certain El Niños are well
captured by a small number of leading modes—i.e., modes that
reflect greater dynamical persistence and cyclicity. In particular,
consider the very intense 1982/83 and 1997/98 El Niños: for these
two events, the peaks of all three ENSO-related modes are
effectively coincident in Fig. 10(a). The next most intense event,
2015/16, is characterized by 4-year mode amplitude comparable
to 1982/83, with overall correlation among the 4-year, 3-year, and
combination modes. However, the 3-year ENSO mode for 2015/
16 is less intense than the corresponding mode for 1982/3.

Consider now the 1986/87 event, which is shown in detail in
Fig. 10(b). In this case, we see a distinct behavior, as the
combination modes have two peaks, one occurring before and
one after the peak of the 4-year mode, and a trough occurring
during the peak of the 4-year mode (see green and red lines in
Fig. 10(a)). Superposing the combination modes with the
fundamental ENSO mode (green line in Fig. 10(b)) results in
consecutive peaks in the reconstructed Niño 3.4 index around the
peak of the 4-year mode. If we additionally include the 3-year
mode (orange line) the relative amplitude of the two peaks
changes. In contrast, if we superpose only the 3-year and 4-year
modes, the two consecutive peaks do not occur (see blue line in
Fig. 10(b)).

Previously, ENSO combination modes have received significant
attention due to their role in El Niño termination in boreal
spring65,82,88. The results in Fig. 10 show that ENSO combination
modes can also play an important role in reconstructing events with
multiple peaks. We note that while we have directly computed the
combination eigenfunctions, in theory (as discussed in subsection
“Eigenvalue frequency analysis of monthly-averaged Indo-Pacific

SST”) they may be determined from the state of the annual and the
4-year ENSO eigenfunction. Thus, our results show that certain
doubly-peaked events, such as the 1986/87 El Niño, can be
reconstructed from the same small set of modes as those used to
reconstruct strong EP events.

It is noteworthy that the 1982/83, 1986/87, and 1997/98 El
Niños, as well as the 2009/10 event (which is also well captured by
the reconstructions in Fig. 10(a)), are all followed by La Niñas in
the subsequent year. In the transition-based classification of
ENSO86, these La Niñas are thus all classified as cyclic (cyclic El
Niños are defined in a symmetric way). From the perspective of
our spectral analysis approach, the occurrence of these cyclic La
Niñas can be explained from the fact that once a generator
eigenfunction gj becomes “active”, i.e., ∣gj(ω)∣ is large for a given
climate state ω, it will, with high likelihood, remain active for at
least a significant fraction of the cycle that it represents (since
gj(ω) precesses in the complex plane with fixed frequency and a
weaker radial motion; see, e.g., Fig. 6(e)). In particular, significant
El Niño events in the generator-based representation have high
likelihood of leading to La Niñas in the following year. On the
other hand, the generator eigenfunctions have only moderate
magnitude in the La Niña phase (see Fig. 5(m, n)). This suggests
fewer cyclic El Niños, which is consistent with the different
triggering mechanisms of the two phenomena86.

In contrast to all of the events mentioned above, other events
such as the 1991/92 El Niño, are not readily accounted for by the
leading modes. It is possible that this event is tied to the June
1991 eruption of Mt. Pinatubo89–91; external forcing of this event
may explain why the eigenmodes fail to capture it. We note that
the 1982/83 El Niño followed the eruption of El Chichón, but is
nonetheless a strong EP event captured by the leading ENSO
modes. The 1994/95 CP El Niño represents an example of
another “missed” event in the context of the modes illustrated in
Fig. 10. The fact that the leading generator eigenfunctions, which
favor cyclicity and dynamical persistence, do not capture these
events is consistent with the broadly accepted observation that CP
events exhibit less canonical behavior than their EP
counterparts4. Intriguingly, the reconstructions in Fig. 10 indicate
the existence of a 3-year interannual mode, associated with
generator eigenfunctions g19 and g20, which plays a significant
role in strong EP events but does not significantly contribute to
CP events. This differs somewhat from previous mode decom-
positions of the Niño 3.4 index87, which have identified a single
QB mode contributing to both CP and strong EP events.

In summary, the results in Fig. 10 show that our spectral
approach can differentiate certain ENSO events in terms of
amplitude and phasing of an underlying set of dominant modes.
What we would argue here, at least from the viewpoint afforded
by a single regional index like Niño-3.4, is that a rich diversity of
El Niño behavior can be “constructed” from a small number of
eigenfunctions of a dynamical operator. That the ENSO
combination modes also contribute in a discernible way, either
by adding to the fundamental and 3-year ENSO modes as in
1982/83 or 1997/98 or creating consecutive peaks as in 1986/87, is
also of note, as these modes may not be separately identified in
the variance basis of EOFs, although they have been noted in SSA.

Discussion
Operator-theoretic approaches for dynamical systems, realized
through kernel methods for machine learning, provide an effec-
tive framework for identification of persistent cyclic modes of
variability in climate dynamics. Central to this framework is
modeling the evolution of observables of the climate system with
transfer and Koopman operators. The dominant eigenfunctions
of these operators yield succinct and physically interpretable
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representations of fundamental modes of climate variability, with
the corresponding eigenvalues reflecting the intrinsic timescale of
variability of the mode. We have shown by means of theoretical
arguments and numerical analyses of (i) idealized dynamical
systems, (ii) comprehensive climate models, and (iii) reanalysis
data, that these eigenfunctions reveal approximate cycles
embedded in complicated systems with several advantageous
characteristics over conventional approaches. Composites in the
original observation space can be readily constructed; see Fig. 1. A
further distinguishing aspect of our eigenfunctions is that they
provide rectified coordinates for the state of the oscillation
(Figs. 5 and 6), making them better suited for indexing the fun-
damental oscillations of the climate. Moreover our extracted
cycles display a high level of self-consistency under forward
evolution (Fig. 9), a desirable property for characterizing a
canonical strong ENSO and promising for prediction.

A major focus of this work has been the El Niño Southern
Oscillation, extracted from monthly-averaged Indo-Pacific SST
data from a millennial control integration of a comprehensive
climate model (CCSM4) and reanalysis data (ERSSTv4). In both
of these datasets, the generator spectrum (Fig. 3) contains a pair
of slowly decaying eigenfunctions with an interannual eigen-
frequency, providing a rectified representation of the canonical
ENSO lifecycle. In addition to the fundamental ENSO modes, the
spectrum of the generator is found to exhibit a hierarchy of
combination modes between ENSO and the annual cycle with the
theoretically expected frequencies. These combination modes
appear to play a role in capturing “double El Niño” events in the
recent observational record, such as the 1986/87 series of events.
Meanwhile, other events, such as the 1991/92 El Niño following
the Mt. Pinatubo eruption and the 1994/95 central Pacific El Niño
are not captured by the leading eigenfunctions, suggesting a dif-
ferent dynamical origin. Going beyond cyclic behavior, in the case
of the reanalysis data, the spectrum of the generator was found to

contain nonstationary modes associated with climate change, as
well as combination modes representing the modulation of the
annual cycle by the climate-change trend. Our analysis motivates
further application of the spectral theory of dynamical systems to
diagnosing and predicting the fundamental dynamical patterns of
the climate.

Methods
As described in the Results, we have a time-ordered dataset x1; ¼ ; xN 2 Rd ,
arising as a series of observations xn= X(ωn) from a trajectory of an abstract
dynamical system Φt:Ω→Ω, where ωn=Φn Δt(ω0). In our experiments, the SST
field sampled at d≫ 1 Indo-Pacific gridpoints at time-index i yields a vector xi 2
Rd (see Supplementary Table 1 for further details on the datasets employed in this
study). We also consider low-dimensional examples with d= 3 (L63 system; Fig. 2,
Supplementary Table 2) and d= 2 (variable-frequency oscillator; Fig. 4), where X is
the identity map on the respective state space Ω. Recall that Δt > 0 is the sampling
interval, and μ is an assumed physically meaningful invariant probability measure
for Φt, μ= μ∘Φ−t. In what follows, we describe data-driven techniques for
approximation of (i) the transfer operator PΔt, or the Koopman operator UΔt; and
(ii) the generator V of the transfer/Koopman operator semigroups. In the measure-
preserving setting, the transfer and Koopman operators on H= L2(Ω, μ) form dual
pairs related by adjoints, ðPtÞ� ¼ Ut for every t 2 R. Thus, for conciseness of
exposition, in what follows we focus on approximation of the transfer operator
P= PΔt, corresponding to Φ=ΦΔt. In addition, we describe our procedure for
computing spatiotemporal mode reconstructions from eigenfunctions.

Delay embedding. We will delay-embed the data to form vectors ~xi ¼
ðxi�ðQ�1Þ‘; ¼ ; xi�‘; xiÞ 2 RQd for some positive integers Q and ℓ, to have an
improved estimation of the underlying state ωi∈Ω as in standard Takens
embedding50,51. Let ν be the measure induced on RQd by the invariant measure μ
on Ω. We seek to approximate projected versions of the operators PΔt, UΔt, and V
that act on functions on a space of projected observables L2ðRQd ; νÞ. In practice,
integrals with respect to ν are approximated by integrals with respect to the
sampling probability measure νN :¼ ∑N�1

i¼ðQ�1Þ‘ δ ~xi
=ðN � ðQ� 1Þ‘Þ, where δ ~xi

is the
Dirac δ-measure centered at ~xi . This will shortly reduce to summing over the
original data points ~xi .

Fig. 10 Raw (solid black line) and reconstructed (colored lines) Niño 3.4 index for the ERSSTv4 data. The reconstructions are based on groups of
eigenfunctions of the generator from Fig. 3 and Supplementary Table 3. See Methods for a description of the reconstruction procedure. a Reconstructions
over the period January 1975 to February 2020 based on (i) the fundamental (4-year) ENSO pair, g5, g6 (red); (ii) leading two ENSO combination pairs,
g10, g11, g15, g16 (green); (iii) 3-year ENSO pair, g19, g20 (blue); and (iv) the sum of the modes in (i–iii) (orange). The eigenfunction index sets J (see
Methods) employed for these reconstructions are (i) {5, 6}; (ii) {10, 11, 15, 16}; (iii) {19, 20}; and (iv) {5, 6, 10, 11, 15, 16, 19, 20}. Time intervals (shaded
gray) indicate periods where the running correlation coefficient between the Niño 3.4 index and the reconstructed index based on all modes (Case (iv);
orange line) exceeds 0.9. The running correlation coefficient was computed using a two-month (centered) sliding window. b A detailed view of the
“double-peaked” 1986/87 El Niño, highlighting the role of the combination modes (see green line) in reconstructing the double peak of the Niño 3.4 index.
The time interval depicted in b is indicated by a red box in a.
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Approximation of transfer and Koopman operators. We define a novel, data-
driven Markov chain approximation of P, where each embedded data point
~xi 2 RQd , i= (Q− 1)ℓ,…,N− 2,N− 1 is identified with a Markov state. Our
approximation retains important structural properties of P, namely it is a positive
operator (nonnegative functions are mapped to nonnegative functions) and pre-
serves integrals with respect to the data-based measure νN. The addition of noise
mentioned in the main text to form Pϵ is done via Gaussian kernels

kϵð~xi; yÞ ¼ exp �k~xi � yk2=ϵ2� �
; ~xi; y 2 RQd ; ð1Þ

centered on each point ~xi, where ϵ is a positive bandwidth parameter, the choice of
which is discussed at the end of this subsection.

We discretely approximate the Markov operator Pϵ : L
2ðRQd ; νÞ ! L2ðRQd ; νÞ

defined by

Pϵf ðzÞ ¼
Z
RQd

kϵðz;ΦðyÞÞR
RQd kϵðz0;ΦðyÞÞ dνðz0Þ

� �
f ðyÞ dνðyÞ

as

Pϵf ðzÞ �
Z
RQd

kϵðz;ΦðyÞÞR
RQd kϵðz0;ΦðyÞÞ dνN ðz0Þ

� �
f ðyÞ dνN ðyÞ:

Evaluating Pϵf at an embedded data point ~xi, we have

Pϵf ð~xiÞ �
Z
RQd

kϵð~xi;ΦðyÞÞR
RQd kϵðz0;ΦðyÞÞ dνN ðz0Þ

� �
f ðyÞ dνN ðyÞ

¼ ∑
N�2

j¼ðQ�1Þ‘

kϵð~xi; ~xjþ1Þ
∑N�2

i0¼ðQ�1Þ‘ kϵð~xi0 ; ~xjþ1Þ

 !
f ð~xjÞ

¼ ∑
N�2

j¼ðQ�1Þ‘
Pijf ð~xjÞ;

where

Pij ¼
kϵð~xi; ~xjþ1Þ

∑N�2
i0¼ðQ�1Þ‘ kϵð~xi0 ; ~xjþ1Þ

:

The matrix P= [Pij] is column stochastic and we may think of Pij as the
conditional probability that the state j (or data point ~xj) transitions to the state i (or
data point ~xi), in one time step, according to the kernel kϵ and the measure νN. A
function f : RQd ! C taking values f 0 :¼ f ð~xiÞ, i= (Q− 1)ℓ,…,N− 2, is evolved
forward in time by matrix-vector multiplication Pf; this approximates the action of
Pϵf. By construction, the mass conservation property P�

ϵ1 ¼ 1 is inherited by P,
namely P⊤1= 1.

In practice, we compute the numerical spectrum of P, Pgj=Λjgj, and extract the
most persistent cyclic behavior from the eigenvector g1 corresponding to the
eigenvalue Λ1= reiα with largest magnitude inside the unit circle (largest ∣r∣ < 1)
and α > 0. As described in the Results, α represents the angle of rotation around the
extracted cycle per unit time. The corresponding eigenvector g1 approximates the
eigenfunction gðϵÞð~xiÞ of Pϵ that approximately projects the system from RQd to the
most persistent cycle (approximately lying on S1) as illustrated, e.g., in Fig. 2(f–h)
in the context of the L63 system.

In the experiment in Fig. 2(f–h), we used N= 16,000 samples taken at a
sampling interval of Δt= 0.01 time units; see Supplementary Table 2. Moreover,
the dimension is d= 3, and we do not need to embed the data as we have access to
the original state, thus we set Q= 1. In calculations using the ERSSTv4 (N= 600)
and CCSM (N= 15,600) Indo-Pacific SST datasets, using Δt= 1 month we find
that a single lag of Q= 2 with ℓ= 12 months (approximately one quarter of the
cycle period) is sufficient to accurately extract an accurate ENSO frequency and
ENSO eigenfunctions; see Supplementary Table 1.

Regarding the choice of ϵ, generally one wishes to select an ϵ as small as
possible, while maintaining an eigenvalue 1 of P with unit multiplicity. A ballpark
estimate of suitable ϵ is the mean nearest neighbor distance (averaged over all
embedded data points ~xi), divided by

ffiffiffi
2

p
; this scales the Gaussian in (1) to have

greatest slope (and therefore “distinguishing ability”) when k~xi �yk is the mean
nearest neighbor distance. The values of ϵ used in the Lorenz, ERSSTv4, and CCSM
calculations are shown in Supplementary Tables 1 and 2, and are modified by less
than a factor of four from the above ballpark estimate.

Approximation of the generator. Our method outputs a collection of
~N-dimensional complex vectors g0; ¼ ; gL 2 C

~N , with ~N ¼ N � Qþ 1,
g j ¼ ðgðQ�1Þj; ¼ ; gðN�1ÞjÞ> , and complex numbers λ̂0; ¼ ; λ̂L , such that gij

approximates the value of an eigenfunction gðϵÞj of the regularized generator Vϵ at

state ωi∈Ω, and λ̂j approximates the corresponding eigenvalue, λj. That is, we have

gij ≈ gj(ωi) and λ̂j � λj, where Vϵgj= λjgj. The numerical procedure to compute the

eigenpairs ðλ̂j; g jÞ consists of two parts:

1. Computation of basis vectors ϕ0; ¼ ;ϕL�1 2 R~N as eigenvectors of an
~N ´ ~N kernel matrix ~K constructed from the data.

2. Formation of an L × L matrix W approximating the operator Vϵ and
solution of the associated eigenvalue problem.

In what follows, we outline these steps, referring the reader to our previous
work34 for additional details and pseudocode.

Kernel matrix and basis functions. Using the delay-embedded data ~xi , we compute
an ~N ´ ~N matrix K, whose entries are given by the values Kij ¼ kγð~xi; ~xjÞ of a
pairwise kernel function kγ : R

dQ ´RdQ ! R. We use variable-bandwidth kernels

kγð~xi; yÞ ¼ exp � k~xi � yk2
γ2σ2ð~xi; yÞ

� �
; ~xi; y 2 RQd ; ð2Þ

centered on each point ~xi , where γ is a positive bandwidth parameter, and σð~xi; yÞ is
a positive bandwidth function. Intuitively, the role of σ is to control the rate of
decay (locality) of the kernel in data-dependent manner, such that in regions of
high sampling density σ is small, leading to a tighter kernel kγ, and allowing
resolution of finer-scale features. Conversely, in low-density regions σ is large, and
hence we obtain a broader kernel kγ, enhancing robustness to statistical sampling
errors. Note that the radial Gaussian kernel in (1) is a special case of (2) with the
constant bandwidth function σð~xi; yÞ ¼ 1 and bandwidth parameter γ= ϵ. Here,
we use the symbol γ for the kernel bandwidth parameter to distinguish it from ϵ
employed for transfer/Koopman operator approximation in the previous
section. The choice of γ and bandwidth function σ will be discussed in a subsequent
section. It should be noted that in addition to improving state estimation, delay
embedding also improves the efficiency of basis vectors derived from the data ~xj in
approximating transfer/Koopman operator eigenfunctions33 (as noted in the
main text).

Having constructed the kernel matrix K, we next normalize it to obtain a
bistochastic kernel matrix, i.e., a symmetric ~N ´ ~N matrix ~K with positive entries
~Kij , satisfying ∑N�1

j¼Q�1
~Kij ¼ 1 for all i∈ {Q− 1,…,N− 1}. The normalization

procedure92 employs the steps

~K ¼ K̂K̂
T
; K̂ ¼ D�1KS�1=2;

where D and S are diagonal matrices with diagonal entries Dii ¼ ∑N�1
j¼Q�1 Kij and

Sii ¼ ∑N�1
j¼Q�1 Kij=Djj , respectively. The basis vectors ϕj are then obtained by solving

the matrix eigenvalue problem

~Kϕj ¼ ηjϕj; ηj 2 ½0; 1�; ϕj ¼ ðϕðQ�1Þj; ¼ ; ϕðN�1ÞjÞ>:
By convention, we order the eigenvalues ηj in decreasing order, η0 ≥ η1 ≥⋯ , and
normalize the corresponding eigenvectors such that ϕ>

i ϕj ¼ ~Nδij . By Markovianity

of ~K and strict positivity of kγ (which implies that the elements of ~K are strictly
positive), the leading eigenvalue η0 is equal to 1, and is strictly greater than η1.
Moreover, the corresponding eigenvector ϕ0 has constant elements, which can be
set to 1 by our choice of normalization. As a result, viewed as temporal patterns
ti↦ ϕij, the eigenvectors ϕj with j > 1 have zero mean (since they are orthogonal to
ϕ0) and unit variance (since kϕjk2=~N ¼ 1).

Note that because kγ from (1) is a nonlinear kernel, the entries of ϕj are not
necessarily linear projections of the data ~xi onto a corresponding extended EOF
(EEOF); that is, in general, ϕij is not equal to u>j ~xi for an EEOF uj 2 RdQ. The ϕj
can therefore be viewed as nonlinear principal components, which are able to span
richer spaces of observables than conventional EEOF techniques utilizing linear
(covariance) kernels. This property is particularly important for our purposes, since
in what follows we will use the ϕj to build Galerkin approximation spaces for the
generator that can act on nonlinear functions.

In what follows, our approach is to fix L≪N and employ the leading
eigenvectors ϕ0,…, ϕL−1 as basis vectors for approximating the generator. We
choose an L-dimensional approximation space with high regularity, which reduces
the sensitivity of our generator approximations to sampling errors.

Spectral analysis of the generator. Viewing vectors f ¼ ðf Q�1; ¼ ; f N�1Þ> 2 C
~N as

complex-valued temporal patterns ti↦ fi sampled discretely in time at the sampling
interval Δt, we approximate the generator V by a finite-difference operator

V : C
~N ! C

~N . As a concrete example, used in all generator calculations in this
paper, the following is a fourth-order central scheme:

ðVf Þi ¼
0; Q� 1≤ i <Qþ 1;

1
Δt

1
12 f i�2 � 2

3 f i�1 þ 2
3 f iþ1 � 1

12 f iþ2

� �
; 2≤ i <N � 2;

0; N � 2≤ i <N:

8><
>: ð3Þ

Using (3), we approximate the generator V by the L × L antisymmetric matrix V
with elements

Vij ¼ ð~Vij � ~VjiÞ=2; ~Vij ¼ ϕT
i Vϕj=~N:

It can be shown that V provides a data-driven Galerkin approximation matrix for
V, which converges in a suitable large-data limit33,34. Similarly, we construct an
L × L matrix W approximating the diffusion-regularized generator Vε= V− εΔ, by
defining

W ¼ V � εΔ:
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Here, Δ is a diffusion operator on the Hilbert space of observables H, and Δ a
positive-semidefinite, self-adjoint matrix approximating Δ. We set Δ to the diag-
onal matrix with entries

Δii ¼
Ei

E1
; Ei ¼

1
ηi
� 1: ð4Þ

With these definitions in place, and a choice of regularization parameter ε > 0, we
solve the L × L matrix eigenvalue problem

Wuj ¼ λ̂juj: ð5Þ

The eigenvalues λ̂j provide approximations to the eigenvalues λj of Vε. Moreover,

the eigenvectors uj ¼ ðu0j; ¼ ; uðL�1ÞjÞ> 2 CL contain the expansion coefficients of
the approximate generator eigenfunction gj in the ϕi basis; that is,

g j ¼ ∑
L�1

i¼0
uijϕi:

In analogy to the discrete-time case, we order the eigenpairs ðλ̂j; g jÞ in decreasing

order of Reλj . We normalize the gj such that gyj g j ¼ ~N , where † denotes the
complex-conjugate transpose. Note that, in general, the eigenvectors gj are not
orthogonal (though they are approximately orthogonal for sufficiently small ε).

The imaginary parts of the eigenvalues, Imλ̂j , represent the angular frequencies
(radians per unit time) corresponding to the eigenfunctions gj. In the main text
(e.g., Fig. 3) we show the frequencies νj ¼ Imλ̂j=ð2πÞ measuring cycles per unit

time. Meanwhile, the real part Reλ̂j measures the (negative) decay rate of gj under
the evolution semigroup generated by W. By construction, W has a constant
eigenvector g0= 1 corresponding to the eigenvalue λ̂0 ¼ 0 (i.e., zero decay rate and
oscillatory frequency). All other eigenvalues have strictly negative real part, and we
order them in order of decreasing Reλ̂j (i.e., in order of increasing decay rate) by
convention.

In separate calculations with synthetic periodic data, we have verified that
the≃17% approximation error of the triennial eigenfrequency in Fig. 3 can be
reduced to≃5% by using a eighth-order finite-difference approximation scheme at
a fixed monthly sampling interval Δt. Since our focus in this work is on lower
frequencies (e.g., the interannual ENSO frequency), we have elected to work with
the fourth-order scheme in (3), which provides adequate accuracy for the
eigenfrequencies of interest while being less sensitive to numerical perturbations
than higher-order schemes.

Bandwidth function and parameter tuning. In the CCSM4 and ERSSTv4 analyses,
we employ a non-separable bandwidth function that promotes connectivity
between datapoints whose relative displacement vector is aligned with the local
dynamical flow93, viz.

1
σð~xi; ~xjÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ζ cos θiÞð1� ζ cos θjÞ

q
;

cos θi ¼
vTi ð~xj � xjÞ

kvi kk~xi � ~xj k
; cos θj ¼

vTj ð~xi � xjÞ
kvj kk~xj � ~xi k

;

where 0 ≤ ζ < 1, and vi ¼ ~xi � ~xi�1, vj ¼ ~xj � ~xj�1 are (trajectory tangent) vectors
representing the local time tendency of the data. Following Refs 69–71, we set ζ to a
value close to 1, namely ζ= 0.995 (see Supplementary Table 1). This has the effect
of promoting slow timescales in the extracted basis functions ϕj, which reduces the
error of the finite-difference approximation of the generator.

Using the dataset and parameters in Supplementary Table 2, we have computed
approximate generator eigenfunctions for the L63 system, which exhibit persistent
cyclicity analogously to the transfer operator experiment in Fig. 2. In these
experiments, we employ a separable bandwidth function40,

σ2ð~xi; yÞ ¼ ðρð~xiÞρðyÞÞ�1=m; ð6Þ
where ρð~xiÞ is an estimate of the sampling density of the data at ~xi, and m > 0 a
parameter approximating the dimension of the data manifold in RdQ . The density
estimator is formally given by ρðyÞ ¼ R expð�k z � yk2=~γ2Þ dνðzÞ, where ~γ> 0 is a
bandwidth parameter (in general, different from γ in (2)). The dimension
parameter m is determined numerically using the same procedure40 (outlined
below) as for tuning the bandwidth parameters γ and ~γ. In the L63 experiments, we
obtain a value m ≈ 2.06 approximating the fractal dimension of the Lorenz
attractor. Even though the L63 snapshot data xi 2 R3 contain full state
information, we have used a long embedding window of Q= 800 samples at a
Δt= 0.01 sampling interval. This has the effect of “biasing” the basis vectors ϕj
towards approximate Koopman/transfer eigenvectors33,37, thus improving the
efficiency of the basis in approximating solutions to the generator eigenvalue
problem.

In all generator calculations reported in this paper we tune the bandwidth
parameters γ and ~γ automatically using a numerical procedure40. This involves
computing the kernel sum SðγlÞ :¼ ∑N�2

i;j¼Q�1 kγl ð~xi; ~xjÞ on a logarithmic grid γl of
trial bandwidth parameters, and choosing γ as the bandwidth parameter γl that

maximizes the derivative dlog SðγlÞ=dlog γl (estimated numerically by finite
differences). See Algorithm 1 in Ref. 34 for pseudocode. The maximum value m̂ of
dlog SðγlÞ=dlog SðγlÞ can be shown to be approximately equal to the dimension of
the data manifold in RdQ divided by 2. Based on that, in our generator calculations
utilizing the bandwidth function in (6) we set the dimension parameter m ¼ m̂=2.

Phase composites. Here, we describe the procedure for constructing phase
composites of the observables employed in Figs. 7 and 8. Let Y : Ω ! Rd0 be a
target observable for compositing. For instance, in Fig. 7, Y is either the global SST,
zonal surface wind, or meridional surface wind anomaly field sampled at d0

gridpoints. Let g : Ω ! C be a complex-valued index representing the phenom-
enon of interest for which composites are created. In Figs. 7 and 8, g is equal to
either the generator eigenfunctions gj, or the lagged Niño 3.4 index fnino. We further
let Ω̂ ¼ fωQ�1; ¼ ;ωN�1g denote the set of states sampled along our dynamical
trajectory (taking delay embedding with Q delays into account), S 2 N the number
of phases, and m an integer less than ~N=S representing the number of samples in
each phase (recall that ~N ¼ ðN � Qþ 1Þ=S). We define S “wedges” W1; ¼WS �
C in the complex plane by

Wj ¼ fz 2 C : jzj≥ aj and arg z 2 Θjg; j ¼ 1; ¼ ; S;

where Θj= [2π(j− 1)/S, 2πj/S), and aj is the m-th largest modulus of the complex
numbers in the set fgðωÞ : ω 2 Ω̂ and argω 2 Θjg.

The sets W1,…,WS represent S “phases” of an oscillatory process represented
by g. In addition, we define a phase W0 ¼ C nSS

j¼1 Wj associated with the states
in Ω for which the process represented by g is considered inactive. For each phase
Wj we define the associated phase composite as the vector Yj 2 Rd given by the
average Yj ¼ ∑ωi2Wj

YðωiÞ=jWjj, where ∣Wj∣ denotes the number of elements of

Wj. Note that ∣W1∣=…= ∣WS∣=m and jW0j ¼ ~N �mS.
We can interpret the phase composites Yj as values of the conditional

expectation of the observable Y with respect to the partition {W0,…,WS} of C
induced by the complex-valued index g. For that, note that the partition induces a
discrete variable π:Ω→ {0, 1,…, S− 1}, where π(ω)= j if and only if ω lies in Wj.
We define Y : Ω ! Rd0 as a discrete observable representing the empirical
conditional expectation of Y given π, i.e.,

Y ¼ EμN
ðY jπÞ ¼ ∑

S

j¼0
Yjχj:

Note that Y is a discrete observable satisfying YðωÞ ¼ Yj whenever the
eigenfunction value g(ω) lies in Wj for the state ω∈Ω.

Mode reconstruction. Our approach for computing spatiotemporal mode
reconstructions (e.g., as shown in Fig. 10) is closely related to the reconstruction
procedure in SSA55, with appropriate modifications to take into account the facts
that eigenfunctions of evolution operators may be (i) complex-valued; and (ii) non-
orthogonal. Let Y : Ω ! Rd0 be a target observable for reconstruction as in the
previous section. For instance, in Fig. 10, the target observable Y is the Niño 3.4
region-averaged SST anomaly, which is a scalar with d0 ¼ 1, but Y can also be
vector-valued, for example when one reconstructs the original input data and sets
Y= X.

Let 〈 ⋅ , ⋅〉 denote the inner product of H, hf 1; f 2i ¼
R
Ω
�f 1f 2 dμ, and let g 0j

denote an element of the biorthonormal basis of the {gi}; that is, hg 0j; gii ¼ δji . A
procedure for constructing the biorthonormal set fg 0; ¼ ; g 0L�1g to {g0,…, gL−1},

satisfying g
0y
i g j ¼ δij is to (i) form the L × L Gram matrix G with Gij ¼ uyi uj ; (ii)

compute u0i ¼ G�1ui ; and (iii) form the linear combination g 0i ¼ ∑L�1
k¼0 u

0
kiϕk .

For each eigenfunction gj and lag q 2 Z, we define the complex-valued spatial

pattern AðqÞ
j 2 Cd0 given by projection of PqΔtY ¼ ðUqΔtÞ�Y onto generator

eigenfunction gj; formally,

AðqÞ
j ¼ hg 0j; PqΔtYi ¼ lim

N!1
1
N

∑
N�1

i¼Q�1
g 0jðωiÞYðωi�qÞ: ð7Þ

Numerically, we approximate AðqÞ
j by projecting the samples y0,…, yN−1,

yi= Y(ωi), of the target observable, lagged by q steps, onto the dual eigenvector g 0 ,
viz.

Â
ðqÞ
j ¼ 1

~N
∑
N�1

i¼Q�1
g 0ijyi�q:

It is worthwhile noting that for q= 0 the spatial patterns Â
ð0Þ
j are analogous to

Koopman modes employed in data-driven Koopman operator techniques12,13,17.

The patterns Â
ð0Þ
j can thus be thought of as time-shifted Koopman modes.

Next, we define an approximate projection of the target observable Y onto the

eigenfunction gj, namely ~Yj : Ω ! Cd0 , by multiplication of AðqÞ
j with Uq Δtgj,
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followed by averaging over the delay-embedding window55,

~Yj ¼
1
Q

∑
Q=2

q¼�Q=2
AðqÞ
j UqΔtgj:

Numerically, ~Yj is approximated by the spatiotemporal pattern

Ŷ j ¼ ðŷjðQ�1Þ; ¼ ; ŷjðN�1ÞÞ 2 Cd0 ´ ~N , where

ŷji ¼
1
Q

∑
Q=2

q¼�Q=2
Â
ðqÞ
j giþq;j; ð8Þ

approximates ~YjðωiÞ. Note that ~Yj can be equivalently expressed as

~Yj ¼
1
Q

∑
Q:2

q¼�Q=2
hUqΔtg 0j;YiUqΔtgj;

from which we can interpret ~Yj as a projection of the observable Y onto an order-Q
Krylov subspace generated by eigenfunction gj. Adopting standard terminology
from climate science, in the main text we refer to the reconstructed patterns Ŷ j as
modes, though it should be kept in mind that these patterns are different from
Koopman modes in that they have both spatial and temporal character.

The individual modes ~Yj can be combined into sum modes by choosing an

index set J= (j1,…, jl) and defining ~YJ ¼ ∑l
k¼1

~Yjk
. Similarly, in the empirical

setting, we define Ŷ J ¼ ∑l
k¼1 Ŷ jk

. Note that ~YJ (resp. Ŷ J ) is real whenever J consists

of indices of pairs of complex-conjugate eigenvalues λj (resp. λ̂j). In Fig. 10, we
show reconstructions using index sets J representing various complex-conjugate
pairs of ENSO and ENSO combination modes associated with generator
eigenfunctions.

Data availability
The CCSM4 data analyzed in this study are available at the Earth System Grid repository
under accession code https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.joc.b40.
1850.track1.1deg.006.html. The ERSSTv4 and NCEP reanalysis data are available at the
National Centers for Environmental Information repositories, under accession codes
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-
surface-temperature-ersst-v4 and https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.
html, respectively. The processed data are available from the corresponding author on
reasonable request. The processed data can also be generated by running the MATLAB
code in the repository https://doi.org/10.5281/zenodo.5508376 or https://doi.org/
10.5281/zenodo.5511734.

Code availability
MATLAB code implementing the numerical techniques and reproducing the generator
results described in the paper is available at https://doi.org/10.5281/zenodo.5508376. See
the file /pubs/FroylandEtAl21_NatComms/README in the code repository for
additional information. Code for the transfer operator computations in the Lorenz and
ERSSTv4 examples is available at https://doi.org/10.5281/zenodo.5511734.
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