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Direct access to spirocycles by Pd/WingPhos-
catalyzed enantioselective cycloaddition of
1,3-enynes
Long Li1,4, Shan Wang1,4, Pengfei Luo1, Ran Wang1, Zheng Wang 2, Xiaoguang Li 3, Yuhua Deng1,

Fangzhi Peng1 & Zhihui Shao 1✉

Spirocycles play an important role in drug discovery and development. The direct, catalytic,

and enantioselective synthesis of spirocycles from readily available starting materials and in

an atom economic manner remains a highly sought-after task in organic synthesis. Herein, an

enantioselective Pd-hydride-catalyzed cycloaddition method for the synthesis of spirocyclic

compounds directly from two classes of commonly available starting materials, 1,3-enynes

and cyclic carbon−hydrogen (C−H) bonds, is reported. The reactions employ a chiral Pd/

WingPhos catalyst to both suppress the formation of bis-allenyl by-products and control the

stereoselectivity. 1,3-Enynes are used as dielectrophilic four-carbon units in the cycloaddition

reactions, which also enables an enyne substrate-directed enantioselectivity switch with good

levels of stereocontrol. The present spirocycle synthesis tolerates a broad range of functional

groups of 1,3-enyne substrates, including alcohols, esters, nitriles, halides, and olefins. A

variety of diverse cyclic nucleophiles, including pharmaceutically important heterocycles and

carbocycles, can be flexibly incorporated with spiro scaffolds.
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Spirocyclic scaffolds are widely present in numerous natural
products and biologically active compounds1–7. Moreover,
the uniquely rigid structures of spirocyclic scaffolds can

reduce the conformational entropy penalty upon binding to a
protein target8,9. As a result, spiro scaffolds have been increas-
ingly utilized in drug discovery and development programs8,9.
The development of efficient asymmetric approaches for con-
structing spirocyclic compounds has attracted much
attention10–18. Despite considerable progress in the asymmetric
synthesis of spirocycles, the methods that are direct, catalytic,
enantioselective, and atom economic19 and that rely on the use of
commonly available starting materials are in high need.

The direct addition of enols/enolates to unactivated unsaturated
hydrocarbons (hydroalkylation) with catalysis by transition-metal
hydrides (MH) has been attracting increasing attention as an atom-
economical strategy for the C–C bond formation. Elegant progress on
asymmetric variants of these reactions has recently been made20–39.

However, the potential of this technique in the direct asymmetric
synthesis of spirocyclic compounds has remained elusive. Moreover,
the reported studies focused on asymmetric mono-hydroalkylation.
In contrast, transition-metal-hydride-catalyzed asymmetric annula-
tive double hydroalkylation sequences of unactivated unsaturated
hydrocarbons with enols/enolates are scarce. In addition, effective
chiral catalyst systems that are applicable to the establishment of
asymmetric addition of enols/enolates to unsaturated hydrocarbons
are comparatively limited. As our continuous interest in asymmetric
cycloadditions40–46, we explored the possibility of transition-metal
hydride-based cycloaddition strategy for the direct catalytic asym-
metric spirocycle synthesis.

Here, we report the successful development of Pd-hydride cata-
lyzed cycloaddition of 1,3-enynes employing P-chiral WingPhos as
the ligand that enables the direct, atom-economical, and enantio-
selective synthesis of spirocycles from two classes of commonly
available starting materials (Fig. 1a). The challenging product
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Fig. 1 Transition-metal hydride-based cycloaddition strategy for the direct catalytic asymmetric spirocycle synthesis. a Pd/WingPhos-catalyzed
enantioselective cycloaddition reactions of 1,3-enynes as dielectrophilic C4 synthons. b Selected bioactive spirocyclic molecules relevant to this study.
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selectivity issue of cycloaddition products versus double inter-
molecular hydroalkylation products has been addressed. A chiral
Pd/WingPhos catalyst is able to affect both 1,3-enynes 1 having a
terminal double bond and 1,3-enynes 1′ having a terminal triple
bond to engage in the asymmetric cycloaddition reactions
with high levels of enantioselectivity switch. Mechanistic studies
suggest that two cycloaddition reactions involve mechanistically and
stereochemically distinct processes. For the cycloaddition reaction
with 1,3-enynes 1, the previously unreported enantioselective

intermolecular hydroalkylation step of 1,3-enynes 1 with cyclic
enols/enolates forms allene intermediates with axial chirality which
serves as a chiral relay during cyclization processes involving a very
high efficiency of axial-to central chirality transfer, whereas for the
cycloaddition with 1,3-enynes 1′, the marked stereocenter of
the spirocyclic products is directly introduced in the enantioselec-
tive intermolecular hydroalkylation step of 1,3-enynes 1′ with enols/
enolates to form allene intermediates with central chirality, which
has not been previously realized.

Table 1 Chiral ligand effects on product-selectivity and enantioselectivitya.

Entry Ligand T (oC) Yield (%)
b of 3aa

Yield (%)
b of 4aa

ee (%)
c of 3aa

1 L1 50 0 0 –
2 L2 50 0 30 –
3 L3 50 0 79 –
4 L4 50 0 31 –
5 L5 50 10 16 –
6 L6 50 44 16 21
7 L7 50 37 7 90
8 L7 30 22 0 96
9 L8 30 Trace 0 –
10 L9 30 16 0 69
11 L10 30 45 0 44

aReaction conditions: 1a (0.12 mmol), 2a (0.1 mmol), [Pd(allyl)Cl]2 (2.5 mol%), chiral ligand (5 mol%), Et3N (2 equiv), CH3CN (0.5 mL), 22 h.
bIsolated yields.
cDetermined by chiral HPLC.

Table 2 Base effectsa.

Entry Base Yield (%)
b of 3aa

Yield (%)
b of 4aa

ee (%)
c of 3aa

1 K2CO3 Trace 0 –
2 Cs2CO3 Trace 0 –
3 DIPEA Trace 0 –
4 Et3N 22 0 96
5 BnN(Me)2 71 0 90

aReaction conditions: 1a (0.12 mmol), 2a (0.1 mmol), [Pd(allyl)Cl]2 (2.5 mol%), L7 (5 mol%), base (2 equiv), CH3CN (0.5 mL), 30 °C, 22 h.
bIsolated yields.
cDetermined by chiral HPLC.
DIPEA N,N-diisopropylethylamine, PMP 4-methoxyphenyl.
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Results
Optimization of reaction conditions. We began the research by
examining the cycloaddition reaction of 1,3-enynes having a
terminal double bond with pyrazolidine-3,5-diones, a class of
important heterocyclic scaffolds, which are widely present in
biologically active molecules and pharmaceutical compounds47–50,
for the asymmetric synthesis of spiro-pyrazolidine-3,5-diones.
Spiro-pyrazolidine-3,5-diones have been shown to possess valu-
able biological properties, as exemplified by their use as AT1
angiotensin II receptor antagonists (Fig. 1b). However, there are
no reports of catalytic asymmetric synthesis of spiro-pyrazolidine-
3,5-diones, thus limiting their potential applications in discovering
chiral bioactive molecules. The model reaction of 1,3-enyne 1a
with pyrazolidine-3,5-dione 2a was initially investigated at
CH3CN in the presence of various chiral palladium catalysts. Most
axially chiral ligands tested were either unreactive or gave double

intermolecular hydroalkylation product rather than cyclization
product. Selected results are shown in Table 1 (for the details, see
Supplementary Tables 1–3 in the Supplementary Information).
When planar-chiral Xylyl-PhanePhos (L6) was used as the ligand,
spirocyclic product 3aa was obtained in 44% yield but with only
21% ee, together with double intermolecular hydroalkylation
product 4aa in 16% yield (Table 1, entry 6). Obviously, achieving
the enantioselective cycloaddition of 1,3-enyne 1a with pyr-
azolidine-3,5-dione 2a with high enantiocontrol has posed a
unique challenge, and it requires an efficient chiral catalytic system
which has multifunctional roles (reactive, product-selective/path-
way-selective, and enantioselective). Such a chiral catalyst should
not only activate 1,3-enye 1a to generate the terminal Pd-
butadienyl complex by PdH-mediated migratory insertion and
catalyze the selective formation of cycloaddition product rather
than double intermolecular hydroalkylation product, but also
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provide high levels of enantiocontrol. To our knowledge, the
catalytic asymmetric cycloaddition which involves the terminal
metal-butadienyl intermediates has not been previously reported.

Tang and co-workers recently introduced P-chiral BIBOP‐type
ligands for various asymmetric catalytic reactions51–54. To our
knowledge, this class of chiral ligands have not been successfully
applied in the catalytic asymmetric hydroalkylation process of

unactivated unsaturated hydrocarbons with enols/enolates. We
tested this type of chiral ligands in the reaction of 1,3-enyne 1a
and pyrazolidine-3,5-dione 2a, and found that WingPhos
afforded promising results, with the formation of the desired
spirocyclic product 3aa as the major product with high
enantiocontrol (Table 1, entry 7). To further suppress the second
intermolecular hydroalkylation to form the undesired non-
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annulative double hydroalkylation product 4aa, the temperature
was decreased. The non-annulative double hydroalkylation
product 4aa was fully suppressed, unfortunately, the reaction
conversion decreased (Table 1, entry 8). We found that bases had
a crucial effect on the reaction conversion (Table 2). BnN(Me)2,
which has rarely been used as the base in organic synthesis,
provided the desired spirocyclic product 3aa in 71% yield with
90% ee (Table 2, entry 5 versus entries 1–4).

Substrate scope. With optimized chiral catalyst system and
reaction conditions, a range of 1,3-enynes 1 have been examined
for the cycloaddition reaction with 2a (Fig. 2).

(Hetero)aryl-substituted 1,3-enynes afforded spirocyclized
products 3aa–3ja in good yields with high enantioselectivities.
A 1,3-disubstituted enyne 1k also led to the spirocyclized product
3ka in 65% yield with 93% ee. Notably, alkyl-substituted 1,3-
enynes were also suitable substrates for this transformation
(3la–3ua). Several functional groups were well tolerated, includ-
ing esters, nitriles, halides, and free alcohols. Furthermore,

alkenyl-substituted 1,3-enynes also underwent the cycloaddition
to afford the corresponding spirocyclized products (3va–3wa). It
is worth noting that such substrates have rarely been used in the
reactions by transition-metal hydride catalysis, as could poten-
tially generate multiple regioisomers of the butadienyl palladium
intermediates and could lead to side products. 1,4-Disubstituted
enynes did not work due to steric bulkiness. The absolute
configuration of 3ea was determined by X-ray crystal analysis (for
the details, see Supplementary Table 4 in the Supplementary
Information).

Notably, Pd/WingPhos catalyst also permitted the asymmetric
cycloaddition reaction of 1,3-enynes having a terminal triple
bond (Fig. 3). More interestingly, a switch of enantioselectivity
was observed as compared with 1,3-enyne substrates having a
terminal double bond.

A variety of diverse pronucleophiles, including biologically
active structural cores, can be flexibly incorporated into
spirocyclic scaffolds by Pd/WingPhos catalyzed enyne cycloaddi-
tion. As illustrated in Fig. 4, pyrazolidine-3,5-diones 2a-2c reacted
smoothly with 1,3-enyne 1a, delivering spiro-pyrazolidine-3,5-
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diones 3aa-3ac. Barbiturates 2d-2e also took part in the enyne
cycloaddition to produce spiro-barbiturates 3ad-3ae in good
yields with good enantioselectivityies. Piperidine-3,5-dione 2f also
participated, delivering spiro-piperidine-3,5-dione 3af in 55%
yield with 87% ee. O-heterocycles, such as meldrum’s acid 2g and
2H-pyran-3,5(4H,6H)-dione 2h, were also suitable reaction
partners for the spiroannulation. Six-, five-, and four-membered
carbocycles 2i-2l all took part in the enyne cycloaddition
reactions to deliver spirocyclized products 3ai-3al. Prochiral
pronucleophiles also underwent smoothly the enyne cycloaddi-
tion reactions. For example, benzo[b]thiophen-3(2H)-one 1,1-
dioxide 2m afforded the spirocyclic product 3am in good yield
(94%) with both high diastereoselectivity (20:1 dr) and enantios-
electivity (95% ee). Interestingly, acyclic 1,3-dicarbonyl com-
pounds did not work under the present chiral catalyst system.
The absolute configuration of 3ah and 3aj was determined by
X-ray crystal analysis, respectively (for the details, see Supple-
mentary Tables 5–6 in Supplementary Information).

Synthetic applications. To demonstrate the practicability of our
method, a gram-scale synthesis of the spirocyclic compound 3aa
was conducted without loss of the yield and enantioselectivity
(Fig. 5a). The olefin group provided a versatile handle for rapid
diversification to afford highly functionalized spirocyclic com-
pounds 6−10 with up to three contiguous stereocenters (Fig. 5b).
The amide group could be reduced by DIBAL-H to deliver

valuable spiro-pyrazolidine 5. The N–N bond of 3ma could be
cleaved with SmI2 to afford functionalized cyclopentene 11
without loss of the enantioselectivity55.

Mechanistic studies. In order to gain insight into the reaction
mechanism and understand the origin of the high enantioselec-
tivity we observed in the Pd/WingPhos-catalyzed enantioselective
cycloaddition reaction of 1,3-enynes 1, a series of experiments
have been conducted (Fig. 6). We prepared the allene inter-
mediates rac-13, (Ra)-13, and (Sa)-13 from pre-functionalized
allenylic partners, rac-12, (Ra)-12 (93% ee), and (Sa)-12 (94% ee),
respectively (We could not isolate the corresponding allene
intermediate during the Pd/WingPhos-catalyzed cycloaddition
reaction of 1a and 2a), and subjected them to the conditions of
the enantioselective catalytic reaction. The cyclization of rac-13
led to the spirocyclic product 3ma with 0% ee (Fig. 6a), whereas
the cyclization of (Ra)-13 afforded (R)-3ma in 62% yield with
94% ee (Fig. 6b) and the cyclization of (Sa)-13 afforded (S)-3ma
in 65% yield and 92% ee (Fig. 6c). Taken together, these results
suggest that axial chirality of the allene intermediates in situ
generated via the Pd/WingPhos-catalyzed enantioselective inter-
molecular hydroalkylation of 1,3-enynes 1 with cyclic enols/
enolates likely serves as a chiral relay during the cyclization
process involving a very high efficiency of axial-to central chir-
ality transfer. In addition, the axially chiral allenes in situ gen-
erated must be stable to racemization under the reaction
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conditions; otherwise no chirality transfer could be obtained. We
also found that the allene intermediates (Ra)-13 in the absence of
ligand provided (R)-3ma in much higher yield (85% yield) with
the same enantioselectivity (94% ee) (Fig. 6b).

On the basis of the above mechanistic studies and previous
reports36, a plausible catalytic cycle for the cycloaddition reaction
of 1,3-enynes is proposed in Fig. 7. The cycloaddition reaction of
1,3-enyne 1m having a terminal double bond involves the
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terminal Pd-butadienyl intermediate (Fig. 7a). First, the PdH
species likely coordinates to 1,3-enyne 1m to form the complex A
which undergoes migratory alkyne insertion36 to produce the
terminal butadienyl−Pd B1 or B2. Due to severe steric repulsion
in B2, B1 is favored to undergo the intermolecular nucleophilic
attack to afford chiral 1,3-disubstituted allene intermediate C with
axial chirality. Subsequently, the intramolecular
carbopalladation56 of the chiral allene intermediate D forms E
through a very high efficiency of axial-to central chirality transfer.
The protodepalladation of E produces the spirocyclic product
(R)-3ma. For the cycloaddition reaction of 1,3-enyne 1m′ having
a terminal triple bond which involves the internal Pd-butadienyl
intermediate (Fig. 7b), the intermolecular hydroalkylation of 1,3-
enyne 1m′ serves as the enantiodetermining step in which mono-
substituted allene intermediate C′ with central chirality is formed.

Finally, we were interested in seeing whether the Pd-butadienyl
intermediates generated by PdH insertion of 1,3-enynes differ with
the corresponding intermediates generated by oxidative addition of
allenol derivatives in reactivity or selectivity. We made the following
comparison experiments (Fig. 8). Interestingly, the achiral enyne 1f as
the precursor provided the cycloaddition product 3fa in 69% yield
with 96% ee (Fig. 8a) whereas the racemic 2,3-allenyl acetate 1f″ as
the precursor afforded the product 3fa in 66% yield with only 76% ee
(Fig. 8b) under the identical reaction conditions. On the other hand,
the achiral enyne 1f′ as the precursor provided the cycloaddition
product ent-3fa in 50% yield with 93% ee (Fig. 8c) whereas the
racemic 2,3-allenyl acetate 1f‴ as the precursor afforded the product
ent-3fa in 45% yield with only 58% ee (Fig. 8d) under the identical
reaction conditions. These results show the advantage and unique of
the use of nonpolarized 1,3-enynes in the PdH-catalyzed asymmetric

cycloaddition reactions in terms of not only atom economy but also
enantioselectivity.

Discussion
We have developed a PdH-based cycloaddition strategy for the
enantioselective synthesis of a series of spirocyclic compounds
directly from two classes of commonly available starting materials,
1,3-enynes and activated cyclic carbon–hydrogen (C–H) bonds. In
the present atom economic cycloaddition, nonpolarized 1,3-enynes
are utilized as dielectrophilic four-carbon units. By employing
P-chiral WingPhos as the chiral ligand, the challenging product
selectivity issue of cycloaddition products versus double inter-
molecular hydroalkylation products has been addressed. Notably, a
chiral Pd/WingPhos catalyst affects the enantioswitchable enyne
cycloaddition reactions with high levels of stereocontrol, thus pro-
viding a protocol for the enantioselectivity switch by exchanging the
position of double bond and triple bond of 1,3-enyne substrates
while maintaining the same absolute configuration of the chiral
catalyst57–59. A variety of diverse cyclic nucleophiles including
pharmaceutically important heterocycles and carbocycles can be
flexibly and directly incorporated with spiro scaffolds. A broad range
of functional groups of 1,3-enyne substrates, including alcohols,
esters, nitriles, halides, and olefins, are tolerated. We believe this
methodology may find considerable use and enable the discovery of
chiral spirocyclic molecules with interesting biological activities.

Methods
Representative procedure for the cycloaddition. [Pd(allyl)Cl]2 (0.91 mg,
2.5 mol%), and L7 (3.7 mg, 5 mol%) were dissolved in CH3CN (0.5 mL) and
stirred for 15 min at 30 °C under Ar atmosphere. Subsequently, 1,3-enyne 1a
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(0.12 mmol, 1.2 equiv), pyrazolidine-3,5-dione 2a (0.1 mmol, 1 equiv), and
BnN(Me)2 (0.2 mmol, 2 equiv) were added. The reaction mixture was stirred until
the reaction completed. The solution was concentrated in vacuum and the crude
product was purified by column chromatography on silica gel (n-hexane/
EtOAc= 95:5) to afford the spiro-pyrazolidine-3,5-dione 3aa.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and the Supplementary Information as well as from the authors upon
reasonable request. The X-ray crystallographic coordinates for structures (S)-3ah, (S)-3aj,
and (S)-3ea reported in this study have been deposited at the Cambridge
Crystallographic Data Centre (CCDC), under CCDC 2086798, CCDC 2086799, and
CCDC 2086800, respectively. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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