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The retrosplenial cortex (RSC) has diverse functional inputs and is engaged by various

sensory, spatial, and associative learning tasks. We examine how multiple functional aspects

are integrated on the single-cell level in the RSC and how the encoding of task-related

parameters changes across learning. Using a visuospatial context discrimination paradigm

and two-photon calcium imaging in behaving mice, a large proportion of dysgranular RSC

neurons was found to encode multiple task-related dimensions while forming context-value

associations across learning. During reversal learning requiring increased cognitive flexibility,

we revealed an increased proportion of multidimensional encoding neurons that showed

higher decoding accuracy for behaviorally relevant context-value associations. Chemogenetic

inactivation of RSC led to decreased behavioral context discrimination during learning phases

in which context-value associations were formed, while recall of previously formed asso-

ciations remained intact. RSC inactivation resulted in a persistent positive behavioral bias in

valuing contexts, indicating a role for the RSC in context-value updating.
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Animals must successfully navigate through their environ-
ment, assign value to behaviorally relevant locations, and
later flexibly update these context-value associations. This

context-specific behavior requires input from both sensory and
motor systems, spatial awareness, and memory formation. Hence,
these processes will inevitably involve multiple interacting brain
regions, with information from various systems being constantly
integrated and updated. In this regard, the retrosplenial cortex
(RSC) is ideally positioned to integrate both spatial and con-
textual information from the environment1,2, since it is densely
connected with the hippocampal and parahippocampal forma-
tion, as well as visual, posterior parietal, prefrontal, and entorh-
inal cortices1,3,4. Indeed, the RSC has been shown to be essential
in spatial navigation5–9 and contextual associations10,11. Addi-
tionally, the RSC plays a role in visualizations of future actions
and scene processing in humans1,12, with recent rodent studies
revealing the involvement of the RSC in similar cognitive
functions13–20. Although anatomical and behavioral studies
strongly suggest an integrative role for the RSC21,22, how this is
functionally implemented at the cellular level is unknown. This is
important as the precise cellular dynamics may offer a significant
computational advantage for a region with such diverse input-
output functions.

Previous studies of single-cell activity in mammalian RSC have
revealed that specific subpopulations of RSC neurons can encode
spatial information23–25, possess properties of head direction
cells26,27 or place cells28, exhibit responses to visual properties29–32,
including representations of visual landmarks18,20,33 and can
encode reward locations34,35 as well as reward history36. Therefore,
it is clear that RSC neurons exhibit diverse functional responses;
however, the extent to which these inputs are integrated on the
single-cell level, and if this offers a specific advantage for particular
learning tasks, remains unknown. Although these dynamics are not
clear in the RSC, single-cell responses tuned to multiple task-related
parameters are prevalent in the prefrontal cortex, predictive of
behavior, and thought to specifically offer a computational advan-
tage to support complex cognitive tasks and flexibility37–40. A tra-
ditional way of probing cognitive flexibility, or the ability to rapidly
change behavior in the face of changing circumstances, is to
implement reversal learning within a behavioral paradigm, which
serves to evaluate adaptive responses when stimulus-outcome
associations are altered41. Importantly, this cognitive capacity is also
disrupted in many neurological disorders42–44.

Here, we establish a simple visuospatial training paradigm
with multiple task-related parameters to investigate context-
discrimination behavior and the associated contribution of
integrative neuronal responses to the encoding of information
following learning and reversal learning. We performed in vivo
two-photon calcium imaging in the dysgranular RSC in head-
fixed mice navigating in a virtual reality (VR) environment while
mice learned to discriminate between virtual contexts by asso-
ciating a water reward with a specific location in a particular
visually defined context. With training, mice demonstrated ste-
reotyped running behaviors in relation to the rewarded context.
We evaluated the capacity of individual RSC neurons to encode
information crucial for spatial navigation and context dis-
crimination, such as the animal’s position and speed, as well as
the contextual identity, including its visual features and the
associated reward-value. Interestingly, the RSC contained a large
proportion of multidimensional neurons encoding multiple task-
related parameters: context, position, and speed. Their fraction
increased after reversal learning, suggesting these multi-
dimensional neurons may play a role in updating context-value
associations and cognitive flexibility. We further verified the
importance of the RSC by demonstrating that chemogenetic
inactivation during learning and reversal learning impaired

behavioral context discrimination but recall of previously formed
context-value associations remained intact.

Results
Context discrimination in a virtual environment. To examine
the neuronal dynamics underlying context discrimination and
context-value associations in the RSC, Thy1-GCaMP6f transgenic
mice were implanted with cranial windows, head-fixed, and
pretrained to reliably run on an air-cushioned spherical treadmill
(Fig. 1a, b). We then performed two-photon Ca2+ imaging of the
expressed genetically encoded calcium indicator GCaMP6f in the
dysgranular RSC in layer 2/3 (Fig. 1d–f) while mice performed a
contextual discrimination task in a virtual environment (Fig. 1b,
c). Animals were presented with three different contexts across a
series of days, which were defined by the parameters of the virtual
environment—including the spatial properties of the linear cor-
ridor and the visual pattern present along the length of the cor-
ridor. Each context had identical geometry (2-meter-long linear
corridor) but unique visual patterns on the virtual corridor walls
(Fig. 1c). Following an initial baseline imaging day, a specific
context was associated with a water reward that was given at a
fixed location (180 cm from the beginning of the corridor).
Changes in fluorescence were imaged (i.e., ΔF/F) and the corre-
sponding position and speed of each animal within the VR
environment were recorded (Fig. 1g).

First, we validated that mice can learn to discriminate between
the different virtual environmental contexts. The aim was to
establish an experimental paradigm that would passively, but
consistently, pair a particular context with a reward, thereby
assigning value to a specific context through associative learning
—as may occur when animals are navigating through an
environment and discover a food source at a particular location.
Therefore, rewards were given to the animals consistently at a
default location in a particular context without the need for the
animal to perform an extraneous behavior to receive the reward.
Within each experimental day, this context is then inseparable
from the parameters of the virtual environment (e.g., visual
pattern on the corridor walls) and its behaviorally relevant value;
however, on subsequent days a different context is paired with
reward (i.e., reversal learning) to assess changes in context-value
associations and to dissociate the effects of the reward-association
from responses specific to the visual pattern along the virtual
corridor (Fig. 1i).

This training paradigm has the benefit that learning occurs
quickly, relative to when specific operant behaviors need to be
trained (often taking days to weeks) but with the drawback that
there is no explicit measure of success rate. However, we found
that after an initial decrease in speed across all contexts, animals
naturally increased their speed in the non-rewarded context (i.e.,
context 2) and decreased their speed selectively in the rewarded
context (i.e., context 1), presumably in preparation to consume
the water reward (n= 5 mice, Figs. 1h, j, 2a, and Supplementary
Fig. 1). This change in speed across contexts was maximally
represented in the 10 cm before the water reward was given, in
the reward ‘anticipation zone’ (AZ), and was consistently
reproduced across experimental groups (Fig. 2a and Supplemen-
tary Fig. 1). Additionally, we found consistent speed trajectories
across trials, with mice starting to show alterations in running
speed after the first ~40 cm along the corridor (Fig. 1j). Using
linear discriminant analysis, we predicted the occurrence of a
reward at the end of a trial from the mean speed in the
anticipation zone for all rewarded and non-rewarded trials
(contexts 1 and 2) across both learning and reversal learning. The
accuracy of prediction was 84.8 ± 1.1% (n= 5), which was
significantly higher than when the mean speed along the entire
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virtual corridor was used (71.9 ± 4.4%, n= 5, p= 0.022). We also
found a clear shift in the distribution of speeds within the
anticipation zone on a trial-by-trial basis across various learning
stages (Fig. 2b) as well as within learning sessions (Supplementary
Fig. 2). Although mice slowed down in the anticipation zone
across all contexts following training (due to the enforced
stationary period at the end of each trial), this anticipation zone
represents the culmination of the difference in speeds across the
length of the corridor (Fig. 1j, Supplementary Fig. 2). Therefore,
in this type of passive training paradigm that has no explicit
measure of success rate per se, we found that this change in speed

along the virtual corridor, culminating in a maximal difference
between rewarded versus non-rewarded contexts at the anticipa-
tion zone, was a reliable behavioral metric of learning and context
discrimination.

Using this behavioral metric, we then examined how mice
perform during reversal learning. Here, the reward-association
was switched from context 1 to context 2 while the neutral
context (context 3) was not presented during training days and,
hence, remained neutral on the test day (day 7). In the reversal
task, mice need to additionally devalue the previously rewarded
context (context 1) and then form a new reward association with
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the previously non-rewarded context (context 2). Similar to the
initial learning progress, we found that even on the second day of
exposure to the new task, mice already showed significantly
slower running speed for the newly rewarded context (i.e., context
2) compared to the non-rewarded context (i.e., context 1; Fig. 2a;
see Supplementary Fig. 2). By the testing day (day 7), mice again
showed significantly slower running speeds in the rewarded
context when compared to baseline days and the end of the initial
learning phase, and the same faster running speed in both the
non-rewarded and neutral contexts (Fig. 2a, c). Therefore, mice
altered their running behavior during this reversal learning task,
indicating that they devalued the previously rewarded context to
match the neutral context, and flexibly formed a new reward
association with the previously non-rewarded context.

Decoding of context and context-value associations from
neuronal activity in the RSC. Since the RSC is known to play a
role in various task-related elements, such as contextual
discrimination35, spatial navigation25,28, and the persistent
encoding of value-related signals during learning36, we investi-
gated the underlying activity in the dysgranular RSC during this
learning and reversal learning paradigm to determine how
information related to these combined factors was represented
within the RSC. We divided each trial within the virtual envir-
onment into task-related periods (Fig. 2d). First, the period when
the visual context was displayed and animals had to run along the
virtual corridor to reach the end (termed corridor). Next,
the period where external breaks were applied (and therefore the
treadmill was blocked so all animals were stationary), the reward
spout was extended for all trials, a water reward was dispensed
following only the appropriate context and animals consumed the
reward, and the reward spout was retracted for all trials (collec-
tively termed the reward period). Finally, a 3-second intertrial-
interval (ITI) period for all trials, where the treadmill remained
blocked and the VR screens were disabled, resulting in a dark
environment; note that this ITI period was consistent across all
trial types with no systematic behavioral differences during this
period between rewarded and non-rewarded trials.

We first examined the neuronal activity along the virtual
corridor and found that RSC cells displayed heterogeneous
response patterns for both the rewarded and the non-rewarded
context, with no difference in the average activity across contexts
(Fig. 2e, Supplementary Fig. 4a). This was observed during both
the learning phase (day 4, p= 0.958) and after the specific
rewarded context was switched in reversal learning (day 7,
p= 0.088; averaged responses across trials, Fig. 2e; see also

Supplementary Fig. 6). To determine how the context
(i.e., parameters of the virtual environment) and the context-
value associations (i.e., specific context linked to reward, no
reward, or neutral value associations) were represented in this
RSC activity, we examined the success of decoding the individual
contexts at baseline (day 1) and the change in context-value
associations formed with learning (day 4) and after reversal
learning (day 7) across trials. We used this decoding accuracy as a
metric to quantify the extent to which external and task-related
variables are represented by the neuronal population activity
within the RSC. To do this, backward stepwise linear discriminant
analysis was employed to select the linear model with a minimal
number of neurons (see methods). We found that while decoding
accuracy was high for all contexts (>80%), when we neuronal
activity along the virtual corridor there were no systematic
differences in context-value decoding accuracy between the
rewarded or non-rewarded contexts following learning or reversal
learning, either within or across days (Fig. 3a). Although, we did
find that the neutral context had lower decoding accuracy on the
baseline day and on day 7 (see below). Additionally, we found no
change in the overall proportion of cells that significantly
contributed to the prediction of which context the animal was
in (p < 0.05; i.e., context-encoding cells), which was also
independent across days (~70%; Fig. 3b) and, hence, did not
differ across learning stages with altered specific context-value
associations.

We did observe a minor drop in accuracy for decoding the
neutral context (context 3; on days 1 and 7; Fig. 3a). This may
reflect differences in the spatial organization of visual features in
context 3, which contains fewer dark-light transitions, indicating
that the RSC responds strongly to fundamental visual features of
the VR environment (see Supplementary Figs. 3 and 8). Previous
studies have shown that the RSC receives substantial inputs from
the visual cortex29,32 and some neurons in the RSC reliably
respond to visual input, e.g., to moving gratings with a specific
orientation29,30,45. Therefore, the generally high accuracy of
context encoding in RSC neurons along the corridor may result
largely from responses to the visual properties of the corridor
walls. In order to more directly separate out the responses of
individual neurons to the specific visual pattern of the virtual
environment versus the context-value associations, we followed
the neuronal responses for a subset of neurons longitudinally
across days 1, 4, and 7. Using principal component analysis we
found that representations of neuronal activity during both
learning phase and context-value associations were separable
(e.g., Supplementary Fig. 5a). Therefore, we further performed

Fig. 1 Two-photon calcium imaging in the retrosplenial cortex (RSC) of head-fixed mice during a context-discrimination paradigm in a virtual
environment. a Experimental timeline for chronic calcium imaging of RSC neurons. b Schematic of the virtual reality (VR) system for two-photon imaging
in head-fixed awake behaving mice. Movement of the spherical treadmill is recorded via a rotary encoder and the VR environment is displayed on a
surrounding monitor system covering ~270° of the horizontal visual field. c Three 200 cm virtual contexts were created with different visual patterns on the
virtual corridor walls and a sucrose water reward (blue drop) was given at a fixed reward position (180 cm) either in context 1 or in context 2. The intertrial
interval (ITI) consisted of 3 s of black screens. In both the reward period and the ITI the treadmill was stationary with external brakes applied. The reward
anticipation zone (AZ; indicated in red) was defined as 10 cm before the reward position. d Schematic showing the site for imaging highlighted in green
(dysgranular RSC), derived from the Brain Explorer® 2 software based on the Allen Mouse Brain Atlas (https://mouse.brain-map.org/static/brainexplorer).
© 2015 Allen Institute for Brain Science. Allen Brain Atlas API. Available from: brain-map.org/api/index.html. e Illustration of the metal head-plate for
fixation and example cranial window. f Example image of GCaMP6f-expressing neurons in layer 2/3 of the RSC in a Thy1-GCaMP6f transgenic mouse. This
experiment was repeated independently in 5 mice and 3 sessions for each mouse with similar results. g Changes in fluorescence (ΔF/F) signals were
synchronized with recordings of position and speed in the virtual environment. h Running speed from one example animal as a function of position in the
VR environment indicating the speed of each trial (gray) and the mean speed of all trials (black) for all contexts on baseline day (top) and the rewarded
context during learning (middle) and after reversal learning (bottom); reward anticipation zone is indicated in red. i Experimental timeline. Contexts 1–3
(Ctx 1–3) are indicated by their visual patterns and associated color legend. Rewarded context is indicated by a blue drop. j Speed trajectories averaged
across animals (n= 5 mice), shown for each context and across learning phases. Solid lines indicate the mean speed across animals and shading indicates
the corresponding SEM. Source data are provided as a Source Data file.
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linear discriminant analysis to test the decoding accuracy for the
context value from neuronal responses, i.e., % of correct
prediction of the rewarded context (context 1 on day 4, and
context 2 on day 7) in relation to all other non-rewarded contexts
across all learning phases. We focused on responses along
40–180 cm of the virtual corridor, which corresponds to the
length of the virtual environment where we found the divergence

of speed trajectories in the running behavior across contexts with
training (see Fig. 1j, Supplementary Fig. 2). We found that the
decoding accuracy of the rewarded context-value association was
significantly higher for observed compared to shuffled data
(83.7 ± 3.5% vs 55.5 ± 1.2%, n= 4; p= 0.006; see Supplementary
Fig. 5c). Thus, a large proportion of the RSC neuronal population,
even in naïve animals, showed context-specific patterns of activity

Fig. 2 Mice exhibit context discrimination by differentiated running speed and distinct patterns of neuronal activity in dysgranular RSC neurons across
rewarded and non-rewarded contexts. a Mean running speed in the anticipation zone across days and learning phases. Rewarded context (blue drop);
Non-rewarded context (drop with red cross); Neutral context (N). b Distribution of speeds within the anticipation zone on a trial-by-trial basis across
learning phases (baseline-day 1, learning-day 4, reversal learning-day 7). c Change in speed relative to baseline for learning (day 4–day 1) and reversal
learning (day 7–day 1). d Schematic of the trial-by-trial task. The virtual corridor is presented with a specific contextual pattern on the corridor walls (Ctx
1–3) followed by a zone where mice get rewarded or not depending on the specific context, then the ITI consists of a black screen for 3 s. In both the reward
period and the ITI the treadmill was stationary with external brakes applied. The anticipation zone is indicated as a red dashed area. e Mean ΔF/F for each
neuron averaged along the length of the virtual corridor for each context (Ctx 1–3) and across learning phases (baseline-day 1, learning-day 4, reversal
learning-day 7). Cells are sorted for each day according to mean ΔF/F for the neutral (N) context. Line plots at the bottom show mean ΔF/F across the
entire population of cells for each context. Cross-correlations (Spearman r value) of neuronal activity between contexts are reported on top of the color
maps. f Same as e but during the ITI. For all, n= 5 mice. For a and c, data are presented as mean values+ SEM, and the data points are shown as gray dots
with the data from the same animals linked by gray lines. For a, one-way RM ANOVA and post-hoc Holm–Sidak test were applied for the days with three
contexts, and paired t-test was used for the days with two contexts, two-sided. For c, two-way RM ANOVA and post-hoc Student–Newman–Keuls tests
were used. Within-day comparisons: *p < 0.05, **p < 0.01, ***p < 0.001. Exact p-values can be found in Supplementary Dataset 1. Source data are provided
as a Source Data file.
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along the virtual corridor and allowed for accurate discrimination
of all virtual environments. Moreover, the response properties of
individual neurons across days could be predictive of context-
value associations across learning phases during periods when
behavior also diverged across contexts.

Interestingly, we also found that when we performed the linear
discriminant analysis across days using longitudinal neuronal
responses within the ITI period, the decoding accuracy for this
reward association was significantly higher than shuffled data
(72.3 ± 3.0% versus 60.6 ± 1.1%, n= 4; p= 0.025; see Supplemen-
tary Fig. 5b, c). Within this ITI period animals no longer saw the

context-specific visual stimulus, but rather a black screen;
therefore, it is possible that the context-value-related information
may be less obscured by activity related to visuospatial
information on the population level. Indeed, when we examined
the pattern of neuronal activity in the ITI period, we found a clear
difference in the pattern of activity between the rewarded and
non-rewarded contexts (Fig. 2f), which switched with reversal
learning; revealing a change in activity beyond responses to the
individual contexts (or virtual environments) alone and in
relation to context-value associations across days. Here the
activity of individual neurons was more similar for contexts that

Fig. 3 Context-decoding accuracy during the intertrial interval (ITI) is higher for rewarded contexts across learning phases and shows intertrial
variability correlating with within-session changes in running speed across contexts. a Decoding accuracy for each context along the virtual corridor
(0–180 cm), across learning phases. Results after random shuffling of the raw data (diagonal stripes) and red dashed line indicating the chance level
(33.3%) are shown. b Proportion of context-encoding cells from responses along the virtual corridor across learning phases. c Same as a but during ITI.
d Same as b but during ITI. e Within session trial-by-trial mean speed in the anticipation zone for each context across learning phases, averaged across
animals. Rewarded context (blue drop), non-rewarded context (drop with red cross), and neutral context (N). f Decoding accuracy within the ITI after
deconvolution across learning phases for all trials and for the two trials with the smallest and the two trials with the largest difference in speed between the
rewarded and the non-rewarded context. For all, n= 5 mice and data are presented as mean values+ SEM. For a–d and f, experimental data points are
shown as gray dots and shuffled data points are shown as black dots, two-way RM ANOVA and post-hoc Holm–Sidak tests were used, *p < 0.05,
**p < 0.01. Within-day comparisons: *p < 0.05, **p < 0.01, ***p < 0.001; between-day comparisons: #p < 0.05, ##p < 0.01, ###p < 0.001. Exact p-values can
be found in Supplementary Dataset 1. Source data are provided as a Source Data file.
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were non-rewarded and neutral, and differed for the context
which was rewarded (Fig. 2f). We cross-validated this pattern of
activity by comparing odd and even trials, which resulted in
comparable patterns (Supplementary Fig. 4b) and quantified the
relationship across contexts using cross-correlation (Supplemen-
tary Fig. 7). We found that in the ITI period, the non-rewarded
and neutral contexts were more significantly correlated to each
other than they were to the rewarded context (Fig. 2f,
Supplementary Fig. 7, see the alternate pattern of responses
along the virtual corridor in Fig. 2e, Supplementary Fig. 6). This
was also reflective of the behavioral changes in running speed
observed across learning phases, in that the non-rewarded and
neutral contexts were not significantly different from each other,
but both were significantly different to the rewarded context (see
Fig. 2c). Accordingly, we also found a higher decoding accuracy
for the rewarded context (Fig. 3c) during the ITI period as well as
a significantly higher proportion of context-encoding cells
(Fig. 3d), following both learning (day 4) and reversal learning
(day 7), indicating a change in decoding accuracy with the change
in context-value associations across days.

Due to the nature of calcium imaging (i.e., decay-time kinetics
of GECIs), it is possible that these reward-related responses in the
ITI period could be remnants of simple reward-onset evoked
neuronal activity in the preceding reward period. However, we
found no difference in the average activity across all cells between
the rewarded, non-rewarded, or neutral contexts (Fig. 2f). Since
reward responses have been shown to be potentiating in the
RSC18,34,35 as well as in many other connected brain regions46–48

one would expect an increase in the average ΔF/F for the
rewarded context if this activity was simply a residual response to
the reward-onset itself. Further, when we used deconvolution
methods in the ITI to remove potential effects of the remnant
calcium decay signal (Fig. 3f; Supplementary Figs. 10, 11), the
pattern of results in the ITI period was consistent with the non-
deconvolved data. We sorted the average activity of each neuron
according to their responses during the reward period and found
that the activity within the reward period is only moderately
correlated to that within the ITI period, and only increases in the
later trials (Supplementary Figs. 9, 10). Since mice displayed a
within-session learning curve on day 4 according to our
behavioral metric (Fig. 3e), we compared the context-specific
decoding accuracy on trials with the smallest speed difference
between contexts (‘worst’ performance) versus trials with the
largest speed difference between contexts (‘best’ performance).
We found that the worst performance trials showed no significant
difference in decoding accuracy across contexts based on the
neural activity in the ITI period. However, for the best
performance trials, the rewarded context had significantly higher
decoder accuracy compared to the non-rewarded and neutral
contexts (Fig. 3f). Interestingly, on day 7, the now highly trained
animals showed a consistent difference in speed across contexts
beginning from the first trials (Fig. 3e) and accordingly we did not
detect significant changes in decoding accuracy between trials
(Fig. 3f). Hence, if the behavioral performance differed between
contexts, the RSC neuronal activity consistently resulted in
significantly higher decoding accuracy for the rewarded context.
Therefore, the pattern of RSC neuronal activity within the ITI
period was reflective of our behavioral readout of context
discrimination and led to increased decoding accuracy of the
behaviorally relevant context compared to non-rewarded contexts
within this delay period following each trial.

Since there was no systematic difference in context-value
association decoding across days along the virtual corridor, this
processing within ITI was also not just a straightforward
reflection or ‘replay’ of the previous corridor activity (see also
Supplementary Fig. 9). Further, since mice received the reward in

context 1 across all trials on day 4, independent of behavioral
performance, the difference in the RSC decoding accuracy across
contexts (Fig. 3f) represents more than simple reward-evoked
dynamics. Therefore, it is plausible that this ITI activity reflects a
more complex post-trial processing of multiple task-dependent
parameters. Hence, we also examined the activity of RSC neurons
in relation to other task dimensions, namely spatial position along
the virtual corridor and speed.

Decoding of spatial information from neuronal activity in the
RSC. The RSC has been shown to contain both place cells and
head direction cells, which play a role in spatial navigation26–28.
Therefore, we examined the relationship between RSC neuronal
activity and the animal’s position along the virtual corridor in
different contexts. We observed that some neurons were pre-
ferentially active at one or more spatial positions during each trial
(Fig. 4a). We used a linear model to decode the animal’s position
in each of eighteen 10 cm-long spatial bins using the RSC neu-
ronal activity for each animal. Backward stepwise linear regres-
sion analysis was used to select the model with a minimal number
of cells. The linear model provided accurate decoding of the
animal’s position in a given context, as illustrated by a linear
relationship between the predicted and observed values of posi-
tion (Fig. 4b). On average, R2 (which is the measure of model fit,
i.e., the fraction of position variance explained by neuronal
activity) was ~0.50 across all contexts (Fig. 4c; compared to ~0.1
for shuffled data) with no significant advantage for the rewarded
context across days. We found that ~30% of neurons showed a
significant contribution (p < 0.05) to the encoding of positional
information in each context, independent of day and reward
association (Fig. 4d; compared to ~10% for shuffled data).
Therefore, position-related responses were not affected by
reward-associations and, on the population level, remained con-
sistent across learning.

Although there was no specific change in responses with
rewarded/non-rewarded contexts, we did find that a large portion
(~40%) of position-encoding cells only encoded position in a
single context, while ~20% contributed to encoding in two
contexts, and a small proportion (~5%) showed position
encoding in all three tested contexts (Fig. 4e). Therefore, many
neurons in the RSC demonstrated the potential for encoding
spatial information in a context-specific manner, and these
responses were largely unaffected by the behavioral relevance, or
context-value association, of the particular context. In fact, we
found a significant increase in the decoding accuracy (R2) across
days only for the neutral context (context 3), which started off
significantly lower on the baseline day in comparison to the other
two contexts—this may have been due to the less salient edges
associated with this visual pattern (see Supplementary Fig. 8).
Therefore, even though position encoding in the RSC was not
specifically altered with reward, it may still be refined in an
experience-dependent manner for less salient spatially defined
environments.

Decoding of speed information from neuronal activity in the
RSC. Previous studies have suggested that RSC neurons might
also encode speed selective signals22,26,49 and we found that
running speed was a reliable behavioral metric of learning during
the context discrimination task; therefore, we investigated whe-
ther the underlying neuronal activity in the RSC was related to
the animal’s speed. Indeed, we observed that in some cells neu-
ronal activity was specifically modulated by speed (e.g., Fig. 4f).
When we used a linear model to decode the animal speed based
on the neuronal activity, we found a linear relationship between
predicted and observed values of speed (Fig. 4g). On average, R2
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Fig. 4 Neurons in the dysgranular RSC encode position-related and speed-related information. a Normalized response (ΔF/F) at positions along the
virtual corridor (0–180 cm) of three position-encoding neurons across multiple trials. b Example linear regression plot for the actual position and the
position decoded from the neuronal activity for one animal and one context; a high R2 value (0.725) indicates a good fit of the linear regression model to
the observed data. c Mean R2 of position decoded in each context on baseline (day 1), learning (day 4), and reversal learning (day 7). d Proportion of
position-encoding cells across contexts and days. e Context specificity of position-encoding cells on each day. f Normalized response (ΔF/F) of three
speed-encoding neurons in the RSC across multiple trials as a function of running speed. g Example linear regression plot for actual speed versus speed
decoded from the neuronal activity for one animal and one context; a high R2 value (0.66) indicates a good fit of the linear regression model to the
observed data. h Mean R2 of actual and decoded speeds in each context across days. i Proportion of speed-encoding cells across contexts and days.
j Context specificity of speed-encoding cells on each day. For all, n= 5 mice. For c–e and h–j, data are presented as mean values+ SEM. For c, d, h, and
i, results after random shuffling of the raw data are shown in a diagonal-stripe pattern. For c–e and h–j, experimental data points are shown as gray dots and
the shuffled data points are shown as black dots. Two-way RM ANOVA and post-hoc Holm–Sidak tests were used. Within-day comparisons: *p < 0.05,
**p < 0.01, ***p < 0.001; between-day comparisons: #p < 0.05, ###p < 0.001. Exact p-values can be found in Supplementary Dataset 1. Source data are
provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26301-z

8 NATURE COMMUNICATIONS |         (2021) 12:6045 | https://doi.org/10.1038/s41467-021-26301-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


was 0.4–0.5 (Fig. 4h; compared to ~0.10–0.15 for shuffled data)
with no significant differences across learning phase or specific
context. Approximately 30% of cells showed a significant con-
tribution (p < 0.05) to the encoding of speed information in each
of the contexts, independent of learning phase (Fig. 4i; in contrast
to ~10% for shuffled data). Interestingly, similar to position
encoding, we also found that ~40% of speed cells were specific to
a single context, while ~20% contributed to decoding in two
contexts, and only a small proportion of cells were speed
encoding in all three tested contexts (Fig. 4j). Notably, there was a
moderate but significant increase in the proportion of neurons
encoding speed in two contexts after reversal learning when
compared to baseline and initial learning sessions (Fig. 4j), sug-
gesting that speed encoding may not be entirely unaffected by
previous learning.

Multidimensional encoding by RSC neurons. Given our find-
ings that RSC neuronal activity encodes multiple task-related
aspects, and additionally that both position and speed-encoding
cells can also be context-specific, we next wanted to investigate
the potential for neurons to encode information along these
multiple dimensions. Further, since neurons encoding across
multiple task parameters have been shown to provide a compu-
tational advantage in the prefrontal cortex during complex cog-
nitive tasks37, we wanted to examine how these dynamics change
in the RSC across learning phases, considering reversal learning
requires increased cognitive flexibility41. For each individual
neuron imaged within the RSC population, we determined if it
displayed activity sufficient to decode context, position and/or
speed as individual parameters (according to the criteria descri-
bed above; e.g., see Fig. 5a). We found that a relatively large
proportion of neurons encoded information across all three task
dimensions, and that this proportion remained consistent from
the baseline day (28.40 ± 6.57%) to after the initial learning phase
(28.90 ± 4.21%), while there was a significant increase in the
proportion of multidimensional neurons after reversal learning
(39.69 ± 6.05%; Fig. 5b, c).

We also analyzed the imaging dataset to specifically follow
the responses of individual cells across days (in 4 out of 5 mice;
see Methods and Supplementary Fig. 13), and found that the
proportion of multidimensional cells was comparatively stable
across learning, and a significant proportion of individual cells
remapped from being responsive to a single parameter on
baseline to then become multidimensional neurons following
reversal learning (Fig. 5d). Since there is no change in the
dynamics of how the task parameters are related to each other
across learning, (i.e., visuomotor factors may influence both speed
and context for instance, but they are entangled to the same
degree across all learning phases), this transition from non-
encoding or single parameter encoding to multidimensional
encoding during reversal learning, suggests that these neurons
may be contributing to more complex cognitive processing,
beyond simple sensory or motor input-output functions.

To investigate this further, we isolated the population of
multidimensional cells versus the population of single dimension
encoding cells and examined the pattern of activity (Fig. 5e, g,
Supplementary Fig. 12) as well as the decoding accuracy of the
rewarded context in the ITI period (Fig. 5f, h). Here, we found
that the population of multidimensional cells had significantly
higher decoding accuracy specific to the rewarded, or behaviorally
valued, context across learning, whereas the population of single-
dimensional cells did not show any significant bias for higher
decoding accuracy within the ITI period (Fig. 5f, h). Therefore,
this multidimensional cell population within RSC is particularly
important during the period following the reward, and has the

potential to encode context-value associations in this context
discrimination paradigm.

RSC inactivation leads to deficits in acquisition and updating
context-value associations. Given our results, we wanted to
investigate if inactivating the RSC would lead to behavioral dif-
ferences during learning and reversal learning and whether
context-value associations were altered when the RSC was per-
turbed. To do this, we used a chemogenetic approach where mice
were injected with an AAV driving the expression of inhibitory
DREADDs (Designer Receptors Exclusively Activated by
Designer Drugs) (rAAV8-hSyn-hM4Di-mCherry; e.g., see Sup-
plementary Fig. 14) into the RSC in order to inhibit neuronal
activity in this area by systemic administration of clozapine-N-
oxide (CNO). In the first learning phase with CNO-on (i.e., RSC
inactivated; Day 2–4), mice ran at the same speed for all contexts
and this speed was slower than on the baseline day (Fig. 6a).
Therefore, mice assigned a positive-value bias to all contexts
across this learning phase and failed to devalue the non-rewarded
and neutral contexts (Fig. 6d; see also control data Fig. 2a). This
positive-value bias seems to be the ‘default’ state in early learning
(i.e., see also Day 2 of control data Fig. 2a), but RSC inactivation
prevented the behavior to be updated according to the relevant
rewarded context-value association. Hence, RSC inactivation
prevented learning acquisition; this was also reflected on the next
day when mice were tested with CNO-off and they failed to show
a behavioral pattern to indicate successful context discrimination
across the RSC-inactivated learning phase (Fig. 6a and Supple-
mentary Figs. 15–17). The mice then remained off CNO and went
through the learning phase again, demonstrating a behavioral
change and clear context discrimination for the rewarded context
when RSC neuronal activity was intact (Day 8; Fig. 6b, d). To
examine if this learning was preserved when the RSC was inac-
tivated again during memory retrieval, the next day mice were
tested with CNO-on and we found that the context-value asso-
ciations remained intact; hence, RSC inactivation did not disrupt
the behavioral performance of a previously learned context-value
association during retrieval (Day 9; Fig. 6a). This also indicates
that mice could still recognize the individual contexts (i.e., as
defined by the visual stimuli presented on the corridor walls)
when RSC was inactivated, hence, learning deficits in the initial
phase with CNO-on cannot be explained simply by a general
deficit in visual perception.

We then continued with the reversal learning task with the
RSC inactivated (CNO-on, Day 10–12). If mice showed a
generalized inability to update contextual associations indiscrimi-
nately with RSC inactivated, we would see a similar pattern of
behavior to Day 8/9, with mice continuing to run faster through
the previously non-rewarded context 2. However, we found again
that mice had assigned a positive-value bias to both contexts in
this early relearning phase, similar to what we saw on Day 5 in
control mice (see Fig. 6a and Supplementary Figs. 15–17). As
training days proceeded, when the RSC was inactivated, in
contrast to controls, mice failed to devalue the previously
rewarded context (context 1) and therefore did not run
significantly faster. Instead, the previously rewarded context 1 is
maintained as valued throughout the CNO-on phase of reversal
learning (see Supplementary Figs. 15–17) and, therefore, there
was no significant difference in running speed between the
previously and newly rewarded contexts (context 1 and 2) by the
last testing day (Day 12). With regard to the neutral context, with
the RSC inactivated, we do not see context 3 adopt a significant
positive-value bias as it did during the initial learning phase with
CNO-on (Day 4), but the association of this context as a neutral
context from Day 8 was maintained on the test day even after

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26301-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6045 | https://doi.org/10.1038/s41467-021-26301-z | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


RSC inactivation (Day 12), similar to the retrieval day (Day 9;
Fig. 6a). In the current paradigm, there is no need for this neutral
context to be ‘updated’ across learning and reversal learning
phases (Day 8 to Day 12), as it remains neutral throughout, but
our results show that again this information is retained across the
reversal learning phase even with the RSC inactivated (Fig. 6a).
Finally, in the last phase, successful reversal learning proceeded

with the same pattern of behavioral changes when CNO was off
and the RSC again had intact neuronal activity (Fig. 6a, c, e), and
a final testing day with CNO-on again confirmed that once the
new reversed context-value relationships were acquired, they
could be recalled even with the RSC inactivated (Day 17; Fig. 6a).

Taken together, we found that when the RSC was inactivated,
there was a deficit in forming and updating context-value
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associations during our paradigm, and particularly in devaluing
previously formed associations with reversal learning, indicating a
disruption in cognitive flexibility. Note there were no significant
differences in the pattern of behavioral responses between
animals with CNO-off and the previous control animals that
had control rAAV8 injections (rAAV8-hSyn-mCherry lacking the
inhibitory G-protein-coupled receptor, hM4Di) plus CNO
treatment (Fig. 2a; Supplementary Fig. 18), or animals with no
AAV injection (Supplementary Fig. 1); thus, the performance was
not affected by rAAV8 transfection or CNO injection alone.

Discussion
In this study, we utilized a visuospatial context discrimination
paradigm in a virtual environment to investigate how multiple
task parameters are encoded across learning in the RSC, a brain
region known for its diverse functional inputs1,12. We found that
a large proportion of individual neurons in the RSC integrate
multiple aspects of task-related information while forming
context-reward-value associations across learning. These multi-
dimensional neurons contribute to the encoding of context-
specific visual features of the environment, the context-associated
reward value as well as the spatial position and speed of the
animal. Interestingly, a more complex reversal learning task
resulted in an increased proportion of these multidimensional
encoding neurons and this population of cells showed higher
decoding accuracy for behaviorally relevant context-value asso-
ciations during the ITI period of the task. Further, we found that
behavioral context discrimination decreased when the RSC was
inactivated during learning phases in which context-reward-value
associations were formed. However, recall of previously formed
associations remained intact after RSC inactivation. RSC inacti-
vation resulted in a persistent positive behavioral bias in valuing
contexts, suggesting that the RSC may play a role in contextual
value updating by assigning a negative value to non-rewarded and
neutral contextual cues.

Neurons within the dysgranular RSC predominantly and
concurrently encoded multiple aspects of information during our
context-reward-association paradigm. As the RSC is densely
interconnected with a wide range of brain regions and involved in
an array of cognitive functions, previous studies have proposed a
critical translational function of the RSC in the integration and
transformation of information1,34. This proposed translational
function is supported by multiple behavioral studies showing that
the RSC is involved in integrating navigational information1,
visuomotor processing18,20, forming associations between multi-
ple sensory stimuli50, encoding multiple variables with distinct

temporal dynamics51, and processing the conjunction between
allocentric and egocentric spatial frames25. Along the virtual
corridor, we found that neuronal activity related to context,
position, and speed within each experimental day resulted in high
decoding accuracy of these parameters within the imaged RSC
population, with no systematic bias towards the behaviorally
relevant context. However, during the delay period between trials
(ITI) when no visual stimulation was present, the rewarded
context-value associations were more accurately decoded and the
pattern of neuronal activity was similar for the non-rewarded and
neutral contexts, but unique for the rewarded context— reflective
of the observed behavioral changes in running speed.

Longitudinal analyses of neuronal activity revealed a significant
remapping of task parameters encoded by individual neurons,
leading to more multidimensional responses following reversal
learning. However, this remapping did not preclude accurate
decoding of the rewarded context-value association across
learning phases. Interestingly, neurons that showed multi-
dimensional responses along the corridor also more accurately
encoded the context-reward associations during the delay period
between trials (ITI) compared to neurons encoding for a single
dimension along the corridor. This supports a translational role
for the RSC in forming context-value associations based on
integrative information. This is also in agreement with a recent
study demonstrating the role of the RSC in value-based decision
making with a dynamic foraging task, in which persistent
population activity in the RSC enabled consistent decoding of
value-related variables even throughout periods spanning the ITI
and pretrial ready phases36. The RSC has also recently been
implicated in associating environmental contexts to motor plan-
ning signals in a virtual T-maze task51, with anticipatory
responses to appropriate motor choices. During our ITI period,
since the animal has already consumed the reward, the spout has
been removed, and the treadmill is held stationary, we do not
expect any systematic motor or behavioral differences across
contexts beyond fundamental differences that are integral to the
learning process (e.g., attention and arousal), which may
affect the general behavioral state. However, in this regard,
determining the contribution of specific neuromodulatory influ-
ences in anticipation of and during this ITI time period will be of
interest as a potential underlying mechanism of plasticity across
learning phases52.

The increase in the proportion of multidimensional cells after
reversal learning may represent the recruitment of additional
resources for cognitive flexibility. Neurons that respond to mul-
tiple task-related aspects in the prefrontal cortex have been shown

Fig. 5 Neurons in the RSC can encode for multiple task-related parameters and the proportion of these multidimensional neurons is increased after
reversal learning. a Normalized response (ΔF/F) of all imaged RSC neurons from one animal in three contexts (neurons in columns, positions along the
corridor in rows). Hierarchical cluster analysis links categories of neurons that encoded information across multiple dimensions. Significance values of their
contributions to the encoding of context, position, and speed are indicated below. b Percentage of neurons encoding various task-related parameters across
learning phases (days 1, 4, and 7). c Proportion of multidimensional (context, position, and speed) encoding neurons across learning phases. d Percentage
of cells followed across days that have changed their encoding properties (remapping transitions; i.e., from either non-encoding [N], context [C], speed
[S], or position [P] encoding and all combinations of C, S, and/or P) from baseline (day 1) to learning (day 4; left) and then learning to reversal learning
(day 7; right). Bar graphs show the sum of the percentage of cells in each encoding category after learning (left) and reversal learning (right; 361 cells from
n= 4 mice). eMean ΔF/F during the intertrial interval (ITI) of each neuron classified as multidimensional (CPS category) for each context (Ctx 1–3) across
learning phases. Cells are sorted according to the mean ΔF/F of the response to the neutral context (context 3). Cross-correlations (Spearman r value) of
neuronal activity between contexts are reported on top of the color maps. f Decoding accuracy of multidimensional neurons for each context during the ITI
across learning phases (days 1, 4, and 7). g Same as e but for single-dimensional cells (C, P and S categories). h Same as f but for single-dimensional cells.
For all panels except d (4 mice), n= 5 mice. For c, d, f, and h, data are presented as mean values+ SEM and the experimental data points are shown as
gray dots while the shuffled data points are shown as black dots. For f and h, results after random shuffling of the raw data are shown in a diagonal-stripe
pattern. For b, d, f, and h, two-way RM ANOVA and post-hoc Holm–Sidak tests were applied. For c, one-way RM ANOVA and post-hoc Holm–Sidak tests
were applied. Within-day comparisons: *p < 0.05, **p < 0.01, ***p < 0.001; between-day comparisons: #p < 0.05, ##p < 0.01, ###p < 0.001. Exact p-values
can be found in Supplementary Dataset 1. Source data are provided as a Source Data file.
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to have a significant computational advantage in terms of the
complexity of input-output functions that they can represent, and
this dimensionality is predictive of behavior37,53. Therefore, a
larger proportion of multidimensional representations in the RSC
may allow animals to flexibly update context-value associations.
Through iterations of learning and reversal learning with and
without RSC inactivation, we show that inactivating the RSC
disrupted the ability to devalue previously rewarded contexts,
while animals maintained the previously acquired value of the
neutral context. The RSC has recently been shown to be impor-
tant for history coding of value-based decisions36, and our data
suggest that inactivation of the RSC explicitly affects the ability to
assign a negative value to a context. This reversal learning task
creates a conflict between the previously established value of the
context and a new reality, resulting in the need to update the
previous context-value association to resolve this conflict. The use
of multiple parameters in the environment indeed provides a

strategy to resolve conflicting value-based information. This is
demonstrated here on the behavioral level as well as reflected in
the pattern of activity within the RSC. It is noteworthy that
previous studies have shown the RSC is also engaged in tasks
dealing with other forms of conflicting information, for instance,
conflicting proximal and distal cues54 or isolation of spatial
information in a place avoidance task55. Although it can be dif-
ficult in visuospatial tasks to fully separate out the influence of
multiple task parameters, for instance, changes in running speed
will also alter the optic flow created by the visual stimulus on the
corridor walls, these parameters are inherently entangled in
natural navigation and yet do not change in quality between
learning and reversal learning in this paradigm. Therefore, the
increase in multidimensional neurons with reversal learning
represents population level plasticity, likely in response to a more
complex cognitive demand. Further studies investigating the
underlying circuit and synaptic dynamics of this experience-

Fig. 6 Behavioral context discrimination is impaired by chemogenetic inactivation of the RSC. a Mean running speed in the anticipation zone for mice
injected with AAV8-hSyn-hM4Di-mCherry to express inhibitory DREADD. CNO was applied either during the memory formation process (days 2–4 and
10–12) or after the formation of memory (days 9 and 17; indicated by +). b Ratio of speed in the anticipation zone between rewarded context (C1) and non-
rewarded context (C2) after CNO-on learning (day 4) and CNO-off learning (day 8). c Same as b but after CNO-on reversal learning (day 12) and CNO-off
reversal learning (day 16). d Change in speed relative to baseline day after CNO-on learning (day 4–day 1) and CNO-off learning (day 8–day 1). Rewarded
context (blue drop), non-rewarded context (drop with red cross), and neutral context (N). e Same as d but after CNO-on reversal learning (day 12–day 1)
and CNO-off reversal learning (day 16–day 1). For all, n= 7 mice. For a, one-way RM ANOVA and Holm–Sidak post-hoc test were used when three
contexts were presented; paired t-test was used for days when two contexts were presented. For b and c, paired t-test was used for comparisons between
CNO-on and CNO-off conditions; one-sample t-test was used to compare to the hypothesized population mean (1.00). For d and e, two-way RM ANOVA
and post-hoc Holm–Sidak tests were used. For all, data are presented as mean values+ SEM, and the data points are shown as gray dots with the data
from the same animals linked by gray lines. Within-day comparisons: *p < 0.05, **p < 0.01, ***p < 0.001; between-day comparisons: #p < 0.05, ##p < 0.01.
Exact p-values can be found in Supplementary Dataset 1. Source data are provided as a Source Data file.
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dependent plasticity may provide insights into how individual
neurons get recruited to represent multidimensional aspects
during these context-value associations.

Using chemogenetic inactivation, we found that the RSC was
required for initial learning and updating context-value associa-
tions, but not necessary for retrieval of previously learned asso-
ciations. This is seemingly in contrast with some studies
examining the role of the RSC in contextual fear conditioning,
which have demonstrated that RSC lesions impaired recall of
contextual memory17,56, and optogenetic reactivation of activity
patterns occurring during contextual fear conditioning were
sufficient to drive contextual memory recall57. However, con-
textual learning may differ in relation to fear conditioning versus
reward conditioning. These involve an appetitive motivational
system that mediates approach versus an aversive motivational
system that reinforces escape and, while there may be complex
relationships between these two systems58, they are in fact
mutually inhibitory59,60. Although the RSC undoubtedly plays a
role in both of these motivational systems61, these pathways may
diverge such that context-value associations in our paradigm are
formed in the RSC but the reward-associated contextual memory
traces themselves are not necessarily exclusively consolidated
there. This is supported by our observation that decoding accu-
racy of context, position and/or speed do not change along the
virtual corridor with learning or reversal learning and the activity
in the RSC does not develop a significant bias towards the
rewarded context while the animal is within the context itself. In
this regard, it is interesting that we do find responses specific to
the rewarded context in the ITI period, which are not simple
reflections of responses to the reward-onset event itself. This role
for the RSC to encode behaviorally significant contexts has also
been demonstrated in rats performing a spatial context-
discrimination foraging task, which also showed heterogeneous
responses to a reward-event that were not specifically event-timed
(in contrast to reward responses observed in the hippocampus)
and the development of these responses even preceded significant
improvements in behavioral performance across training
sessions35. In our study, this reward-linked activity in the delay
period between trials may represent persistent local integration of
previous task-related activity within the RSC or RSC updating
through reciprocally connected cortical regions, such as the
prefrontal62, orbitofrontal63, primary sensory64, and/or posterior
parietal65–69 cortex. It is additionally possible that due to the
nature of our visuospatial paradigm where multiple task-related
aspects are represented together, the RSC is more specifically
permissive during the formation and updating of these context-
value associations. Indeed, even in fear conditioning paradigms,
while the RSC is not necessary for the formation of a fear
response to a single cue, it is required for the acquisition of fear
responses that necessitate the integration of multiple cues and
forming associations between various environmental
stimuli50,56,70. Lastly, our inactivation of the RSC was not spa-
tially selective for either the granular or dysgranular regions
(which have been shown to have functional differences71) or cell-
type specific; therefore, future studies examining more precise
RSC inactivation, particularly in relation to cell populations
encoding information across multiple parameters, will provide
further insight into the integrative processing dynamics within
the RSC in relation to memory formation and recall.

Taken together, our study demonstrates that the RSC plays a
role in context-value association and updating, and that a large
proportion of RSC neurons encode for multiple task-related
dimensions. These populations show more efficient encoding of
reward-associated contexts during intertrial periods and increase
in proportion when task parameters require increased cognitive
flexibility across learning. Considering the RSC is an early-onset

center for dysfunction in neurodegenerative disorders such as
Alzheimer’s disease72–75, further studies investigating changes in
multidimensional encoding and specific disruptions of learning
and memory processes, may provide a useful behavioral marker
for neurodegenerative progression in both human and animal
studies.

Methods
Animals. Eighteen Thy1-GCaMP6f mice with C57BL/6 J genetic background
(C57BL/6J-Tg [Thy1-GCaMP6f] GP5.5Dkim/J, Jackson Laboratory, USA; RRID:
IMSR_JAX: 024276) were used for experiments (5- to 6-month-old males). All
mice were cared and treated strictly following the ethical animal research standards
defined by the Directive of the European Communities Parliament and Council on
the protection of animals used for scientific purposes (2010/63/EU) and were
approved by the Ethical Committee on Animal Health and Care of Saxony-Anhalt
state, Germany (license number: 42502-2-1346). Mice were group-housed until
surgery under a reversed 12 h light/dark cycle with water and food available ad
libitum. The ambient temperature is kept at 22 °C with 65% humidity. For the first
baseline experiment, six mice were used, which did not receive any adeno-
associated virus (AAV) injection. For the next control experiment, five mice were
injected with a control virus AAV8/hSyn-mCherry (AV6443, UNC GTC Vector
Core, USA; RRID: Addgene_114472; titer: 4.6 × 1012 vg/mL), which drives
mCherry expression. For the last inactivation experiment, a chemogenetic
approach (DREADD) was used to inactivate the RSC in seven mice. Here, AAV8/
hSyn-hM4Di-mCherry (AV5630D, UNC GTC Vector Core, USA; RRID:
Addgene_50475; titer: 7.4 × 1012 vg/mL) was injected into the RSC followed by
clozapine-N-oxide (CNO)-induced neuronal inhibition at specific time periods
during the experiment. In control experiments, mice expressing mCherry received
CNO at the same time points as hM4Di plus mCherry expressing mice.

Surgical procedures. Surgical procedures were modified from previous
studies76,77. Anesthesia was induced with 4% isoflurane (Baxter, Germany) before
the mouse was fixed in the stereotaxic apparatus (SR-6M, Narishige Scientific
Instrument Lab, Japan) and adjusted to 1.5–2% during surgery with 0.4 L/min O2.
Ophthalmic ointment was applied to protect the eyes (Bepanthen, Bayer,
Germany). To decrease cortical stress response and avoid cerebral edema, dex-
amethasone (2 mg/kg body weight; Mephamesone, Mepha Pharma, Switzerland)
was subcutaneously injected, and carprofen (5 mg/kg body weight; Rimadyl, Pfizer,
USA) was intraperitoneally injected to reduce inflammation. Mice were placed on a
controlled heating pad, and the temperature was maintained at 37 °C (ATC1000,
World Precision Instruments, USA). The scalp was shaved and cleaned with 70%
ethanol followed by an incision, and the surface of the skull was cleaned with 10%
povidone-iodine (Dynarex, USA) and 3% hydrogen peroxide solution
(Sigma–Aldrich, Germany).

A craniotomy over the retrosplenial cortex (4 mm in diameter, centered over
the midline and −2.0 mm from Bregma; Fig. 1d) was performed with a high-speed
dental drill (Eickemeyer, Germany). To avoid heat-induced damage, the drilling
procedure was stopped periodically and sterile cold saline was applied to the skull
during the interval. AAVs were bilaterally injected into the RSC (ML, ±0.4 mm; AP,
−2.0 mm from Bregma) using a 10 μL NanoFil syringe with a 35-gauge beveled
needle, attached to an Ultra Micro Pump (UMP3) with Micro 4 MicroSyringe
Pump Controller (World Precision Instruments, USA) at a speed of 100 nL/min at
two different depths (~200 and 700 μm; 500 nL per site)16,78. After each injection,
the needle was kept in place for five minutes before it was slowly withdrawn. A
5 mm in diameter circular glass coverslip (Thermo Fisher Scientific, Germany) was
then used to cover the craniotomy sealed by cyanoacrylic glue. A custom-built 3D
printed metal head-plate (Fig. 1e; i.materialise, Belgium) was implanted on the
exposed skull with cyanoacrylic glue and dental acrylic (Paladur, Heraeus Kulzer,
Germany). Animals were returned to their home cage after recovery from
anesthesia, and training began 1 week after surgery. Mice were treated once per day
with carprofen to prevent inflammation and reduce pain (5 mg/kg body weight,
i.p.) for the first three days following surgery.

Virtual reality setup. The virtual reality (VR) system and environment were
modified from previous studies79–81. Experiments were performed using a JetBall-
TFT VR system (PhenoSys, Berlin, Germany), which consisted of a TFT surround
monitor system (6 monitors) covering ~270° of the horizontal visual field of the
mouse and an air-cushioned spherical treadmill with two XY-motion sensors that
translate the movements of the sphere into VR coordinates (Fig. 1b), with a gain of
1 (physical distance to VR distance). The VR system recorded the XY-coordinates
at a 100 Hz sampling rate via two optoelectronic XY-sensors with a direct USB
connection and mean running speed was calculated from recorded data using
custom-written code (MATLAB, MathWorks, MA, USA). A retractable reward
spout connected to a peristaltic pump was put into position when animals arrived
at a specified VR location for every trial (regardless of whether a reward was
dispensed or not) and was retracted either 1.5 s after the dispensing of the reward
or after 1.5 s if no reward was given. A 4 μL droplet (10% sucrose in water) was
dispensed on reward trials if the animal licked at the predefined reward position.
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PhenoSoft VR software was used to establish and perform the presentation of
the VR environment and record the related behavioral data (PhenoSys, Berlin,
Germany). Three linear virtual corridors were used in this study (context 1, context
2, and context 3), which each consisted of different visual stimuli along the virtual
corridor walls (Fig. 1c). The total length of each corridor was 200 cm, and the
potential reward position was located at 180 cm from the starting point. After the
reward spout was retracted for each trial, the screens turned black for 3 s as an
intertrial interval (ITI), and the animal was ‘teleported’ back to the starting point of
the linear track for the next trial. The interval of 10 cm before the reward position
(i.e., 170–180 cm) was defined as the anticipation zone (Fig. 1c, h).

Behavioral training. The initial habituation to the recording environment and
pretraining for reliable running performance began 1 week after surgery. Mice were
head-fixed at the same height as the center of the TFT monitors and able to move
freely for 1 h/day on the spherical treadmill (30 cm diameter; Phenosys, Berlin,
Germany) in darkness without any virtual environment presented. Mice were water
restricted (1.5 ml of water/day) from the first day of pretraining to the end of the
experiment and weighed daily to ensure they were ≥~85% of their prewater-
restriction weight. During pretraining sessions, water was given via the reward
spout, so the mice associated licking the spout to receiving a water reward. After
14 days of pretraining (~3 weeks after cranial window surgery and AAV injection),
mice showed fast, straight and constant running on the spherical treadmill, and the
experimental protocol and imaging began.

The experimental timelines are shown in Fig. 1a, i. For these experiments, on
the first imaging day (day 1; baseline recording), each of the three virtual corridors
were presented for 20 trials in a random sequence without any reward (reward
spout was not extended). During subsequent learning sessions (day 2–3), contexts 1
and 2 were randomly presented for 40 trials each and the reward spout was
extended for each context but the water reward was given only during context 1
trials at the fixed reward position (180 cm). The following day was a test session
(day 4), in which all three contexts were presented for 15 trials each, and water
reward was given only in context 1, as during the previous learning sessions. After
this initial learning phase (day 2–4), reversal learning sessions were performed (day
5–6), in which context 1 and 2 were randomly presented again, but the rewarded
context was reversed from context 1 to context 2; this was followed by a reversal
test session (day 7) where all three contexts were presented and the water reward
still given for context 2 trials only (see Fig. 1i). For the control experiments, CNO
(10 mg/kg, 0.1 mL/10 g, body weight) was intraperitoneally injected (i.p.) 15 min
prior to the virtual environment presentation on each day except for the baseline
day (day 1).

For the inactivation experiments, the experimental timeline was derived from
the same scheme, but with modifications to dissect the role of the RSC in
acquisition versus recall of memories. Here, initial learning sessions were first
performed in the presence of CNO (day 2–4), then behavior was tested (day 5). The
next learning sessions were done in the absence of CNO (day 6–7), and mice were
tested again without (day 8) and with (day 9) CNO to examine the effect of
neuronal inhibition during memory formation processes. This was then repeated
during reversal learning (learning-day 10–12 with CNO; testing day 13; learning-
day 14–15 without CNO; testing day 16 with and day 17 without CNO) to
determine the effects on recall of formed memories. For the days without CNO
application, the same volume of 0.9 % NaCl was injected (i.p.) as the control.

In vivo two-photon calcium imaging. Two-photon calcium imaging (Fig. 1b) was
performed using resonant scanning two-photon microscopy (B-scope; Thorlabs,
USA), and a Ti:Sapphire pulsing laser (Chameleon Ultra II, Coherent, USA) tuned
to 920 nm. GCaMP6f fluorescence emission was isolated by a band-pass filter (525/
50, Semrock, USA) and detected by a GaAsP photomultiplier tube (Hamamatsu,
Germany). Images were acquired through a ×20 water immersion objective
(1.00 N.A.; Olympus, Japan) with a frame rate of 14.7 Hz (real-time averaging by 4)
for bidirectional scanning at a resolution of 256 × 256 pixels (300 × 300 µm field of
view) and controlled by ThorImageLS imaging software (version 2.4). In order to
prevent light leakage from the VR displays into the microscope, a custom-made
black foam ring was used between the microscope objective and the head-plate.
Imaging and behavioral data were synchronized by custom-written code
(MATLAB, MathWorks, MA, USA). Images were collected at a single L2/3 focal
plane per animal at cortical depths between 120 and 180 µm, and the same RSC
region was imaged across multiple days (Fig. 1f).

Histology. Procedures for histology were performed based on previous
protocols82,83. Animals were deeply anesthetized with isoflurane (Baxter, Ger-
many) and transcardially perfused first with PBS (0.1 M, pH 7.4) and followed with
4% paraformaldehyde (PFA). The brains were removed and postfixed in 4% PFA at
4 °C for 24 h and then transferred to 30% sucrose for cryoprotection until the
solution had infiltrated into the whole brain (~48 h). The brains were then frozen
in 100% 2-methylbutane (kept at −80 °C) and stored at −80 °C until sectioning.
Forty-micrometer thin coronal sections were cut using a cryostat (Leica CM1950,
Germany). Floating sections were kept in cryoprotection solution (1 mL ethylene
glycol (Carl Roth, 6881), 1 mL glycerine (Carl Roth, 3783), and 2 mL of 1× PBS
(Life Technologies, 10010056), pH 7.4).

The sections were first washed in phosphate buffer (PB; 3 × 10 min, at room
temperature (RT) with gentle shaking) and then permeabilized with 0.5% Triton
X-100 (Sigma–Aldrich, T9284) in PB for 10 min at RT. Next, the sections were
incubated for 1 h (at RT with gentle shaking) in a blocking solution containing 5%
normal donkey serum (NDS, Jackson ImmunoResearch, 017-000-121), 0.4% Triton
X-100 and 0.1% glycine in PB. Subsequently, sections were incubated for 48 h (at
4 °C with gentle shaking) with the primary antibodies (chicken anti-GFP, 1:500,
abcam, ab13970, RRID: AB_300798; goat anti-mCherry, 1:200, SICGEN, AB0040-
200, RRID: AB_2333092; mouse anti-NeuN, 1:500, Merck Millipore, MAB377,
RRID: AB_2298772) in blocking solution. The sections were then washed
3 × 10 min at RT in PB and incubated on a shaker for 3 h at RT with the secondary
antibodies (Alexa Fluor 488 donkey anti-chicken, 1:500, Jackson ImmunoResearch,
703-545-155, RRID: AB_2340375; Alexa Fluor 568 donkey anti-goat, 1:500, abcam,
ab175704, RRID: AB_2725786; Alexa Fluor 647 donkey anti-mouse, 1:500,
ThermoFisher, A31571, RRID: AB_162542). Finally, the sections were washed
3 × 10 min at RT with washing buffer and 1 × 10min at RT with PB and mounted
on SuperFrost glasses (Thermo SCIENTIFIC, J1800AMNZ) with Fluoromount
medium (Sigma–Aldrich, F4680). Images were acquired using a confocal laser-
scanning microscope (LSM 700, Carl Zeiss, Germany) and ZEN software (Carl
Zeiss, Germany).

Data analysis
Two-photon calcium imaging. Two-photon imaging datasets were acquired during
days 1 (baseline), 4 (after learning), and 7 (after relearning) for control experi-
ments, where 200–300 neurons from five mice were analyzed. Motion artifacts were
corrected for by a technique based on nonlinear optimization and discrete Fourier
transform (DFT) in low noise imaging84 for the case of uniform motion artifacts,
where the quality of image registration was assessed using normalized root-mean-
square (NRMS) between reconstructed and reference images85 using the first image
frame as the reference. Alternatively, we used a template matching method that
split the field-of-view into spatially overlapping patches according to user-
determined dimensions, registered corresponding patches of the template sepa-
rately and then merged the registered subpatches to each other86 for the case of
nonuniform motion artifacts. Image registration quality was measured by the
image crispness defined as the Frobenius norm of image gradient vector and image
magnitude.

To extract the neuronal change in fluorescence, we used a method that
automatically identified ROIs (including spatially overlapped ones), denoised
signals, and when comparing the ITI period to the immediately preceding reward
period (Fig. 3f; Supplementary Figs. 10, 11) deconvolved signals87 with open source
and adapted MATLAB code (MathWorks, MA, USA). Briefly, this method uses
constrained non-negative matrix factorization (cNMF) to isolate spatially and
temporally independent fluorescent signals, approximating a parametric model for
continuous timeseries calcium transients as the impulse response of an
autoregressive process, and then estimates the spiking signal from the sparsest non-
negative neural activity signal. This method can denoise the spatiotemporal
imaging set and model the background activity in each image frame by averaging
the spatiotemporal background over ROIs. The temporal trace of each ROI was
expressed as ΔF/F, raw fluorescence trace divided by background activity. The
default parameters were used with few exceptions (the order of AR process p was
set to 2, temporal downsampling factor “tsub” was set to 4, spatial downsampling
“ssub” was set to 2). Between 50 and 70 ROIs corresponding to the somata of
neurons were identified per animal per session using this approach after manual
confirmation.

To follow the changes in the encoding pattern of individual cells across days
during learning and reversal learning to determine how neurons remapped
response categories across non-encoding, single-, double-, or multidimensional
encoding, ROIs were also automatically identified using suite2p88 simultaneously
across days 1, 4, and 7 for four out of the five mice used in the control group (the
remaining mouse was excluded due to the field-of-view on baseline day not
matching precisely to the following chronic imaging days).

Context and context-value association decoding. A linear discriminant analysis
(XLSTAT, Addinsoft) was used for decoding the relationship between neuronal
activity (ΔF/F values) and the identity of the virtual context on fixed days.
Therefore, for each observed set of neuronal activities, discriminant functions were
calculated for each of i-th contexts using the Eq. (1):

wi0 þ∑wij ajpt ; for j ¼ 1; 2; :::; number of neurons; ð1Þ
where ajpt= ΔF/F for neuron j at position p for trial t, and wij are the weights
optimized to provide the highest value to the discriminant function corresponding
to the right context. To predict context along the length of the virtual corridor,
mean ΔF/F values were computed per neuron for 18 consecutive bins, 10 cm-long
each, and the context was predicted for each of these bins in all trials. In the
backward stepwise method for cell selection, initially, all cells are included in the
model, and then cells contributing the least to the context prediction are removed
one-by-one if the quality of context prediction is not significantly changed
(P > 0.05). Further, the contributions of each neuron to the context prediction were
estimated by type III sum of squares analysis and neurons with p < 0.05 were
identified as context-encoding cells. The quality of context prediction was
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characterized by % of well-classified observations, which is the ratio of the number
of observations for which the context was correctly predicted over the total number
of observations (number of trials × 18). A cross-validation method was used to
estimate the accuracy of context decoding. Cross-validation allows one to see the
prediction for a given observation if it is left out of the estimation sample. Addi-
tionally, we split observations into two independent subgroups and predicted
context for 100 observations using discriminant functions estimated on the rest of
data, which provided a very similar outcome as the cross-validation method. To
demonstrate that the linear discriminant model extracts meaningful information
about the context-specific neuronal activity, we performed the analysis after ran-
dom shuffling of contexts in each dataset.

Similarly, we used linear discriminant analysis for decoding of the relationship
between longitudinal neuronal activity across days and context-value associations,
which were alternated across learning phases (i.e., reward was associated with
context 1 on day 4 and context 2 on day 7 versus no reward in all contexts on day
1, contexts 2 and 3 on day 4 and contexts 1 and 3 on day 7). As our behavioral
results suggested animals show a change in speed associated with a particular
context-value association beginning only after the first ~40 cm of the virtual
corridor (see Supplementary Fig. 2), for this analysis we used the mean value of
neuronal activity for 40–180 cm along the virtual corridor.

To compress and visualize the neuronal activity of all cells per animal in all
contexts and days in 2D space, a principal component analysis was performed
(XLSTAT, Addinsoft), which revealed that the first three principal components
explain in total about 70% of cell activity variance and hence provide a highly
informative representation of neuronal activity.

Position and speed decoding. A linear regression analysis (XLSTAT, Addinsoft)
was employed for decoding of the relationship between neuronal activity (ΔF/F
values) and the animal’s position (18 bins) in a defined virtual context, i.e., the
position was predicted using the Eq. (2):

w0 þ∑wj ajpt ; for j ¼ 1; 2; :::; number of neurons; ð2Þ

where ajpt= ΔF/F for neuron j at position p for trial t, and wj are the weights
optimized using the least squares method to minimize the difference between the
actual and predicted position values for all observations.

In the backward stepwise method, initially, all cells are included in the
regression model, and then cells contributing the least to the position prediction
are removed one-by-one (using Student’s t-test if, p > 0.05). Corrected R2, which
corresponds to the fraction of the dependent variable (i.e., distance) variance that is
explained by the linear model, was used as a standard measure to report the fitting
quality. Further, the contributions of each neuron to the prediction of position
were estimated by type III sum of squares analysis and neurons with p < 0.05 were
identified as position-encoding cells. Similarly, we performed decoding of the
animal’s speed after averaging of ΔF/F for speed bins of 10 cm/s using the same
procedures. The position and speed-decoding analyses were performed separately
for each context and experimental day and the outcomes were combined for the
analysis of individual cell properties, i.e., to determine if a cell was significantly
contributing to the encoding of position or speed or both, and if it was contributing
in none, 1, 2, or 3 contexts. To demonstrate that the linear discriminant model
extracts meaningful information about position- and speed-specific neuronal
activity, we performed the analysis after randomly shuffling position and speed
bins in each dataset.

Visual cell analysis. To search for visual feature-encoding neurons in the RSC, we
described our VR environments by simple dark-to-light transition (DLT) functions
having the value 1 at the spatial bins in which there was a dark-to-light transition
in the VR environment and value 0 at other spatial bins. Then a cross-correlation
function was computed between the DLT functions and activities of single neurons
(averaged ΔF/F values across all trials per day per context). Considering that our
VR environments were composed of repeated elements, resulting in periodic DLT
functions, the cross-correlation functions were computed for time lags in the range
between −3 to +3 bins (corresponding to the period of the slow-changing DLT
function in the context 3). The maximal value of the Pearson coefficient of cross-
correlation was used to determine at which lag the best fit between neuronal
activity and the DLT function is achieved, and the ΔF/F signal was accordingly
aligned. A cell was classified to be visually responsive if it has the maximal coef-
ficient of cross-correlation significantly different from 0 with p < 0.05 (after Bon-
ferroni correction for multiple comparisons) and at least two peaks aligned with
one of 3 DLT functions corresponding to the 3 contexts used.

Statistics. In this study, unless indicated otherwise, all values reported represent
mean+ SEM with n indicating the number of animals. All statistical comparisons
were performed using SigmaPlot (version 13; Systat Software, USA) and described
in the corresponding figure legends. In figures, “*” and “#” were used to indicate
statistical significance (p presents the level of statistical significance, *p < 0.05,
**p < 0.01, ***p < 0.001; #p < 0.05, ##p < 0.01, ###p < 0.001). All statistical com-
parisons of position- and speed-decoding parameters derived by linear regression
analysis and context-decoding parameters evaluated by the discriminant analysis
were performed by the two-way repeated measures ANOVA with Holm–Sidak

post-hoc method (XLSTAT, Addinsoft). All statistical tests are two-sided. Exact p-
values can be found in Supplementary Dataset 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data underlying all figures are provided as a Source Data file. The raw ΔF/F
and speed values at each position bin along the virtual corridor, the raw ΔF/F and the
amplitude after deconvolution at each time bin during ITI used in this study are publicly
available in the Mendeley Data database at https://data.mendeley.com/datasets/
cpgrd49h85/2. All two-photon images are publicly available in the Mendeley Data
database at https://data.mendeley.com/datasets/dcv885kzf2/1 (day 1), https://
data.mendeley.com/datasets/k9z74vfgwf/1 (day 4), and https://data.mendeley.com/
datasets/hjgtsmyyv5/1 (day 7). Source data are provided with this paper.

Code availability
The code used to synchronize two-photon imaging with behavioral data, and to calculate
the speed from Phenosys data are available on GitHub (https://github.com/seobseob/
MATLAB-code).
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