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Coupling complementary strategy to flexible graph
neural network for quick discovery of coformer in
diverse co-crystal materials
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Cocrystal engineering have been widely applied in pharmaceutical, chemistry and material

fields. However, how to effectively choose coformer has been a challenging task on experi-

ments. Here we develop a graph neural network (GNN) based deep learning framework to

quickly predict formation of the cocrystal. In order to capture main driving force to crystal-

lization from 6819 positive and 1052 negative samples reported by experiments, a feasible

GNN framework is explored to integrate important prior knowledge into end-to-end learning

on the molecular graph. The model is strongly validated against seven competitive models

and three challenging independent test sets involving pharmaceutical cocrystals, π–π
cocrystals and energetic cocrystals, exhibiting superior performance with accuracy higher

than 96%, confirming its robustness and generalization. Furthermore, one new energetic

cocrystal predicted is successfully synthesized, showcasing high potential of the model in

practice. All the data and source codes are available at https://github.com/Saoge123/ccgnet

for aiding cocrystal community.
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Cocrystals (CCs) are defined as a kind of single-phase
crystalline materials composed of two or more neutral
molecules assembled by noncovalent forces in definite

stoichiometric ratio, which are neither solvates nor simple salts1.
The co-crystallization could offer an opportunity to achieve novel
properties for functional molecules through noncovalent bond
synthesis with low cost, structural flexibility, and solution-
processing capability2. Consequently, cocrystal engineering has
been served as an effective design strategy in pharmaceutical,
chemistry, and material fields. For example, CCs are used as
means to address physicochemical, biopharmaceutical and
mechanical properties and expand solid form diversity of Activate
Pharmaceutical Ingredients (APIs)3. For organic functional
materials, CCs have advanced optical, electrical and innovative
functionalities4. Also, the cocrystal is an effective lever to improve
the performance of explosives in order to achieve low-sensitivity
and high-energy5–8.

Despite of the fascinating promises, how to choose coformer is
a primary key in cocrystal engineering since the co-crystallization
only occurs between some certain molecules9,10. Experimental
determination of new co-crystals generally involves systematic
screening with a large range of coformers, thus being costly in
both time, effort and laboratory resources. To mitigate the pro-
blem, some computational approaches were proposed to predict
co-formers likely to form CCs, for example, structural analysis
using experimental data from the Cambridge Structural Database
(CSD)11, network-based link prediction for cocrystal design12,
thermodynamic characteristics of cocrystal formation13, mole-
cular dynamics simulation14, intermolecular site pairing energy
(ISPE)15, COSMO-RS (Conductor like Screening Model for Real
Solvents) based on calculation of mixing enthalpy in a super-
cooled liquid phase16, and coformer screening based on cloud-
computing crystal structure prediction (CSP) technology17. These
methods above roughly follow knowledge-based11–13 and
physics-based14–17 paradigms, which indeed provide useful
guidelines for experimental designs. However, they are limited in
the generalization for diversity of noncovalent interactions and
molecular chemical structures. Therefore, it is highly desired to
develop more general strategies with lower computation cost.

Recently, data-driven machine learning (ML) methods have
become increasingly popular in chemical and material fields18

due to their optimization strategies that are automatically
improved by empirical data from statistical perspectives, thus
providing smart navigation in nearly infinite chemical space19.
Several works already utilized the ML methods to make mean-
ingful attempts to the cocrystal prediction, involving support
vector machines (SVMs)20, Multivariate Adaptive Regression
Splines21, Random Forest (RF), and Deep neural network
(DNN)22. However, these ML methods coupled with the mole-
cular descriptors or fingerprints only exhibited moderate accuracy
for the cocrystal prediction. With rapidly accumulated data and
booming of Graphic Processing Units (GPUs), deep learning
(DL) has been far beyond conventional ML methods in many
research domains23–25. In particular, graph neural networks
(GNNs), a subset of DL, has received increasing attentions due to
great expressive power of graphs26. For GNN, end-to-end
learning on the molecular graph replaces traditional feature
engineering to model chemical properties27,28, which could avoid
the conformational challenge from 3D representations of
compounds29. Very recently, one GNN-based work on the
cocrystal screening were reported to achieve ~97% accuracy for
validation sets and ~80% for independent test sets30. Despite the
performance on the validation set was boosted by GNN,
the prediction accuracy on the independent test set that reflects
the robustness and the generalization of the ML model to unseen
samples is still moderate. However, improving the generalization

ability has been considered to be one of the most difficult chal-
lenges for the ML31,32, which involves dataset, feature repre-
sentation and model algorithm.

As accepted, the data-driven MLs mainly rely on the large
amount of high-quality data. CSD33 contains a wealth of cocrystal
structures that can supports the DL, but only be restricted to the
positive samples (cocrystals) while there has been lack of invalid
coformer combinations (negative sample) reported. Thus, Vriza
et al.34 only used positive samples to construct one classification
model to predict π–π co-crystals. In order to construct a balanced
negative samples, Devogelaer and Wang combined two coformers
into invalid co-crystals with the aid of some computational ways
like network-based link prediction30 and molecular similarity-
based method22. In the case of experimental data unavailable, the
computation way is supposed to be a good alternative. However,
for the CCs, there practically have been some negative samples
reported by experiments despite of sparseness with respect to the
positive samples, leading to an imbalanced dataset. ML on the
imbalanced dataset is easily biased towards the majority
group35,36, thus being difficult. However, in the real world, the
problem of uneven data representation is often faced. Moreover,
from the data mining perspective, the minority class is the one
more important, as it may carry important and useful knowledge
to determine the boundary between success and failure. Utilizing
failed experiments, some ML-based works already achieved suc-
cesses in assisting material synthesis37,38.

In addition, the feature representation characterizing the
sample is also a key of the ML-based model, in particular for the
imbalanced data. If both classes with high disproportion are well
represented with non-overlapping distributions, good classifica-
tion rates are still obtained by ML-based classifiers36. Conven-
tional ML algorithms generally involve feature selections or
optimizations (also called hand-engineering) to improve the
model performance. While modern DL methods like GNNs often
follow an “end-to-end” self-learning strategy, which emphasizes
minimal a priori representational and computational assumptions
to avoid “hand-engineering”. In other words, DL is isolated from
potentially useful knowledge39. Theoretically, DL models can
bypass “hand-engineering” features with sufficiently large data.
However, the data available are often limited in many fields,
which hardly support DL to learning sufficient knowledge char-
acterizing the target property. In this case, it should be advocated
for an approach that benefits from the complementary strength of
“hand-engineering” and “end-to-end” learning40, just as biology
uses nature and nurture cooperatively.

Motivated by the challenges above, we, in this work, reconstruct a
reliable co-crystal dataset composed of 7871 samples, where 1052
negative samples are all collected from experimental reports to
minimize the false negative and 6819 positive samples still come
from CSD. To more completely capture the main driving force to
the co-crystallization from the limited and imbalanced dataset, a
complementary strategy is proposed for the co-crystal representa-
tion through combining the molecular graph and 12 molecular
descriptors from priori knowledge that was revealed to make
important contributions to the cocrystal formation11,41,42. With the
feature representation, we explore a flexible GNN-based DL fra-
mework that effectively integrates the empirical knowledge into
end-to-end learning on the molecular graph, which can be feasibly
applied to the CCs that are significantly different from the training
dataset through transfer learning. We name it as Co-Crystal Graph
Network (CCGNet). To sufficiently evaluate its performance, seven
competitive models were adopted to compare, including two tra-
ditional MLs and five DL models. In addition, different from the
previous ML works that used one type of independent test similar
to the training set, the robustness and generalization of CCGNet are
strongly validated against three different types of co-crystal systems
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(pharmaceutical CCs, π–π CCs and energetic CCs) as unseen cases,
which have been considered to be challenging for virtual screening
of co-crystals30,34,43. Our model showcases high accuracy for the
three independent testing sets, outperforming the competitive
models. Based on the prediction result, a new energetic co-crystal
predicted is successfully synthesized, further confirming the
potential of CCGNet in practical application.

Results
Data collection and augmentation. Data availability is a critical
bottleneck that limits applications of DL in cocrystal engineering
and data quality is another key to the model performance. Thus,
to obtain a reliable dataset, we construct a large dataset con-
taining 7871 samples (called as CC dataset below), which are
composed of 6819 positive samples (Supplementary Data 1) and
1052 negative ones (Supplementary Data 2). The positive samples
come from CSD33, which contains more than one million crystal
structures of small molecules and metal–organic molecular
crystals resolved by X-ray and neutron diffraction experiments.

As illustrated by Fig. 1a, the CCs are screened from CSD in terms
of the following conditions:

1. Only containing two chemically different polyatomic units.
2. Having 3D structures and no disorder atoms to avoid low-

quality structures.
3. Not containing any of a set common solvents or small

molecule9,44, which are liquid/gaseous at room tempera-
ture, as listed in the Supplementary Table 1.

4. Only containing C, H, O, N, P, S, Cl, Br, I, F, and Si
elements, ruling out metal elements.

5. Molecular weight of each component <700, considering the
fact that most organic CCs are generally small molecules.

6. Being neutral components to exclude salts because most
functional CCs are neutral/quasineutral45.

7. Ruling out polymorphism to remove duplicate samples,
considering that different crystal structures can be formed
between the two same co-formers when the crystallization
conditions change.

Fig. 1 Overview of CCGNet cocrystal-screening framework. a The flow chart of sample collection. Left: the collection of cocrystal positive samples. Right:
the collection of cocrystal negative samples. b Sample Representation. c The architecture of the CCGNet model. Green and pink denote the calculation
block at the message passing phase and the readout phase, respectively. d Customization of CCGBlock. Φu is the global state function realized by a single-
layer feedforward neural network while Φv is a Graph-CNN layer to propagate and update node information. ρu!v is a concatenation operation, which
embeds hidden representation of u into atom vectors of each coformer. σ is activation function. e Illustration of the global attention. vi is node embedding.
ai is the attention weight of each node. Uv!u is a weighted summation of products of vi and ai.
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Consequently, 6819 positive samples are obtained using CCDC
python Application Programming Interface. Different from
previous works that combined invalid co-crystal as negative
samples merely using the computational rules22,30, our negative
samples are collected from experimental reports scattered in ~186
pieces of literature (Supplementary Data 2) in order to minimize
the false negative. For example, eutectics reported are taken as the
negative samples since they are lack of long-range-order46. In
addition, those that are failed to co-crystalize in the cocrystal-
screening experiments are served as the negative samples. All
coformer structures of the negative samples are downloaded from
PubChem. Then, we use the PubChem Compound CID as the
unique identification of each negative coformer to remove
duplications. Taken together, we collected 1052 negative samples.
The 7871 samples could support the DL training and also
provides data resource for studying other properties of the CCs in
the future. In addition, when the dataset is used to train the ML,
we adopt a data augmentation strategy in order to enhance the
robustness and the generalization ability of the model. The data
augmentation strategy is usually advocated in DL31, in particular
for the limited dataset. As the input of cocrystal involve a pair of
coformers, we exchange their input orders to double the amount
of the samples, in turn augmenting the dataset.

Representation of samples. As accepted, the sample repre-
sentation is essential for the ML to fit the relationship between the
molecular structure and its property. Different from traditional
GNNs with samples characterized only by the molecular graph,
we propose a complementary feature representation by combin-
ing priori knowledge and self-learning on the molecular graph to
more completely capture the main driving force to co-
crystallization from the limited dataset. Table 1 lists atomic and
covalent bond features for the molecular graph used in the work.
Twelve molecular descriptors are selected to represent priori
knowledge since they were revealed by related studies to be highly
associated with the cocrystal1ization11,41,42. Table 2 shows the
12 selected molecular descriptors involving the molecular shape,
size, polarity, flexibility, and hydrogen bond tendency, which can
be quickly calculated to facilitate high-throughput screening. As
depicted by Fig. 1b, we take these molecular descriptors from the
domain knowledge as global state u, which is embedded into a
2*12 matrix. The covalent bond information from the molecular
graph is represented by an adjacency tensorA. Each slice Al is an
adjacency matrix that represents one bond type, through which
the other features besides the covalent bond also can be embed-
ded into A as extra slices. The features of the atomic level from
the molecular graph are transformed to the vertex matrix.

Construction of co-crystal graph network (CCGNet) model.
With the complementary feature proposed, we accordingly con-
struct a flexible graph neural network-based co-crystal prediction
model named as CCGNet. Here, we formalize the CCGNet fra-
mework by introducing related concepts of Graph Nets (GNs)40

and Message Passing Neural Networks (MPNNs)47 paradigms.
As shown in Fig. 1c, CCGNet is mainly composed of two stages,
i.e., message passing phase and readout phase. The message
passing is the core of MPNNs, which propagate vertex embedding
to neighbors and update its embedding. As depicted by Fig. 1d,
the message passing phase can be consist of N CCGBlocks (four
CCGBlocks in this work), which are formalized by GN block.
CCGBlock involves two trainable functions that are Φu and Φv .
Herein, Φu is defined as a global state function and is constructed
by a single-layer feedforward neural network, which computes a
hidden representation of the global state associated with the 12
hand-selected molecular descriptors. Φv , a Graph-CNN layer48, is

utilized to propagate and update information between nodes/
atoms of the molecular graph using an adjacent tensor that
represents the edges/bonds. ρu!v is a concatenation operation,
which is used to embed the hidden representation of u into the
atom vector of each coformer.

In the readout phase, we also conduct the concatenate operation
to further fuse the multilevel features, and introduce global
attention mechanism49 into the readout function to calculate
feature vectors from the molecular graph, which uses the weighting
summation of the atom vectors instead of simply summing, as
illustrated by Fig. 1e. To stabilize the learning process of self-
attention and further optimize hidden embedding, we construct
multi-head attention framework, which parallelly calculates k
independent attention coefficients of each atom to produce k
independent embeddings and then concatenate them to the vector
for whole sample representation. After the global attention, we
concatenate the hidden representation U0 of the global state with
the graph embedding to further enrich the information. Finally,
sequential dense layers are applied to the final prediction for co-
crystal formation, as highlighted in the gray block in Fig. 1c. The
details regarding the node update function, global state function,
concatenation operation and readout function coupled with the
attention mechanism are described in Methods.

Table 1 Atomic and bond attributes used in CCGNet.

Feature Description

Atom
Atom type Cl, N, P, Br, B, S, I, F, C, O, H (one-hot)
Hybridization SP2, SP3, SP, S (one-hot)
Chirality None, R, S (binary)
is_chiral True or False (binary)
is_spiro True or False (binary)
is_cyclic True or False (binary)
is_aromatic True or False (binary)
is_acceptor True or False (binary)
is_donor True or False (binary)
Explicitvalence Integer
Implicitvalence Integer
Formal charge Integer
Degree Integer
Total H number Integer
Vdw radius Float
Atomic_number Integer

Bond
Bond type Single, double, triple, aromatic (one-hot)

Table 2 Molecular descriptors used as the global state in
CCGNet.

Molecular descriptor Description

S Short axis of an enclosing box (float)
S_L S/long axis of an enclosing box (float)
S_M S/medium axis of an enclosing box (float)
M_L Medium axis of an enclosing box/long axis of an

enclosing box (float)
Globularity Surface of a sphere with the same volume as the

molecule/area (float)
FrTPSA TPSA/SASA (float)
Fr_NO (n_N+ n_O)/n_heavy (float)
Fr_AromaticAtoms n_ AromaticAtom/n_heavy (float)
HBA the number of H-bond acceptor (integer)
HBD the number of H-bond donor (integer)
RBN the number of rotatable bond (integer)
Dipole_Moment Dipole moment (float)
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Ablation experiments on feature representation and model
architecture. We conduct some ablation studies on the feature
representation and the model framework to investigate whether
they are essential for the model performance. For the 12 mole-
cular descriptors, seven are correlated with the 3D conformation,
such as S, S_L, M_L, S_M, Globularity, FrTPSA and Dipole_-
Moment, which are labeled as 3D descriptors. The remaining five
descriptors can be decided by the 2D structure, thus labeled as 2D
ones. We separately remove the 2D descriptors, the 3D descrip-
tors and all the 12 molecular descriptors from the global state and
then test the impacts of the remaining features. Figure 2a shows
their prediction performances on the tenfold cross-validation set,
where the model only using the molecular graph presents the
lowest accuracy (93.90% of BACC). After including the 2D
descriptors, the prediction performance is slightly improved to be
94.16%. However, substantial improvement is achieved (97.68%)
by alone embedding the seven 3D descriptors into the molecular
graph. When the 12 molecular descriptors are all fused into the
molecular graph, the prediction accuracy is further improved to
be 98.54%. The result indicates that the self-learning of GNN on
the molecular graph from the limited dataset hardly grasps suf-
ficient structure information, in particular for the features asso-
ciated with the 3D conformation. In the case, the feature
complementary will alleviate the limitation.

In addition, intermolecular H-bonds and π–π interactions have
been considered to dominate the process of recognition and
assembly for the co-crystallization4,50,51. Thus, we also investigate
whether the prediction accuracy can be further improved by

adding the two intermolecular interactions as two types of new
edge features into the adjacency tensor for the molecular graph, as
illustrated by Fig. 2b. Not expected, the model performance is not
improved but dropping to some extent, as reflected by Fig. 2c.
Practically, the 12 molecular descriptors involve the number of
aromatic atoms and H-bond donors/acceptors, which are
associated with the intermolecular H-bonding and π–π interac-
tion. Furthermore, our CCGNet model also introduces the
attention mechanism in the readout phase to further optimize
the feature space. As reflected by Fig. 2d, a pair of coformers in
the co-crystal structure exhibit –O5–H···N2, –O4–H···O3, and
–O6–H···O1 H-bonding as well as π–π interaction between the
benzene ring and the oxadiazole ring, while the attention weights
just capture these groups involving the two intermolecular
interactions. More examples and discussion are shown in
Supplementary Fig. 1 and Supplementary Discussion. Therefore,
the extra addition of the two edge features conversely increases
the redundancy of features, making the model learning more
difficult, in turn decreasing the prediction accuracy. Next, we
perform an ablation experiment on the concatenation way that is
crucial for the effectiveness of fusing the global state and the node
feature, where we remove the concatenation (ρu!v) in each
CCGBlock and only retaining the concatenation at the readout
stage (Supplementary Fig. 2). We call the framework as CCGNet-
simple. It can be seen from Fig. 2a that CCGNet-Simple also get
high accuracy, but still slightly lower than that including the
concatenation at each CCGBlock. Finally, we use t-distributed
stochastic neighbor embedding (t-SNE) analysis52 to visualize the
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Fig. 2 Ablation experiments on feature representation and model architecture. a Prediction performance for the network trained with different subsets of
features and different concatenation ways for the tenfold cross-validation set. MG denotes only using Molecular Graph as input. MG+ 2D denotes a
combination of MG and the 2D descriptors while MG+ 3D means a combination of MG and the 3D descriptors. MG+ 2D+ 3D represents the
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molecular graph of CB. d Attention visualization for one representative cocrystal involving the intermolecular H-bonding and π–π interaction. The real co-
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The cyan dash line denotes the intermolecular H-bonding. e t-SNE analysis on one representative fold of the tenfold cross-validation for CCGNet. Hidden
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input vectors of the dense layer for the tenfold cross-validation.
Figure 2e representatively displays t-SNE of one-fold and the ten
folds can be found in Supplementary Fig. 3. It is clear that the
cocrystal embedding learned by CCGNet can well separate the
positive and negative samples even in the unbalanced data
distribution, which is benefited from the complementary feature
and the reasonable model framework.

Performance of CCGNet and comparison with competitive
models. To assess the performance of CCGNet, we also conduct a
comparison study with seven competitive models involving
classical ML (SVM and RF) and DL (GNN and DNN) algorithms.
Herein, SVM and RF use our twelve molecular descriptors as
input. For GNN, we focus on three frameworks solely using the
molecular graph as input, including GCN30, enn-s2s47, and
Graph-CNN48. As mentioned above, GCN exhibited a high
performance on the validation set but moderate performance
(~80%) for the independent test set of a balanced cocrystal
dataset30. enn-s2s is a classic GNN based on the MPNN paradigm
that was summarized from many GNNs by Gilmer et al.47 and
showcased excellent performance in predicting some quantum
chemical properties, while Graph-CNN as an extension of Con-
volutional Neural Network (CNN) in graph data achieved good
accuracy in the binary classification task for the activity of
compounds against cancer cell and the categories of enzymes48.
Despite the fact that Graph-CNN48 and enn-s2s47 were not used
in the cocrystal prediction, we still take them as the competitive
models in order to more comprehensively gauge our model
architecture and the feature complementary with respect to the
classical GNN frameworks. It is noted that we did some mod-
ifications on the output layer of enn-s2s to meet the cocrystal
prediction. In addition, two DNN models are considered in the
comparison. One is constructed in terms of classical DNN
paradigm only using the 12 molecular descriptors as input
(labeled as DNN-des), through which we could further evaluate
the performance of the DL only using the features from prior
knowledge. The second DNN model coupled with the extended-
connectivity fingerprints53 (ECFP) is derived from the cocrystal-
screening work30, which is labeled as DNN-FP. All these models
are retrained on our cocrystal dataset and Bayesian optimization
is used to search their optimal hyper-parameters. Details
regarding the construction of the seven competitive models and
their Bayesian optimizations are described in Supplementary
Methods. Supplementary Tables 2, 3 list the hyper-parameter
spaces, while Supplementary Fig. 5 shows the best configurations
determined by Bayesian optimization for the all the models
including our CCGNet.

Table 3 depicts the performances of the models on the tenfold
cross-validation set coupled with the data augmentation. It can be
seen that all the competitive models give high prediction
accuracies for the positive samples (TPRs), higher than 98%.
But, their performances (86–90%) on the negative samples
(TNRs) are significantly lower than TPRs. The observation is
consistent with the prevalent problem that MLs on the
unbalanced dataset is generally biased to the majority group
(i.e., positive samples in the work). Thus, in the case, it is required
to more carefully design the ML model. As expected, our
CCGNet alleviates the challenge by means of the complementary
feature and the flexible architecture, thus its accuracy on the
negative samples (TNR) is still high up to 97.26% even in the
uneven data distribution. Consequently, BACC of our CCGNet is
highest (98.54%), greatly outperforming the seven competitive
models (92.52–94.46%). In addition, Supplementary Table 4
exhibits the effect of the data augmentation on the prediction
performances of all the models. It can be seen that most models

present variances to the different input orders of a pair of
coformers before the data augmentation. However, they become
insensitive to the permutation order after using the data
augmentation, and the overall prediction accuracies are to
different extent improved, in particular for the GCN, DNN-FP,
DNN-desc, RF and SVM models. In other words, the data
augmentation could endow the ML model with invariance to
some interferences, thus improving its robustness and
performance.

Verification and application of CCGNet. In order to validate
generalization of CCGNet towards out-of-sample CCs (i.e.,
unseen CCs), we select three different types of co-crystals as
independent test sets, which involve pharmaceutics, organic
functional materials and energetic materials. For each type, we
select some important cocrystal samples as representatives,
which were reported to be challenging for the cocrystal screening.
Figure 3a shows the number of positive and negative samples
used in the three independent test sets. For achieving better
prediction performance and stronger robustness, all the models
adopt the ensemble learning strategy for these independent test
sets, which combine the models from the tenfold cross-validation
into an ensemble to “vote” on the prediction samples to obtain
the final prediction result. As reported, the ensemble learning has
been considered to be one of the most popular approaches for
handling class imbalance36.

Independent testing for pharmaceutical co-crystals. Pharma-
ceutical co-crystals can improve the physicochemical properties
of potential APIs and simultaneously preserve their pharmaco-
logical properties, thus playing important roles in the pharma-
ceutical industry. In order to test the generalization ability of our
model in the pharmacological co-crystals, we collect four APIs as
study cases, which include Nicotinamide, Carbamazepine, Indo-
methacin, and Paracetamol. Nicotinamide is a harmless and
widely used food additive54,55 and is often used as a coformer for
co-crystallization56–58. Carbamazepine is used in the treatment of
epilepsy and neuropathic pain. Due to limited bioavailability
like low solubility, carbamazepine is generally needed to use
a higher dose to achieve the desired therapeutic effect while
co-crystallization is an effective method to improve its
solubility59–61. In addition, the co-crystal prediction on Indo-
methacin and Paracetamol exhibited poor performance in pre-
viously developed approaches, which was considered to the lack
of account for the crystallinity contribution to cocrystal formation
by Sun et al.17. To address this issue, they developed two virtual
coformer screening approaches based on a modern cloud-
computing CSP technology at a dispersion-corrected density

Table 3 Performances of the models on the tenfold cross-
validation.

Model TPR (%) TNR (%) BACC (%)

SVMc 99.11 (±0.41) 89.81 (±3.55) 94.46 (±1.85)
RFc 99.82 (±0.15) 87.05 (±3.87) 93.44 (±1.89)
DNN-desc 99.55 (±0.19) 89.11 (±2.42) 94.33 (±1.25)
DNN-FPb,30 98.57 (±0.46) 86.48 (±4.86) 92.52 (±2.37)
enn-s2sa,47 98.63 (±0.38) 89.90 (±4.98) 94.27 (±2.41)
Graph-CNNa,48 98.94 (±0.39) 87.20 (±3.33) 93.07 (±1.60)
GCNa,30 98.98 (±0.43) 87.64 (±3.47) 93.31 (±1.76)
CCGNetd 99.82 (±0.14) 97.26 (±1.61) 98.54 (±0.79)

aModel input is the molecular graph.
bModel input is ECFP4.
cModel input is the twelve molecular descriptors.
dModel input is a combination of the molecular graph and the twelve molecular descriptors.
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functional theory (DFT-D) level, which significantly improved
the prediction performance with respect to the other methods like
Hansen Solubility Parameter, COSMO-RS, and SSIPS62–64.
However, the CSP method requires high computation cost, thus
limiting its generalization in practice. In order to test whether our
CCGNet model can achieve high accuracy, we also added the two
challenging APIs (indomethacin and paracetamol) into the
independent test sets (Fig. 3a). Supplementary Tables 5–8 show
details regarding the positive and negative samples in the inde-
pendent test set for the four APIs while Fig. 3b and Table 4 show

the prediction performance on them. In addition, we sum the
predictive score for the positive class over the CCGNet ensemble
and sort them from high to low in Fig. 4 for visualization of
the cocrystalization trend involving the four AIPs. In general, the
higher the predictive score for the positive class, the greater the
possibility of co-crystallization.

It can be seen from Fig. 3b and Table 4 that our CCGNet
achieves 100% accuracy for three of the four APIs (Nicotinamide,
Carbamazepine, and Paracetamol), where their positive samples
and the negative ones are completely separated in the score rank

Fig. 3 Model performances on the independent test sets. a Samples of the independent test sets. Nico Nicotinamide, Carb Carbamazepine, Indo
Indomethacin, Para Paracetamol. b The balanced accuracy for the four APIs. Cyan Nicotinamide, Orange Carbamazepine, Violet Indomethacin, Yellow
Paracetamol, Green holistic performance of all APIs. c The prediction performance on the pyrene cocrystals. TPR, TNR, and BACC denote true positive rate,
true negative rate and balanced accuracy, respectively. d The prediction performance on TNT with and without the transfer learning (pretraining). e The
prediction performance on CL-20 with and without the transfer learning (pretraining). Green True Positive Rate (TPR), Orange True Negative Rate (TNR),
Red Balanced Accuracy (BACC).
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(Fig. 4a–c). Although CCGNet does not get the highest accuracy
for the indomethacin, it still achieves 91.18%, only inferior to
DNN-FP30 (94.12%) and being ranked second. Despite the
highest accuracy of DNN-FP on Indomethacin, it exhibits poor
performance with lower than 70% on the other three APIs, much
lower than our CCGNet, as shown by Table 4. In addition,
although there are three prediction errors given by CCGNet for
the negative samples of the indomethacin, the CCGNet model is
still able to separate the three negative samples from the true
positive samples in the score ranking (Fig. 4d), indicating that it
still well evaluates the co-crystallization trend of the indometha-
cin. For RF, it also reaches 100% accuracy for Nicotinamide and
Paracetamol, but its BACCs are only 68.75% and 76.47% for
Carbamazepine and Indomethacin, respectively. For the other
models including GCN30, their performances are also signifi-
cantly inferior to CCGNet, in particular for the negative samples.
In addition, it is worth noting that RF, SVM and DNN-des
models only using the 12 molecular descriptors from the prior
knowledge achieves the holistic BACC of 81.63–86.17% over the
four APIs and higher than the four DL models only using the
molecular graph or the molecular fingerprint (76.51–80.19%),
further showcasing the importance of domain knowledge in the
ML-based prediction. Overall, our CCGNet exhibits the highest
holistic BACC (96.81%) over the four APIs and is greatly superior
to the seven competitive models, further highlighting the
advantages of our feature complementary and model framework.
Compared to the CSP-based screening method with high
computational cost17, CCGNet does not need to conduct the
complex quantum mechanics calculation to obtain the informa-
tion of the crystallinity but still achieves high prediction accuracy
for these challenging APIs.

Independent testing for π–π co-crystals. In the field of organic
functional materials, cocrystal has become a promising approach

to construct new functional materials2,65, ranging from photonic
to optical and electronic materials. Polycyclic aromatic hydro-
carbons (PAHs) with rich π-orbitals make electrons mobility
through intermolecular π–π interaction, thus being promising
components to form co-crystals that have diverse electrical and
optical properties66. However, compared to strong interactions
like H-bonding or halogen bonding, the π–π interaction is rela-
tively weak, leading to a larger difficulty in cocrystal synthesis and
structure determination. Thus, it is highly desired to accurately
predict the π–π cocrystal system9,67. Pyrene is an important PAH.
As a strong electron donor, it can be combined with a variety of
materials to form an electron donor–acceptor system, which has
been used in fluorescent probes, organic semiconductors, and
optoelectronic materials45,68. Therefore, we select pyrene as a case
to validate the generalization performance of CCGNet to the π–π
CCs. As shown in Fig. 3a, the independent test set involving
pyrene contains 58 positive samples and 6 negative ones collected
from experiment reports (see Supplementary Table 9 for details).
Figure 3c shows the prediction performances on Pyrene for our
CCGNet and the seven competitive models. Excepting for GCN
(89.94%), all the models achieve very high BACC (>98%). In
particular, our CCGNet and SVM show 100% accuracy. As
reflected by Supplementary Fig. 6, all the positive and negative
samples involving pyrene are completely separated.

Application and experimental validation for energetic co-
crystals (ECCs). Energetic materials (explosives, propellants, and
fireworks) play important roles in military and civilian fields.
However, the contradiction between the power and the sensitivity
of explosives has been a well-known challenging problem, for
example, the high-energy explosive generally exhibits low safety
and vice versa69,70. The cocrystal engineering exhibits great
potential in improving performance like stability, sensitivity, and
oxygen balance43. However, the energetic molecules are often rich
in nitro groups and lack of functional groups that devote
important contribution to the traditional organic CCs, leading to
larger difficulty in synthesis5,10. Therefore, a model that effec-
tively predicts the formation of the energetic cocrystal will be an
attractive tool for the experimental researches. Inspired by the
issue, we apply CCGNet to the challenging task. Herein, we select
two classic energetic explosives 2,4,6,8,10,12-hexanitrohex-
aazaisowurtzitane (CL-20) and 2,4,6-Trinitrotoluene (TNT) as
independent cases. CL-20 is the most powerful non-nuclear
energetic compound in practice71, yet its main disadvantage is its
high sensitivity. The co-crystallization is an effective mean to
improve its sensitivity. Compared to CL-20, TNT only has
modest detonation velocity, but its advantage is low sensitivity to
the impact72. Similarly, the co-crystallization between TNT and
other explosives with high sensitivity could improve the com-
prehensive performance (high-energy and low sensitivity). Thus,
we collected the 41 positive samples and 14 negative ones
involving TNT and CL-20 as the independent test set (Fig. 3a).

However, when we directly apply the CCGNet model and the
seven competitive ones trained on the cocrystal dataset (i.e., CC
dataset) containing 7871 samples to the independent test set of
TNT and CL -20, the balanced accuracies are very low, lower than
61% for TNT and 59% for CL-20 (see Fig. 3d, e and
Supplementary Table 10), different from the high performance
on the pharmaceutical and π–π CCs. The reason should be
attributed to the fact that the energetic molecules have
significantly different structures from common organic CCs from
CSD, for example, rich nitro groups or caged structures like CL-
20. Thus, the knowledge learned by the ML models on the
cocrystal dataset is lack of the unique structural information,
leading to the poor performance. To cape with the problem, it is

Table 4 Prediction performances of all the models on the co-
crystals involving Nicotinamide (Nico), Carbamazepine
(Carb), Indomethacin (Indo), and Paracetamol (Para).

Model Metrics Nico Carb Indo Para All APIsa

SVM TPR (%) 100 92.86 100 100 97.3
TNR (%) 71.43 50 64.71 75 65.96
BACC (%) 85.71 71.43 82.35 87.5 81.63

RF TPR (%) 100 100 100 100 98.95
TNR (%) 100 37.5 52.94 100 75.47
BACC (%) 100 68.75 76.47 100 86.17

DNN-des TPR (%) 100 100 100 100 100
TNR (%) 85.71 62.5 47.06 100 70.21
BACC (%) 92.86 81.25 73.53 100 85.11

DNN-FP30 TPR (%) 94.44 92.86 100 25 89.19
TNR (%) 42.86 37.5 88.24 75 63.83
BACC (%) 68.65 65.18 94.12 50 76.51

enn-s2s47 TPR (%) 88.89 92.86 100 50 89.19
TNR (%) 57.14 37.5 82.35 75 63.83
BACC (%) 73.02 65.18 91.18 62.5 76.51

Graph-CNN48 TPR (%) 94.44 92.86 100 50 89.19
TNR (%) 42.86 62.5 76.47 75 63.83
BACC (%) 68.65 77.68 88.24 62.5 76.51

GCN30 TPR (%) 88.89 92.86 100 25 83.78
TNR (%) 50 87.5 82.35 100 76.6
BACC (%) 69.44 90.18 91.18 62.5 80.19

CCGNet TPR (%) 100 100 100 100 100
TNR (%) 100 100 82.35 100 93.62
BACC (%) 100 100 91.18 100 96.81

aAll APIs denote the holistic accuracy over Nico, Carb, Indo, and Para.
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Fig. 4 The predictive score ranking of CCGNet for the independent test sets of the four APIs. a Coformers of nicotinamide. b Coformers of
carbamazepine. c Coformers of paracetamol. d Coformers of indomethacin. The scores are listed from high to low. The coformer of the positive sample is
labeled as the CSD refcode while the negative sample is named in terms of PubChem Compound ID. Green background denotes true positive sample while
red background represents true negative sample. The green and red ticks denote the correct prediction and the wrong prediction, respectively.
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necessary to effectively integrate the knowledge from the very
limited energetic CCs into our CCGNet model trained on the
large amount of the traditional CCs. Therefore, we adopt the
transfer learning strategy, as illustrated by Fig. 5.

Concretely, we use the weights of pretrained models on the CC
dataset as initialization weights of CCGBlocks, Multi-Head
Global Attention and part of dense layers while only the last
two dense layers are initialized randomly (Fig. 5). In order to
finetune the model weights, we need to construct an additional
energetic cocrystal dataset (called ECC dataset below) to highlight
the knowledge from the energetic CCs. To the end, we collect 116
ECC positive samples from CSD, as shown in Supplementary
Table 11. Unfortunately, there are no public reports on failed
experiments on the energetic cocrystal, leading to the difficulty in
obtaining the negative samples. Herein, we combine the
experimental experiences and the ISPE method proposed
by Musumeci et al.15 to construct the negative sample set.
Supplementary Fig. 7 shows representative coformers used to
construct the energetic cocrystal negative samples. Supplementary
Table 12 shows the calculated results from the ISPE method for
864 co-crystal combination pairs. Finally, 127 pairs are selected as
the negative samples for the energetic co-crystals. Detailed
descriptions regarding the construction of the negative samples
are presented in Supplementary Methods. Consequently, the ECC
dataset applied to finetune the CCGNet model contains 116
positive samples and 127 negative ones.

We use the 243 energetic cocrystal samples to finetune the 10
pretrained models derived from the CC dataset and each model is
subjected to 5-fold random cross-validation to obtain 50 energetic
cocrystal predictive models. Then, ten models with the lowest loss
in the validation set (Supplementary Table 13) are selected as the
ensemble to predict cocrystal formation of TNT and CL-20,
respectively. Figure 3d, e shows the performance on the
independent test set after finetuning. It is clear that the predictive
performance is remarkedly improved by the transfer learning.
The ensembled BACCs are improved to be 97.83% for TNT and
97.22% for CL-20. Despite one wrong prediction observed for
TNT, the positive and negative samples are still completely
separated by the score ranking for TNT, as evidenced by Fig. 6a.
For CL-20, seventeen of the total 18 positive samples are exactly
the top-ranked hits in the scoring list of CL-20 and only one
positive sample is low-ranked so that mixed with the negative
samples and wrongly predicted, as reflected by Fig. 6b. Overall,
our model almost captures the co-crystallization trends for TNT
and CL-20, which can be served as a virtual screening tool to
provide guidelines for the subsequent experiments.

To gauge the reliability of our model in practical application on
one side, and explore new cocrystal for CL-20 on the other side,
we collect 435 potential energetic compounds reported and used
the finetuning CCGNet model to screen new potential coformers
for CL-20. Figure 6c lists ten coformers screened in the top 10
ranked hits for CL-20, including five peroxides (coformer 1, 3, 4,

CCGBlocks

Multi-Head 
Global 

Attention

Dense layers

1. Pre-training 4. Finetuning

CC dataset

7871 samples

ECC dataset
243 samples

2. The weights 
transfer

3. Random 
initialization

Fig. 5 The flow chart of the transfer learning for the energetic co-crystals. The energetic cocrystal prediction model is also based on the CCGNet
framework involving CCGBlocks, Multi-head Global attention and dense layers. The CC dataset is first applied to pretrain the model. Then the weights
pretrained on CC dataset are served as initialization weights of CCGBlocks, Multi-Head Global Attention and part of dense layers (boxes surrounded by
blue dotted-lines), which is called as weight transfer. Then, the last two dense layers are initialized randomly (Gray box). Finally, ECC dataset is used to
finetune all the weights of the model.
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6, and 9), one fluorides (coformer 2), one triazole derivatives
(coformer 10) and three energetic molecules only containing C,
H, O, and N atoms (coformers 5, 7, 8). Considering usually high
sensitivity of the peroxides73,74 and the requirement to environ-
mental safety for modern explosives75,76. we first exclude the six
coformers involving the peroxides and fluorides (cofomers 1, 2, 3,

4, 6, and 9) in the subsequent experiment on co-crystalization
with CL-20. For the remaining coformers 5, 7, 8 and 10, we
calculate their impact sensitivities and explosion heats that are
two important properties involving the safety and the explosion
performance. The calculation methods are described in Supple-
mentary Methods and the calculated results are listed in
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Fig. 6 Score ranking predicted for the independent testing set of the energetic cocrystals. a Coformers of TNT. b Coformers of CL-20. c Structures of
top ten coformers screened for CL-20. The green and red backgrounds indicate the true positive sample and true negative sample, respectively. The green
tick denotes the correct prediction of the model while the red cross represents the wrong prediction. The score higher, the more likely to crystallize with
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Supplementary Table 15. Trading off the impact sensitivity and
the explosion heat, we finally select the coformer 8 (1-methyl 4-
nitropyrazole) to conduct the cocrystalization experiment (see
Supplementary Methods for details). We mingle the coformer 8
and CL-20 with anhydrous methanol. After slowly evaporating
the anhydrous methanol solution, the crystal is obtained, which is
further analyzed by single crystal X-ray diffraction. Crystal-
lographic data (Supplementary Table 16 and Supplementary
Fig. 8) proves that a new CL-20/1-methyl-4-nitropyrazole
cocrystal (CSD deposition number: 2107286) is formed. More
experimental details are described in Supplementary Methods.

Discussion
Here we develop a GNN-based DL model coupled with the fea-
ture complementary strategy to accurately predict the formation
of the cocrystal. A reliable cocrystal dataset is obtained by col-
lecting 1052 negative samples from the experimental literature to
minimize the false negative, along with 6819 positive samples
from CSD. The model is strongly validated by seven competitive
models including the traditional ML and the classical graph
neural network (GNN) reported, supplemented by the three
different and challenging out-of-sample tests (pharmaceutical
CCs, π–π CCs, and energetic CCs). Benefited from the com-
plementary feature representation and the flexible GNN-based
framework, our model greatly outperforms the seven competitive
models in the imbalanced dataset. Crucially, CCGNet achieves
high prediction accuracy with >96% for the diverse data from
different cocrystal spaces as unseen cases, exhibiting strong
robustness and generalization. Finally, the experimental valida-
tion on a new energetic-energetic cocrystal of CL-20/1-methyl-4-
nitropyrazole predicted further confirms the reliability of our
model and high potential in practice. The result clearly confirms
that embedding important priori knowledge can improve the
performance of the DL, in particular for the limited dataset
available. Collectively, these important technical advantages pre-
sented by our work, including the data augmentation, the feature
representation and the flexible model architecture coupled with
the attention mechanism and the transfer learning, could provide
helpful guidelines for the application of the DL in practice. We
also integrated the ensemble model as a pipeline that can provide
the high throughput screening for the defined compounds pairs
and generate a report form automatically. All Source Codes and
Data are freely available at https://github.com/Saoge123/ccgnet.
We expect that they will become a useful tool for aiding the
design of cocrystal materials.

Methods
Node update function Φv . Graph-CNN, a spatial-based graph convolution net-
work from Such et al.48 is used for the message passing and node update. The
Graph-CNN relies on convolutional filter H to propagate and update node features.
H is a N ×N × C filter tensor, which is a stack of N ×N filter matrices indexed by
the node feature they filter. N is node number and C is the number of node feature.
HðcÞ is defined in terms of Eq. (1):

H cð Þ ¼ ∑
L

l¼ 1
h cð Þ
l Al

ð1Þ

Al is the l-th slice of adjacency tensorA whose shape is N ×N × L. hðcÞl is a
scalar corresponding to a given input feature and a given slice of Al . L is the
number of edge feature. The operation that filters the node feature Vin is defined by
Eq. (2)

Vout ¼ ∑
C

c¼ 1
H cð ÞV cð Þ

in þ b ð2Þ

where VðcÞ
in 2 RN ´ 1 represents the c-th node feature that is the column of Vin. b is

a scalar and Vout 2 RN ´ 1 is the result of the operation that filter the node feature
Vin.

Here, multiple filters can be set by adding another dimension to H and then it
becomes a tensor 2 RN ´ N ´ C ´ F . As a result, the output Vout (Eqs. (3, 4) also

becomes a tensor 2 RN ´ F .

V
fð Þ

out ¼ ∑
C

c¼ 1
H c;fð ÞV cð Þ

in þ b ð3Þ

Vout ¼ kFf ¼ 1V
fð Þ

out ð4Þ

where Vðf Þ
out is a column of Vout 2 RN ´ F and k is concatenation. For brevity, this

operation is also written as Eq. (5)

Vout ¼ GConv Vin; F
� �þ b ð5Þ

Finally, to consider self-loop of nodes and activation function, the convolutional
operation can be described as Eq. (6)

Vout ¼ σ IVinW0 þGConv Vin; F
� � þ b

� � ð6Þ
σ is activation function (ReLU77 used in this work). I is a diagonal matrix that
represents self-loop of nodes. Here W0 is trainable weight and b 2 RF is bias.

Global state function Φu . A single-layer feedforward neural network is used as
global state function to perform nonlinear transformation for the global attribute of
molecules. It is defined by Eq. (7):

uout ¼ σ uW þ bð Þ ð7Þ
where u is the global attribute of a molecule; σ is activation function (ReLU77 in
this work). W and b are trainable weight and bias, respectively.

Concatenation operation ρu!v . In CCGBlock, ρuv concatenates the global state
(i.e., the 12 molecular descriptors) of each co-former and the node embeddings
together. Cocrystal input (CCGraph) can be expressed as Eq. (8):

CCGraph ¼ U u1;u2
� �

;A A1;A2

� �
;V V1;V2

� �� � ð8Þ
where the subscript refers to each co-former. V1and V2 can be expressed as Eqs.
(9–10):

V1 ¼ v11; v
2
1; ¼ ; vi1; ¼ ; vn1

� � ð9Þ

V2 ¼ ðv12; v22; ¼ ; vj2; ¼ ; vm2 Þ ð10Þ
where the subscript refers to each co-former and the superscript denotes each
atom. We perform the concatenation for every atom in terms of Eqs. (11–12):

vi1
0 ¼ vi1

L
u1

0 ð11Þ

vj2
0 ¼ vj2

L
u2

0 ð12Þ
where

L
denotes concatenation operation.

Readout function. Herein, we use multi-head global attention as the readout
function. Following the way of human thinking, the attention mechanism uses
limited attention resources to quickly screen out high-value information from a
large amount of information, which has achieved remarkable performance in
different tasks, for example, natural language processing78, image classification79

and speech recognition80. Thus, we introduce the attention mechanism in the
readout function to further optimize the feature space derived from the message
passing phase. Through highlighting atoms by the attention weights, we can
explore how model learns the chemical structure and make the model
interpretable.

Global attention calculates the attention coefficient of each node based on node
features. Then the feature at the graph level is obtained by summing the product of
attention coefficient and corresponding node feature, as described by Eqs. (13, 14):

a ¼ softmax φ Xin

� �� � ð13Þ

Xgraph ¼ ∑
N

i¼ 1
aixi ð14Þ

where φ denote neural network (MLP in this work), a 2 RN is N-dimensional
vector composed by attention coefficient of each node. xi represents the feature of
node i, which is a row of node features Xin.

Herein, we construct the multi-head attention into the global attention, which
computes K attention coefficients of each node in parallel, yielding an attention
matrix α 2 RN ´K (Eq. (15). Multi-head attention allows the model to jointly
attend to information from different representation subspaces at different
positions78.

α ¼ softmax ϕ Xin

� �� � ð15Þ
where ϕ denotes neural network (MLP in this work). Similar to the global
attention, we calculate graph level embedding K times. As expressed by Eqs. (16,
17), these embeddings are concatenated to produce the final graph embedding
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Xcat
graph that is a K ´ C dimension vector.

Xj
graph ¼ ∑

N

i¼ 1
αi;jxi ð16Þ

Xcat
graph ¼ K

j¼ 1kXj
graph ð17Þ

where Xj
graph is graph embedding calculated by using the j-th version of attention

coefficients that is the j-th column of α. K is the head number and αi;j is an element
of α.

Training and metrics. In order to improve the robustness of ML, all the models
including the seven competitive ones are trained on the data augmented by
exchanging the permutation of a pair of coformers for the 10-fold cross-validation
set. To avoid deceitful performance caused by the majority class prediction in the
imbalance distribution of the positive and negative samples (6.5:1 ratio in the
work), we use True Negative Rate (TNR) and True Positive Rate (TPR) to directly
measure the classification performance on the positive and negative classes inde-
pendently, through which Balanced Accuracy (BACC) can be obtained as an
overall metric to trade off the accuracies between the positive samples and the
negative ones, as defined by Eqs. (18, 20).

TPR ¼ Sensitivity ¼ TP
TPþ FN ð18Þ

TNR ¼ Specificity ¼ TN
FPþTN ð19Þ

BACC ¼ TPRþTNR
2 ð20Þ

where TP is True Positive; FP is False Positive; TN is True Negative; FN is False
Negative. All models are trained with Adam81 optimizer.

Model implementation. CCGNet is constructed under the opensource ML frame-
work of TensorFlow82. CCGNet outputs two-dimensional vectors [a, b] which
represent the predictive scores for negative and positive class, respectively. If b > a, the
output is labeled as the positive sample, and vice versa. Supplementary Methods
describes details regarding constructions of SVM, RF, DNN-des, DNN-FP, GCN,
Graph-CNN, and enn-s2s. Bayesian optimization is used to search the optimal hyper-
parameters for all the models (see Supplementary Methods). The representation of the
samples is implemented by RDkit, OpenBabel, and CCDC Python Application
Programming Interface. We train the models on Nvidia RTX 2080ti GPU.

Data availability
The positive and negative samples generated in this study are provided in the
Supplementary Data 1, 2. The X-ray crystallographic coordinates for structure reported
in this study have been deposited at the Cambridge Crystallographic Data Center
(CCDC), under deposition number: 2107286. These data can be obtained free of charge
from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/
data_request/cif.

Code availability
To ensure reproducibility of the results, the source code of all the models used in this
work can be acquired at https://github.com/Saoge123/ccgnet (https://doi.org/10.5281/
zenodo.5496365).
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