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Cytokinin regulates vegetative phase change in
Arabidopsis thaliana through the miR172/TOE1-
TOE2 module
Sören Werner 1, Isabel Bartrina 1,2 & Thomas Schmülling 1✉

During vegetative growth plants pass from a juvenile to an adult phase causing changes in

shoot morphology. This vegetative phase change is primarily regulated by the opposite

actions of two microRNAs, the inhibitory miR156 and the promoting miR172 as well as their

respective target genes, constituting the age pathway. Here we show that the phytohormone

cytokinin promotes the juvenile-to-adult phase transition through regulating components of

the age pathway. Reduction of cytokinin signalling substantially delayed the transition to the

adult stage. tZ-type cytokinin was particularly important as compared to iP- and the inactive

cZ-type cytokinin, and root-derived tZ influenced the phase transition significantly. Genetic

and transcriptional analyses indicated the requirement of SQUAMOSA PROMOTER BINDING

PROTEIN-LIKE (SPL) transcription factors and miR172 for cytokinin activity. Two miR172

targets, TARGET OF EAT1 (TOE1) and TOE2 encoding transcriptional repressors were

necessary and sufficient to mediate the influence of cytokinin on vegetative phase change.

This cytokinin pathway regulating plant aging adds to the complexity of the regulatory net-

work controlling the juvenile-to-adult phase transition and links cytokinin to miRNA action.
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F lowering plants progress through juvenile and adult phases
of vegetative development before undergoing a transition to
reproductive growth. The proper timing of these phases

strongly influences plant fitness and reproductive success. Phase
transitions are controlled by exogenous factors such as light
(period and intensity) and temperature, as well as endogenous
cues such as carbohydrate assimilates (mainly sucrose), hormones
(e.g., gibberellin (GA)) and plant age feeding into intrinsic genetic
programs1–3.

The transition from the juvenile to the adult vegetative phase is
characterized by changes of shoot morphology as well as an
increase in reproductive potential. In Arabidopsis thaliana,
vegetative phase change is accompanied by an increase in size and
length/width ratio of the leaf blade, an increase in the degree of
serration of the leaf margins and a decrease in cell size4,5. In
addition to these gradual changes, the appearance of trichomes on
the abaxial side of leaves has been commonly used to define the
transition from the juvenile to the adult phase6.

Two evolutionary highly conserved miRNAs, miR156 and
miR172, and their respective target genes are at the center of the
genetic mechanisms regulating the juvenile-to-adult phase
transition7,8. The precursors of these miRNAs are encoded by ten
(MIR156A-J) and five genes (MIR172A-E), respectively9,10. As the
plant ages, the level of miR156 and the partly redundant miR157
decreases11–13. They target ten out of 16 SQUAMOSA PRO-
MOTER BINDING PROTEIN-LIKE (SPL) genes, a group of
transcription factor genes controlling several aspects of Arabi-
dopsis shoot development, such as the timing of juvenile-to-adult
and vegetative-to-reproductive phase transitions, leaf initiation
rate, and floral organ development14–16. In contrast to miR156,
miR157 has only a minor effect on SPL expression and shoot
morphology13. MiR156/miR157 decline with progressing plant
development results in an increment of SPL mRNA abundance
and translation14,17. Since at least five out of the ten miR156/
miR157-targeted SPL genes are directly involved in promoting
the transcription of MIR172 genes14, the abundance of miR172
increases with plant age18. The targets of miR172 include the
floral organ identity gene APETALA2 (AP2) and the AP2-like
genes SCHLAFMÜTZE (SMZ), SCHNARCHZAPFEN (SNZ),
TARGET OF EAT1 (TOE1), TOE2, and TOE3, which encode
transcriptional regulators known to act as repressors of vegetative
phase change and transition to flowering18–22. Corresponding to
their opposite expression patterns, miR156 and AP2-like genes
promote the juvenile phase, whereas miR172 and SPL genes
promote the transition to the adult and the reproductive phase, as
well as the respective accompanying heteroblastic features13,23.

In transgenic plants overexpressing miR172 abaxial trichomes
are produced earlier, whereas abaxial trichome formation is
delayed in miR172 knockout mutants with MIR172A and
MIR172B playing dominant roles in the regulation of epidermal
identity11,24. Leaf shape however is morphologically incon-
spicuous in plants with altered miR172 levels, indicating that in
contrast to miR156/SPL, the miR172/AP2-like module affects
only a subset of the leaf traits changing in the course of the
transition11. Among the miR172 target genes, TOE1 and TOE2
have a very strong impact on juvenile leaf number: knocking out
one of them already decreases the number of leaves without
abaxial trichomes significantly, and simultaneous loss of both
genes reduces the number of juvenile leaves even to less than half
compared to the wild type11. Not much is known about the
degree of individual influence of the other four target genes (AP2,
SMZ, SNZ, and TOE3), but all six target genes of miR172 have to
be knocked out in order to phenocopy a miR172 overexpressor25.

The phytohormone cytokinin (CK) plays a role in multiple
processes that influence the growth and development of root and
shoot organs. Amongst others, CK regulates cell proliferation and

differentiation, the size and activity of apical meristems, photo-
morphogenesis, apical dominance, phyllotaxis, flowering time,
and leaf senescence26. CK regulates also numerous processes
related to nutritional cues and biotic and abiotic stress
responses27.

CKs are N6-substituted adenine derivatives whose metabolism
and signal perception and transduction are largely known28.
Isopentenyltransferases (IPTs) catalyze the formation of iso-
pentenyladenine (iP) and cis-zeatin (cZ) ribotides, the former of
which can be hydroxylated by the cytochrome P450 mono-
oxygenases CYP735A1 and CYP735A2 to form trans-zeatin (tZ)
ribotides29–32. These precursors are converted into the corre-
sponding bioactive free bases by the LONELY GUY (LOG)
phosphoribohydrolases33,34. Reduction of the levels of active CKs
is achieved through irreversible degradation by CK OXIDASE/
DEHYDROGENASES (CKXs) or conjugation to sugar moieties,
most commonly glucose, rendering them inactive35,36. The CK
signal transduction pathway is a multi-step His-Asp phosphor-
elay by a two-component signaling system28. In Arabidopsis,
three membrane-bound histidine kinases serve as CK receptors:
ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and
CYTOKININ RESPONSE 1 (CRE1), also known as AHK4. CK
binding to the receptor proteins results in an autopho-
sphorylation of their kinase domains and the intramolecular
transfer of the phosphoryl group to the receiver domain37–40.
Histidine phosphotransfer proteins (AHPs) shuttle the phos-
phoryl group from the cytosol to the nucleus, where they activate
type-B response regulators (ARRs). Acting as transcription fac-
tors, the type-B ARRs mediate the transcriptional output of the
CK response. Among the primary response genes are type-A ARR
genes encoding feedback inhibitors of the CK signaling
pathway41,42.

Little is known about the influence of phytohormones on the
juvenile-to-adult phase transition except for GA. GA was shown
to promote the expression of some SPL genes and MIR172B and
positively influence vegetative phase change6,43–47. Here, we
describe a role for CK in the age-dependent regulation of vege-
tative phase change. We identified the most important compo-
nents of the CK signaling pathway involved, as well as the
convergence point with the age pathway. CK promotes the
expression of miR172 genes, most probably involving SPL pro-
teins. The miR172 targets TOE1 and TOE2 are necessary and
sufficient to mediate the effect of CK on the juvenile-to-adult
phase transition. Overall, this work describes the molecular basis
for the influence of CK on vegetative phase change regulated by
the age pathway.

Results
Cytokinin is a positive regulator of vegetative phase change. In
Arabidopsis, the first rosette leaves are small, unserrated and
round-shaped. With advancing age, leaf blade size and serration
increase with every newly formed leaf23. Comparing the leaf
morphology of mutants with a lower CK status like the CK
receptor mutant ahk2 ahk3 and plants overexpressing the CK-
degrading enzyme CKX1 (CKX1ox) with wild type, we observed a
larger number of leaves with juvenile features (Fig. 1). In order to
investigate the possible influence of CK on vegetative phase
change, we examined the appearance of abaxial trichomes in
CKX1ox and ahk2 ahk3, as well as in ckx3,4,5,6 and the AHK2
gain-of-function mutant rock248 as plants with an increased CK
content or signaling, respectively. In addition, we investigated a
possible dependence of the phenotype on photoperiod since a
long photoperiod stimulates abaxial trichome formation46. Plants
were grown under both long-day (LD; 16 h of light, 8 h of
darkness) and short-day conditions (SD; 8 h of light, 16 h of
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darkness). We observed the same positive correlation of the
altered CK status and the onset of the adult phase under both
photoperiods, with more pronounced phenotypic differences
under SD. Genotypes with a higher CK status displayed an earlier
transition to the adult phase, whereas a reduced CK status pro-
longed the juvenile phase (Fig. 1).

Among the tested genotypes, the earliest transition to the adult
phase was observed in the rock2 mutant: under SD conditions
rock2 plants produced an average of 6.3 ± 0.2 juvenile leaves
compared to 7.6 ± 0.1 juvenile leaves in wild type. Under LD
conditions these were 3.6 ± 0.2 and 4.4 ± 0.1 juvenile leaves for
these two genotypes. In contrast, ahk2 ahk3 plants formed
11.1 ± 0.3 and CKX1ox plants even 28.3 ± 1.2 leaves without
abaxial trichomes under SD conditions. Ahk2 ahk3 and CKX1ox
plants grown under LD conditions generated 5.7 ± 0.1 and
8.7 ± 0.3 juvenile leaves, respectively (Fig. 1).

Taken together, the results showed a positive influence of CK
on the transition from the juvenile to the adult vegetative phase,
which was photoperiod-independent.

CK genes involved in the regulation of vegetative phase change.
In order to determine which CK genes of Arabidopsis might be
functionally relevant, a series of mutants with altered CK meta-
bolism or signaling causing a lower or higher CK status was
analyzed for the appearance of abaxial trichomes under SD
conditions. Among the mutations affecting CK biosynthesis and

transport, a delay of the vegetative phase transition was only
observed when the biosynthesis or the transport of tZ-type CK
was affected (ipt3,5,7; cypDM; abcg14) whereas plants lacking
cZ-type CK (ipt2,9) behaved similar to wild type (Table 1).
Mutations in the biosynthesis genes LOG4 and LOG7, which are
expressed in the shoot apical meristem (SAM) and most likely
provide the active CK for normal shoot meristem regulation49,50,
did not alter juvenile leaf number (Table 1). Interestingly, plants
lacking three LOG genes (log3,4,7) showed a tendency to a shorter
juvenile phase (Table 1), contrasting the other results. Loss of four
CKX genes, including the SAM-expressed CKX3 and CKX551,
resulted in a weak, but reproducible reduction in juvenile leaf
number (Fig. 1 and Table 1), whereas the ckx3 ckx5 double mutant
did not show any changes compared to wild-type plants (Table 1).

Among the three receptor double mutants only ahk2 ahk3
displayed a prolonged juvenile phase compared to the wild-type
control, whereas ahk2 cre1 and ahk3 cre1 behaved like wild type
(Fig. 2a). This suggests that AHK2 and AHK3 together control
the CK-dependent juvenile-to-adult phase transition. Interest-
ingly, among the mutants harboring a constitutively active
cytokinin receptor, rock2 but not rock3 produced a reduced
number of juvenile leaves (Fig. 2a), indicating that AHK2 might
be more relevant than AHK3 to mediate the vegetative phase
transition.

There are 11 type-B ARR genes in Arabidopsis specifying the
transcriptional CK response downstream of the receptors. To test
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Fig. 1 Cytokinin promotes the juvenile-to-adult phase transition in a photoperiod-independent manner in Arabidopsis. a Morphology of the first ten
leaves of Arabidopsis lines with an altered CK status grown in LD. b Morphology of the first 12 leaves of Arabidopsis lines with an altered CK status grown in
SD. The color of the arrow indicates juvenile leaves (blue) and adult leaves (green). Values indicate the mean number of leaves without abaxial trichomes ±
SEM. Asterisks indicate significant differences compared to the wild type of the respective experiment, as calculated by Kruskal–Wallis test (*q < 0.05;
**q < 0.01; ***q < 0.001). Exact q-values are included in the Source Data files.
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their involvement, we analyzed mutants of the ARR1, ARR2,
ARR10, ARR11, and ARR12 genes, as well as all their double and
triple mutant combinations, since these type-B ARR genes have
the broadest expression profiles in the shoot52,53. Neither the
single (Supplementary Fig. 1a) nor the double type-B ARR
mutants (Supplementary Fig. 1b) displayed any significant change
in the number of juvenile leaves compared to wild-type plants.
Among the triple mutants, only arr1,10,12 produced a signifi-
cantly larger number of juvenile leaves (17.5 ± 0.7 compared to
9.8 ± 0.2 juvenile leaves in wild type) (Fig. 2b), while all other
combinations showed a similar number of juvenile leaves as wild
type (Supplementary Fig. 1d–f). This fits to the predominant
function of ARR1, ARR10, and ARR12 in regulating vegetative
shoot growth54,55.

Further CK signaling mutants were tested: The histidine
phosphotransfer protein mutant ahp2,3,5 and the type-A ARR
mutant arr3,4,5,6,8,9 did not show strong differences in juvenile
leaf number (Table 1).

All in all, the CK receptors AHK2 and AHK3 as well as the
type-B ARRs ARR1, ARR10, and ARR12 were identified as
mediators of the CK activity in the juvenile-to-adult phase
transition, whereas no specificity was found for other components
of the CK signaling pathway, suggesting a high functional
redundancy. Modifications of the CK status in the SAM (log4,7;
ckx3,5) did not cause any significant alterations of juvenile leaf
number.

CK acts downstream of miR156. Vegetative phase change is
regulated by a decrease in the abundance of the highly conserved
master regulator miR15611,12. In order to explore whether CK acts
on vegetative phase change through miR156, we measured miR156
abundance 7, 14, and 21 days after germination in shoots of SD-
grown plants with a higher or lower CK status. In agreement with
previously published results, we observed an overall reduction of
miR156 abundance with increasing age in the wild type (Fig. 3a
and Supplementary Fig. 2a)11–13. The same pattern and expression
level were also found in genotypes with a higher or lower CK status
7 and 14 days after germination. After 21 days however, CKX1ox
showed a significantly elevated miR156 level compared to the wild
type (Fig. 3a). Similar results were obtained for the primary tran-
scripts of MIR156A and MIR156C (Supplementary Fig. 2b–e),
which are the most important MIR156 genes for suppressing SPL
activity during juvenile growth13, as well as for the partly redun-
dant miRNA miR157 (Supplementary Fig. 2f, g).

To test a possible direct short-term influence of CK on miR156
abundance, we treated 10-day-old wild-type seedlings with 1 µM
6-benzyladenine (BA) and measured the expression level at
different time points after the treatment. The CK treatment
caused a strong induction of several type-A ARR genes
(Supplementary Fig. 3a), which are known CK response genes.
In contrast, no significant changes in response to CK were noted
neither for the abundance of miR156 (Fig. 3b) and miR157
(Supplementary Fig. 3b) nor for the transcript levels of MIR156A
and MIR156C (Supplementary Fig. 3c).

Next, we crossed ahk2 ahk3 with the miR156 target mimicry
line p35S:MIM156 (MIM156). The strong expression of an
artificial miR156 target in this line reduces the inhibitory effect of
miR156 on SPL expression resulting in the absence of a juvenile
phase56,57. Intriguingly, the MIM156 transgene could not
counterbalance the late appearance of abaxial trichomes in ahk2
ahk3 (Fig. 3c). To exclude that this is due to transgene silencing
caused by the presence of several T-DNAs in the hybrid line we

Table 1 Number of juvenile leaves of wild-type and cytokinin
mutant plants grown in short days.

No. of leaves w/o abaxial trichomes n

Experiment 1
Col-0 11.2 ± 0.3 24
log4 11.4 ± 0.4 25
log4 log7 10.8 ± 0.4 25
ipt2 ipt9 11.8 ± 0.4 25
ipt3,5,7 12.9 ± 0.3** 24
abcg14 13.3 ± 0.3*** 25
cypDM 15.5 ± 0.3*** 25
Experiment 2
Col-0 7.9 ± 0.3 22
log3,4,7 6.3 ± 0.2* 24
ipt3,5,7 9.0 ± 0.2* 24
abcg14 9.2 ± 0.3* 21
cypDM 11.8 ± 0.5*** 21
CKX1ox 21.4 ± 0.5*** 21
Experiment 3
Col-0 8.0 ± 0.3 23
ckx3 ckx5 7.8 ± 0.3 23
ckx3,4,5,6 7.3 ± 0.2 23
Experiment 4
Col-0 10.9 ± 0.4 25
arr3,4,5,6,8,9 10.5 ± 0.2 25
ahp2,3,5 9.7 ± 0.3** 26
Experiment 5
Col-0 8.6 ± 0.2 28
log3,4,7 7.7 ± 0.3* 28
ahp2,3,5 7.9 ± 0.1* 32
Experiment 6
Col-0 8.3 ± 0.3 24
arr3,4,5,6,8,9 7.8 ± 0.3 25

Values indicate the mean number of leaves without abaxial trichomes ± SEM. Asterisks indicate
significant differences compared to the wild type of the respective experiment, as calculated by
Kruskal–Wallis test (experiments 1–5) or Mann–Whitney test (experiment 6) (*q < 0.05;
**q < 0.01; ***q < 0.001). Exact p-values and q-values are included in the Source Data files.

a
***

**

***
b

Fig. 2 The cytokinin-dependent regulation of the juvenile-to-adult phase
transition is mediated by AHK2, AHK3, ARR1, ARR10, and ARR12. a, b
Number of leaves without abaxial trichomes in cytokinin receptor mutants
(a) and the type-B ARR mutant arr1,10,12 (b) grown in SD. In box plots, the
center line represents the median value and the boundaries indicate the
25th percentile (upper) and the 75th percentile (lower). The X marks the
mean value. Whiskers extend to the largest and smallest value, excluding
outliers which are shown as dots. Asterisks indicate significant differences
compared to the wild type of the respective experiment, as calculated by
Kruskal–Wallis test (a) or Mann–Whitney test (b) (*p < 0.05; **p < 0.01;
***p < 0.001). Exact p-values are included in the Source Data files.
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determined and confirmed MIM156 expression in ahk2,3
MIM156 (Supplementary Fig. 4). Consistently, the transcript
levels of SPL genes were also increased in ahk2,3 MIM156
(Supplementary Fig. 5).

These results show that CK does not mediate its effect on
vegetative phase change through miR156. In addition, the genetic
analysis suggests that CK signaling is required to realize the
action of miR156 on vegetative phase change, and that CK acts
downstream of miR156.

SPLs are involved in the CK-dependent regulation of the
juvenile-to-adult phase transition. The steady state mRNA levels
of SPL genes that have been shown to play a major role in
vegetative phase change14 (SPL2, SPL9, SPL10, SPL11, SPL13, and
SPL15) were similar in ahk2 ahk3 and wild type (Supplementary
Fig. 5). In order to analyze a possible immediate influence of CK
on SPL gene expression, we measured their transcript levels in
response to CK. Because a potential CK effect on SPL gene
expression could be masked eventually in wild type by the
counteraction of miR156, we treated the MIM156 line with BA.
Type-A ARR expression in MIM156 in response to CK was
determined as an induction control, which showed the expected
increase (Supplementary Fig. 6). In contrast, no significant
changes of SPL transcript levels were detected after CK treatment
(Fig. 4a).

To investigate further the potential role of SPLs in CK-
regulated phase transition, we carried out a genetic analysis and
introgressed the early-transitioning rock2 mutation into the well-
characterized spl9 spl15 mutant58. The rock2 mutation did not
rescue the delayed vegetative phase change of spl9 spl15 (Fig. 4b),
suggesting that SPL9 and SPL15 are not or not the only SPL genes
mediating the CK effect. Supporting this conclusion, the rock2
mutation reduced the percentage change of juvenile leaf number
by a similar portion in both backgrounds (about 18% in wild type
and 16% in spl9 spl15). To extend the analysis on all miR156-
targeted SPL genes, we introgressed the rock2 mutation into a
transgenic line expressing p35S:MIR156B (MIR156ox), which
allows no accumulation of SPL transcripts resulting in a
substantially prolonged juvenile phase11,17,23,59. Rock2 was not
able to accelerate the transition to the adult phase caused by
p35S:MIR156B expression (Fig. 4c), indicating that regulation of
vegetative phase change by CK relies on SPL function.

The influence of CK on vegetative phase change depends on
miR172 as well as TOE1 and TOE2. SPLs are positive regulators
of miR172 expression and consequently, the age-dependent
increase of SPL levels causes a progressive elevation of miR172
abundance in wild-type plants11,12,18,21 (Supplementary Fig. 7a).
An increase of miR172 with advancing age was also visible in
plants with an altered CK status (Fig. 5a). However, it progressed
slower in CK-deficient plants and faster in plants with a higher
CK status. Small differences in miR172 abundance were already
detectable 7 days after germination and became more prominent
at later time points. Twenty-one days after germination only
about half of the miR172 level of wild type was present in plants
with a lower CK status. In contrast, plants with a higher CK status
showed a higher miR172 level (Fig. 5a). Among the tested
miR172 precursors, MIR172A and MIR172B, which were shown
to play dominant roles in the timing of trichome initiation24,
showed a similar expression pattern (Supplementary Fig. 7b–e).

Next, we tested the response of MIR172 gene expression and
mature miR172 levels to CK. BA treatment resulted in an up to
two-fold increase of MIR172A and MIR172B transcript levels
within 1–2 h (Fig. 5b). The response of MIR172 gene expression
to CK was also reflected by transiently increased mature miR172
levels upon CK treatment (Fig. 5c). In order to test the
dependence of the CK-mediated regulation of vegetative phase
change on miR172, we crossed ahk2 ahk3 with a MIR172B
overexpression line (MIR172ox). For unknown reasons, we were
unable to generate a homozygous hybrid line and also direct
transformation of the transgene into the ahk2 ahk3 receptor
mutant did not yield any primary transformants. However,
transforming p35S:MIR172B into the less severe ahk2-5 ahk3-7
mutant60 yielded transformants that were directly used for
phenotyping under SD conditions. Since control lines could not
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Fig. 3 The effect of cytokinin on the juvenile-to-adult phase transition is
not dependent on miR156. a miR156 abundance in whole shoots of
genotypes with an altered CK status compared to the wild type (n= 4
biological replicates). Dots indicate each single biological replicate.
Asterisks indicate significant differences compared to the wild type of the
respective time point, as calculated by one-way ANOVA, post-hoc
Dunnett’s test (*p < 0.05; **p < 0.01; ***p < 0.001). See also Supplementary
Fig. 2a. b miR156 expression kinetics in 10-days-old SD-grown wild-type
seedlings after treatment with 1 µM BA (n= 6 biological replicates).
Statistical analysis was performed using one-way ANOVA, post-hoc
Dunnett’s test. No statistically significant differences were observed for
miR156, comparing each time point with time point 0 (p < 0.05). Transcript
levels (a, b) were determined by qRT-PCR. Data were normalized to
TAFII15. Data displayed are expressed as mean ± SEM. c Number of leaves
without abaxial trichomes in ahk2 ahk3 MIM156 hybrid plants grown in SD.
In the box plot, the center line represents the median value and the
bounderies indicate the 25th percentile (upper) and the 75th percentile
(lower). The X marks the mean value. Whiskers extend to the largest and
smallest value, excluding outliers which are shown as dots. Letters indicate
significant differences between the genotypes, as calculated by
Kruskal–Wallis test (p < 0.05). Exact p-values calculated for a–c are
included in the Source Data files.
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be grown on kanamycin-containing media in this experiment, a
control experiment was conducted separately, comparing Col-0
and ahk2-5 ahk3-7 with respective T1 plants harboring the empty
vector, showing no impact of selective media on juvenile leaf
number (Supplementary Fig. 8). Transgene expression and
presence of mature miR172 was confirmed by qRT-PCR
(Supplementary Fig. 9). Similar to ahk2-2tk ahk3-3 used for the
other experiments, ahk2-5 ahk3-7 showed a reduction of
MIR172B expression and miR172 abundance (Fig. 5a and
Supplementary Figs. 7e and 9). Ahk2-5 ahk3-7 also displayed a
late-transitioning phenotype which was completely suppressed by
the p35S:MIR172B transgene (Fig. 5d), supporting the hypothesis

of CK influencing vegetative phase change by regulating miR172
expression.

The regulation of MIR172 expression by CK should have an
impact on miR172 targets as well. Since the miR172-mediated
silencing of AP2-like genes occurs mainly on the translational
level18,19,61, we refrained from measuring transcript levels and
conducted a genetic analysis instead. The mutation of SMZ did
not alter juvenile leaf number, but reduced it in the ahk2 ahk3
background (Supplementary Fig. 10a), suggesting a role for SMZ
in the CK-dependent regulation of vegetative phase change.
Simultaneous loss of SMZ and its close homolog SNZ caused a
slightly earlier transition to the adult phase in the wild type.
Introgression of both mutant alleles into the ahk2 ahk3
background resulted also in an earlier juvenile-to-adult phase
transition with the effect being larger than in wild type (Fig. 6a).
This indicates that SMZ and SNZ are required for regulation of
the juvenile-to-adult phase transition in plants with a lower CK
status but that additional factors play a role.

Loss of single TOE1 or TOE2 gene functions in the background
of ahk2 ahk3 also showed their participation in mediating the CK
activity (Supplementary Fig. 10b). The juvenile leaf number of
ahk2,3 toe1,2 plants was indistinguishable from toe1 toe2 control
plants (Fig. 6b). The additional disruption of the TOE3 gene in
the ahk2 ahk3 background did not result in a further reduction of
the number of juvenile leaves (Supplementary Fig. 10c). Further-
more, introgression of rock2 into the toe1 toe2 mutant did not
result in a further decrease in juvenile leaf number (Fig. 6c)
showing a strong epistatic relationship. These findings strongly
suggest that these two miR172 target genes take part in the CK-
dependent regulation of vegetative phase change.

Discussion
This work has revealed a pivotal role of CK in the control of
vegetative phase change in Arabidopsis. Several key factors
mediating the influence of CK on the juvenile-to-adult phase
transition were identified and a link of the hormone to compo-
nents of the age pathway is described (Fig. 7).

IP and tZ are generally considered to be the most active natural
CKs, whereas cZ has mostly a lower activity62. Analysis of CK
biosynthesis and transport mutants showed the importance of
tZ-type CKs in the regulation of vegetative phase change. The
abcg14 mutant, which is impaired in the long-distance allocation
of tZ-type CKs from the root to the shoot63,64, as well as the tZ
biosynthesis mutant cypDM65 produced ~15% and ~30% more
juvenile leaves than the wild type, respectively (Table 1). Both
mutants compensate the lack of tZ at least in part by increased
production of iP-type CKs63–65, but this was not sufficient to
allow proper timing of vegetative phase change, suggesting a less
important role for iP in this process. Moreover, the vegetative
phase change in the ipt2,9 mutant was similar to wild type
indicating that cZ-type CKs have no role in this process. Notably,
the significant retardation of the transition to the adult phase in
the abcg14 mutant established CK as a root-borne factor pro-
moting vegetative phase change, which was shown previously to
be initiated mainly in the SAM as well as in the leaves
themselves66,67. However, compared to its role in promoting the
transition to flowering under SD68,69 the root-derived portion of
tZ appears to have a more limited role in regulating vegetative
phase change.

The more important function of tZ-type CKs in the juvenile-
to-adult phase transition compared to iP-type CKs is in agree-
ment with the CK affinities of the involved receptors AHK2 and
AHK3. AHK3 has been shown to display a higher affinity to tZ
than to iP70 and the in planta CK response mediated by AHK2
and AHK3 is triggered more strongly by tZ than by iP71.
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vegetative phase change. a SPL expression kinetics in 10-day-old SD-
grown MIM156 seedlings after treatment with 1 µM BA. Transcript levels
were determined by qRT-PCR. Data were normalized to TAFII15 and
PP2AA2. Data displayed are expressed as mean ± SEM (n= 6 biological
replicates). Statistical analyses were performed using one-way ANOVA,
post-hoc Dunnett’s test. No statistically significant differences were
observed for any SPL gene, comparing each time point with time point 0
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box plots, the center line represents the median value and the boundaries
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Downstream of these receptors the type-B ARRs ARR1, ARR10,
and ARR12 were identified to mediate the influence of CK on the
juvenile-to-adult phase transition (Fig. 2b), which have been
described previously as central regulators of shoot growth54,55,72.
Notably, ARR2 has apparently no role (Supplementary Fig. 1d–f)
despite its known functions in leaves73–75 where it mediates the
inhibition of senescence by CK at a later developmental stage76.
Taken together, the genetic analysis has shown the relevance of
tZ-type CK for the juvenile-to-adult phase transition acting
through the AHK2/AHK3-ARR1/ARR10/ARR12 signaling
module.

Further analysis uncovered the participation of distinct com-
ponents of the age pathway in mediating the action of CK.
Transcriptional and genetic analysis argues against the involve-
ment of miR156 in that process. MiR156 and also miR157 levels
were not altered in CK mutants in early developmental stages or
by exogenously applied CK (Fig. 3a, b and Supplementary Figs. 2g
and 3b). However, CK signaling was required to induce an early
transition to the adult phase in the absence of the repressive
master regulator miR156: Introgression of the late-transitioning
ahk2 ahk3 double mutant into the MIM156 line completely
abolished the effect of the target mimicry on the phenotype, while
not substantially impacting the expression of the SPL transcript
abundance in the hybrid line (Fig. 3c and Supplementary Fig. 5).
It is evident, that CK does not affect vegetative phase change
miR156-dependently, but acts downstream of it.

On the other hand, we showed that CK regulates the vegetative
phase change miR172-dependently: MiR172 abundance positively
correlated with the CK status in different CK mutants and
increased transiently after CK treatment (Fig. 5a, c). Additionally,
the ahk2 ahk3 mutant was unable to counteract the complete loss
of the juvenile phase caused by expressing a p35S:MIR172B
transgene (Fig. 5d).

No changes in expression of miR156/miR157-regulated SPL
genes were observed in the CK receptor mutant ahk2 ahk3
(Supplementary Fig. 5) or by treatment with exogenous CK
(Fig. 4a). However, the inability of the rock2 mutation to

counteract the effect of MIR156B overexpression (Fig. 4c) implies
an involvement of SPLs in the CK-dependent regulation of
vegetative phase change. Arabidopsis has 16 SPL genes, ten of
which are targeted by miR156/miR15713,58,77,78. At least five of
the SPLs induce MIR172 gene expression: SPL2, SPL9, SPL11,
SPL13A/B, and SPL1511,14. CK has a positive effect on miR172
abundance as well (Fig. 5a–c and Supplementary Fig. 7c, e). These
activities could be independent events, but it is also possible that
SPLs and type-B ARRs or other CK signaling components induce
MIR172 expression in a cooperative fashion. Both SPLs and type-
B ARRs bind to MIR172 gene loci11,79–81. Furthermore, Zhang
et al.82 showed physical interaction of SPL9 with several type-B
ARRs, including ARR1, ARR10, and ARR12, causing a reduction
of the CK-dependent shoot regeneration capacity. This repression
of CK activity by SPLs contrasts with their aligned activities in
promoting the juvenile-to-adult phase transition. But it could be
that the consequences of the SPL-ARR interaction are context-
specific. The molecular mechanism of CK action through SPLs
remains to be shown.

Yant et al.25 showed that all six miR172 target genes have to be
mutated in order to mimic a miR172-overexpressing plant.
Among the target genes, TOE1 and TOE2 have the strongest
influence on the length of the juvenile phase, since mutating them
reduces juvenile leaf number by more than half11 (Fig. 6b, c). Not
much is known about the degree of influence of the other four
genes. Loss of SMZ and SNZ only slightly reduced the number of
juvenile leaves (Fig. 6a and Supplementary Fig. 10a) and AP2 and
TOE3 are mostly known for their role in flower development21,83.
The knockout mutants toe1, toe2, smz, and smz snz all showed
partial restoration of the juvenile phase of ahk2 ahk3 with toe2
having the strongest impact (Fig. 6a and Supplementary Fig. 10a,
b), whereas loss of both TOE1 and TOE2 completely suppressed
the late transition of ahk2 ahk3 (Fig. 6b), indicating that TOE1
and TOE2 are both necessary and sufficient for the CK-regulation
of the juvenile-to-adult phase transition.

Taken together, we added a regulatory layer to the age-
dependent control of vegetative phase change, with CK

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0

Fo
ld

 c
ha

ng
e

Hours after induction

MIR172A
MIR172B

***
***

ba

7 dag 14 dag 21 dag

**
*

miR172

C
ol

-0

ck
x3

,4
,5

,6
ro

ck
2

ah
k2

 a
hk

3
C

KX
1o

x

C
ol

-0

ck
x3

,4
,5

,6
ro

ck
2

ah
k2

 a
hk

3
C

KX
1o

x

C
ol

-0

ck
x3

,4
,5

,6
ro

ck
2

ah
k2

 a
hk

3
C

KX
1o

x

**

**

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0

Fo
ld

 c
ha

ng
e

Hours after induction

***
miR172

c

a

c

b

c

d

Fig. 5 Cytokinin increases miR172 abundance. a miR172 abundance in whole shoots of genotypes with an altered CK status compared to the wild type
(n= 4 biological replicates). See also Supplementary Fig. 7a. Dots indicate each single biological replicate. b, cmiR172 andMIR172 gene expression kinetics
in 10-day-old SD-grown wild-type seedlings after treatment with 1 µM BA (n= 6 biological replicates). Transcript levels were determined by qRT-PCR. Data
were normalized to TAFII15 (a, c) or TAFII15 and PP2AA2 (b). Data displayed are expressed as mean ± SEM. Asterisks indicate significant differences
compared to the wild type of the respective time point (a) or compared to time point 0 (b, c), as calculated by one-way ANOVA, post-hoc Dunnett’s test
(*p < 0.05; **p < 0.01; ***p < 0.001). d Number of leaves without abaxial trichomes in ahk2-5 ahk3-7 MIR172ox hybrid plants grown in SD. T1 plants shown
in Supplementary Fig. 9 were used for the analysis. In box plots, the center line represents the median value and the boundaries indicate the 25th percentile
(upper) and the 75th percentile (lower). The X marks the mean value. Whiskers extend to the largest and smallest value, excluding outliers which are
shown as dots. Letters indicate significant differences between the genotypes, as calculated by Kruskal–Wallis test (q < 0.05). Exact p-values and q-values
calculated for a–d are included in the Source Data files.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26088-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5816 | https://doi.org/10.1038/s41467-021-26088-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


promoting MIR172 gene expression (most probably in coopera-
tion with SPLs), while not affecting the other key regulator
miR156. Additionally, we identified TOE1 and TOE2 as being
specifically important in the CK-dependent regulation of this
process (Fig. 7).

Fouracre and Poethig67 proposed that miR156 or a miR156-
derived signal produced by the SAM ensures juvenility of the first
leaves, but as the plant grows, the identity of subsequent leaves is
determined by peripheral organs to an increasing degree. Since
CK acts on miR172 rather than miR156, CK would only affect
later formed leaves, supporting the hypothesis that CK regulates
vegetative phase change together with SPLs, whose expression is
increased in later formed leaves when miR156 abundance
decreases. Hence, CK might not be able to influence the identity
of the first leaves, which explains why none of the tested mutants
with a higher CK status show a reduction of juvenile leaf number
as strong as toe1 toe2 or even p35S:MIR172 or p35S:MIM156

plants. This hypothesis is supported by the fact that all CK sig-
naling components identified in this study to be involved in
regulating vegetative phase change are highly expressed in
leaves52,53,84. Furthermore, the importance of CK activity in the
SAM for vegetative phase change is low, since loss of CK genes
known to be active in the SAM (CKX3 and CKX551; LOG4 and
LOG750) did not cause any alterations in juvenile leaf number
(Table 1).

Future work should explore the functional relevance of CK
under different environmental conditions. A predominant activ-
ity of CK in regulating the juvenile-to-adult transition in later
formed leaves would be consistent with the idea that the hormone
mediates responses to environmental cues27, which are partly
known to regulate the juvenile-to-adult phase transition85–87 to
adapt to environmental changes88. Additionally, the question
should be addressed whether other leaf traits characterizing
vegetative phase change6 respond with similar sensitivity to an
altered CK status as does epidermal identity analyzed here.
MiR156 inhibits the development of all adult traits, with different
SPLs promoting different subsets of these traits11, while TOE1
and TOE2 are only involved in the formation of abaxial
trichomes11,25,89. Furthermore, the nature of the ARR-SPL
interaction remains to be clarified, which might uncover other
age-related processes regulated by the interplay of the two
pathways.

Methods
Plant material and growth conditions. The Columbia-0 (Col-0) ecotype of
Arabidopsis thaliana was used as the wild type. All mutants and transgenic lines
that were used in this study and generated by crossings are listed in Supplementary
Table 1. As a smz mutant, we used a previously uncharacterized knock-out allele
(SALK_135824C) which was named smz-4. No full-length SMZ transcript was
detected in this mutant by semi-quantitative RT-PCR, suggesting that this is a null
allele (Supplementary Fig. 11). Primers used for the analysis of smz-4 are listed in
Supplementary Table 2. The mutant alleles used for the generation of the ckx3,4,5,6
quadruple mutant were described in Bartrina et al.51. All genotypes were
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propagated under LD conditions (16 h dark/8 h light cycle), 22 °C and 30–65%
humidity, and confirmed by PCR analysis. Primers used for genotyping are listed in
Supplementary Table 3. For the analyses of juvenile leaf number and the quanti-
fication of miRNA abundance and gene expression in CK mutants, Arabidopsis
plants were grown on soil with a 8 h light/16 h dark cycle, at 22 °C and 60%
humidity and light intensities of 100–150 µmol m–2 s–1. Ahk2,3 MIR172ox T1
plants were selected on ½ MS agar plates (0.22% (w/v) MS basal salt, 0.05% (w/v)
MES, 0.5% (w/v) sucrose, 0.8% (w/v) agar, pH 5.7) containing 30 µg/ml kanamycin
and transferred to soil after 14 days. Pots of different lines were randomized by
default to minimize positional effects.

Plasmid constructions for transgenic plants. For the generation of the
p35S:MIR172B construct, the Gateway® system (ThermoFisher, Waltham, MA)
was used. All primers used for cloning purposes are listed in Supplementary
Table 4. A 35S promoter fragment of the Cauliflower Mosaic Virus was PCR
amplified from the vector pGWB1590 using the primers p35S-F-attB4 and p35S-R-
attB1r, and recombined into the donor vector pDONRTMP4-P1R using Gateway®
BP Clonase® Enzyme Mix (ThermoFisher, Cat. No. 11789013). MIR172B was
amplified from Col-0 genomic DNA using the primers MIR172B-attB1-2_fw and
MIR172B-attB2-2_rv and inserted into pDONRTM221 via BP reaction. The
MIR172B sequence was combined with the 35S promoter in pK7m24GW91 to
create the p35S:MIR172B construct. The multisite LR reaction was performed with
the Gateway® LR Clonase® II Enzyme Mix (ThermoFisher, Cat. No. 11791020).
The cloned gene construct was fully sequenced to ensure that no mutation was
introduced. The plasmid was transformed into the Agrobacterium tumefaciens
strain GV3101 by electroporation and the resulting bacterial strain was used to
transform Arabidopsis plants using the floral-dip method92.

CK induction assays. For the determination of the influence of CK on gene
expression, seeds were surface-sterilized using a 1.2% (v/v) sodium hypochlorite/
0.01% (v/v) Triton X-100 solution. Seedlings were grown under SD conditions for
10 days in liquid ½ MS medium (0.22% (w/v) MS basal salt, 0.05% (w/v) MES,
0.1% (w/v) sucrose, pH adjusted to 5.7). 6-Benzylaminopurine (BA) was dissolved
in 1 M KOH. As a control, 1 M KOH was used. Both solutions were diluted in 0.05
(w/v) MES and the pH was adjusted before adding them to the medium. CK
application and harvesting of plant material at the different time points was
conducted during the night, starting 1.5 h after its beginning.

RNA preparation and quantitative RT-PCR. Approximately 100 mg of plant
material was harvested and frozen in liquid nitrogen at the indicated time points.
The frozen samples were ground using a Retsch mill in precooled adapters. Total
RNA was extracted using TRIsureTM (Bioline) following the manufacturer’s
instructions. Eighty percent (v/v) ethanol was used to wash the RNA pellet, which
was resuspended in 40–50 µl of nuclease-free water and treated with DNase I
(ThermoFisher) following the manufacturer’s instructions. For normal cDNA
synthesis, 1–1.5 µg of total RNA was reversely transcribed using SuperScriptTM III
(ThermoFisher), 4.5 µM of N9 random oligos and 2.5 µM of oligo-dT25 in a 20 µl
reaction. Mix 1 containing RNA, 2 mM of dNTP mix and oligos was incubated for
5 min at 65 °C and placed on ice afterwards. Mix 2 (first strand buffer, 5 mM DTT,
SuperScriptTM III) was added and samples were incubated for 30 min at 25 °C,
60 min at 50 °C, and 15 min at 70 °C. The resulting cDNA was diluted 1:5. For
detection of mature miRNAs, mix 1 contained 500 ng of total RNA, 1 mM of dNTP
mix, 25 nM TAFII15-StLp-cDNA_rv as an internal control for qRT analysis, and
25 nM of the respective miRNA-specific stem-loop primer (Supplementary
Table 5). Stem-loop RT primers were designed according to Chen et al.93. Fol-
lowing the addition of mix 2 containing first strand buffer, 4 mM DTT, 0.6 U/µl
RNaseOUT (ThermoFisher), SuperScriptTM III and resulting in a total volume of
12.5 µl, samples were incubated for 30 min at 16 °C, 30 min at 50 °C, and 15 min at
70 °C. Undiluted cDNA was used in the qRT-PCR reactions. For qRT-PCR ana-
lyses, PROTEIN PHOSPHATASE 2A SUBUNIT A2 (PP2AA2) and TBP-
ASSOCIATED FACTOR II 15 (TAFII15) served as reference genes. All qRT-PCR
primers used in this study are listed in Supplementary Table 5. qRT-PCR was
performed with the CFX96TM Real-Time Touch System (Bio-Rad®) using SYBR
Green I as DNA-binding dye. Gene expression data analysis was carried out
according to Vandesompele et al.94. For analysis of MIM156 transgene expression,
the 40-ΔCt method was used, as described by Morcuende et al.95.

Statistical analysis. Statistical analyses were performed using GraphPad Prism,
version 8 (GraphPad Software, La Jolla, CA). Statistical tests used were all two-
sided and are indicated in the figure and table legends. The data was analyzed by
one-way analysis of variance (ANOVA) followed by Dunnett’s or Tukey’s post hoc
test, Kruskal–Wallis test followed by either Dunn’s test or two-stage step-up pro-
cedure of Benjamini, Krieger, and Yuketieli, or two-tailed Mann-Whitney test. A p-
value or q-value < 0.05 was considered to indicate a statistically significant dif-
ference. In case of transcript analyses, a 1.75-fold upregulation or downregulation
compared to the respective control was chosen as threshold.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data and statistical information are provided with this paper.
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